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Abstract

Boolean Networks (BNs) are widely used as a modeling
formalism in several domains, notably systems biology and
computer science. A fundamental problem in BN analysis
is the enumeration of trap spaces, which are hypercubes in
the state space that cannot be escaped once entered. Several
methods have been proposed for enumerating trap spaces,
however they often suffer from scalability and efficiency
issues, particularly for large and complex models. To our
knowledge, the most efficient and recent methods for the
trap space enumeration all rely on Answer Set Programming
(ASP), which has been widely applied to the analysis of BNs.
Motivated by these considerations, our work proposes a new
method for enumerating trap spaces in BNs using ASP. We
evaluate the method on a mix of 250+ real-world and 400+
randomly generated BNs, showing that it enables analysis
of models beyond the capabilities of existing tools (namely
pyboolnet, mpbn, trappist, and trapmvn).

Introduction
Boolean Networks (BNs) are a simple yet efficient mathe-
matical formalism with many applications in various areas
from science to engineering (Schwab et al. 2020; Rozum
et al. 2021b). A BN includes n nodes, s.t. each node is as-
sociated with a Boolean variable and with a Boolean func-
tion that determines the value update of this node over time.
In systems biology, BNs are used to model complex bi-
ological phenomena (Glass and Kauffman 1973; Thomas
1973). The utility of BNs has been demonstrated primar-
ily in cases where not enough quantitative biological data is
available (Wang, Saadatpour, and Albert 2012). Here, BNs
provide explainable and executable abstractions of large-
scale processes (including, but not limited to gene regula-
tion and cell signalling). This leads to an ever-increasing
complexity of network topology and Boolean functions in
logical models à la Thomas (Aghamiri et al. 2020), as new
qualitative genomics datasets are continuously being mea-
sured and integrated into existing models.

The main component of BN analysis is the computation of
attractors: minimal sets of states that cannot be escaped once
entered. These represent the long-term behaviour of a BN
and are linked to observable biological phenotypes (Glass
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and Kauffman 1973; Wang, Saadatpour, and Albert 2012).
Attractor analysis can provide insights into the origin of dis-
eases (e.g., SARS-CoV-2, Alzheimer, and cancers) or play
a role in systems medicine (Schwab et al. 2020; Park et al.
2021). However, exact attractor enumeration is challenging
due to the complex dynamics of large-scale models.

Recently, the concept of trap spaces (Klarner, Bockmayr,
and Siebert 2015) was introduced as a more computation-
ally viable alternative to attractors. A trap space is a hyper-
cube in the state space of a BN that cannot be escaped once
entered. Every such minimal hypercube thus approximates
one or more attractors. Not only are minimal trap spaces a
good approximation of attractors in practice, but the much
improved tractability of this problem also enabled analysis
of a significantly larger class of Boolean models. This makes
minimal (and other) trap spaces popular in many biological
applications such as control (cell reprogramming) and model
inference (Chevalier et al. 2019; Paulevé et al. 2020; Rozum
et al. 2021b; Trinh et al. 2022; Richard and Tonello 2023;
Trinh, Benhamou, and Soliman 2023).

To the best of our knowledge, the theoretical com-
plexity of the different variants of this problem has not
been fully explored yet. However, has been shown re-
cently that even one of the simplest decision variants of
the problem is coNP-complete in the general case (Moon,
Lee, and Paulevé 2023). Several methods have been pro-
posed for enumerating (minimal or maximal) trap spaces
such as pyboolnet (Klarner, Streck, and Siebert 2017),
bioLQM (Naldi 2018), mpbn (Paulevé et al. 2020), and
trappist (Trinh et al. 2022; Trinh, Benhamou, and Soli-
man 2023), and trapmvn (Trinh et al. 2023). However,
they still suffer from scalability and efficiency issues, partic-
ularly for very large and complex models. The main reason
often being that they require intermediate representations of
the original BN which may be expensive or even intractable
to obtain, e.g., prime implicants, Petri Nets (PNs), Disjunc-
tive Normal Forms (DNFs), or Binary Decision Diagrams
(BDDs). The Related Work section gives a more detailed
summary of these methods. In particular, the constantly in-
creasing complexity of recently proposed models (Aghamiri
et al. 2020) shows the limitations of these methods and mo-
tivates the search for a more scalable alternative.

Answer Set Programming (ASP) (Gelfond and Lifschitz
1988) has found widespread application in computational
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systems biology (Videla et al. 2015) due to its declarative
nature and strong tooling support (Gebser et al. 2011a).
ASP was employed early for modeling biological net-
works (Dworschak et al. 2008; Schaub and Thiele 2009).
With the rising popularity of BNs, it was natural for ASP
to be quickly adopted for both the modeling and analysis
of BNs. The initial connection between ASP and BNs can
be traced back to the theoretical work by Inoue 2011. Nu-
merous authors have subsequently demonstrated success-
ful applications of ASP to modeling and reasoning over
biologically-motivated BNs. ASP has notably been used for
tasks such as fixed-point enumeration (Klarner, Streck, and
Siebert 2017; Abdallah et al. 2017; Paulevé et al. 2020), enu-
meration and approximation of attractors (Mushthofa et al.
2014; Klarner, Streck, and Siebert 2017; Abdallah et al.
2017; Paulevé et al. 2020; Khaled, Benhamou, and Trinh
2023), inference of BNs from biological data (Rocca et al.
2014; Videla et al. 2015, 2017; Chevalier et al. 2020; Ribeiro
et al. 2021), model repair (Gebser et al. 2011b), and repro-
gramming (Kaminski et al. 2013; Videla et al. 2017). In par-
ticular, the most recent and efficient methods for trap space
enumeration all rely on ASP (Klarner, Streck, and Siebert
2017; Paulevé et al. 2020; Trinh et al. 2022; Trinh, Ben-
hamou, and Soliman 2023; Trinh et al. 2023).

Taking inspiration from the aforementioned works, we
propose a new method that utilizes ASP to effectively enu-
merate minimal and maximal trap spaces of a BN. The key
strength of the new method lies in its utilization of negative
normal forms of Boolean functions, which are much eas-
ier to obtain than other intermediate representations used in
the previous methods. In rare instances, the method still re-
quires the use of BDDs, but the scope of their use is signif-
icantly reduced compared to the previous works, making it
less problematic. To test the efficiency of our method, we
conduct extensive evaluation using both real-world and ran-
dom models. The experimental results unequivocally show
superior performance of the new method over state-of-the-
art techniques.

Related Work
The concept of trap spaces was introduced in Klarner,
Bockmayr, and Siebert 2015. The authors proposed a
method for enumerating minimal and maximal trap spaces
of a BN using ASP, which has been implemented in
pyboolnet (Klarner, Streck, and Siebert 2017). However,
this approach requires the computation of prime implicants
of a Boolean function, which is NP-complete. Furthermore,
for complex functions, even the resulting number of prime
implicants can be exponential in the number of function in-
puts, hence the problem often becomes impractical in this
application beyond 10-20 inputs.

Subsequently, a method by Paulevé et al. 2020 has been
proposed for enumerating minimal trap spaces that avoids
enumeration of prime implicants. This approach has been
implemented in the tool mpbn and demonstrated in Paulevé
et al. 2020 as capable of handling medium-sized models
from the literature and very large synthetic models. How-
ever, mpbn has some limitations that restrict its applica-
bility. First, the BN must be locally-monotonic. This is a

small subset of all possible BNs. Second, mpbn requires the
DNF of a Boolean function, which is easier to construct than
prime implicants, but still can be exponential in the number
of function inputs.

Additionally, the bioLQM platform (Naldi 2018) also of-
fers an alternative method for computing trap spaces using
BDDs1. The method characterizes the set of generic trap
spaces of a BN by a BDD, and then filters this set to ob-
tain the set of all minimal (or maximal) trap spaces, without
requiring the computation of prime implicants. However, it
requires the computation of all solutions, while the methods
based on ASP like pyboolnet or mpbn can enumerate
solutions as they are found, making them potentially more
efficient than the BDD-based method. Finally, bioLQM is
limited by the fact that the number of generic trap spaces of
a BN is often much greater than the number of minimal (or
maximal) trap spaces.

Recently, a new method has been proposed for enumer-
ating trap spaces of a BN based on its PN encoding (Trinh
et al. 2022; Trinh, Benhamou, and Soliman 2023). A PN is
a bipartite graph between a set of places and a set of tran-
sitions. A PN can encode a BN so that their dynamics are
identical (see Trinh et al. 2022 and references therein). The
authors have established a connection between trap spaces
of a BN and conflict-free siphons of its PN encoding, al-
lowing for an alternative approach to enumerating mini-
mal (resp. maximal) trap spaces by enumerating maximal
(resp. minimal) conflict-free siphons. It is implemented in
the tool trappist, which has been shown to outperform
pyboolnet and bioLQM for general BNs and is com-
parable or better than mpbn on locally-monotonic mod-
els. However, constructing the corresponding PN remains
a bottleneck, as it generally requires obtaining two DNFs
for each node vi, one for fi ∧ ¬vi and one for ¬fi ∧ vi.
In trapmvn (Trinh et al. 2023), the authors iterate on
trappist by adding heuristics to improve this PN encod-
ing process, but the bottleneck still retains.

Preliminaries
Boolean Networks
A Boolean Network (BN) is a pair N = (V, F ) where
V = {v1, . . . , vn} is the set of nodes and F = {f1, . . . , fn}
is the corresponding set of update Boolean functions. Each
node vi is associated with a Boolean variable (by an abuse
of notation, we also use vi to denote this variable) and a
Boolean function fi whose signature is fi : B|IN(vi)| 7→ B,
where B = {0, 1} and IN(vi) ⊆ V denotes the set of input
nodes of vi. A Boolean function is locally-monotonic when
it can be represented by a formula in DNF in which all oc-
currences of any variable are either positive or negative, but
not a mix of both (Paulevé et al. 2020). A BN is said to be
locally-monotonic if all its Boolean functions are locally-
monotonic. The BN is non-locally-monotonic otherwise.

A state s ∈ Bn is a mapping s : V 7→ B that assigns either
0 (inactive) or 1 (active) to each node. We denote the set of
all possible states of a BN N by SN = Bn. At each time

1http://colomoto.org/biolqm/doc/tools-trapspace.html
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step t, node vi can update its state to s′(vi) = fi(s), where s
(resp. s′) is the state ofN at time t (resp. t+1). For simplic-
ity, we write fi(s) even if IN(vi) 6= V . An update scheme
of a BN refers to how nodes update their states over (dis-
crete) time (Schwab et al. 2020). Various update schemes
exist, but the primary types are synchronous, where all nodes
update simultaneously, and fully asynchronous, where a sin-
gle node is non-deterministically chosen for updating. By
adhering to the update scheme, the BN transitions from one
state to another, which may or may not be the same. This
transition is referred to as the state transition and denoted
by →⊆ SN × SN . More specifically, for the synchronous
update scheme, we have x → y iff y(vi) = fi(x) for all
vi ∈ V , whereas for the fully asynchronous update scheme,
we have x → y iff there exists a node vi ∈ V such that
y(vi) = fi(x) and y(vj) = x(vj) for all vj 6= vi. Then the
dynamics of N is captured by the directed graph (SN ,→)
referred to as the State Transition Graph (STG).

Trap Spaces
A non-empty set T ⊆ SN is a trap set with respect to→ if
for every x ∈ T and y ∈ SN we have that x → y implies
y ∈ T (Klarner, Bockmayr, and Siebert 2015). An attractor
ofN with respect to→ is an inclusion-wise minimal trap set
of (SN ,→). A sub-space m of a BN is a mapping m : V 7→
B ∪ {?}. Here, variable vi is called fixed if m(vi) ∈ B (the
value of vi is fixed in m). Meanwhile, if m(vi) = ?, vi is
called a free (the value of vi can be both 0 and 1 in m). Let
us denote Dm the set of all fixed variables of m. A sub-
space m is equivalent to the set of all states s (denoted by
SN [m]) such that s(v) = m(v), ∀v ∈ Dm. For example,
m = ?11 (for simplicity, we write sub-spaces and states
as a sequence of values) means that Dm = {v2, v3} and
m(v2) = m(v3) = 1. This sub-space is equivalent to the set
of states {011, 111}. We denote S?N = (B∪{?})n the set of
all possible sub-spaces of N .

If a sub-space is also a trap set, it is a trap space. Unlike
attractors, trap spaces of a BN are independent of the update
scheme (Klarner, Bockmayr, and Siebert 2015). We define a
partial order < on S?N as: m < m′ iff SN [m] ( SN [m′].
Then a trap space m is minimal iff there is no other trap
space m′ ∈ S?N such that m′ < m. It is easy to derive
that a minimal trap space contains at least one attractor of
the BN regardless of the update scheme. Furthermore, any
two minimal trap spaces are disjoint. Thus the set of mini-
mal trap spaces can be a good approximation for the set of
attractors (Klarner, Streck, and Siebert 2017). The maximal
trap spaces are defined analogously. Let ε be the special trap
space ofN where all the variables are free. The trap spacem
is called maximal if m 6= ε and there is no other trap space
m′ such that m′ 6= ε and m < m′.

Indeed, |S?N | = 3n. For the case of general BNs (resp.
locally-monotonic BNs), deciding whether a sub-space is
a trap space is a coNP-complete (resp. PTIME) problem,
whereas deciding whether it is a minimal trap space is a
coNPNP-complete (resp. coNP-complete) problem (Moon,
Lee, and Paulevé 2023). Hence, naive approaches for finding
(minimal or maximal) trap spaces will rapidly get infeasible.

For illustration, we give a BN N = (V, F ), where V =

000

010

100

110

011

001

111

101

Figure 1: Synchronous and fully asynchronous STGs.

{v1, v2, v3} and F = {f1, f2, f3} with f1 = ¬v1, f2 = v3,
and f3 = (v1 ∧ v2) ∨ (¬v1 ∧ v2). Figure 1 shows its STGs
under the synchronous and the fully asynchronous update
schemes where thin and dashed lines denote synchronous
state transitions, whereas thick and solid lines denote the
fully asynchronous ones. It has three trap spaces (same in
the both STGs): m1 = ?11, m2 = ?00, and m3 = ? ? ?. By
the definitions above, m1 and m2 are two minimal (but also
maximal) trap spaces of the BN. We shall use this BN as a
simple example throughout this article.

Answer Set Programming
In ASP, a logic program L is a set of (conjunctive) rules of
the form

A← A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬Ak

where A and Ai are atoms (k ≥ m ≥ 0) and ¬ denotes the
default negation. For any rule R of this form, A is called the
head ofR (denoted by h(R)) and the conjunction to the right
of← is called the body of R. We denote b+(R) and b−(R)
as the positive literals and the negative literals in the body of
R, respectively. For simplicity, we assume in the rest of this
work that all programs are ground, i.e., all atoms of every
rule are variable-free. Let A be the set of all ground atoms
of L. A Herbrand interpretation I is a subset of A, and is
called a Herbrand model if for any rule R in L, b+(R) ⊆ I
and b−(R) ∩ I = ∅ imply h(R) ∈ I . Note that if h(R) = ∅,
R is called a constraint and all Herbrand models satisfying
the body of R are excluded from the model space.

A program L is positive if b−(R) = ∅ for all R. In
this case, L contains a single canonical Herbrand model ex-
pressed by the unique least Herbrand model. Then, an Her-
brand interpretation I is a stable model (Gelfond and Lifs-
chitz 1988) of a general program L if I is the least Herbrand
model of the program LI = {(h(R) ←

∧
B∈b+(R)B)|R ∈

L, b−(R) ∩ I = ∅}. It is known that if an atom is in a stable
model, then it must appear in the head of at least one rule in
the program. We can add to L a (disjunctive) rule in the form
of A1 ∨ · · · ∨ Al ← making L become a disjunctive logic
program. Then, I is a stable model of L if it is a minimal
Herbrand model of LI . In addition, we can also add to L a
(choice) rule in the form of Al ← ¬¬Al, in which the sta-
ble semantics is still employed but in LI , if b−(R) contains
¬Al, then Al 6∈ I implies b−(R) ∩ I 6= ∅.

ASP-Based Method
We first show the ASP encoding for enumerating minimal
trap spaces of a BN. We then show how to modify this en-
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coding to enumerate maximal trap spaces.

ASP Encoding
Let N = (V, F ) be a BN. We construct a logic program L
as follows. For each node vi ∈ V , we introduce to L two
(variable-free) atoms: pi and ni. Then, an Herbrand model I
of L should correspond to a sub-space m such that for every
node vi ∈ V , m(vi) = 1 iff pi ∈ I ∧ ni 6∈ I , m(vi) = 0
iff pi 6∈ I ∧ ni ∈ I , and m(vi) = ? iff pi ∈ I ∧ ni ∈ I . To
ensure this correspondence, we add to L the rule pi ∨ ni ←
for each vi ∈ V .

Next, we define f [m] as a Boolean formula obtained by
substituting fixed variables of m into Boolean formula f .
For example, consider the straight example BN, we have if
m = ?11 then f1[m] = v1 but f3[m] = 1. Recall that a trap
space is also a trap set with respect to any update scheme
of the BN. Hence, it must hold for any trap space m and
for all vi ∈ V that if fi[m] can receive 1 then m(vi) =
1 ∨ m(vi) = ? and if fi[m] can receive 0 then m(vi) =
0∨m(vi) = ?. Note that fi[m] can receive both 0 and 1 (e.g.,
f1[m] = v1). By the correspondence between an Herbrand
model and a sub-space, we have that the former condition
can be characterized by vi ← fi, the latter one by ¬vi ←
¬fi. The conjunction of the two parts of all nodes vi can
characterize a trap space of the BN. For the part vi ← fi, to
avoid the presence of negation, we convert fi into its NNF,
which can be obtained by recursively applying De Morgan
laws until all negations that remain are on literals. Note that
this procedure can be done purely syntactically. We now add
to L ASP rules δ(vi) ← δ(NNF(fi)) for all vi ∈ V where
we define function δ as

δ(vi) = pi, δ(¬vi) = ni,

δ(
∧

1≤j≤J

αj) = δ(α1) ∧ . . . ∧ δ(αJ), δ(
∨

1≤j≤J

αj) = auxk,

where auxk is a new atom and for each j we add the rule
auxk ← δ(αj) to L. For convenience, we distinguish two
types of atoms: main atoms (pi or ni) and auxiliary atoms
(auxk). Note that k is here a global counter starting from
1 and will be increased by 1 after a new auxiliary atom is
created. For the part ¬vi ← ¬fi, we similarly apply the
above process with ¬vi and ¬fi play the roles of vi and fi,
respectively.

Correctness
Definition 1 (Safeness). A Boolean formula f is said to be
safe if it does not contain any conjunction between two sub-
formulae f1 and f2 such that there exists a variable a ap-
pearing in f1 with ¬a appearing in f2.

Intuitively, this allows us to identify formulae where we
should not derive the contradiction from logical formulae
when both atoms pi and ni are present, representing the case
of a free variable in a trap space. Specifically, when NNF(fj)
is unsafe with respect to variable vi and m(vi) = ?, the
presence of both pi and ni can lead to the presence of pj
whereas fj [m] can be evaluated as 0 and m(vj) should be
0, which is a contradiction. A detailed example for this issue

shall be given later on. Formally, we have the below result
whose formal proof is given in the supplementary material2.

Theorem 1. Let N = (V, F ) be a BN and L be its encoded
logic program. If NNF(fi) and NNF(¬fi) are safe for all
vi ∈ V , then the set of stable models of L one-to-one corre-
sponds to the set of minimal trap spaces of N .

Next, we show how to deal with the case of unsafe for-
mulae to ensure the correctness of the proposed encoding.
When considering the rule in form of δ(vi) ← δ(f), if we
detect f unsafe, we can convert f into its DNF. By the safe-
ness definition, DNF(f) is safe. Furthermore, f and DNF(f)
are still logically equivalent. Hence, the new resulting L still
characterizes correctly all trap spaces of the BN. To obtain
DNF(f), we construct a BDD for f from which we can eas-
ily derive each conjunction of DNF(f) as a satisfying path
from the root node to the one node of the constructed BDD.

For illustration, we consider the straight example BN N .
Listing 1 (following clingo’s syntax) shows the encoded
logic program of N with ’;’, ’,’, and ’:-’ denote opera-
tors ∨, ∧, and ←, respectively. Line 1 represents the rules
pi ∨ ni ← for the three nodes enforcing that at least one
of pi or ni is true. Herein, NNF(f1), NNF(¬f1), NNF(f2),
NNF(¬f2) are all safe. Then Line 2 represents the rules for
δ(v1) ← δ(NNF(f1)) and δ(¬v1) ← δ(NNF(¬f1)). Sim-
ilarly, Line 3 represents the rules for node v2. The prob-
lem lies on node v3 where NNF(f3) is safe but NNF(¬f3)
is unsafe. Lines 4 and 5 represent the rules for δ(v3) ←
δ(NNF(f3)). Since NNF(¬f3) is unsafe, we need to use
DNF(NNF(¬f3)) that is ¬v2. Note that NNF(¬f3) =
(¬v1 ∨ ¬v2) ∧ (v1 ∨ ¬v2) that should be simplified to ¬v2,
and the BDD construction implicitly makes the simplifi-
cation. Finally, Line 6 represents the rules for δ(¬v3) ←
DNF(NNF(¬f3)). L has exactly two stable models (only
considering main atoms): {p1, n1, p2, p3} corresponding to
minimal trap space m1 = ?11 and {p1, n1, n2, n3} corre-
sponding to minimal trap space m2 = ?00.

Listing 1: Encoded logic program of the example BN.
1 p1; n1. p2; n2. p3; n3.
2 p1 :- n1. n1 :- p1.
3 p2 :- p3. n2 :- n3.
4 p3 :- aux1.
5 aux1 :- p1, p2. aux1 :- n1, p2.
6 n3 :- n2.

Let us explain why using an unsafe formula (i.e.,
NNF(¬f3)) might lead to wrong results. It is easy to see that
m(v1) is always ? for any trap space m, which is character-
ized by the presence of both p1 and n1 in every Herbrand
model of L. Consider the case that m(v2) = 1, i.e., p2 is
true and n2 is false. Then we can derive that p3 is true by the
rules in Lines 4 and 5. The rules for δ(¬v3) ← NNF(¬f3)
should be n3 ← aux2 ∧ aux3, aux2 ← n1, aux2 ← n2,
aux3 ← p1, and aux3 ← n2 that lead to the presence of n3.
By the rule n2 ← n3, we have the presence of n2, which
is a contradiction. The root cause is that when m(v2) = 1,
¬f3[m] is evaluated to 0 (equivalently f3[m] to 1), enforc-
ing that only p1 is true. All of these make the actual minimal

2https://zenodo.org/doi/10.5281/zenodo.10405520
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trap space m1 = ?11 disappear. Note also that if there is
no contradiction, a wrong stable model might be introduced,
leading to wrong trap spaces, and then wrong minimal ones.

Enhancements
We here propose two technical enhancements as follows.
First, we can see that if there is a rule a ← auxk, we can
remove this rule and atom auxk, and replace auxk by a
wherever it appears in L. For example, in Listing 1, the rules
of Lines 4 and 5 can be replaced by p3 ← p1 ∧ p2 and
p3 ← n1 ∧ p2. Second, some auxiliary atoms can corre-
spond to the same sub-formula. In this case, we can use only
one representative atom for all such atoms. The two above
enhancements can reduce the number of atoms in L, hoping
likely to reduce the solving time, and clearly preserve the
correctness of the encoding.

Theorem 2. Let N = (V, F ) be a BN and L be its encoded
logic program. Let L′ be the program obtained by apply the
two above enhancements to L. If NNF(fi) and NNF(¬fi)
are safe for all vi ∈ V , then the set of stable models of L′
one-to-one corresponds to that of L′.

Maximal Trap Space Enumeration
The research discussed in (Rozum et al. 2021b) employs the
concept of stable motifs to construct a succession diagram
for a BN. It proves valuable for analyzing (e.g., enumerating
attractors under the fully asynchronous update scheme) and
controlling BNs (e.g., enumerating control interventions that
drive any initial state into a given minimal trap space that
might correspond to a desirable phenotype) (Rozum et al.
2021b,a). However, the enumeration of stable motifs, as pre-
sented in (Rozum et al. 2021b,a), is indeed a computational
bottleneck. It also pointed out that a stable motif is identical
to a maximal trap space (Rozum et al. 2021b). Hence, there
is a need to develop an efficient technique for enumerating
maximal trap spaces in a BN.

With this motivation, we adapt the core ASP encoding to
enumerate maximal trap spaces. Recall that any trap space
of N is represented by an Herbrand model of L, but mul-
tiple ones might represent the same trap space due to the
presence of auxiliary atoms. First, we need to exclude all
the Herbrand models corresponding to the special trap space
ε where all variables are free. To do this, we add to L the
constraint ← p1 ∧ n1 ∧ · · · ∧ pn ∧ nn ensuring that every
Herbrand model of L cannot contain all main atoms. Sec-
ond, we add to L the choice rules for all main atoms, i.e.,
pi ← ¬¬pi and ni ← ¬¬ni for all vi ∈ V . This ensures
that any trap space is represented by a stable model of L. In
addition, since there are no choice rules for auxiliary atoms,
a trap space is represented by exactly one stable model, lead-
ing to the one-to-one correspondence between trap spaces of
N and stable models of L. Now, we just need to consider the
subset-maximal stable models of L (hence, the maximal trap
spaces of N ) thanks to the built-in feature3 of some ASP
solvers such as clingo for this task (Gebser et al. 2011a).

3We used clingo’s configuration -heuristic=Domain
-enum-mod=domRec -dom-mod=3 (subset maximality).

Advantages
We here discuss the advantages of our new ASP-
based method (named tsconj for convenience) as com-
pared to other ASP-based methods (pyboolnet, mpbn,
trappist) for enumerating minimal and maximal trap
spaces in BNs. These advantages shall be justified by the ex-
perimental results shown in the next section. First, tsconj,
along with pyboolnet and trappist, is applicable
for general models, whereas mpbn is only applicable for
locally-monotonic models. Second, regarding the encoding
construction, all tsconj, mpbn, and trappist avoid the
need of computing prime implicants, which is the bottleneck
of pyboolnet and also the most demanding task. For ev-
ery node vi, trappist needs two BDDs (fi ∧ ¬vi and
¬fi ∧ vi), mpbn needs a DNF of fi. On the other hand,
tsconj only needs two NNFs (NNF(fi) and NNF(¬fi)),
which are much easier to obtain than the BDDs or DNFs. Al-
though tsconj still needs a BDD for an unsafe formula, it
is still superior to mpbn and trappist. More specifically,
the safeness identification of a formula can be done syn-
tactically, thus quite efficient; tsconj may only need one
BDD, whereas trappist always needs two BDDs; and if
NNF(fi) or NNF(¬fi) is unsafe, then DNF(fi) is also de-
tected non-locally-monotonic by mpbn without simplifica-
tion. For the last case, tsconj needs one or two BDDs, but
mpbn gives up as it cannot handle non-locally-monotonic
models. Note that fi might be locally-monotonic after full
simplification (e.g., f3 = (v1 ∧ v2)∨ (¬v1 ∧ v2) can be sim-
plified to v2), but the full simplification is even a much more
demanding task than the BDD construction.

Third, regarding the ASP encoding characteristics, we
divide two cases as follows. For minimal trap space enu-
meration, tsconj does not use choice rules, whereas all
pyboolnet, mpbn, trappist do. Note however that
tsconj does still contain disjunctive rules (i.e., pi ∨ni ←)
and it remains open whether using choice rules is good
or bad w.r.t. the presence of disjunctive rules. Upon closer
inspection, tsconj and trappist use only variable-
free atoms, whereas pyboolnet and mpbn use variable
atoms (predicates), i.e., the ASP solver needs to perform
the grounding step for the encoding of pyboolnet or
mpbn. Furthermore, tsconj, pyboolnet, and mpbn
use mostly conjunctive rules, whereas trappist uses
mostly disjunctive rules. For maximal trap space enumer-
ation, tsconj uses choice rules for main atoms, but all the
remaining characteristics are the same as those of the min-
imal case. The ASP characteristics of pyboolnet, mpbn,
and trappist for the maximal case are the same as theirs
for the minimal case. It is worth noting that choice and dis-
junctive rules are sources for the inefficiency of most ASP
solvers such as clingo (Gebser et al. 2011a).

One might wonder if it is possible to adapt other res-
olution techniques such as SAT, Constraint Programming
(CP), and Integer Linear Programming (ILP). Indeed, there
are the ILP version of pyboolnet (Klarner, Bockmayr,
and Siebert 2015) and the SAT, CP, and ILP versions of
trappist (Trinh, Benhamou, and Soliman 2023). They
all employ an iterative manner, i.e., finding a minimum
or maximum solution first, then adding new constraints to
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force the solver to find new solutions. These versions were
shown to be much worse than the corresponding ASP ver-
sions (Klarner, Bockmayr, and Siebert 2015; Trinh, Ben-
hamou, and Soliman 2023). Similarly, it is possible to pro-
pose SAT, CP, and ILP versions for tsconj. However, due
to the presence of auxiliary variables, the main issue of these
versions is the enumeration of redundant models that encode
the same trap space. A step to eliminate redundant models
is therefore necessary to guarantee the correctness and this
would add more complexity to the SAT/CP/ILP approach.
In contrast, the ASP approach can avoid the above issue be-
cause of only searching for stable models. Note however that
the superiority of the ASP-based approach against the SAT-
based approach is mostly a question of “declarativity” and of
current practice (in terms of enumerating multiple solutions)
rather than the latter being less suitable in principle.

Experiments
The goal of this section is two-fold: First, to demonstrate that
our proposed method is capable of handling realistic biolog-
ical models, and second, to demonstrate that on such models,
it significantly outperforms existing state of the art methods.
We implemented the proposed method as a Python package
tsconj4. All data and source code, addition technical de-
tails about the measurement process, and detailed analysis
of results is available in the supplementary material5. Here,
we only present a summary of our main observations.

Experiment Setup
Hardware and benchmark harness We test using a desk-
top computer equipped with Ryzen 5800X CPU. Each ex-
periment is limited to 64GB of RAM and utilizes a single
CPU core. The runtime is measured internally by each pro-
cess. It includes all computation steps, including loading in-
put data and any necessary encoding or transformations.

Tested software All tested software is distributed in the
form of Python packages. As such, our tests use a single
Python virtual environment with all the packages installed.
Specifically, we consider the tools pyboolnet (Klarner,
Streck, and Siebert 2017), mpbn (Paulevé et al. 2020),
trappist (Trinh, Hiraishi, and Benhamou 2022), and
trapmvn (Trinh et al. 2023). Where applicable, the em-
ployed tools use the ASP solver clingo (Gebser et al.
2011a). To the best of our knowledge, these represent the
state-of-the-art methods for enumerating trap spaces of BNs.

Tested models We evaluate the tools on four separate
datasets of different properties: First, the Biodivine Boolean
Models (BBM) dataset (Pastva et al. 2023) which contains
212 real-world published BNs, ranging up to 321 variables.
Second, a smaller dataset of 39 selected real-world models,
collected by the authors of this paper, which do not appear
in BBM, ranging up to 3158 variables. Third, a dataset of
Very Large Boolean Networks (VLBN)6 consisting of 28
randomly generated BNs ranging up to 100.000 variables.

4https://github.com/daemontus/tsconj
5https://zenodo.org/doi/10.5281/zenodo.10405520
6https://doi.org/10.5281/zenodo.3714875
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Figure 2: Cumulative experiments completed (y-axis) until
a specific time point (x-axis, logarithmic). Concerns the 400
randomly generated models with 1.000-5.000 variables.

And fourth, a dataset of 400 models with 1.000-5.000 vari-
ables, sampled using the generator provided in (Benes et al.
2021). To best of our knowledge, this is a highly representa-
tive of biologically relevant BNs appearing in literature.

Tested problems We primarily consider detection of min-
imal trap spaces. However, some BNs admit a large num-
ber of minimal trap spaces. In such instances, a benchmark
is often testing the technical ability of the implementation
to enumerate the results quickly (especially in Python), in-
stead of the actual problem-solving. To eliminate this issue,
we only measure the time to compute the first result, which
we believe to represent the most fair comparison between
the underlying techniques. In the the supplementary mate-
rial, we also provide a limited set of results for detection of
maximal trap spaces. However, these tests do not reveal any
conclusions not covered by the minimal trap space problem,
and as such, we do not discuss them in detail here.

Results and Discussion
The main summary of results is given in Table 1. Here, we
show the number of problems completed by every tool for
each group of BNs. Then, Figure 2 shows a more detailed
analysis of the completed problem instances in the dataset of
400 randomly generated BNs. Finally, Figure 3 plots the ra-
tio between the runtime of the competing tools and tsconj
on all benchmark instances where both tools computed a
valid result.

Discussion
First, let us note that while the performance of pyboolnet
is not terrible, it is clearly lacking compared to all the other
tools: It did not complete a single random model benchmark
within the timeout, and even for real-world models, it is cer-
tainly the slowest method. As such, it mostly serves as a
baseline for the other tools.
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Method <1s <1min <1h

Biodivine Boolean Models

pyboolnet 161/212 194/212 203/212
mpbn 182/212 185/212 185/212

trappist 207/212 208/212 208/212
trapmvn 208/212 211/212 211/212
tsconj 208/212 212/212 212/212

Manually selected models

pyboolnet 17/39 26/39 33/39
mpbn 26/39 27/39 27/39

trappist 35/39 36/39 36/39
trapmvn 35/39 36/39 36/39
tsconj 35/39 36/39 36/39

Very Large Boolean Networks

pyboolnet 0/28 0/28 0/28
mpbn 0/28 7/28 18/28

trappist 0/28 1/28 1/28
trapmvn 0/28 9/28 20/28
tsconj 4/28 19/28 28/28

Manually generated models

pyboolnet 0/400 0/400 0/400
mpbn 3/400 303/400 400/400

trappist 0/400 4/400 24/400
trapmvn 0/400 34/400 103/400
tsconj 67/400 400/400 400/400

Table 1: Summary of tool performance for computing the
first solution. Rows <1s, <1min and <1h give the number
of models completed within the respective time limit.
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Figure 3: The speed-up of tsconj compared to the other
tools, truncated to the interval [ 14 , 64]. Points below the red
line represent a slow-down instead of a speed-up.

Then, we should compare trapmvn and trappist.
Both use the same underlying ASP encoding based on im-
plicants and BDDs. However, trapmvn implements several
improvements which allow it to either generate the logic pro-
gram faster, or to simplify the program itself. For real-world

models, these methods are largely comparable: trapmvn
solved three more BBM models due to a technical limita-
tion of trappist, but otherwise provides the same results.
However, for the larger random models, we observe that the
modifications implemented in trapmvn significantly im-
prove the performance of the tool. For the VLBN dataset,
trapmvn is the second-best tool, and in the 400 random
models, it still significantly improves on the results obtained
by trappist. Nevertheless, in all non-trivial instances (as
evidenced by Figures 2 and 3), tsconj still significantly
outperforms both methods.

Finally, comparing tsconj to mpbn, the performance
on real-world models is similar once we disregard models
with non-locally-monotonic functions, which are not sup-
ported by this version of mpbn. Even on the 400 random
models those are all locally-monotonic, mpbn and tsconj
are the only two tools that were able to complete all bench-
marks (however, Figure 2 shows that tsconj still provides
a non-trivial performance improvement). Nevertheless, on
the VLBN dataset, we see that mpbn struggles with models
of more than 10.000 variables, while tsconj completed
the whole dataset.

Conclusion

In this work, we proposed a new method named tsconj
based on ASP for enumerating minimal and maximal trap
spaces in BNs. These are not only crucial in the analysis
and control of biological systems, but also have applica-
tions in various other areas. We have shown that the pro-
posed method has many advantages over the previous meth-
ods for the same task. Then, the efficiency of our method has
been verified by rigorous experiments on many real-world
and randomly generated models. In particular, it vastly out-
performs the four state-of-the-art methods for enumerating
minimal and maximal trap spaces in BNs and is able to han-
dle very large and complex models.

It is likely that the SAT/CP/ILP variant of tsconjwill be
less efficient than the ASP approach. Nevertheless, it would
be interesting to implement the SAT, CP, and ILP versions of
tsconj and compare their performance on the set of mod-
els used in this work. Moreover, there are some “hard” mod-
els that none of the existing methods could handle. These
models are not particularly typical in the systems biology
community, but an improvement is needed to make tsconj
able to handle such cases. A possible direction is to find
a more “permissive” safeness condition where complicated
unsafe formulas can be efficiently (ideally syntactically) de-
tected as safe ones. In this case, we do not need to compute
BDDs of those formulas. Finally, we plan to test the scal-
ability of tsconj on other types of random models such
as N-K models (Glass and Kauffman 1973; Rozum et al.
2021b) and scale-free models (Aldana 2003; Drossel and
Greil 2009), which have been widely used in other fields
such as theoretical physics, social modelling, and neural net-
works. This can broaden the applicable range of our method.
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