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ORIGINAL ARTICLE

Fusion between an Algorithm Based on the
Characterization of Melanocytic Lesions’
Asymmetry with an Ensemble of
Convolutional Neural Networks for
Melanoma Detection

Jules Collenne', Jilliana Monnier'-*** Rabah Iguernaissﬂ, Motasem Nawaf', Marie-Aleth Richard®,
Jean-Jacques Grob””’, Caroline Gaudy-Marqueste™’, Séverine Dubuisson' and Djamal Merad'

®Open

Melanoma is still a major health problem worldwide. Early diagnosis is the first step toward reducing its
mortality, but it remains a challenge even for experienced dermatologists. Although computer-aided systems
have been developed to help diagnosis, the lack of insight into their predictions is still a significant limitation
toward acceptance by the medical community. To tackle this issue, we designed handcrafted expert features
representing color asymmetry within the lesions, which are parts of the approach used by dermatologists in
their daily practice. These features are given to an artificial neural network classifying between nevi and mel-
anoma. We compare our results with an ensemble of 7 state-of-the-art convolutional neural networks and
merge the 2 approaches by computing the average prediction. Our experiments are done on a subset of the
International Skin Imaging Collaboration 2019 dataset (6296 nevi, 1361 melanomas). The artificial neural network
based on asymmetry achieved an area under the curve of 0.873, sensitivity of 90%, and specificity of 67%; the
convolutional neural network approach achieved an area under the curve of 0.938, sensitivity of 91%, and
specificity of 82%; and the fusion of both approaches achieved an area under the curve of 0.942, sensitivity of
92%, and specificity of 82%. Merging the knowledge of dermatologists with convolutional neural networks
showed high performance for melanoma detection, encouraging collaboration between computer science and

medical fields.
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INTRODUCTION

Melanoma is a major public health concern, with studies
reporting an increasing incidence in developed countries
(Ferlay et al, 2021; Forsea, 2021; Sung et al, 2021). Although
systemic therapies have led to enhanced survival rates,
melanoma-related fatality rates continue to remain elevated.
Early diagnosis of primary cutaneous melanoma is critical in
reducing melanoma mortality, but it is challenging for der-
matologists because this cancer can look very similar to
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common nevi. These concerns are also exacerbated by the
lack of dermatologists in many countries. To face these
problems, computer-aided diagnoses have been developed to
make the diagnosis faster and more accurate. Although they
may provide accurate predictions (Pham et al, 2021), they are
still underused in practice. Dermatologists may find it diffi-
cult to trust models that provide predictions without any
insight into how they work. Solving these problems might
increase the use of computer-aided diagnosis in clinical
routine, potentially leading to more diagnosed melanomas.

Existing machine learning models are mainly trained and
tested on the International Skin Imaging Collaboration dataset.
This dataset, although containing >30,000 images, is also an
online challenge where participants compete to have the best
model to detect melanomas. Winners of the 2020 challenge,
Ha etal (2020"), used an ensemble of fine-tuned EfficientNets,
showing high performance on this dataset. To characterize the
state of the art in machine learning, we used a similar method
for our melanoma versus nevus classification.

However, understanding the predictions of these models is
tedious, if not impossible, which is a significant limitation to

"Ha Q, Liu B, Liu F. Identifying melanoma images using EfficientNet ensemble:
winning solution to the SIIM-ISIC melanoma classification challenge. arXiv 2020.
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Figure 1. Architecture of our
framework. One branch directly uses
images, whereas the other one focuses

Images
on asymmetry.
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their use in clinical practice. A possible solution is the design of
features corresponding to visual characteristics used by der-
matologists to detect melanomas. Several research works have
proposed different features to make the diagnosis, including the
mean color, luminescence, and texture analysis. Nezhadian and
Rashidi (2017) explored color and texture characteristics, and
Chandra etal (2019) proposed a model using the borders of the
lesions. Yet, current works use preprocessing techniques
without taking into account the axes of symmetry. Asymmetry
was studied by Srivastava et al (2021), but they used only the 2
halves of the lesions. Milczarski and Stawska (2020) solely
analyzed the lesions’ shape, not using the important asym-
metrical color distributions. Our research explores the analysis
of asymmetrical color distribution within lesions, shedding
light on this aspect. We use multiple axes of symmetry as well
as a method comparing pairs of opposed pixels according to
the center. Indeed, lesions with an anarchic structure led to
asymmetrical color distribution and outlines, whereas other
lesions tend to be more symmetrical in terms of borders and
colors. In this study, we sought to develop a handcrafted
model that can effectively extract innovative features repre-
senting global color asymmetry, consistent with the approach
of dermatologists.

Once extracted, our features are fed into a classifier trained
to make the diagnosis. There are various commonly used
classifiers such as support vector machines (Rastgoo et al,
2015; Zghal and Kallel, 2020), Random Forest (Rastgoo
et al, 2015), Gradient Boosting methods (Rastgoo et al,
2015), and k-nearest neighbors (Oukil et al, 2019), but we
chose artificial neural network (ANN) owing to its superior
performance for the classification task. To gain deeper in-
sights into the model’s predictions, various analytical tools
are available. Among these, SHAP (Shapley Additive exPla-
nations) (Lundberg and Lee, 2017) values stand out as
particularly noteworthy. SHAP values play a crucial role in
identifying and quantifying the significance of features in the
prediction process. Moreover, several works (Hagerty et al,
2019; Shekar and Hailu, 2023; Nancy Jane et al, 2022)
showed that the fusion of handcrafted models and convolu-
tional neural network (CNN) can lead to better performance
than using models individually. Toward this path of research,
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we also merge our ANN with a CNN ensemble, as described
in Figure 1, to analyze the final performance.

Finally, our results are composed of the ANN model on the
basis of the asymmetry features of the CNN ensemble and of
the fusion of the 2 approaches.

RESULTS

Dataset

For our experiments, we used the public International Skin
Imaging Collaboration 2019 dataset (Codella et al, 2018a*;
Tschandl et al, 2018). We included only dermoscopic images
of melanocytic lesions melanoma and nevus classes because
our work focused on the detection of melanoma beyond the
nevus. These images are from real clinical practice from
different dermatology departments and contain many arti-
facts such as hairs and bubbles. Examples of these artifacts
are visually demonstrated in Supplementary Figure S2.
Because the handcrafted features approach requires the
extraction of descriptors within the lesions without further
interference, a dermatologist removed images containing
many artifacts within the lesion (eg, excessive hair, the ruler
from the dermoscope). The resulting dataset still contains
>7600 dermoscopies, including 6371 nevi and 1301 mela-
nomas. Owing to the class imbalance (there are 4.59 times as
many nevi as melanomas), these models have a weight in
favor of melanomas implemented as loss multiplied by 4.59
when dealing with melanomas. For our experiments on
handcrafted features, we segmented lesions using a U-Net
(Ronneberger et al, 2015) trained on the International Skin
Imaging Collaboration dataset of 2016 (Gutman et al, 201 6°)
and 2018 (Codella et al, 2018b*; Tschand! et al, 2018) to

2 Codella N, Rotemberg V, Tschand! P, Celebi E, Dusza S, Gutman D, et al. Skin
lesion analysis toward melanoma detection 2018: a challenge hosted by the in-
ternational skin imaging collaboration (ISIC). arXiv 2018a

3 Gutman D, Codella NCF, Celebi E, Helba B, Marchetti M, Mishra N, et al. Skin
lesion analysis toward melanoma detection: a challenge at the International
Symposium on Biomedical Imaging (ISBI) 2016, hosted by the International Skin
Imaging Collaboration (ISIC). arXiv 2016.

4 Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW, et al.
Skin lesion analysis toward melanoma detection: a challenge at the 2017 Inter-
national Symposium on Biomedical Imaging (ISBI), hosted by the international skin
imaging collaboration (ISIC) arXiv 2018b.



remove perilesional skin and ease our computations of
handcrafted features.

We did not use the segmentation for CNN, but we used
multiple preprocessing functions for data augmentation, such
as random rotation, translation, mirror image, and contrast
change. Finally, we randomly divided the dataset into 3 sets
corresponding to the train, validation, and test set, each
containing respectively 70, 10, and 20% of the total data.

Handcrafted model characterizing global asymmetry

To characterize the global asymmetry of melanocytic lesions,
we used a first method based on the axial symmetry and a
second method based on the central symmetry. For the first
method, we divided the lesion into 4 equal parts, named
quadrants, and computed multiple features on each one. This
step produces a vector per quadrant that we compare with
other quadrants by computing the Euclidean distance be-
tween each of them. Thus, the final vector for each image
contains the distance of features of each quadrant, repre-
senting the asymmetry within lesions. More details are given
in the Materials and Methods section. This model achieved
good performance, with an area under the curve (AUC) of
0.80, a sensitivity of 0.61, a specificity of 0.80, and a
balanced accuracy of 0.71. We then added the color histo-
grams per quadrant, and the performance improved: AUC =
0.82, sensitivity = 0.87, specificity = 0.66, and balanced
accuracy = 0.77 (Table 1).

The second method uses the asymmetry according to the
center of the lesion by computing the difference of color
between pairs of pixels that are symmetrically opposed. This
model showed good performance, with AUC = 0.81,
sensitivity = 0.73, specificity = 0.74, and balanced
accuracy = 0.74. Finally, we concatenated all the features
together into a single vector that we gave as input to a final
ANN, which provided 2 outputs representing probabilities for
each image being a melanoma (first output) or a nevus
(second output). Details about our ANN architecture, training
setup, as well as computation of the features are explained in
the Materials and Methods section.

Table 1. Results on the Test Set for Each Model
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The fusion of all features yielded the highest performance
with a balanced accuracy of 0.79, an AUC of 0.87, a sensi-
tivity of 0.90, and a specificity of 0.67. On the final ANN,
82% of melanomas were correctly detected, revealing a good
sensitivity and keeping a good specificity. Moreover, the in-
crease in performance during the fusion of our different fea-
tures means that they are diverse enough and represent
different discriminating aspects of the melanocytic lesions.
Overall, our developed representation of symmetry in skin
lesions proved that it was a discriminant characteristic for
detecting melanomas.

CNNs ensemble

For the ensemble of CNN, we used the EfficientNets, which
are currently among the most efficient models for image
classification (Chandra et al, 2019). We trained and tested all
models from BO to B7 and made an ensemble model con-
sisting of the average of all the predictions. Each model takes
as input the dermoscopic images from our dataset and out-
puts 2 scalars representing the probability of the image being
a melanoma or a nevus.

All the CNNs reached high levels of performance (Table 1).
The ensemble method based on the average of predictions
outperformed every single model by a large margin. As for
the majority vote, it achieved a slightly lower balanced ac-
curacy than the mean predictions method (0.85 vs 0.87). The
combination of multiple models has indeed led to a consid-
erable increase in performance, albeit with a higher
computational demand. Interestingly enough, we can note
that the handcrafted features of ANN obtain results relatively
similar to those of these models alone, albeit utilizing
significantly fewer computing resources.

Late fusion between the CNN ensemble and the handcrafted
model characterizing asymmetry

Although the ANN is alone among 7 CNN:ss, its contribution
increases the results of the CNN ensemble as shown in
Table 1. When used alone, the ANN performs similarly to
those of single CNNs but with very few parameters in com-
parison (only about 10,000 against several million), and its

Architecture Model Sensitivity Specificity Balanced Accuracy AUC
ANN Features per quadrants without histograms 0.61 0.80 0.71 0.80
Features per quadrant with histograms per quadrant 0.87 0.66 0.77 0.82
Circles on superpixels 0.73 0.74 0.74 0.81
All features 0.90 0.67 0.79 0.873
CNN EfficientNetBO 0.65 0.90 0.77 0.897
EfficientNetB1 0.81 0.81 0.81 0.905
EfficientNetB2 0.81 0.84 0.82 0.905
EfficientNetB3 0.77 0.86 0.81 0.908
EfficientNetB4 0.85 0.80 0.83 0.914
EfficientNetB5 0.88 0.76 0.82 0.906
EfficientNetB6 0.93 0.67 0.80 0.889
EfficientNetB7 0.94 0.64 0.79 0.892
Ensemble (mean predictions) 0.91 0.82 0.87 0.938
Ensemble (vote) 0.92 0.79 0.85 —
Fusion ANN + CNNs ensemble 0.92 0.82 0.87 0.942

The best model of each architecture is presented in bold.

Abbreviations: ANN, artificial neural network; AUC, area under the curve; CNN, convolutional neural network.
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Table 2. Percentage of Lesions from the Test Set
Depending on the Predictions of the CNN Ensemble
and ANN, Normalized by Type of Lesion

CNN
Ensemble
Type of Correct CNN Ensemble
Lesion ANN Predictions Prediction Incorrect Prediction
Melanomas ~ ANN — correct 83% 7%
prediction
ANN — incorrect 8% 2%
prediction
Nevus ANN — correct 62% 5%
prediction
ANN — incorrect 20% 13%
prediction

Abbreviations: ANN, artificial neural network; CNN, convolutional
neural network.

choices are entirely based on color asymmetry, which makes
the predictions understandable for dermatologists. The in-
crease when using the ANN s visible through the receiver
operating characteristic  AUC as more melanomas are
detected, and fewer nevi are misidentified. A likely hypoth-
esis of this increase is that CNNs make similar errors,
whereas the ANN brings a different and original way to see
the image, which is beneficial. In Table 2, both models
correctly predicted 83% of melanomas, and 15% were
correctly predicted by 1 model and not the other. These 15%
of lesions can theoretically be corrected during the fusion of
both methods.

SHAP values for model explainability

SHAP values developed by Lundberg and Lee (2017) high-
light more impactful features during prediction, which can
provide more insight into why a lesion might be a melanoma
or a nevus. In Figure 2, SHAP values for each instance and
each feature are represented, sorted by amplitude, and
grouped by feature. Lower values (lower difference between
quadrants) result in a nevus prediction (the label is 1),
whereas higher values (representing an important asymmetry)
tend to represent melanomas. We can see in Figure 2 that the
most impactful feature is the centroid asymmetry on super-
pixels using the hue, saturation, value (HSV) color type.
Centroid asymmetry seems to be the most impactful feature,
followed by histograms of color. Centroid asymmetry might
highlight criteria used by dermatologists such as the regres-
sion area of melanoma. Although axial asymmetry is a good
feature, centroid asymmetry shows more impact, probably
owing to the multiple axes of symmetry studied. Although our
work only focuses on asymmetry, adding other characteris-
tics, using the ABCD (asymmetrical, border, color, diameter)
rule, would probably provide interesting insights into each
lesion. Some lesions might be considered melanoma owing
to their shape, whereas others might be considered because
of their texture, size, or colors. Using multiple space colors,
we make the detection of an asymmetric pattern easier
because different space colors focus on different character-
istics of the image. We can see that HSV indeed allowed
better performance, which is probably because it naturally
detects more easily changes in HSV, which are more
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representative of the way we see the world, instead of the
classical RGB (red, green, and blue values), which focuses on
red, green, and blue values.

DISCUSSION

This study reveals the ability of our handcrafted model based
on asymmetry to detect melanoma using machine learning
models, and we compared its performance with those of
state-of-the-art CNN. The ANN model based on the charac-
terization of color asymmetry within lesions allowed better
performance than a conventional image analyzer (AUC =
0.738, sensitivity = 53.4%, specificity = 86.6%, and
balanced accuracy = 70%) (Sies et al, 2020), with results
competing with individual CNNs.

Analyzing the predicted images (Figure 3) allowed us to
better understand the differences between the 2 models. False
negatives in the CNNs, which are correctly identified by the
ANN, exhibit an asymmetrical color distribution with dark
patches. This characteristic likely explains why the ANN
accurately classifies them as melanomas. On the contrary,
false negatives in the ANN are rare cases where melanomas
are symmetrical, and it is less evident why they were
correctly detected by the CNNs. As for false positives, the
CNN ensemble classified symmetrical lesions with uniform
colors as melanomas, and the exact reasons for these models
classifying them as such remain unclear. False positives of the
ANN mostly consist of highly atypical nevi, which are pref-
erable to analyze through biopsy regardless, whereas the
CNNs did not predict these lesions as malignant.

The collaboration between dermatologists and artificial
intelligence models is being increasingly studied (Han
et al, 2020; Tschandl et al, 2020). Although such collab-
oration can lead to improved overall performance, in-
stances of misleading artificial intelligence predictions have
been observed. These misleading predictions often perplex
physicians because they are presented as singular numeri-
cal values. Introducing understandable features in health
care has the potential to enhance the utilization of artificial
intelligence in this domain. This in turn could result in
improved performance and greater user confidence in the
algorithms. Instead of relying solely on a solitary numerical
representation of the model’s confidence, furnishing
healthcare professionals with a wealth of information could
significantly amplify the impact of machine learning
models in their daily routines. These informative features
encompass attributes such as asymmetry, irregular borders,
the number of colors, and texture type, all of which could
be provided to experts to facilitate more informed final
predictions.

Nonetheless, many limitations remain in our approach.
The use of a clean dataset does not fully reflect real-world
scenarios, and the development of additional features for
analyzing borders, size, and texture could be a key element
toward improving the results. Moreover, our current set of
features is specifically designed for melanoma detection,
which may be insufficient for identifying other types of skin
lesions, such as seborrheic keratosis or basal cell carcinoma.
Recognizing these conditions might necessitate the creation
of new, tailored features, which is a current limitation of
handcrafted features. The necessity of the segmentation is
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Figure 2. The 10 most impactful
features according to the SHAP
values. Hists are histograms of colors
per quadrant, Superpixels are circles
on a superpixel image, and statistics
are the fusion of all other statistical
features. Color spaces are also
mentioned on each feature name.
HSV, hue, saturation, value; RGB, red,
green, green.

Superpixels_HSV 4
Superpixels HSV 7
Superpixels HSV 10
Superpixels RGB 0
statistics HSV 1
hists Lab 76

hists Lab 75

hists RGB 71

hists HSV 17

hists RGB 47
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Figure 3. Examples of errors made by one approach but not the other. (a) False negatives of the CNN ensemble. (b) False positives of the CNN ensemble. (c)
False negatives of the ANN. (d) False positives of the ANN. (e) Errors of the CNN ensemble that have been corrected when merging the ANN. Left: a melanoma.
Right: a nevus. (f) Errors of the ANN corrected by the final fusion. Left: a melanoma. Right: a nevus. Images were sourced from the ISIC 2019 dataset
(HAM10000) (Tschandl et al, 2018). ANN, artificial neural network; CNN, convolutional neural network; ISIC, International Skin Imaging Collaboration.
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a b

Figure 4. Different steps of the pipeline. (a) Original image of a melanoma. (b) Computation of the quadrant on the cloud of points. (c) Visual representation of
the quadrants. (d) Mean colors of a nevus. () Mean colors of a melanoma. (f) Visual representation of the pair of points selected to compute asymmetry (same
colors are compared). Before comparing the pixels, the image is transformed into a superpixel image. The image has been cropped for visualization purposes.
Images were sourced from the ISIC 2019 dataset (HAM10000) (Tschandl et al, 2018). ISIC, International Skin Imaging Collaboration.

also a limitation because some lesions are very difficult to
segment when a lot of hair is present in the picture. Algo-
rithms that could remove or deal with these artifacts might
make our model more robust. Finally, the computation of all
the features takes some time and resources, which could be
reduced.

To conclude, developing new ways of diagnosing diseases
is an important step toward building a trustful environment
for patients and physicians. The ANN based on global
asymmetry is inspired by global cognitive approaches from
dermatologists and provides insights about how algorithms
compute their predictions. We hope that this work will lead
to new research projects focusing on other features. Future
paths of research could be oriented toward making models
focusing on more diverse dermatological knowledge and
interfaces that could be used for physicians in real clinical
practice.

MATERIALS AND METHODS

In our experiments, all machine learning models were trained on the
same dataset. The training was performed on an NVIDIA Tesla K80
using Tensorflow 2.5.0 and Keras 2.5.0 libraries.

Handcrafted features representing melanoma’s asymmetry

in color

In this section, we will discuss the implementation of our features.
The creation of quadrants and the 2 different types of asymmetry
(axial and according to the center) are studied. These different cal-
culations are performed only on the lesion, ignoring the skin using a
segmentation made with U-Net.

Symmetry axes and quadrants

The 2 principal axes are computed using the principal component
analysis on each pixel of the lesion (we ignore skin pixels). Figure 4
shows the different steps of the creation of the quadrants. For all
lesions, quadrants are annotated from O to 3: quadrant O is always
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symmetrically opposed to quadrant 3 with respect to the center as
well as for quadrants 1 and 2.

Features

The descriptors computed from the quadrants are the average color,
the SD, the skewness, the kurtosis, and color histograms with 10
bins. Those descriptors are beyond the most commonly used in
image analysis (Kavitha and Suruliandi, 2016). Figure 4 shows 2
examples of average color per quadrant for a nevus and a mela-
noma. The final feature vector is made by concatenating the features
from the axial asymmetry and the features from the symmetry ac-
cording to the center.

Computing color asymmetry using quadrants
For each feature F, the 2 types of asymmetry are defined as follows:

_h-FAl+Ik-FhKl+|k-FkKl+[h -F

Aaxes 4

[Fo— R+ | — R

ACEI’I[GI’ - 2

With F; being the feature computed on quadrant i of a lesion.
We recall that quadrant 0 is always opposite to quadrant 3 with
respect to the center as well as quadrants 1 and 2.

Innovative feature: circles on superpixel images

This feature does not use quadrants and consists of comparing pairs
of symmetrical pixels with respect to the center. First, the lesion is
transformed into a 200-superpixel image using the SLIC algorithm
(Achanta et al, 2012) to regroup similar pixels. Pairs of pixels used
are opposite points on circles of different diameters centered on the
lesion as shown in Figure 4. The diameter of the circles is defined as
follows:



Prax L
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with Ppax being the furthest distance of a point from the center of the
lesion and ngj.cres being the number of circles to use. The furthest
distance is not used because it may not contain enough pixels. The
comparison is the difference in absolute value between the 2 chosen
pixels. Finally, the values are averaged by circle to reduce the final
size of the vector without losing much information. The size of the
output vector is thus neces X 3 (3 corresponding to the 3 color
channels). For our final vector, we used 3 circles and a total of 6
axes.

Preprocessing of features and color spaces

To achieve better results, we extracted features according to several
color spaces such as RGB, HSV, YCbCr, and Cielab. These space
colors are widely used in computer vision to highlight different
characteristics of the images and potentially increase performance of
models (Shaik et al, 2015). HSV describes colors in terms of hue,
saturation, and value, aiding the comparison of parts of a lesion with
different hue; YCbCr separates luminance from chrominance; and
CieLab is designed to mimic human perception, facilitating consis-
tent color comparisons. Several experiments have been conducted,
and the use of different color spaces indeed improves the results.
Finally, features are normalized using the MinMax algorithm. The
values of the final vector are thus between 0 and 1.

Selected model

Our ANN takes inputs of size 714, which corresponds to the
concatenation of the features on the different color spaces. Its ar-
chitecture, presented in Supplementary Figure S1, is composed of a
first layer of size 16 with ReLU activation function, then a dropout of
0.2, and a final prediction layer of size 2. The training is performed
on 50 epochs, with a batch size of 64 and a weight per class of 4.59
for melanomas and 1 for nevi. The loss function used is the cate-
gorical cross-entropy, and the optimizer is Adam, with a learning
rate of 0.001. Finally, the model has 11,474 parameters. To obtain
our results for each feature in Table 1, we used the same architec-
ture, with the only difference being the size of the input.

Analyzing SHAP values
To visualize SHAP values, we chose a Gradient Boosting model and
analyzed the impact of each feature as shown in Figure 3.

CNN approach

For our CNN approach, we chose the EfficientNet family because
these models currently perform best in many computer vision
problems while having a relatively light architecture in terms of
number of parameters.

CNN training

The training is based on 2 parts: all EfficientNets are retrieved with
ImageNet weights, and we freeze all layers. The last layer is removed
and replaced by a softmax layer for binary classification, which will
be the only layer trained in a first training. Once this layer is trained,
a second training is performed with the weights unfrozen and a low
learning rate to perform the fine tuning. Finally, the weights are
saved to reuse these models for the ensemble approach. The first
training is performed with 15 epochs, Adam optimizer with a
learning rate of 0.001, and the binary cross-entropy loss function.
Because of the class imbalance in our dataset, a weight of 4.59 is
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given to the melanoma class, whereas the nevus class has a weight
of 1. In the second training, the learning rate is 10e-4 and lasts 5
epochs. The other parameters are the same as the first training.

Data augmentation

To improve the learning of the model, artificial image augmentation
is necessary. It consists of creating new images from the existing ones
to improve the generalization of the model. Our method performs
random operations on the images before passing them through the
model. Selected operations are rotation, translation, mirror image,
and contrast change.

Ensemble method

The state of the art consists of training several classifiers indepen-
dently and then grouping them together to make predictions. To
achieve this, 2 late fusion methods have been performed: average
predictions and voting. The average predictions consist of computing
the average of the predictions of all models, whereas the voting
method predicts the most predicted class. The models used for this
method are EfficientNets from B0 to B7. The training was the same
for all of them except for the input size of the images. The instances
are resized for each model to their corresponding size. As for the
number of parameters, they vary between 5 million for BO and 66
million for B7, unlike the previous ANN with just over 11,000
parameters.
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Supplementary Figure S1. Architecture of the selected ANN for handcrafted features. ANN, artificial neural network.
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Supplementary Figure S2. Example of removed images containing artifacts (presence of hair, dark halo, colored dot, and bubbles). Images were sourced from
the ISIC 2019 dataset (HAM10000) (Tschandl et al, 2018). ISIC, International Skin Imaging Collaboration.
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