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In their recent Tansley Review, Holdo and Nippert (2023) provide a comprehensive 34 

analysis of existing models that explain tree-grass coexistence along precipitation 35 

gradients in savannas. They highlight the diverse assumptions of the different models 36 

proposed in the literature and conclude that none can fully explain tree-grass 37 

coexistence along a rainfall gradient. Consequently, they propose essential elements 38 

that a synthetic model should incorporate to solve the 'treeness conundrum' (sensu 39 

House et al. 2003). Holdo and Nippert assert that tree dominance is mainly limited by 40 

ecohydrological mechanisms in dry savannas and by disturbances in wet savannas. 41 

These concepts and mechanisms are summarized in their Figure 1, where they modify 42 

the 'Sankaran curve' estimated for Africa (Sankaran et al., 2005) to account for the effect 43 

of soil texture along rainfall gradients (upper boundary on tree cover is achieved with 44 

lower precipitation in coarser than in fine soils ).  45 

Here we aimed to test the upper boundary of tree cover predicted by Holdo and 46 

Nippert using data from BIODESERT (Maestre et al., 2022a,b), a global field survey 47 

comprising mixed rangelands (i.e., grazed areas composed of herbaceous and woody 48 

species) and accounting for the wide rainfall gradients that can be found across global 49 

drylands (Figure S1). While Holdo and Nippert propose that grass competition and 50 

disturbance are the mechanisms that determine the upper boundary of tree cover in 51 

arid- and humid-savannas, respectively, we expect similar mechanisms to operate in 52 

other grasslands with trees (see reviews by Scholes & Archer, 1997; Jeltsch et al., 2000; 53 

House et al., 2003; Sankaran et al., 2004). If our global data support this pattern, they 54 

would provide evidence for the relevance and accuracy of the mechanisms proposed by 55 

Holdo and Nippert. Also, testing this pattern in rangelands with varying grazing 56 

pressures, which are largely driven by domestic livestock (Maestre et al., 2022a), allows 57 

us to infer the presence and importance of disturbance-based mechanisms.  58 

The BIODESERT survey combines comprehensive global plant type coverages of 59 

various mixed dryland rangelands with highly detailed local information on grazing 60 

management and multiple ecosystem structural and functional attributes. As in 61 

Sankaran et al. (2005), we focused our analysis exclusively on the highest tree cover 62 

values, specifically the 99th percentile, omitting shrubs from consideration. Following 63 
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Holdo and Nippert (2023), we denote this as the upper boundary for tree cover. Details 64 

of the methodology and statistical analysis conducted are presented in Methods S1.  65 

We found that the upper boundary on tree cover in dryland rangelands increased 66 

with mean annual precipitation (MAP) before reaching a threshold of 453 mm (Figure 1, 67 

Table S1; the threshold corresponds to the vertex of the quadratic functions fitted to 68 

the data). These results suggest that the general pattern proposed by Holdo and Nippert 69 

(i.e., increase, threshold, and no-increase phases) also hold for global drylands. 70 

However, we found some specific differences to this pattern: a lower precipitation 71 

threshold and a declining tree cover beyond the threshold.  72 

The differences in the precipitation threshold (453 mm here vs. 650 mm in Holdo & 73 

Nippert, 2023) can be explained because the rainfall gradient evaluated in our study 74 

differs from that of Sankaran et al. (2005) and is skewed -intentionally, as the BIODESERT 75 

survey is restricted to drylands- towards drier systems (132 to 1185 mm in Sankaran vs. 76 

29 to 891 mm in our dataset). Interestingly, the MAP threshold found here also matches 77 

a previously proposed global ecosystem threshold driven by aridity (1-78 

[Precipitation/Evapotranspiration]) that implies systemic and abrupt changes in multiple 79 

functional and structural ecosystem attributes  (Berdugo et al., 2020, 2022). Specifically, 80 

the 0.7 aridity threshold is related to drastic changes in plant-soil feedbacks, including 81 

reductions in vegetation cover and soil fertility and changes in the composition of soil 82 

microbial communities (Berdugo et al., 2020, 2022).  83 

We observed that the upper boundary on tree cover declined beyond the 84 

precipitation threshold in our global dataset, rather than stabilizing as expected 85 

according to the 'Sankaran curve' (see table S2 for an AIC comparison of different models 86 

fitted to the data, including quadratic functions and functions that include a plateau). 87 

The patterns observed may be driven by several mechanisms. First, the differences 88 

between our results and the 'Sankaran curve' can be explained by a greater intensity of 89 

water competition relative to light competition within the BIODESERT survey. Water is 90 

the most important limiting resource for organisms in dryland ecosystems (Noy-Meir, 91 

1973). Consequently, a reduction in tree cover is expected if grasses outcompete trees 92 

for water, but trees are unable to exclude grasses through light limitation (Donaldson et 93 

al., 2022). Second, at the global scale, biogeographical drivers may gain importance 94 
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compared to single continent data. For example, in the Neotropical region, the species 95 

pool lacks tree species capable of effectively using excess water in high precipitation 96 

areas (Wiens & Graham, 2005; Chaneton et al., 2012). These two mechanisms may act 97 

simultaneously to explain lower values of the upper boundary on tree cover observed in 98 

sites where we would expect the opposite based on global patterns of aridity and tree 99 

cover (Whittaker, 1975). A third possible explanation may involve fire limiting tree cover 100 

in the wetter extreme of the gradient, because its occurrence and intensity increase in 101 

wetter and productive regions (Pausas & Paula, 2012; Devine et al., 2015). However, 102 

Figure S2 shows that even though the probability of fire increases along the precipitation 103 

gradient, most of the plots in our survey did not experience fire during the last 20 years. 104 

Finally, a potential methodological explanation for the declining upper boundary on tree 105 

cover observed may be the low number of sites with MAP greater than 600 mm 106 

surveyed, limiting the ability to detect sites with higher tree cover values. However, a 107 

similar pattern to that reported here has also been observed in South African savannas 108 

(see Figure 5 in Stevens et al. (2016), ranging from 302 mm to 1134 mm) which casts 109 

doubt on whether a higher “sampling effort” would yield a different pattern. 110 

Even if our data do not conform exactly to the ‘Sankaran curve’, they support the 111 

three mechanisms that comprise the building blocks of the model proposed by Holdo 112 

and Nippert. The first mechanism suggests that trees persist and grow due to excess 113 

water infiltrating below the grass functional rooting layer, even though grasses may 114 

consistently outcompete trees for water in the upper soil layers. Our results support this 115 

mechanism based on Walter's two-layer hypothesis and functional rooting separation 116 

(Walter, 1971). We found that as MAP increases, the upper boundary in fine soils 117 

consistently lies beneath that of coarse soils  (p<0.05, Table S1). In other words, a greater 118 

amount of precipitation is required to increase tree cover in finer soils, where there is 119 

greater water retention in the surface layers and less percolation to the subsoil 120 

(Fensham et al., 2015). After the threshold was crossed, we found that the upper 121 

boundary on tree species cover declined with MAP more rapidly in finer than coarser 122 

soils. Since grasses may consistently outcompete trees for water in the upper soil layers  123 

(Holdo & Nippert, 2023), coarser soils, which retain less water and allow more water 124 

infiltration to deeper layers, can sustain greater tree cover at higher precipitation values. 125 
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However, it is also interesting to note that the maximum tree cover achieved in our 126 

study (ca. 45%) is similar for finer and coarser textures at the middle of the rainfall 127 

gradient evaluated. This feature of equal maximum tree cover for both soil textures  is 128 

also represented in Figure 1 of Holdo and Nippert (2023), and our data suggest that 129 

along this precipitation window tree cover is no longer constrained by water availability.  130 

We did not find support for the inverse texture hypothesis in relation to the upper 131 

boundary on tree cover (Noy-Meir, 1973), similar to previous studies on African 132 

savannas (Bucini & Hanan, 2007). 133 

The second mechanism proposed by Holdo and Nippert hypothesizes that trees are 134 

unable to exclude grasses at drier sites through light limitation due to water availability 135 

constraining leaf area. Our data accords with this assertion because the upper boundary 136 

on tree species cover is lower in drier sites. Furthermore, the upper limit of leaf area in 137 

woody species along the rainfall gradient exhibits a similar trend to that of woody cover 138 

(Figure S3). In addition, there is an increase in the upper boundary on grass cover with 139 

higher mean annual precipitation, indicating that interactions  among trees and grasses 140 

at the drier side of the rainfall gradient (<453 mm) may be neutral or positive (i.e., 141 

facilitation), rather than negative (see inset of Figure 1).  142 

The third mechanism proposed by Holdo and Nippert posits that grass competition 143 

allows for demographic bottlenecks in trees, leading to a decline in their cover. In our 144 

dataset, demographic bottlenecks may primarily occur due to grazing because fire is 145 

almost absent in our sampled sites (Figure S2). Our results show that increasing grazing 146 

pressure is associated with a lower upper boundary on tree cover (Figure 2). This 147 

deleterious effect of grazing may result from multiple mechanisms, including indirect 148 

effects on vital rates of tree species due to increases in the cover of non-palatable 149 

grasses and direct effects due to browsing, trampling, and a lower consumption 150 

selectivity of grazers at higher grazing pressures (Augustine & McNaughton, 1998; 151 

Sankey, 2012; Lezama & Paruelo, 2016; Oñatibia & Aguiar, 2019). Distinct variations in 152 

the upper boundary on tree cover between low and medium grazing pressure levels 153 

become apparent at intermediate levels of mean annual precipitation (MAP) and 154 

beyond. This suggests that water availability is a stronger constraint than disturbance 155 

under low precipitation values. Rather, when grazing pressure is high, the upper 156 
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boundary on tree cover is lower across the entire rainfall gradient. Hence, we observed 157 

an interplay between resource-based and disturbance-based mechanisms of 158 

coexistence, as their relative importance depends on water availability and grazing 159 

pressure. 160 

While we found evidence for the key elements of a definitive savanna model 161 

proposed by Holdo and Nippert, we believe that these elements may differ or vary in 162 

importance under future global change scenarios. Global change drivers have the 163 

potential to modify tree cover patterns and the importance of the three coexistence 164 

mechanisms proposed by Holdo and Nippert (Venter et al., 2018). For instance, changes 165 

in features beyond mean annual precipitation, such as its variability, seasonality or 166 

frequency of extreme events, may influence tree-grass interactions (Kulmatiski & Beard, 167 

2013; Wang et al., 2022). Also, land-use change may have an important role, as the 168 

effect of grazing pressure on the upper boundary on tree cover may differ between 169 

herbivore species: browsers often exert a negative impact on tree species, while grazers 170 

exert a positive effect because of reductions in grass biomass (Manier & Hobbs, 2007; 171 

Donaldson et al., 2022). Furthermore, drivers currently considered less important in 172 

explaining coexistence in savannas, such as temperature regime or nutrient dynamics 173 

(e.g., nitrogen deposition), may become more significant in a more human-dominated 174 

world (Yahdjian et al., 2011; Brandt et al., 2017). And finally, changes in community 175 

composition due to biological invasions can alter the general patterns observed in our 176 

results. For example, the invasion of tree species with traits that effectively use water 177 

surplus in high precipitation sites and exclude grasses through light limitation could 178 

modify currently observed patterns (Mazia et al., 2001; Chaneton et al., 2012).  179 

Overall, our findings validate several patterns proposed by Holdo and Nippert (2023) 180 

to explain the upper boundary pattern of tree cover in savannas. They also highlight 181 

some features that may be specific for water-limited rangelands, including a lower 182 

precipitation threshold, a declining tree cover beyond the threshold, and an interplay 183 

between resource- and disturbance-based mechanisms. By doing so, our study sets the 184 

stage for building a more comprehensive and definitive tree-grass coexistence model 185 

that fully accounts for the characteristics of drylands, the largest rangeland area on our 186 

planet (Asner et al., 2004). 187 
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 188 

Figure 1. Tree species cover (%) along the mean annual precipitation (mm) gradient 189 

captured by the BIODESERT global survey. Orange and grey full lines represent 99th 190 

quadratic quantile regression adjustment for coarse- and fine-soil textures, respectively 191 

(n = 283: coarse-textured soils n = 213, fine-textured soils, n = 70). Inset: Grass cover (%) 192 

along a mean annual precipitation (mm) gradient until the 453 mm threshold. The fitted 193 

line represents the 99th quadratic quantile regression adjustment.  194 

 195 

 196 
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 197 

Figure 2. Tree species cover (%) under different grazing pressure along the mean annual 198 

precipitation (mm) gradient described by the BIODESERT global survey. The curves fitted 199 

represent 99th quadratic quantile regression adjustment for low (n=88, blue line), 200 

medium (n=97, yellow line), and high (n=98, pink line) grazing pressure levels.  201 
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