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REVIEW

OXPHOS-targeting drugs in oncology: new perspectives
Balaraman Kalyanaramana, Gang Chenga, Micael Hardyb and Ming Youc

aDepartment of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA; bAix Marseille Univ, CNRS, ICR, Marseille, France; cCenter for Cancer 
Prevention, Houston Methodist Research Institute, Houston, TX, USA

ABSTRACT
Introduction: Drugs targeting mitochondria are emerging as promising antitumor therapeutics in 
preclinical models. However, a few of these drugs have shown clinical toxicity. Developing mito
chondria-targeted modified natural compounds and US FDA-approved drugs with increased ther
apeutic index in cancer is discussed as an alternative strategy.
Areas covered: Triphenylphosphonium cation (TPP+)-based drugs selectively accumulate in the 
mitochondria of cancer cells due to their increased negative membrane potential, target the 
oxidative phosphorylation proteins, inhibit mitochondrial respiration, and inhibit tumor prolifera
tion. TPP+-based drugs exert minimal toxic side effects in rodents and humans. These drugs can 
sensitize radiation and immunotherapies.
Expert opinion: TPP+-based drugs targeting the tumor mitochondrial electron transport chain are 
a new class of oxidative phosphorylation inhibitors with varying antiproliferative and antimetastatic 
potencies. Some of these TPP+-based agents, which are synthesized from naturally occurring 
molecules and FDA-approved drugs, have been tested in mice and did not show notable toxicity, 
including neurotoxicity, when used at doses under the maximally tolerated dose. Thus, more effort 
should be directed toward the clinical translation of TPP+-based OXPHOS-inhibiting drugs in cancer 
prevention and treatment.

PLAIN LANGUAGE SUMMARY
Mitochondria, which are the cell’s powerhouse of energy, are functional in cancer cells. Inhibition of 
cancer cell respiration is associated with inhibition of cancer cell proliferation. Therefore, mitochon
dria have become a promising target for developing antitumor drugs to treat cancer. Several classes 
of drug molecules selectively target cancer cell mitochondria and inhibit mitochondrial respiration 
or oxidative phosphorylation (OXPHOS). A new class of OXPHOS-targeting drugs is emerging as 
a potential cancer therapeutic. One of the OXPHOS inhibitor drugs, IACS-010759, developed by 
investigators at MD Anderson Cancer Center, was tested in patients with acute myeloid leukemia. 
Patients who were administered the drug developed peripheral neuropathy and other complica
tions (lactic acidosis), resulting in dose reduction. At lower doses, this drug was not effective. 
Subsequently, the clinical trial was terminated. The investigators then showed the same type of 
neurotoxicity using a mouse model. These findings were recently published. Thus, there is an 
urgent need to develop new OXPHOS inhibitors that do not have neurotoxicity in mice or humans.

In this opinion article, we make a case that there are other triphenylphosphonium cation (TPP+)- 
based mitochondrial OXPHOS inhibitors (inhibiting both complex I and complex III) that are 
structural modifications of naturally occurring molecules or US FDA-approved drugs. These mito
chondria-targeted drugs (MTDs) are as potent as IACS-010759 in cells and in preclinical models. 
Several TPP+-based MTDs have been tested in mice and did not exert neurotoxicity. TPP+-containing 
MTDs such as mitochondria-targeted coenzyme Q10 (MitoQ) have been tested in patients with 
Parkinson’s disease, with no evidence of peripheral neuropathy or other toxicity (e.g., lactic acido
sis). Other US FDA-approved drugs (metformin and atovaquone [ATO] or papaverine) are in clinical 
trials alone or in combination with other standard-of-care treatments (e.g., radiation therapy). We 
recommend that TPP+-based drugs that have been tested in preclinical models or in humans should 
undergo clinical trials in patients with cancer.
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1. Introduction
Recent reports indicate that some complex I inhibitors (e.g., IACS- 
010759) induced peripheral neuropathy in phase I clinical trials of 
patients with relapsed/refractory acute myeloid leukemia and in 
mice, suggesting that some complex I inhibitors are prone to 

induce neurotoxicity [1,2]. Developing mitochondria-targeted 
small-molecule therapeutics like mitochondria-targeted coen
zyme Q10 (MitoQ), related analogs, and other triphenylphospho
nium cation (TPP+)-based oxidative phosphorylation oxidative 
phosphorylation (OXPHOS) inhibitory drugs with negligible 
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neurotoxicity in preclinical models and humans, therefore, will 
be a significant therapeutic advancement in cancer treatment 
(Figure 1). Most of these TPP+-based OXPHOS inhibitors are 

synthesized from naturally occurring molecules or from US 
Food and Drug Administration (FDA)-approved drugs 
(Figure 1). These TPP+-based OXPHOS inhibitors have a great 
potential to become anticancer agents due to a lack of neuro
toxicity in preclinical models and humans.

OXPHOS is emerging as a likely druggable target in cancer 
therapy [3,4]. Increasing evidence supports a significant role 
for mitochondrial metabolism in promoting cancer develop
ment and progression [5–7]. Conjugating delocalized lipophilic 
cations, such as the TPP+, to compounds of interest is an 
effective mitochondrial targeting approach [5–7]. The mito
chondrial membrane potential in cancer cells (−220 mV) is 

Article highlights

● Review of potent, tumor-cell-selective, and low-toxicity drugs
● Translatable to the clinic
● Ability to inhibit metastases of primary tumors
● Potential synergy with radiation and immunotherapies

Figure 1. Chemical structures of MTDs.
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more hyperpolarized than that in normal cells (−140 mV), and 
this discrepancy can drive a 100- to 200-fold uptake of cations 
to cancer cells [5–9] (Figure 2).

The mitochondrial complex III inhibitor, atovaquone (ATO), 
decreased tumor hypoxia in lung cancer patients and also 
increased radiosensitivity [10] as result of enhanced tumor 
oxygenation. Papaverine, a US FDA-approved drug that inhi
bits mitochondrial respiration, was used as a radiation sensiti
zer [11]. Mitochondria-targeted atovaquone (Mito-ATO) and 
other mitochondria-targeted drugs (MTDs) that are much 
more potent than ATO and the corresponding parent mole
cule should be more potent hypoxic radiosensitizers. 
Mitochondrial OXPHOS inhibition enhanced the anti- pro
grammed death-1 (PD-1) antibody immunotherapy in mela
noma cancer therapy [12]. Figure 1 lists the chemical 
structures of MTDs that are currently tested in humans and 
in preclinical xenograft models. TPP+-containing MTDs were 
also shown to mitigate the toxic side effects (e.g., cardiotoxi
city) of standard-of-care chemotherapeutics such as doxorubi
cin in preclinical models [13]. Table 1 lists the potency and 
toxicity of the selected MTDs in different cancers.

2. MitoQ

MitoQ, also referred to as Mito-ubiquinone, is an orally avail
able molecule synthesized from conjugating a lipophilic TPP+ 

to coenzyme Q via an aliphatic 10-carbon chain. MitoQ is 
commercially available as a mitochondrial nutrient. Although 
MitoQ is not yet approved by the US FDA, it is undergoing 
multiple clinical trials to test its antioxidative mechanism of 
protection in oxidative pathologies. The antioxidant mechan
ism of MitoQ likely involves redox cycling between benzoqui
none (the oxidized form) and benzoquinol (the reduced form) 
by complex II or succinate dehydrogenase in the mitochon
drial electron transport chain [14]. Mitochondrial reactive oxy
gen species (often referred to as mtROS) presumably oxidizes 
Mito-ubiquinol (MitoQH2) back to MitoQ, although the 
mechanistic details are not known.

2.1. Potency

Recent in vitro and in vivo studies show that MitoQ inhibits 
breast cancer and pancreatic cancer metastases, and the 

Figure 2. Selective uptake of TPP+-based MTDs into tumor mitochondria. Reprinted (adapted) with permission from Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, 
Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and 
therapeutic and diagnostic applications. Chemical reviews. 2017;117(15):10043 –10,120. Copyright 2017 American Chemical Society.
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MitoQ effect was attributed to its ability to inhibit mitochon
drial superoxide [15,16]. More importantly, MitoQ administra
tion prevented the recurrence of breast cancer in mice 
xenografted with human cancer cells [17].

Recent studies show that at submicromolar concentrations, 
both MitoQ and dimethoxy MitoQ (DM-MitoQ) potently inhibit 
mitochondrial respiration and tumor cell proliferation. Recently, 
MitoQ and its redox-crippled analog, DM-MitoQ, were shown to 
target and inactivate the mitochondrial chaperone protein, 
tumor necrosis factor receptor-associated protein 1 (Trap1), 
that preferentially inhibits cancer cells including the triple- 
negative breast cancer cells [18]. MitoQ and DM-MitoQ inhibit 
Trap1, a mitochondrial heat shock protein 90. Trap1 also regu
lates mitochondrial respiration, acting as a switch between 
OXPHOS and glycolysis [19,20]. The investigators concluded 
that the antioxidant mechanism of MitoQ was not responsible 
for its enhanced cytotoxicity in breast cancer, as both MitoQ and 
redox-inactive analogs also induced a similar cytotoxic response 
[20]. However, results from emerging studies suggest that MitoQ 

and DM-MitoQ potently inhibit complex I-induced oxygen con
sumption and proliferation of breast cancer and glioma cells, and 
that inhibition of OXPHOS by MitoQ and DM-MitoQ is primarily 
responsible for the antiproliferative effects in breast cancer and 
glioma cells [21].

2.2. Toxicity

MitoQ was shown to be well tolerated without any perceptible 
neurotoxicity in Parkinson’s patients [22]. Administration of 
MitoQ for a 12-week duration reversed the cardiotoxicity of 
doxorubicin in rats [23]. Reports suggest that MitoQ was able to 
ameliorate peripheral neuropathy [24]. Supraphysiological levels 
of MitoQ (i.e., three orders of magnitude higher than its effective 
concentrations in cancer cells) caused nephrotoxicity [25].

New findings using redox-crippled MitoQ revealed that the 
antiproliferative and antitumor mechanism of MitoQ involves 
selective inhibition of OXPHOS in tumor cells.

Table 1. Potency and toxicity of selected mitochondria-targeted drugs in different cancers.

Compound Cancer Type Molecular Target & Mechanism Preclinical Model Toxicity & Beneficial Effects Refs.

MitoQ Pancreatic, 
breast

Complex I in the METC; respiration and 
ATP inhibition

Breast tumors, pancreatic tumor 
regression in mice xenografts

No known toxicity in preclinical 
models or in humans; 
improves vascular function, 
muscle weakness, and 
atrophy

[14–25]

Mito-HNK Lung Complex I in the METC; ATP inhibition, 
TME 
reprogramming

Primary tumor regression in lung cancer 
mice xenografts, brain metastasis 
inhibition

No toxicity in mice at levels 20× 
effective dose; no 
neurotoxicity, no 
hypothermia

[26]

Mito-MGN Melanoma Complex I in the METC; respiration 
inhibition, AMPK activation, cell 
cycle inhibition

Melanoma progression inhibition in 
a murine xenograft model

No observable toxicity in kidney 
in C57BL6 mice; elevated liver 
enzymes suggest some liver 
toxicity

[27,28]

Mito-ATO Breast, brain Complexes I and III in the METC; 
respiration inhibition, TME 
reprogramming

Enhanced antitumor activity of PD-1 
blockade in a resistant B16F10 mouse 
melanoma model

No kidney toxicity [29,30]

Mito-LND Lung Complexes I and II in the METC; 
respiration inhibition, AMPK 
activation, mTOR inhibition

Primary lung cancer and brain 
metastasis regression

No toxicity in mice even at 
levels 200× the effective 
antitumor concentration

[31]

IACS-010759 Multiple 
myeloma, 
melanoma 

Complex I in the METC; respiration 
inhibition, AMPK activation

Improved survival of mice bearing 
MAPKi-resistant intracranial 
melanoma xenografts, MBM 
formation inhibition in a spontaneous 
MBM model

Decreased body temperature 
and increased neuropathy in 
cancer patients and mice 
xenografts

[32]

IM156 Glioblastoma, 
gastric, 
lymphoma

Complex I in the METC; respiration 
inhibition, ATP production, AMPK 
activation, mTOR inhibition

No dose-limiting toxicity in 
humans (<1,200 mg) in 
a phase I clinical study

[33,34]

Mito-Mets Pancreatic Complex I in the METC; respiration 
inhibition, AMPK activation, mTOR 
inhibition

Pancreatic cancer regression in mice 
xenografts

No noticeable toxicity in mice [35–37]

Mito-HU Colon Complexes I and III in METC; respiration 
inhibition

No animal studies [38]

Mito-Tamoxifen Breast Complex I in the METC; depolarization 
of mitochondrial membrane; 
disruption of respiratory 
supercomplexes in HER2 high breast 
tumors

Syngeneic tumor growth inhibition with 
NeuTL cells derived from spontaneous 
HER2 high breast carcinoma in FVB/N 
c-neu mice

Showed a very favorable toxicity 
profile in preclinical testing 
and has progressed to phase 
I clinical trials

[39,40]

Mito- 
Curcuminoids

Breast, lung Akt and STAT3 phosphorylation 
inhibition, TrxR2

[41,42]

Mito- 
Furocoumarins

Pancreatic Block the mitochondrial potassium 
channel, enhancing apoptosis of 
tumor cells

[43]

Mito-DCA Prostate Respiration, lactic acid production and 
ATP inhibition

Enhanced antitumor activity of anti-PD-1 
in syngeneic tumor models

[44,45]

AMPK, AMP-activated protein kinase; MAPKi, mitogen-activated protein kinases inhibitor; MBM, melanoma brain metastases; METC, mitochondrial electron transport 
chain; mTOR, mammalian target of rapamycin; PD-1, programmed death-1; TME, tumor microenvironment. 
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3. Mito-HNK

Mitochondria-targeted honokiol (Mito-HNK) was synthesized 
by attaching a TPP+ moiety via an alkyl side chain to honokiol 
(HNK) [26]. HNK is a key bioactive molecule in magnolia bark 
extracts that has been used for centuries in Asian countries for 
treating various inflammatory disorders. Also, it is a widely 
used nutritional supplement. HNK itself is a mitochondrial 
complex I inhibitor used in chemoprevention research [26].

3.1. Lack of in vivo toxicity in mice

Mito-HNK was tested in an eight-week toxicology study in A/J 
mice [26]. Neurons and muscle cells typically have a much 
higher plasma membrane potential that could enhance Mito- 
HNK uptake [26]. Thus, a subchronic toxicity screen was used 
to monitor the central nervous system and neuromuscular 
effects during Mito-HNK treatment. Mice were treated orally 
with vehicle control and Mito-HNK at various doses (up to 20 
times the effective dose) for five days per week for eight 
weeks. No histopathological changes were observed in neural 
or skeletal muscles. Even at 20-fold higher than the effective 
dose, Mito-HNK did not affect the motor function. Both body 
weight and rectal temperature remained constant during 
eight weeks of treatment with Mito-HNK. Detailed pharmaco
kinetic/pharmacodynamic studies are currently ongoing in 
mouse models of lung cancer as part of a cancer preclinical 
drug development program.

3.2. In vitro and in vivo potency: inhibition of lung 
cancer metastasis to the brain

Mito-HNK inhibits mitochondrial complex I-induced oxygen con
sumption, induces superoxide and hydrogen peroxide forma
tion and activation of adenosine monophosphate-activated 
protein kinase (AMPK), inhibits signal transducer and activator 
of transcription 3 (STAT3) phosphorylation, and inhibits prolif
eration of cancer cells [26]. Further, Mito-HNK inhibits lung 
cancer progression and prevents metastasis of lung cancer 
cells to lymph nodes and to the brain [26]. From a mechanistic 
standpoint, the antitumor and antimetastatic effects were 
shown to be mediated by the STAT3 pathway. Knockdown of 
STAT3 abrogated both the antiproliferative and antimetastatic 
effects of Mito-HNK [26]. Mito-HNK inhibits STAT3 phosphoryla
tion irrespective of the epidermal growth factor receptor muta
tion status in lung cancer cells [26]. Reports indicate that 
a decrease in the core body temperature and death result 
from the excessive inhibition of OXPHOS [46]. Mito-HNK did 
not elicit these effects [26]. Currently, treatment of lung cancer 
metastasis does not start until after diagnosis. Mito-HNK treat
ment inhibits metastasis of primary lung cancer to the brain. 
Based on the lack of in vivo toxicity, including neurotoxicity, in 
mice, we suggest that Mito-HNK is a promising antitumor can
didate drug for preventing primary and metastatic lung cancer.

4. Mito-MGN

Magnolol is present in abundance in magnolia extract, 
a traditional herbal medicine used effectively for centuries in 

East Asia to treat inflammatory diseases. Mitochondrial- 
targeted magnolol (Mito-MGN) belongs to a new class of 
mitochondria-targeted polyphenolic drugs. Mito-MGN is 
synthesized by conjugating a TPP+ moiety via an alkyl side 
chain to magnolol [27]. Currently, there are no effective drugs 
that treat melanoma, an aggressive form of skin cancer. B-Raf 
serine/threonine kinase inhibitor antiglycolytic drugs induce 
a rapid onset of drug resistance. B-Raf serine/threonine kinase 
inhibitors cause metabolic reprogramming from a glycolytic 
phenotype to an OXPHOS phenotype that is attributed to 
resistance against antiglycolytic kinase inhibiting drugs (e.g., 
vemurafenib). The increased dependence on OXPHOS for 
energy makes OXPHOS a vulnerable target in drug-resistant 
melanoma cells. Increased mitochondrial biogenesis and upre
gulated OXPHOS genes are associated with enhanced mito
chondrial respiration in drug-resistant melanoma cells. Mito- 
MGN inhibited mitochondrial complex I-induced oxygen con
sumption, AKT-forkhead box O signaling, blocked cell cycle 
progression, and melanoma cell proliferation [27,28]. Mito- 
MGN was shown to potently inhibit melanoma cell prolifera
tion and tumor growth in murine melanoma xenografts 
[27,28].

4.1. Toxicity

We have not done any detailed toxicology studies (e.g., like 
those that were done for Mito-HNK) for Mito-MGN. However, 
mice were treated three times a week with 1 mg of Mito-MGN 
administered intratumorally [27]. Key metabolites of cardiac, 
hepatic, and renal function were measured in the serum. There 
were no significant differences in the serum levels of alanine 
transaminase (ALT), blood urea nitrogen, albumin, glucose, 
and protein in control and Mito-MGN-treated mice. Aspartate 
aminotransferase (AST) levels were considerably elevated 
upon treatment with Mito-MGN.

4.2. In vitro and in vivo potency

Mito-MGN potently inhibits mitochondrial complex I-induced 
mitochondrial respiration, blocks cell cycle progression, and 
inhibits proliferation of melanoma cells, primarily through 
downregulation of mammalian target of rapamycin (mTOR)/ 
protein kinase B (AKT) signaling and mitophagy [27].

Mito-MGN induced AMPK–threonine 172 phosphorylation, 
activating AMPK signaling, mitophagy, and energy-related 
proteins in melanoma cells. Mito-MGN treatment was equally 
effective in inhibiting drug-resistant melanoma cells (with 
enhanced OXPHOS) [27].

Mito-MGN inhibited tumor progression in an immune- 
competent mouse xenograft model [28]. Also, Mito-MGN 
remodeled the tumor microenvironment (TME) in a mouse 
melanoma model. Mito-MGN induced infiltration of T cells, 
decreased myeloid-derived suppressor cells (MDSCs), and 
decreased tumor-associated macrophages in melanoma 
tumors [28]. The antitumor effect of Mito-MGN is inhibited 
by immune depletion [28]. We conclude that the antitumor 
immunity effect of mitochondria-targeted polyphenolics is an 
exciting area of therapeutic drug targeting and TME 
remodeling.
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5. Mito-ATO

ATO is a US FDA-approved drug for use in combination with 
proguanil for the prevention and treatment of malaria, a US 
FDA-approved alternative for the prevention or treatment of 
Pneumocystis pneumonia, and an alternative for treating 
Toxoplasma in combination with sulfadiazine [47–55]. ATO is 
an inhibitor of OXPHOS and does not cause serious side 
effects when given at 3- to 42-fold the normal dose [50–53]. 
ATO has been shown to inhibit the proliferation of cancer cells 
by targeting complex III and to exhibit antitumor activity in 
animal models of acute myelogenous leukemia, acute lympho
cytic leukemia, and glioblastoma [3,56–59]. Inhibition of tumor 
growth by ATO was attributed to its direct effects on cancer 
cells and its ability to perturb immune cell recognition and/or 
alter the host’s TME [3,29,30,56–59].

We developed Mito-ATO by attaching the bulky TPP+ group 
to ATO via a long alkyl chain, which separates TPP+ from ATO’s 
structure and increases its lipophilicity and mitochondrial 
uptake in immunosuppressive cells in the TME [30]. We 
showed that among the different Mito-ATO analogs tested, 
Mito10-ATO showed maximal potency to inhibit complex I- 
and III-induced mitochondrial oxygen consumption [30].

5.1. Toxicity

Acute and subchronic toxicology of Mito-ATO has not been done 
extensively. Intratumoral delivery of Mito10-ATO showed no 
alterations in body weights, AST levels, or ALT levels in mice [29].

5.2. In vitro and in vivo potency

We and others have shown that MTDs can target subtypes of 
immune cells in the TME [5–7,60–63]. We also explored the 
effects of Mito10-ATO on immune cells within the TME in 
mouse tumor models [29]. Using an in situ vaccination 
approach, Mito10-ATO was injected locally into primary 
tumors, which triggered a potent T cell immune response 
that attacked both the local tumor and metastatic cancer 
cells. The amount of Mito10-ATO leaking into the circulation 
(~0.8% of the injected amount) was unable to induce the 
observed antitumor effects; therefore, the potent antitumor 
effects on the nontreated side tumor or metastatic tumor cells 
appear to be mediated by a systemic adaptive T cell tumor- 
specific immune response, including an increase in cytotoxic 
CD4+, T cells triggered by intratumoral Mito10-ATO injection of 
the treated side tumor [29]. Flow cytometry analysis found 
that Mito10-ATO treatment decreased intratumoral granulocy
tic MDSCs and regulatory T cells (Tregs) and increased effector 
CD4+ T cells [29]. Single-cell RNA sequencing showed that the 
reduction of granulocytic MDSCs and Tregs were linked to 
Mito10-ATO’s inhibition of OXPHOS (by suppression of mito
chondrial complexes) and glycolysis in granulocytic MDSCs 
and Tregs, leading to the death of these cells via both extrinsic 
and intrinsic (mitochondrial) pathways of apoptosis [29].

We demonstrated for the first time that injection of the 
novel OXPHOS inhibitor Mito10-ATO into primary tumors trig
gers a potent T cell immune responses locally and in distant 

sites of tumor metastasis by reversing immunosuppression in 
the TME [5,30].

MTDs that undergo redox activation to generate a huge 
flux of reactive oxygen species can inhibit metastasizing can
cer cells via a prooxidant mechanism. Redox-active MTDs can 
exert antitumor effects via an OXPHOS-inhibiting mechanism 
and a pro-oxidant promoting mechanism [64,65]. Mito-ATO 
and MitoQ may also be considered as redox-active MTDs by 
virtue of the futile redox-cycling mechanism of the semiqui
none in the presence of oxygen. Findings from our studies 
suggest that Mito-ATO is one of the most potent OXPHOS- 
inhibiting drugs that primarily targets mitochondrial complex 
III in cancer cells.

6. Mito-LND

Mito-lonidamine (Mito-LND) is lonidamine (LND) conjugated 
to TPP+ via an alkyl side chain linker [31]. LND, a derivative of 
indole-3-carboxylic acid, is an antiglycolytic chemotherapeutic 
drug that has undergone Phase II and Phase III trials targeting 
lung cancer. It was shown to be safe with limited efficacy. 
Mito-LND is one of the least toxic MTDs developed in our 
laboratory. TPP+ modification converted a minimally effective 
antiglycolytic drug into a significantly more potent MTD. Mito- 
LND is nearly 100-fold more potent than LND as an OXPHOS 
inhibitor in lung cancer cells [31]. Mito-LND induced mito
phagy and autophagy in cancer cells [31].

6.1. Toxicity

Mito-LND is distinctly different from LND with regard to target of 
inhibition. LND targets hexokinase and missense constraint 
whereas Mito-LND targets complex I and II in the mitochondrial 
electron transport chain. Mito-LND caused no toxicity in mice, 
even when administered at 50 times the effective cancer inhibi
tory dose for eight weeks [31]. No adverse effects were noticed 
in tissues by histopathology or liver function tests. We used 
a Modified Irwin Screen, a comprehensive observational battery 
test employing 35 distinct measurements to assess sensorimo
tor, neurological, and autonomic nervous system function. No 
neurotoxicity was observed in Mito-LND treated mice.

6.2. In vitro and in vivo potency

Mito-LND was effective at low micromolar concentrations in 
inhibiting lung cancer cell proliferation. The half-maximal inhi
bitory concentration (IC50) of Mito-LND was 200–300-fold 
lower than the IC50 of LND for inhibiting the proliferation of 
lung cancer cells. Mito-LND downregulates the autophagy- 
linked energy-sensing mTOR/AKT signaling pathway in cancer 
cells [31]. Mito-LND inhibits primary lung tumors and sup
presses lung cancer brain metastases in mouse models of 
lung cancer. Mito-LND was more effective than LND. We con
clude that Mito-LND is one of the least toxic and most potent 
MTDs for inhibiting lung tumor brain metastasis.
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7. Mitochondria-targeted biguanides

7.1. Metformin

Metformin, a US FDA-approved drug, which has been used in 
diabetic patients (in daily doses of 2–3 g) for more than 50  
years, has an excellent safety profile. However, cancer 
researchers have suggested that more potent biguanides 
should be used in cancer treatment because of the poor 
bioavailability and low plasma levels of metformin in diabetic 
cancer patients treated with metformin [66]. The bioavailabil
ity of metformin is relatively poor. Metformin is undergoing 
several clinical trials in the field of cancer [67]. Although inter
est in metformin therapy to treat cancer is slowly decreasing, 
this can be attributed in part to a lack of attention to patient 
selection, mechanism of action, and appropriate combina
tional modality. Metformin’s ability to reshape through the 
TME in preclinical models shows promise in combinational 
therapies involving immunotherapy.

7.2. Phenformin

Phenformin, a more lipophilic phenyl group substituted ana
log of metformin, was withdrawn because of a high risk of 
lactic acidosis [68]. Clearly, lactic acidosis is one of the 
expected side effects associated with OXPHOS inhibitors that 
induce a compensatory increase in glycolysis in response to 
metabolic adaptation. Repurposing of phenformin in cancer 
therapy was recently reviewed [69]. At therapeutic doses, 
phenformin suppressed Hedgehog-dependent tumor growth 
via a complex I-independent mechanism [70]. Phenformin 
inhibited mitochondrial glycerophosphate dehydrogenase, 
leading to elevated levels of intracellular nicotinamide ade
nine dinucleotide hydride (NADH) and the association 
between corepressors CtBP2 and Gli1. Unlike metformin, 
Phenformin activates AMPK signaling in ornithine transcarba
mylase-deficient tumor cells. Phenformin suppressed the 
growth of hepatocellular carcinoma in conjunction with 
mTOR inhibitors [71]. Phenformin was used in conjunction 
with gemcitabine to eradicate high OXPHOS pancreatic cancer 
cells [72].

7.3. IM156

IM156, also known as Lixumistat, is an orally active analog of 
metformin that inhibits OXPHOS more potently than metfor
min in tumor cells [33]. The first-in-human study of IM156 in 
patients with advanced solid tumors and lymphoma was 
recently published (Immunomet Therapeutics, Inc.) [33]. 
IMI56 inhibits mitochondrial protein complex I that that oxi
dizes NADH in the mitochondrial electron transport chain, 
leading to adenosine triphosphate formation. In contrast 
with metformin that requires active transporters such as 
organic cation transporter 1, IM156, being more hydrophobic, 
diffuses across the cell membrane. It was concluded that 
IM156 should be used in combination with other targeted 
antitumor therapies and/or in selected cancer patients and 
not as a single agent due to limited clinical activity in an 
unselected population of cancer patients [33].

7.4. Mito-Mets

Mitochondria-targeted metformins (Mito-Mets) are a novel 
class of compounds synthesized by attaching a TPP+ moiety 
or a substituted TPP+ moiety via an alkyl side chain of varying 
lengths to metformin [35–37]. Mito10-Met exhibits a 1,000-fold 
higher potency than metformin in inhibiting mitochondrial 
respiration, AMPK activation, and suppression of forkhead 
box protein M1 in cancer cells, and therefore, could provide 
significant therapeutic advantage in patients with advanced 
pancreatic cancer [35]. Mito-Mets have been used as a potent 
sensitizer in radiation therapy due to their ability to inhibit 
OXPHOS and decrease tumor hypoxia.

7.4.1. Toxicity
Serum from mice dosed with Mito10-Met was collected, and 
hepatic and nephrotoxicity assessed using standard AST, ALT, 
alkaline phosphatase, and blood urea nitrogen assays, respec
tively. Neither metformin nor Mito10-Met showed any signifi
cant off-target toxicity in vivo [35]. After two weeks of 
administration of Mito10-Met in mice, there was an increased 
accumulation of Mito-Met10 in liver, kidney, spleen, and tumor 
tissues.

7.4.2. In vitro and in vivo potency
The antiproliferative effects of Mito-Mets increased with 
increasing alkyl side chain lengths (100-fold to 1,000-fold). 
The lead compound, Mito10-Met, activated AMPK phosphory
lation at a much lower concentration than metformin in pan
creatic and colon cancer cells [35,36]. Mito10-Met abrogated 
pancreatic cancer growth in preclinical mouse models more 
potently than metformin.

We conclude that Mito-Mets could serve as an effective 
antitumor drug for treating pancreatic, hepatic, and renal 
cancers in combination with radiation or other treatment 
modalities.

8. Mito-HUs

Hydroxyurea (HU) is a US FDA-approved drug for treating 
sickle cell disease. It has also been used as an antitumor 
drug alone or in combination with other chemotherapeutics 
or radiation. Because it inhibits the enzyme ribonucleotide 
reductase responsible for DNA synthesis, HU is also used to 
treat myeloproliferative diseases. Mitochondria-targeted 
hydroxyurea (Mito-HU) was synthesized by substituting the 
hydroxyl group in HU with a TPP+ attached to an aliphatic 
side chain of different lengths [38]. HU is very hydrophilic, so 
a considerably longer side chain length (n = 14–20) was 
needed to enhance the hydrophobicities of Mito-HU.

8.1. Toxicity

Most of the studies with Mito-HU analogs were performed in 
colon cancer and immune cells. The IC50 values of the Mito- 
HUs on the inhibition of cell proliferation in HCT116 colon 
cancer cells indicate that with increasing alkyl side chain 
length, Mito-HUs became increasingly potent. No obvious 
cytotoxicity was observed [38]. Mito-HUs may have the 
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potential to induce reprogramming of immune cells in the 
TME [38]. Studies using Mito-HUs in in vivo immune compe
tent and immune deficient mouse models have not been 
done.

8.2. In vitro and in vivo potency

Elongating the alkyl side chain length in the Mito-HU class of 
compounds increased its hydrophobicity, as well as its 
OXPHOS inhibiting and antiproliferating potencies in several 
cancer cells [38]. This chain length dependent potency of 
Mito-HU compounds was also reflected in the immunomodu
latory effects. The more hydrophobic Mito-HUs (e.g., Mito14- 
HU, Mito18-HU) more strongly inhibited the MDSCs and sup
pressive neutrophils while stimulating T cell response [38]. We 
conclude that Mito-HUs represent a new class of MTDs exhi
biting antimetastatic characteristics.

9. MTDs developed in other laboratories

Brief descriptions of some MTDs developed by other investi
gators are provided in the following sections.

9.1. Mito-Tamoxifen

Tamoxifen is an estrogen-modulating drug used to treat 
women and men with advanced breast cancer. This drug 
was banned due to its serious side effects, including a small 
increased risk of uterine cancer and other problems (e.g., 
pulmonary embolism, stroke). The mechanism of action of 
Tamoxifen involves inhibition of estrogen uptake through 
the estrogen receptors. TPP+ conjugation to Tamoxifen 
resulted in an MTD, Mito-Tamoxifen, that is undergoing clin
ical trials for treatment of metastatic solid tumors [39,40]. The 
investigators concluded that mitochondrial electron transport 
chain is a suitable therapeutic target in human epidermal 
growth factor receptor 2 overexpressing breast cancer. 
Selective disruption of respiratory supercomplexes is a new 
strategy in cancer treatment for several MTDs [40,73,74].

9.2. Mito-Curcuminoids

Mitochondria-targeted curcumin analogs (Mito-Curcuminoids) 
were developed as antitumor agents that disrupt thioredoxin 
redox enzyme [41,42]. This strategy may overcome the limita
tion of poor bioavailability of curcumin.

9.3. Mito-Furocoumarins

Mitochondrial ion channels have been targeted in cancer 
therapy, especially the mitochondrial potassium-selective 
channel. Mitochondria-targeted furocoumarins (Mito- 
Furocoumarins) effectively block the mitochondrial potassium 
channel, enhancing apoptosis of tumor cells [43].

9.4. Mito-DCA

Mitochondria-targeted dichloroacetic acid (Mito-DCA) is 
a tumor-selective metabolic inhibitor and is synthesized by 

conjugating TPP+ to the parent small molecule, dichloroacetic 
acid [44]. Mito-DCA suppressed lactic acid production in tumor 
cells, which led to reprogramming of the immune system and 
activation of tumor cell-toxic T cells [44]. Mito-DCA did not 
affect normal cells; it only affected tumor cells with dysfunc
tional mitochondria [44].

10. Relative inhibitory effects of MTDs: 
hydrophobicity differences

We previously reported that increasing the aliphatic chain 
length in TPP+-conjugated molecules greatly enhanced the 
antiproliferative potencies in tumor cells [35]. The fold differ
ence between the parent compound and the TPP+-modified 
compound (with 10 carbons in the linker side chain) is depen
dent on the parent compound, especially its hydrophobicity. 
Figure 3 shows the dose response characteristics of metfor
min, LND, HNK, and ATO and the TPP+-modified analogs in 
human pancreatic cancer (MiaPaCa-2) cells [26,35,75]. The 
difference in the antiproliferative effect between ATO and 
Mito-ATO is 85-fold, whereas the difference between metfor
min and Mito10-Met is 3,300-fold. Although many factors are 
responsible for the fold difference between the TPP+-modified 
drug and the unmodified drug, the hydrophobicity of the 
parent drug is a major factor. If the parent compound is very 
hydrophilic, TPP+ modification will likely induce a greater fold 
difference in antiproliferative effect and inhibition of mito
chondrial respiration in tumor cells [38] due to the more 
negative mitochondrial membrane potential of tumor cells as 
compared with normal cells [9,76–79].

11. OXPHOS inhibitors, MDSCs, and metastatic 
cancer

The metabolic reprogramming (enhanced OXPHOS) that 
occurs in metastatic cancer cells likely plays a major role in 
metastatic cancer cell survival and progression [80,81]. Reports 
indicate that an OXPHOS inhibitor, IACS-010759, inhibits mel
anoma brain metastasis [32]. The mitochondrial complex 
I inhibitor also inhibits MDSCs in the metastatic TME. TPP+- 
conjugated OXPHOS inhibitors of mitochondrial complex I and 
complex III – Mito-MGN, Mito-ATO, and Mito-HU – are poten
tially suitable antimetastatic drugs [27,30]. It was reported that 
brain metastases from patients with melanoma displayed 
a considerable degree of immunosuppression and increased 
expression of genes related to OXPHOS. IACS-010759, 
a reported mitochondrial complex I inhibitor, blocks metasta
sis formation in mouse models [32]. Mito-HNK, Mito-ATO, and 
Mito-LND are potent OXPHOS inhibitors and inhibit lung can
cer metastasis to the brain in mouse models [30,31].

Drug resistance to kinase inhibitors is attributed to meta
bolic reprogramming from glycolysis to mitochondrial oxida
tive metabolism. Bioenergetic mapping results showed that 
tumor cells with enhanced mitochondrial OXPHOS were more 
sensitive to TPP+-based MTDs and other OXPHOS inhibitors 
[82]. Enhanced OXPHOS reprograms mitochondrial energy to 
promote triple-negative breast cancer metastasis [83,84]. 
Metastatic breast cancer cells exhibit enhanced mitochondrial 
OXPHOS activity [85]. Mitochondrial OXPHOS genes were 
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transcriptionally upregulated in primary breast cancers. Breast 
cancer metastases have higher tricarboxylic acid cycle flux 
compared with primary tumors [86]. Melanoma brain metas
tases have enhanced OXPHOS genes [32,87,88]. The progres
sion of breast cancer to brain metastasis is a major cause of 
fatalities. Similar to Mito-HNK and Mito-LND [26,31], MitoQ 
crosses the blood-brain barrier [89,90]. This is significant for 
MTDs as antitumor drugs in metastatic cancers.

12. OXPHOS inhibitors, tumor hypoxia, and 
biomarkers in radiation therapy

Radiation is not very effective in killing hypoxic tumor cells. 
OXPHOS inhibitors are effective hypoxic radiation sensitizers 
[11,36,91,92]. The enhanced susceptibility to radiation results 
from inhibiting mitochondrial respiration. Inhibition of mito
chondrial respiration effectively increases the oxygen concen
tration, decreases tumor hypoxia, and inhibits hypoxic gene 
expression in lung cancer patients [93]. Tumor hypoxia is 
recognized as a potential barrier to other cancer treatment 
modalities such as chemotherapy, radiation therapy, and 
immunotherapy [3]. In addition to a reduction in tumor 
hypoxia (measured by positron emission tomography–com
puted tomography), another major pharmacodynamic 

endpoint of ATO treatment in cancer patients was shown to 
be downregulation in hypoxia-regulated genes in ATO-treated 
tumors [93].

13. Molecular targets of MTDs

Previously, we used low-temperature electron paramagnetic 
resonance to determine the mitochondrial redox changes in 
pancreatic cancer cells treated with TPP+-containing MTDs 
[94]. Based on the electron paramagnetic resonance spectral 
changes of mitochondrial complex I iron-sulfur (FeS) clusters, 
[2Fe2S]+ and [4Fe-4S]+, we surmised that TPP+-containing 
MTDs (mitochondrial complex I inhibitors) bind closer to the 
NADH-dehydrogenase site in the mitochondrial complex 
I dictated by the NAD+/NADH couple [95].

Mito10-ATO, formed by attachment of TPP+ to ATO, inhi
bits both complex I- and complex III-induced oxygen con
sumption [30]. Similar to ATO, Mito10-ATO likely targets the 
Q0 site of the cytochrome bc1 complex (ubiquinol cyto
chrome c oxidoreductase or complex III) [30]. However, 
increasing the alkyl side chain length in Mito-ATO (e.g., 
Mito12-ATO or Mito16-ATO) inhibited only the complex I- 
and not complex III-induced oxygen consumption, suggest
ing that the side chain length and hydrophobicity are critical 

Figure 3. Comparisons of MTDs and the corresponding parent compounds on cell proliferation inhibitions in human pancreatic cancer (MiaPaca-2) cells. The effects 
of MTDs and their parental compounds on the proliferation of MiaPaCa-2 cells were monitored in the IncuCyte Live-cell Analysis system. The IC50 values were 
determined at the point at which control cells reached ~ 90% confluence. Relative cell confluence (control is taken as 100%) is plotted against concentration. Dashed 
lines represent the fitting curves used to determine the IC50 values as indicated. The fold of differences as indicated were calculated by the potency difference of the 
IC50 values between each mitochondria-targeted drug and its parental compound. The IC50 values of Mito-Met and metformin were published previously in Cancer 
Research (Cheng G et al., cancer Res, 2016). The IC50 values of Mito-ATO and ATO were published in Scientific Reports (Cheng G et al., Scientific Reports, 2020; Cheng 
G et al., Scientific Reports, 2022). This figure is re-used under CC by 4.0 from Cheng G, Hardy M, Kalyanaraman B. Antiproliferative effects of mitochondria-targeted 
N-acetylcysteine and analogs in cancer cells. Scientific Reports. 2023;13:7254.
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for stabilization at the Q0 site of complex III [30]. Additional 
structural studies are needed to provide further insights on 
the molecular binding of Mito-ATO analogs in mitochondria.

Cryo-electron microscopy studies recently provided new 
insights on the binding and bonding characteristics of metfor
min, a weakly cationic MTD, and the more hydrophobic ana
logs of metformin (phenformin and IM1092) in the Q-channel 
of mammalian respiratory complex I [96]. Hydrophobicity dif
ferences are primarily responsible for the observed differences 
in the potency of the unsubstituted and halogen-containing 
phenyl group in biguanides [96]. Going forward, cryo-electron 
microscopy structural studies should be performed with TPP+ 
containing MTDs.

14. Conclusion

In this opinion article, we reviewed a new class of TPP+-based 
drugs as potential OXPHOS-targeted cancer therapeutics. For 
the most part, these drugs are modifications of naturally 
occurring molecules or US FDA-approved drugs. Several TPP+- 
based drugs lack the neurotoxicity associated with an OXPHOS 
drug whose clinical trial was recently terminated. We make 
a case here that TPP+-based drugs free of neurotoxicity and 
other toxicities (e.g., lactic acidosis) in preclinical models 
should be tested in cancer patients in future clinical trials.

15. Expert opinion

Most of the publications on mitochondrial inhibitors in cancer 
are centered on a few drugs (e.g., metformin, IACS-010759, 
ATO). Metformin is a US FDA-approved antidiabetic drug. Its 
bioavailability is poor, and it is a weak mitochondrial complex 
I inhibitor. In contrast, Mito-Met is nearly 1,000-times more 
potent than metformin with respect to its inhibition of cancer 
cell respiration and proliferation. ATO is a mitochondrial com
plex III inhibitor that has been repurposed in cancer research. 
Mito10-ATO is a much more potent mitochondria-targeted 
complex III inhibitor of cancer cells. The OXPHOS-inhibiting 
drug, IACS-010759, exhibited neurotoxicity in a preclinical 
model and in cancer patients. The MTDs discussed here are 
structurally modified, naturally occurring compounds or US 
FDA-approved drugs with an established safety profile. MTDs 
target proteins in the electron transport chain in the mito
chondria of cancer cells and inhibit mitochondrial respiration.

The mitochondrial electron transport chain is a vulnerable 
target in some drug-resistant cancer cells and cancer stem 
cells. These cells have increased OXPHOS genes and are 
more susceptible to MTDs. Mito-HNK is not toxic at 20 times 
the effective dose. There was no perceived neurotoxicity in 
Mito-HNK treated mice.

There is a direct correlation between hydrophobicity and 
enhanced antiproliferative effect in cancer cells treated with 
MTDs. Hydrophobicity is altered with different chain lengths 
and substituted phenyl groups (−CF3) in MTDs.

TPP+-based MTDs (e.g., MitoQ) have been tested in humans 
with no signs of peripheral neuropathy. Recent studies show 
that MitoQ inhibits metastasis of breast cancer in mice.

Mitochondrial complex I inhibitors are synthetically lethal in 
PTEN-deficient metastatic prostate cancer cells [97]. The scope 
of the antitumor mechanism of MTDs can be greatly expanded 
in the context of synthetic lethality.

Enhanced expression and activity of OXPHOS genes and 
OXPHOS activity were suggested as a suitable biomarker for 
selecting cancer patients for targeted therapy with MTDs in 
combination with a standard-of-care antitumor therapy or 
therapeutic agents [72,98–100]. To overcome chemoresistance 
due to high OXPHOS, future clinical trials should use MTDs 
that are highly potent, have the least toxicity, and are used to 
treat other conditions in humans and/or MTDs that have been 
tested extensively for various toxicities (including neurotoxi
city) in preclinical models.

Cancer stem cells, which are resistant to chemotherapy, 
exhibit enhanced mitochondrial OXPHOS activity and are vul
nerable to drugs containing TPP+ [101].

Mito-ATO induced metabolic reprogramming in the TME 
[29]. Recent results show that MDSCs and Tregs are novel 
targets in Mito-ATO [30]. Mito-ATO decreased MDSCs and 
Tregs and increased tumor-infiltrating cytotoxic T cells. Mito- 
ATO improved the efficacy of PD-1 blockade immunotherapy 
[29]. The combinatorial antitumor effect of MTDs such as Mito- 
ATO and analogs in immuno-oncology is an exciting develop
ment. Preclinical data suggest a rational basis for future clin
ical evaluation of MTDs such as Mito-ATO or its analogs in 
combination with PD-1 blockade and other immune check
point inhibitors [29].
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