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We present new 14C results measured on subfossil
Scots Pines recovered in the eroded banks of the
Drouzet watercourse in the Southern French Alps.
About 400 new 14C ages have been analysed on
15 trees sampled at annual resolution. The resulting
�14C record exhibits an abrupt spike occurring in a
single year at 14 300–14 299 cal yr BP and a century-
long event between 14 and 13.9 cal kyr BP. In order to
identify the causes of these events, we compare the
Drouzet �14C record with simulations of �14C based
on the 10Be record in Greenland ice used as an input
of a carbon cycle model. The correspondence with
10Be anomalies allows us to propose the 14.3 cal kyr BP
event as a solar energetic particle event. By contrast,
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the 14 cal kyr BP event lasted about a century and is most probably a common Maunder-type
solar minimum linked to the modulation of galactic cosmic particles by the heliomagnetic
field. We also discuss and speculate about the synchroneity and the possible causes of the
14 cal kyr BP event with the brief cold phase called Older Dryas, which separates the Bølling
and Allerød millennium-long warm phases of the Late Glacial period.

This article is part of the Theo Murphy meeting issue ’Radiocarbon in the Anthropocene’.

1. Introduction
The radiocarbon method is widely used to date fossil samples over the last 55 000 years. It is based
on the radioactive decay of 14C produced in the upper atmosphere by interaction with cosmic ray
particles. The 14C/12C ratio of the fossil sample is compared with the atmospheric 14C/12C ratio,
which is the starting point from which 14C decays exponentially through radioactive decay with a
half-life of 5700 years. However, radiocarbon dating is not exact because the atmospheric 14C/12C
ratio has varied through time owing to changes in the rate of production by cosmic rays, as well
as rearrangements of the biogeochemical carbon cycle.

To accurately calculate the calendar age of the fossil sample, it is necessary to know the 14C/12C
ratio of the contemporary atmosphere at the sample’s time of growth. The raw radiocarbon
age is therefore corrected (i.e. calibrated) by comparing the measured 14C content in the fossil
sample of unknown age with those of other samples for which accurate and precise ages have
been measured by independent methods such as counting the annual rings of trees, annual
laminations in varved sediments or absolute dating by the uranium–thorium method. For 30
years, radiocarbon calibration curves have been prepared by the international working group
IntCal, and the latest iteration (IntCal20) was published in 2020 [1,2].

Many records from various archives are combined to construct the 14C calibration curves, but
the most precise and accurate are based on dendrochronologically dated tree-ring series. Subfossil
trees are abundant for the Holocene starting at ≈11 600 yr before present (BP, present = 1950
common era [CE], [3]). These have mainly been discovered in peat bogs and dredged out of
gravel pits in the alluvial plains of the large rivers of central Europe (Danube, Main, Rhine,
[4,5]). Through matching tree ring width patterns of numerous overlapping sections, they have
allowed for the construction of a continuous calibration curve, absolutely dated with annual
precision, going back to 12 325 cal yr BP [6]. For times before the Holocene, the availability of trees
is limited, in particular for the cold episodes of the Late Glacial during which the forests regressed
(e.g. the Younger Dryas). Dendrochronological Late Glacial sequences have come mainly from
Switzerland and France [7–9]. To date, the cold climatic context of the Pleistocene has made
discoveries of subfossil trees extremely rare, except in the Southern Hemisphere [10]. The oldest
tree-ring series are known as floating [11] since, while their constituent rings can be counted to
create a relative internal chronology, they cannot be dendro-matched with the main Holocene
absolute chronology. However, 14C analyses performed at high resolution on overlapped absolute
and floating tree-rings series enable one to link them almost absolutely and hence to extend the
calibration on annual tree rings until ≈13 900 cal yr BP [1,10,12].

The first source of complexity when converting 14C determinations to calendar ages is the
variable production of the 14C isotope. Most 14C production occurs in the lower stratosphere and
upper troposphere with nuclear (n-p) reactions between cosmic ray neutrons and atmospheric
nitrogen. These secondary neutrons are formed originally by the collision between atmospheric
gases and the protons that constitute a significant portion of the primary cosmic radiation
originating from our galaxy. The arrival on Earth of these charged particles is modulated at
centennial to decadal scales by variations of magnetic properties of the solar wind, leading to
lower cosmogenic production during high solar activity phases, and making atmospheric 14C
a mirror image of solar activity. These changes are superimposed on slow variations due to
geomagnetic field changes.
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This production variability is further modified and distorted by mixing of 14CO2 molecules in
the global carbon cycle. For example, while the 11-yr sunspot cycle is accompanied by a strong
variation in 14C production (≈ ± 200‰), the 14C/12C cycle measured in the atmosphere (and tree-
rings) remains small (±2‰) due to the damping effect by the global carbon cycle [13,14]. Changes
in ocean circulation could also have affected the outgassing of old, 14C-depleted CO2.

In addition to the heliomagnetic and geomagnetic modulations of galactic cosmic rays, it
has been proposed recently that abrupt 14C production maxima could be linked to short-term
energetic particle bursts released by solar flares and coronal mass ejections from the Sun. The
first solar energetic particle (SEP) spike identified was for the year 774 CE and manifested as
an abrupt 14C step (15‰ ≈ 120 14C yr) occurring over a single year in recent trees from Japan
[15]. The existence of the 774 CE event at global scale has since been confirmed by measurements
on many other trees from different locations spread over the planet. In addition, corresponding
annual spikes for other cosmogenic isotopes (10Be and 36Cl) have been found in polar ice
cores from Greenland and Antarctica [16], providing further information to characterize the
particle flux.

The discovery of the 774 CE spike fostered new 14C measurement programmes on tree
ring series from the Holocene at annual resolution. This is an enormous task since, before this
discovery, tree-ring calibration had mainly been based on 14C ages measured on decadal wood
sections. So far, four SEP spikes have been evidenced with multiple cosmogenic isotopes, 774 CE
(1176 Cal BP), 993 CE (957 Cal BP), 2610 Cal BP, 9125 Cal BP) and a few others have been proposed
based solely on 14C, 1052 CE (898 Cal BP), 1279 CE (672 Cal BP), 7210 Cal BP, 7360 Cal BP [17].

As a follow-up of our previous work to extend 14C calibration during the Younger Dryas
period based on subfossil pines from the French Southern Alps [18,19], we have measured 14C
in trees at annual resolution over a 700-yr window belonging to the Bølling-Allerød period.
The new 14C record can be compared with 10Be data from Greenland ice in order to identify
variations linked to cosmogenic production changes, notably at ca 14.3 cal kyr BP during an
abrupt event proposed as a new SEP spike. This comparison is also useful to evaluate the
influence of the carbon cycle in the heart of the deglacial period. Indeed, the 14C signal due to
an abrupt production spike constitutes the impulse response function characterizing the entire
global carbon cycle (e.g. [20]).

2. Sites and materials
Over the past 25 years, we conducted intensive fieldwork to collect subfossil trunks in order to
complement the wood collection stored at IMBE in Aix-en-Provence ([7] and follow-up papers,
figure 1a). In the region of the upper course of the Durance River in the Southern French Alps,
many subfossil Scots Pines (Pinus sylvestris L.) were discovered in alluvial sediments dated from
Late Glacial to the early Holocene (figure 2). Their noteworthy fossilization and preservation can
be explained by a combination of geologic, topographic and climatic factors: (i) bedrock consists
of highly erodible calcareous marl; (ii) steep slopes are widely developed in this alpine area;
and (iii) this region is subject to stormy rainfall influenced by both Mediterranean and mountain
climates.

After the Late Glacial Maximum, dated in the area at ≈21 cal kyr BP [21], rapid warming
accompanied by increased precipitation led to an intense erosion of slopes, generating colluvial
to alluvial sedimentation and the formation of wide and deep alluvial fans characteristic of the
sub-Alpine landscapes. This created the so-called ‘Main Postglacial Infilling’ (MPI), which took
place between 14.5 and 7 cal kyr BP [22–24]. Throughout the MPI, with its high sedimentation
rate, many trees were buried (mainly Pinus sylvestris L., which represents Late Glacial and early
Holocene pioneer vegetation). These trees stayed well preserved and buried until their recent
exposure following the vertical incision of the rivers. Erosion of river banks during the winter
season reveals new subfossil trees almost every year.

In total, 172 subfossil trees were discovered in a 500 m-long and 30 m-wide stretch of the
Drouzet River (44°31’57′′ N 5°52’14′′ E) (figure 1b). Trees are buried in loamy deposits of the
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(a)

(b)

Figure 1. (a) Map of Southeastern France showing the locations of the subfossil tree deposits in the middle Durance region,
includingBarbiers andDrouzet rivers. (b) CloseuponDrouzet River (GPS coordinates and tree labels are available in theelectronic
supplementary material, table S2).

MPI forming a 2 m thick alluvial terrace. This terrace contains three rooting levels that are very
difficult to differentiate because the loamy alluvial deposits are lenticular shaped, discontinuous
and partially preserved. In addition, the riverbed incision in the Drouzet river is not uniform.
Consequently, some trees have exposed roots whereas in other cases, only the upper part of
the trunk protrudes from the water (figure 2). All trees are Scots Pines (Pinus sylvestris L.) and
they still stand rooted in situ, except two trees that had been carried away downstream. Most of
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(a)

(b)

Figure 2. (a and b) Photographs of the Drouzet river showing subfossil trees (Scots Pines) buried in alluvial deposits. Trees
appear rooted at different levels in the main stream or in the river banks.

the trees still have pieces of bark remaining. The height of the remaining trunks ranges from
a few centimetres to 1 m high. Their diameters range between 59 and 5 cm with an average
of 27 cm.

Each subfossil trunk has been extracted from the sediment with a pickaxe and described
(height, circumference, state of preservation, GPS coordinates (electronic supplementary material,
table S1)). Whenever possible, two or three discs 5–10 cm thick were sampled with a chainsaw,
one just above the root to estimate the germination date, and one higher on the stem to measure
ring-widths while avoiding the distortions near the collar.

3. Dendrochronological analyses
Out of Drouzet trunks, 140 trees were sampled for dendro analysis while 32 poorly preserved
trees were discarded. When the wood was hard and well preserved, discs were air-dried and
sanded by using progressively finer sandpaper up to 400 grain size. Damaged and waterlogged
wood samples were wrapped in plastic sheeting and scraped with a razor blade to obtain plane
surfaces and make rings visible. Standard dendrochronological techniques were employed in
chronology development. Ring-widths (TRW) were measured on at least three radii using a
LINTAB measuring system with a precision of 0.01 mm and the TSAPWin software [25]. All
chronologies were built by using standard statistical tests and visual comparison of the raw TRW
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curves: the percentage of parallel variation or Gleichläufigkeit (Glk) [26] and the t values obtained
with Baillie and Pilcher indices [27] and Hollstein indices [28] (electronic supplementary material,
table S2).

The average age of the trees, including pith and bark, is 161 (max 288, min 60) yrs.
Generally young trees formed very narrow rings which could mean they recruited on fresh
alluvial deposits without organic matter and perhaps within a high-density stand. The last
20–80 years are frequently characterized by very narrow rings, which shows that pines
grew slowly due to asphyxia by burial in alluvium and water. Moreover, tree growth is
disturbed by hydrological changes and geomorphological stress due to frequent river floods.
Therefore, matching of ring patterns was often challenging, even between trees that grew
next to each other. Missing rings are frequent in Pinus sylvestris species, even more so in
such subfossil pines which suffered from recurrent stress. Considering those difficulties, cross-
dating was done following two steps: first, between nearby trees and afterwards with more
distant trees.

The dendrochronological analyses made it possible to gather 111 trees from Drouzet into three
floating chronologies covering about 680 yrs: DRM1, DRM2 and DRM3 with durations of 434,
348 and 233 years, each including 29, 59 and 23 individual trees, respectively (figure 3). Twenty-
nine trees could not be cross-dated, either because ring-width series were too short (40–80 yrs), or
because irregular growth prevented a reliable cross-matching.

DRM1 is the oldest group of trees. They are located mostly downstream in the river or in the
middle part of the studied area (figure 1b). DRM1 trees belong to the lower stratigraphic level and
their roots are still buried deep in the late glacial deposit. The mean length of ring-width series
is 173 (min 91, max 331) yrs. Two subgroups of trees appear, from drouZ18 to DR64 and from
drouZ10 to DR320, attesting to two phases of germination. Statistical test values between trees of
the oldest subgroup are 58 < Glk < 63, 2.2 < tBP < 5.4 and 2.5 < tH < 4.1, except for DR64, which
better matches with the youngest subgroup. In this last subgroup, most of the trees cross-date
with statistical values of Glk > 60, tBP and tH > 4, except for tree DR170, which shows a weaker
correlation (electronic supplementary material, table S2).

DRM2 consists of 59 trees that colonized the alluvial plain over a period of 70 years. Most of
them are located upstream in the eastern part of the site. The mean length of ring-width series
is 159 (min 65, max 288) yrs. Trees cross-match well (Glk up to 7 and tBP - tH > 5.5 for the
best correlations). Statistical test values are weaker for trees DR152, DR26, DR2 and few short
chronologies.

DRM3 is the youngest group of trees located in the upper stratigraphic level, which is in the
middle part of the site. With a mean value of 155 (min 60, max 255) rings, DRM3 is composed
of trees younger than those of DRM1 and DRM2. Young trees continuously recruited over a
period of 60 years. They are followed by a group of four trees whose position is confirmed by
radiocarbon.

Attempts to cross-match the three floating chronologies DRM1, DRM2 and DRM3 were still
tentative. It is supposed that the DRM1, DRM2 and DRM3 groups reflect three main germination
phases following the deposit of alluvial sediments in the river. This explains why the correlation
between ring-width series belonging to different groups is so difficult: comparing old dying
trees with young trees in their juvenile phase is very challenging. Although the chronologies
may be synchronous, it is difficult to evidence by means of tree-ring patterns. Nevertheless,
tree DR320 could theoretically link DRM1 to DRM2, as (i) it cross-dates with the trees DR46,
DR180 and DR17 (60 < GLk < 68, 4 < tBP < 4.8 and 3.5 < tH < 4.6); and (ii) trees drou3 and DR38
from DRM1 cross-date with DR19, DR58a from DRM2 (Glk > 60 and t > 3.2). Besides that, the
link between DRM2 and DRM3 is weaker, even if trees DR26 and DR312 (from DRM2) cross-
date with two trees from DRM3. Although statistical agreements between DRM1, DRM2 and
DRM3 are not sufficiently high, visual agreements between their ring-width curves are considered
reliable enough to provide a first guess for their relative position. These initial positions
of the three chronologies are strengthened and refined by using their 14C measurements as
detailed below.
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Figure 3. Bar diagram of trees included in the Drouzet chronology reported on the relative Aix scale. The bar diagram reports
all cross-dated trees. Lighter bar colour shows correct but weaker matches. The hatched bars refer to trees that were 14C dated.
The colours (blue, green, yellow) correspond to the three groups of trees that are reliably cross-dated by dendrochronological
analysis (correlation parameters for cross-dated Drouzet trees are available in the electronic supplementary material, table S3).
Attempts to cross-date DRM1, DRM2 and DRM3 mean chronologies were still tentative.

4. Radiocarbon methods
In selected trees, the wood from each annual ring was separated using a scalpel under a
binocular microscope and sliced into small pieces. About 100 mg of dry wood for each sample
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was pretreated for 14C analysis using methods previously developed for trees from the nearby
site of Barbiers, which covers the Allerød-YD transition [18,19] and was included in the IntCal20
calibration curve [1].

After reviewing the literature on wood pretreatments and performing numerous tests on
modern and subfossil wood from coniferous and broadleaf trees [18], we selected a procedure
of holocellulose extraction with acid-base-acid-bleaching pretreatment (ABA-B). This method
consists of a classic ABA treatment, with solutions of HCl and NaOH at 4% concentration,
followed by a bleaching step performed with 60 g of NaClO2 in 1 l of ultrapure water in acid
solution (HCl) at pH 3. The choice of this protocol was based on its limited duration and
complexity, and its excellent and reproducible analytical results as shown by 14C results, 13C /12C
ratios, carbon % and overall mass yield % [18].

After chemical pretreatment, the dried residues of wood were weighed in tin capsules, then
combusted with an elemental analyser, and the evolved CO2 was finally transformed into
graphite with an AGE3 system. The graphite target was then analysed for its 14C/12C and
13C/12C ratios using the AixMICADAS system [29]. Standards (OxA2 NIST SRM4990C) and
blanks (VIRI-K, pretreated like the other wood samples) were processed together with samples
and used for normalization and blank correction, respectively. In addition, IAEA-C3 (cellulose
pretreated like the wood samples) and IAEA-C8 (oxalic acid) standards were measured for 14C in
the same batches, serving as control standards.

High precision 14C measurements were performed with AMS runs ≈ 50% longer than usual
in order to reach at least 800 000 ion counts for each OxA2 standard target on the same magazine.
An additional uncertainty of 1.6‰ was propagated in the 14C analytical errors and background
correction following the convention described in Capano et al. [18]. The data are reported in terms
of conventional 14C age in years BP [30].

As an initial control on data quality, we dated the wood samples of the Sixth International
Radiocarbon Intercomparison (SIRI, see [18] for the results compared with consensus values).
In addition, we participated in an international intercomparison on single-year tree-ring series
[31], which aimed to investigate possible offsets between AMS laboratories at high precision. The
results show that the CEREGE radiocarbon unit produces precise results that are consistent with
their stated uncertainties.

5. Radiocarbon results
Radiocarbon ages were measured with AixMICADAS on ca 400 samples from 15 trees selected
from the three DRM1, DRM2 and DRM3 series (table S1 in the electronic supplementary material
for numerical results). In general, we dated samples from every third annual ring, although higher
resolution (dating every consecutive annual ring) was used to study specific details. Several
Drouzet trees exhibit very narrow rings, forcing us to mix two or three annual rings to produce
reliable graphite targets. In addition, the outer wood of several trees was clearly altered as testified
by their very low mass yield during chemical pretreatment, preventing the synthesis of reliable
targets or correct measurements by AMS.

Figure 4 shows the results spanning the time window 12.6–11.7 14C kyr BP corresponding
to 14.4–13.75 cal kyr BP based on a preliminary visual matching with the Late Glacial German
pine chronology also shown in figure 4 [1,32]. The new data analysed on annual samples
agree with eight previous 14C ages on decadal samples of Drouzet wood measured by beta-
counting in Heidelberg [8]. The overlap between the 14C results on DRM3 and DRM2 (yellow
and green points) covers more than 150 cal yrs. The overlap between DRM2 and DRM1 (green
and blue points) is shorter (≈100 cal yrs) but it includes a common sharp drop of 14C ages around
14.0 cal kyr BP.

Overall, the Drouzet record shows the expected long-term trend linked to the 14C radioactive
decay on which are superimposed brief anomalies towards younger 14C ages around 14.35,
between 14.3 and 14.2, around 14.13 and between 14.0 and 13.9 cal kyr BP. A prominent feature
of the record is an abrupt drop of 14C ages at 14.3 cal kyr BP.
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Figure 4. Radiocarbon ages of Drouzet tree samples of the DRM1 (blue), DRM2 (green) and DRM3 (yellow) sequences placed
on the preliminary chronology shown in figure 3 visually correlated to the German pine absolutely dated chronology shown
with black open dots [1,32]. The (y-axis) error bars for 14C ages are shown at 1–σ. The number of annual rings measured in each
sample is represented by the (x-axis) bars (e.g.±0.5 yr for annual ring samples for most Drouzet analyses,±5 yr for decadal
measurements). The red dashed line shows the 1 : 1 slope of the 14C-Cal age relationship.

To provide a more precise and refined matching of the three floating DRM 14C sequences,
both to one another and to the absolutely dated (known-age) Late Glacial German pine
chronology [1,32] we implemented a Bayesian Markov Chain Monte Carlo (MCMC) scheme.
This method was based upon that used to place the floating tree ring sequences within
the IntCal20 calibration curve [12]. The three floating DRM 14C sequences were combined
with the absolutely dated German 14C chronology. The starting calendar ages of each of the
three floating DRM sequences (denoted T1, T2 and T3) were considered unknown, along
with the true value of the atmospheric �14C curve from 14 400 to 12 750 cal yr BP (which was
modelled by a Bayesian cubic spline, placing knots every 3 years, with coefficients β and
smoothing parameter λ). The method then aimed to find plausible placements for the DRM
14C sequences that both matched with one another and with the known-age German pine 14C
measurements, on the basis all the measurements must share a common �14C atmosphere.
Using all the 14C data within the same MCMC fitting scheme is key as, due to the overlap
between all 14C sequences, the placement of each DRM sequence informs on the location of
the others.

Metropolis-within-Gibbs was used to alternate between updating the starting ages of DRM
sequences T1, T2, T3, the spline β and the smoothing parameter λ. The method was adapted to
incorporate the varying level of blocking within the 14C measurements exactly (i.e. that some
measurements represented the average of multiple annual growth rings, while others were single
year). The fit of the 14C observations to the unknown, common, atmosphere was assessed in
the symmetric F14C domain. Uninformative priors were placed on each DRM age Ti and the
smoothing parameter λ. The method was then run for 100 000 iterations with the first 50 000
discarded as burn-in. The results are shown in figure 5. In panels b, c and d, we present the
posterior estimates for the calendar age shifts from the preliminary DRM placements based on
visual matching, while the corresponding posterior mean estimate of cal age versus 14C age
obtained by our MCMC scheme during the above fitting can be seen in the main panel a. The
posterior estimate for the shift to the calendar age of DRM1, compared with its initial visual

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 A

pr
il 

20
24

 



10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220206

...............................................................

12 400

(a)

12 200

ra
di

oc
ar

bo
n 

ag
e 

(14
C

 y
rs

 B
P)

12 000

11 800

14 400 14 300

mean atmospheric 14C age curve
95% credible interval

14 200 14 100

calendar years
–5

0

0.05

0.10

de
ns

ity

0.15

modal shift for Drouzet
1 = 2 cal yrs younger(b)

0 5 10 15 20

calendar years
–5

0

0.05

0.10

de
ns

ity

0.15

0.20

modal shift for Drouzet
2 = 13 cal yrs younger

modal shift for Drouzet
3 = 7 cal yrs younger

Drouzet1
Drouzet2
Drouzet3
Heidelberg

(c)

(d)

0 5 10 15 20

calendar years
–5

0

0.05

0.10

de
ns

ity

0.15

0 5 10 15 20

14 000 13 900 13 800 13 700
calendar age (cal yr BP)

Figure 5. (a) Radiocarbon ages of Drouzet tree samples of the DRM1 (blue), DRM2 (green) and DRM3 (yellow) sequences
placed on the new chronology with our Bayesian MCMC scheme (described here and [12]) for matching to the German pine
absolutely dated chronology shown in black [1,32]. The DRM1, DRM2 and DRM3 sequences are plotted at their modal (most
likely) calendar age locations. The (y-axis) error bars for 14C ages are shown at 1-σ. The number of annual ringsmeasured in each
sample is represented by the (x-axis) bars (e.g.±0.5 yr for annual ring samples for most Drouzet analyses,±5 yr for decadal
measurements). The black curve with 95% credible interval (shaded blue envelope) shows the posterior mean estimate for the
atmospheric 14C age based on the Drouzet and German pines obtained within the MCMC scheme. This curve is modelled as a
cubic spline and is attenuated since it averages over all potential calendar age fitting locations for the DRM sequences. (b–d) The
three inserts show the posterior calendar age histograms for the DRM1, DRM2 and DRM3 sequences relative to their preliminary
placements based on tree ring patterns.

placement, indicate it should be moved 2.9 ± 2.4 (mean ± 1σ ) cal yrs younger; for DRM2 the
suggested shift is for the sequence to be moved 13.2 ± 2.4 cal yrs younger; and for DRM3 it is
6.6 ± 2.3 cal yrs younger. The most probable (the mode of the posterior marginal) calendar age
shift for each Drouzet sequences, optimizing agreement with each other and the known-age
German 14C chronology, would move DRM1 younger by 2 cal yrs, DRM2 younger by 13 cal yrs
and DRM3 younger by 7 cal yrs from their initial placements based on visual matching.

A simplified placement was also performed, assuming that the relative positions of DRM1,
DRM2 and DRM3 within the preliminary placement is accurate (i.e. that DRM1, DRM2 and DRM3
form a single chronology based on independent dendrochronological matching). Our MCMC
scheme of matching to the German absolute chronology suggested a shift of this single DRM
sequence, from its preliminary placement, by 4 ± 1.5 cal yrs (with a mode of 5 cal yrs) towards a
younger age.

The posterior mean curve of figure 5a (and its accompanying credible intervals) averages over
all possible placements of the floating DRM data. Due to this placement averaging, the mean
curve attenuates the variability in the atmospheric �14C from one year to the next. This can most
clearly be seen in the substantial reduction in amplitude when reproducing the sharp change
in the 14C of DRM1 around 14.3 cal kyr BP. The curve shown in figure 5a is further attenuated
since the �14C is modelled by a standard cubic spline. Such splines are not well-designed to
represent extremely sharp discontinuities. This should not however impact upon the MCMC
placing of the DRM data since the sharp change only affects the oldest part of DRM1 and not
the other DRM sequences. To remove the confounding effect of this placement-averaging on the
posterior mean of the atmospheric curve, we must consider a fixed calendar age placement of the
DRM data.
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Figure6. (a) Radiocarbon ages of P305u (red) andA15 (pink) Italian trees placed on thenewchronologywith ourMCMC scheme
formatching to theDRM1 (blue), DRM2 (green) andDRM3 (yellow) sequences set at their, optimal, posteriormode calendar ages
of figure 5. Error bars are shown at 1–σ for 14C ages. The number of annual rings measured in each sample is represented by
the (x-axis) bars (e.g.±0.5 yr for annual ring samples for most Drouzet analyses,±5 yr for decadal measurements). The black
curve with 95% credible interval (shaded blue envelope) shows the posterior mean estimate for the atmospheric 14C age based
on Drouzet, A15 and P305u and German pines using the MCMC scheme. The curve is modelled by a cubic spline to which a�14C
step function has been added between 14 300 and 14 299 cal yr BP to investigate the sharp jump in observed 14C (which occurs
over the course of this year if DRM1 is placed at its most likely, modal, calendar age). The posterior for the size of this jump is
shown in insert (b),while (c) and (d) show the two posterior calendar age histograms for A15 and P305u sequences relative to
their placements by Adolphi et al. [33].

If we place each DRM sequence at its most likely (modal) calendar ages (obtained by the
matching to Heidelberg described above), DRM1 indicates the possibility of an abrupt annual
change in atmospheric �14C occurring between the years 14 300 and 14 299 cal yr BP. To assess
the level of evidence for such a sharp production change, we modify our base statistical model
for �14C. We retain the underlying, smooth, cubic spline component but add a step function (of
unknown size γ ) at this fixed calendar date. Another MCMC scheme (similar to that implemented
above) is then fitted—treating the spline coefficients β and smoothing parameter λ as unknown,
as well as the size of the step function γ in �14C units. The results are seen in figure 6a with its
insert 6b showing our posterior estimate for the step amplitude γ .

When estimating this (modal-age) curve, and the step size γ , we introduced measurements
from two further individual subfossil trees that were used in construction of IntCal20 [1]. A15
from the site of Avigliana in Northwestern Italy and P305u from the site of Palughetto in
Northeastern Italy were measured for 14C on decadal blocks. They cannot be dendro-matched
together and both remain floating [33]. We considered the calendar ages of A15 and P305u as
unknown within our MCMC scheme, simultaneously allowing us to match these A15 and P305u
single tree series to the DRM1, DRM2 and DRM3 sequences (set at their, optimal, posterior
mode calendar ages). These age estimates are shown in figure 6c and d. We obtained posterior
calendar age estimates for A15 suggesting a shift of 10.7 ± 2.4 (mean ± 1σ ) cal yrs younger
(posterior mode estimate of 11 cal yrs) relative to the placement published by Adolphi et al. [33];
and for P305u, a suggested shift of 0.7 ± 3.9 cal yrs younger (posterior mode of 3 cal yrs older).
The uncertainties on these new placements constitutes a significant improvement with respect
to previous (1σ ) uncertainties of 12 cal yrs (A15) and 28 cal yrs (P305u) published by Reimer

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 A

pr
il 

20
24

 



12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220206

...............................................................

12 500

12 450

12 400

12 350

12 200

14
C

 a
ge

 y
r 

B
P

12 250

12 300

12 150

12 100
14 310 14 306 14 302 14 298

calendar age (yr BP)
14 294 14 290 14 286 14 282

Figure 7. Radiocarbon ages of the two dendro-matched trees fromDrouzet (DR313 dark blue circles, Drouz19 light blue squares)
and the wiggle-matched tree from Italy (P305u red open dots) placed on the new chronology covering the abrupt spike, which
occurs at 14 300–14 299 cal yr BP. The (y-axis) error bars for 14C ages are shown at 1–σ. The number of annual rings measured
in each sample is represented by the (x-axis) bars (e.g.±0.5 yr for annual ring samples for most Drouzet analyses,±5 yr for
decadal measurements).

et al. [1] and Muscheler et al. [34]. These estimates were based on an analogous MCMC-based
matching technique, but only using the IntCal20 data, mainly U-Th dated carbonates in this time
range.

As shown in figure 7, the abrupt event at 14.3 cal kyr BP is sampled in two Drouzet trees
that are dendro-matched (DR313a and Drouz19 belonging to DRM1). DR64 covers the peak, but
unfortunately this wood sampled in 2008 is not well preserved and its 14C cannot be analysed.
Drouz19 has annual rings sufficiently large to allow 14C at annual resolution, while the wood of
2 or 3 years was mixed to date the tree DR313a. Both records agree in showing an abrupt drop
of 200–250 14C years at 14.3 cal kyr BP (equivalent to about 30‰ in �14C), followed by a gradual
increase over at least a decade. In Drouz19, located at its most likely (modal) calendar age, the
14C event occurs between 14 300 and 14 299 cal yr BP. This abrupt change is corroborated by the
few P305u data measured on decadal blocks (figures 6 and 7). The estimate for the size of the
�14C step γ in our MCMC model, shown in figure 6b, allows us to assess whether this sharp
change in 14C observed within DRM1 is simply statistical noise or a genuine atmospheric feature.
The posterior for γ provides overwhelming evidence that the sharp jump in 14C observations
over the course of this single year cannot solely be explained by a smooth spline—we obtain an
estimate of a rise in �14C of 31 ± 4.5‰.

Figure 8 shows all data converted in terms of changes of the atmospheric �14C. As expected,
the �14C is characterized by an abrupt increase at 14.3 cal kyr BP with a gradual decay and a
prominent century-long maximum between 14.05 and 13.95 cal kyr BP, with amplitudes around
30‰. Figure 8 clearly shows the asymmetric shape of the 14.3 cal kyr BP spike similar in shape to
the 774 CE event [15], but twice as large in amplitude.

6. Comparison with the 10Be record
A way of checking the origin of rapid 14C excursions is to compare these fluctuations with
independent records based on other cosmogenic radionuclides such as 10Be in polar ice. Both
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Figure 8. �14C records corresponding to figure 6. The (y-axis) error bars for �14C ages are shown at 1-σ. The data
for Drouzet trees are shown for the DRM1 (blue), DRM2 (green) and DRM3 (yellow) sequences and for the P305u (red
open dots) and A15 (pink crosses) Italian trees placed on the new chronology with our MCMC scheme for matching to
the German pine absolutely dated chronology (black open dots). The number of annual rings measured in each sample
is represented by the (x-axis) bars (e.g. ±0.5 yr for annual ring samples for most Drouzet analyses, ±5 yr for decadal
measurements).

cosmogenic isotopes are produced in similar ways in the upper atmosphere. However, 14C and
10Be time series cannot be compared directly since the fates of these two cosmonuclides are
very different in the atmosphere: 10Be atoms become fixed to aerosols and are washed out by
precipitation quickly after their production (within ≈ 1–3 years, [35]). 10Be fallout is thus a marker
of the regional, latitude-dependent, cosmogenic production. By contrast, 14C atoms are oxidized
and mixed into the atmospheric CO2 pool, which is connected to larger reservoirs of the carbon
cycle such as the biosphere and bicarbonate ions dissolved in the oceans. This ‘dilution’ attenuates
and delays 14C concentration variations in the different carbon reservoirs with respect to 14C
production variations.

For the comparison with the Drouzet record, it is possible to use the relatively high-resolution
10Be record from the GRIP ice core from Greenland [36] which is dated by counting annual
couplets [3,37]. In the time window of interest, the 10Be sampling resolution is decadal and the
1–σ precision of the GICC05 chronology is about 80–90 years [3,37]. Adolphi et al. [36] used the
GICC05 age scale (in yr BP with 1950 as reference datum) and ice-flow modelling to infer changes
of snow accumulation and convert the measured 10Be concentration in the GRIP core in terms of
10Be flux. As underlined by these authors, the accumulation rate changes occur mainly at climatic
transitions between stadials and interstadials, implying that high-frequency changes are similar
in the 10Be concentration and flux records.

Figure 9 shows the GRIP 10Be flux record normalized to its average value over the 8 kyr of
the Late Glacial period sampled by Adolphi et al. [36]. During the 14.4–13.7 cal kyr BP window
the flux is rather stable, about 25% higher than the long-term average. The record shows two
main multidecadal maxima between 14.0 and 13.96 kyr BP and between 13.75 and 13.7 kyr BP.
The record also shows a prominent maximum based on a single analysis suggesting a doubling
of the 10Be flux at 14.3 kyr BP (ice bag sample between depths dated with GICC05 at 14 301
and 14 292 cal yr BP, respectively). A somewhat smaller excursion is observed with the 10Be raw
concentrations.
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Figure 9. GRIP 10Be flux record (red dots) normalized to its average value over the 8 kyr of the Late Glacial period sampled
by Adolphi et al. [36] who used the GICC05 chronology expressed in yr BP (with 1950 as the reference datum). The prominent
maximum based on a single analysis shows a doubling of the 10Be flux at 14.3 kyr BP (ice bag sample between depths dated
with GICC05 at 14 301 and 14 292 cal yr BP, respectively). The brown curve shows the�14C model simulation for the troposphere
of our 12-box carbon cycle model [38] forced with the normalized GRIP 10Be flux record (red dots).

7. Data-model comparison
A quantitative comparison of 14C and 10Be requires the use of a carbon cycle model (e.g.
[38–41]). The carbon cycle acts as a low pass filter because both attenuation and delay depend
on the timescale of 14C production variations. The damping effect is such that variations of 14C
production are attenuated by a factor of about 20 and 100 for centennial and decadal variations,
respectively. The phase lag between production and atmospheric 14C concentration is about 12
and 2–3 years for centennial and decadal variations, respectively (e.g. fig. 3 in [41]).

Following our previous work [38,41], we have used the normalized 10Be record in Greenland
ice as a forcing input to a 12-box carbon cycle model, whose characteristics have already been
compared with other models [41,42]. This approach is similar to that followed by Adolphi et al.
[33] who used the GRIP 10Be flux record of Adolphi et al. [36]. The calculation of 10Be flux has some
inherent pitfalls (e.g. see specific discussion by [41]). Consequently, we used both normalized
10Be flux and normalized 10Be concentration records as input curves for our model, the preferred
simulation being the one based on 10Be flux as in Adolphi et al. [33].

As a first approximation, we assumed no polar enhancement for the 10Be record (i.e. PEC = 1
according to [38]) and no difference in relative production modulation between 14C and 10Be.
Recent work has shown that the polar enhancement due to the solar modulation is only about
+8% [43]. In addition, the relative modulation of 14C production during solar cycles is only a few
% lower than for 10Be according to Poluianov et al. [44].

Figure 9 shows the simulated �14C record we obtain from our carbon cycle model when forced
by the GRIP 10Be flux profile. As expected, the simulated �14C has a much lower amplitude
than the 10Be record, as well as being smoother and slightly delayed. The main features in the
simulated �14C are two, century-long, maxima between 14 and 13.9 kyr BP and 13.75 and 13.65
kyr BP and a sharp maximum at 14.3 kyr BP with an amplitude on the order of 30‰. Figure 10
shows our (10Be-based) simulations of �14C compared with the observed Drouzet �14C record.
Both simulations were shifted along the y-axis by constant values to match a �14C value at
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Figure 10. �14C records of Drouzet, Italian and German pines placed on the new chronology compared with our �14C
simulations with the 12-boxmodel forced with the normalized GRIP 10Be flux (brown curve) and normalized 10Be concentration
record (dashed purple curve). Both simulations are on the GICC05 timescale andwere shifted along the y-axis by constant�14C
values to match a common�14C at 14.4 kyr BP similar to the observations. The data for Drouzet trees are shown for the DRM1
(blue), DRM2 (green) and DRM3 (yellow) sequences and for the P305u (red open dots) and A15 (pink crosses) Italian trees
placed on the new chronology with our MCMC scheme for matching to the German pine absolutely dated chronology (black
open dots).

14.4 kyr BP similar to the data. The agreement between model and data is satisfactory for the
three main features, although small differences exist in amplitude and phase. The latter may be
due to small discrepancies between the independent ice core and tree ring chronologies.

8. The 14.3 cal kyr BP event as a new SEP spike
A more detailed view is provided in figure 11 to study the 14.3 kyr BP event. There is a general
agreement in timing and amplitude between the simulated and observed �14C, although the
period around 14.27 kyr BP is characterized by a 10‰ residual difference.

The data-model comparison confirms the abrupt 30‰ increase linked to cosmogenic
production. The simulated (10Be-based) maximum in �14C occurs at 14 292 cal yr BP, i.e. 7 cal yrs
later than in the observed �14C record. This difference is much smaller than the 85 cal yrs
uncertainty at 1-σ of the GICC05 ice core chronology. Moreover, 7 cal yrs is even smaller than
the time span of 9 cal yrs represented by the ice bag from the GRIP core analysed for its 10Be
content that shows an elevated value [36]. It is obvious that shifting the GICC05 chronology by
7 cal yrs towards older ages would result in a perfect synchrony between data and model. We did
not apply such an ad hoc correction because it is somewhat pointless given the decadal resolution
of the 10Be record.

Another issue is that the simulated �14C wiggle is symmetric, unlike the observed spike with
its sharp rise and gradual relaxation. This difference may also be due to the decadal resolution of
the 10Be record, implying that its spike is represented by a triangular increase over 20 years (twice
the sampling step). Assuming an equivalent 10Be flux anomaly over a single year would result in
a sharp �14C increase in a year, of larger magnitude followed by a gradual decrease.

An additional difficulty in the simulation is the lack of precise knowledge on the cosmogenic
production during a SEP event. The common 14C production by galactic cosmic rays occurs
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Figure 11. The same as figure 10 but focused on the 14.3 cal kyr abrupt event. �14C records of Drouzet, Italian and German
pines placed on the new chronology compared with our�14C simulations with the 12-box model forced with the normalized
GRIP 10Be flux (brown curve) and normalized 10Be concentration record (dashed purple curve). Both simulations are on
the GICC05 timescale and were shifted along the y-axis by constant �14C values to match a common �14C at 14.4 kyr BP
similar to the observations. The data for Drouzet trees are shown for the DRM1 (blue) sequence, notably DR313 in dark
blue and Drouz19 in light blue, and for the P305u (red open dots) and A15 (pink cross) Italian trees placed on the new
chronology.

mainly in the lower stratosphere (about two-thirds or less) and in the upper troposphere (about
one-third or more) with a latitude dependence linked to the geomagnetic cut-off rigidities.
According to Golubenko et al. [45], the ratio between stratospheric and tropospheric productions
and the latitudinal dependence may have been different for SEP events, during which production
would have occurred mainly in the high-latitude stratosphere.

Another limitation of the data-model comparison is that 10Be variations in polar ice cores
may under-represent the cosmogenic production variations linked to geomagnetic field changes.
The relative geomagnetic modulation of cosmogenic production is greatest at the Equator,
and lowest at the poles [44–46,48]. Although most 10Be production occurs in the stratosphere
characterized by intense horizontal mixing and a relatively long residence time [49–51], any
deviation from complete homogeneous atmospheric mixing would affect the relative amplitudes
of the geomagnetic and solar signals embedded in 10Be records. Recently, Adolphi et al. [43]
evaluated that geomagnetic variations are dampened by 23–37% in polar ice records. Such a polar
atmospheric dampening of the geomagnetic modulation would not occur for 14C, which is mixed
globally.

Unfortunately, there is a lack of precise and high-resolution paleomagnetic intensity records
for the 14.4–13.7 kyr BP window, and available records strongly disagree over the last deglaciation
(see [52] for a review). In any case, the intensity of the geomagnetic field usually varies slowly on
timescales longer than centuries, implying that they could not have contributed to the decadal
fluctuations of 14C and 10Be observed between 14.4 and 13.7 cal kyr BP, notably the abrupt
14.3 cal kyr BP spike. Furthermore, Fournier et al. [53] ruled out an imprint on geomagnetic
production by short-term geomagnetic jerks, whose existence and global significance are still
debated.

Given the limitations of the 14.3 cal kyr BP event in the GRIP 10Be record and the multiple
uncertainties listed above, it seems premature to make further tests to improve the fit between
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Figure 12. Same as figure 10 but focused on the 14 cal kyr event. �14C records of Drouzet, Italian and German pines placed
on the new chronology compared with our�14C simulations with the 12-box model forced with the normalized GRIP 10Be flux
(brown curve) and normalized 10Be concentration record (dashed purple curve). Both simulations are on the GICC05 timescale
and were shifted along the y-axis by constant�14C values to match a common�14C at 14.4 kyrBP similar to the observations.
Colour codes, labels and errors are the same as in previous figures. The data for Drouzet trees are shown for the DRM1 (blue),
DRM2 (green) and DRM3 (yellow) sequences, for the A15 (pink crosses) Italian trees placed on the new chronology with our
MCMC scheme for matching to the German pine absolutely dated chronology (black open dots).

observed and simulated data for this abrupt event. Nevertheless, the fact that it occurs in a single
year in the �14C record (14 300–14 299 cal yr BP) concomitant with a 10Be anomaly makes it a
probable SEP event with the largest magnitude evidenced so far, twice that of the eponymous 774
CE event [15].

9. The 14 cal kyr BP century-long 14C and 10Be excursion and the Older Dryas
climate event

Figure 12 illustrates the agreement between our observed Drouzet and the (10Be-based) simulated
�14C during an excursion between 14 010 and 13 910 cal yr BP. The correspondence in amplitude
(30‰) strongly suggests that the excursion is linked to cosmogenic overproduction over the
course of a century, similar to the frequent Maunder-type solar minima of the last millennia (e.g.
[13,14,38]).

The interesting aspect of this 14 kyr solar minimum is that it corresponds precisely with the
brief climatic event called the Older Dryas, which separates the longer Bølling and Allerød mild
phases [54]. The literature on this specific climatic event is limited as most geological archives
are unlikely to provide the resolution, dating control and spatial representativity to study such
a century-long event. Nevertheless, the Greenland ice core records clearly show a brief cooling
from 14 025 to 13 904 years BP (with a 1–σ uncertainty of 85 years) based on the ∂18O measured in
ice and on other chemical proxies (e.g. [55,56]). By combining proxies, notably nitrogen isotopes
(∂15N) of entrapped air, which are sensitive to local temperature and temperature gradient in the
ice firn, Kindler et al. [57] estimated a cooling of ca 6–7°C during the Older Dryas, about half
to two-thirds of the cooling experienced during the longer cold phases called the Oldest Dryas
(≈ Heinrich 1 stadial) and the Younger Dryas.
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The causes of these two, millennium-long, events are the subject of a large amount of literature
mainly dealing with the impact of glacial meltwater from the North American and North
European ice sheets, which disappeared during the last deglaciation. By contrast, the exact causes
of the Older Dryas are largely unknown and unexplored.

The 14 cal kyr BP solar minimum could have contributed to the cooling but the overall
amplitude of the total solar irradiance change expected from such a Maunder-type solar
minimum is clearly insufficient [14,41,58–60]. Direct solar forcing cannot be the sole explanation,
but it should be noted that the climate system may have been more sensitive during the Late
Glacial period. Indeed, by using a coupled climate system model, Braun et al. [61] simulated a
strong response to small periodic solar changes due to strong nonlinear dynamics combined with
the global Meridional Ocean Circulation (MOC).

An alternative explanation could be that 14C and 10Be anomalies observed during the
Older Dryas are just consequences of the climatic change and not solar proxies that can
be used to identify its cause. The Older Dryas is characterized by a specific drop of ice
accumulation [62], which may have biased the estimation of 10Be flux changes. Nevertheless,
the 14 kyr BP anomaly is indeed present in both the 10Be concentration and flux records [36]
and the simulation based on 10Be flux agrees with that based on 10Be concentrations (figure 12),
suggesting that the 10Be excursion at 14 kyr BP is genuine and not an artefact of ice accumulation
rate changes.

Both the Younger Dryas and Oldest Dryas are characterized by collapse of the MOC. If this
was also the case during the Older Dryas, this could have led to an increase of the atmospheric
�14C. Steady-state calculations based on the 12-box model [38] indicate that halving the MOC
strength from 20 to 10 Sv (1 Sv = 106 m3 s−1) leads to a �14C increase of 35‰, in broad agreement
with observations for the 14 kyr BP event. A similar calculation can be performed with a box-
diffusion model [63]: decreasing the oceanic eddy diffusivity from 4000 to 3000 m2 yr−1 leads to
an increase of the atmospheric �14C by 40‰ accompanied by a 320 yr increase of the mean 14C
age of the deep ocean, about half of what is observed for the last glacial maximum [64]. However,
these are steady-state calculations, and the atmospheric pool does not settle instantaneously to
its steady-state �14C value. Indeed, all reservoirs exchange with each other and the atmosphere
rises slowly over centuries (e.g. [65,66]). Using the 12-box model to simulate a MOC drop by a
factor of two over a century leads to a modest and gradual rise of 8‰ in �14C during the event
followed by a slow decrease during the centuries after the event.

Although the timing and amplitude of MOC changes during the Older Dryas event are
hypothetic and speculative, they fall short in explaining the amplitude and shape of the observed
14C and 10Be excursions at 14 cal kyr BP, the most parsimonious explanation being a common
Maunder-type solar minimum.

10. Conclusion and perspectives
Subfossil pines found in the banks of the Drouzet watercourse in the region of the middle course
of the Durance River in the Southern French Alps allowed us to construct a ≈ 700-yr long floating
chronology dated by 14C mostly on individual annual rings.

Matching of the new Drouzet record with the German pine absolutely dated chronology
provides an accurate placement of the Drouzet record between 14.4 and 13.7 cal kyr BP. The length
of the Drouzet record, and its long overlap with the German pine chronology, allows us to
calculate a 1-σ uncertainty of ca 2.5 cal yrs for the Drouzet chronology. The Drouzet record allows
to extend the radiocarbon calibration on tree rings by ca 500 years beyond its present limit of
13 900 cal yr BP.

The resulting atmospheric �14C is characterized by an abrupt increase at 14.3 cal kyr BP with a
gradual decay and a prominent century-long maximum between 14.05 and 13.95 cal kyr BP, both
with amplitudes around 30‰.

The 14.3 cal kyr BP event starts abruptly with a sharp �14C rise in a single year, which makes
it a probable SEP event with the largest magnitude of all those SEPs identified so far. Critically,
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the high calendar age precision we obtain from our matching to the German pines propagates
through to the date of the spike. Using our MCMC approach to matching, we estimate that the SEP
spike was most likely to have occurred in the calendar year between 14 300–14 299 cal yr BP (with
a 68% or 1–σ, probability that it occurred in one of the years between 14 301 and 14 296 cal yr BP).

The SEP spike evidenced in the Drouzet record corresponds to a 10Be anomaly in Greenland ice
dated between 14 301 and 14 292 cal yr BP [36], with a 1–σ chronological uncertainty of 85 yrs [3].

The Drouzet �14C record also shows a century-long maximum between 14 010 and
13 910 cal yr BP, which is synchronous with a similar event in the simulated �14C record based on
the Greenland 10Be record. The correspondence in amplitude (30 ‰) suggests that the excursion
is linked to a cosmogenic overproduction during a Maunder-type solar minimum.

The comparison of the two prominent events in both ice and tree records at 14.3 and 14 cal kyr
shows that the time difference between the independent Greenland ice and tree-ring chronologies
is only a decade, at the most, in this time range. Such a close agreement may be fortuitous
given the large calendar uncertainty in ice cores, but it is reassuring for the identification and
interpretation of common causes in both cosmogenic isotope records.

Further progress in identifying causes will come from replicating the 14C record in other
subfossil trees from other locations, notably in the Southern Hemisphere. In addition, our study
underlines the need to increase the time resolution of sampling in polar ice cores in order to go
towards the annual resolution of the tree-ring record. Ice core records from Antarctica will also be
useful to constrain the variations of 10Be flux and to reconstruct cosmogenic production changes.
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