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Abstract6

Biomechanical time series may contain low-frequency trends due to factors like electromechanical
drift, attentional drift and fatigue. Existing detrending procedures are predominantly conducted
at the trial level, removing trends that exist over finite, adjacent time windows, but this fails to
consider what we term ‘cycle-level trends’: trends that occur in cyclical movements like gait and
that vary across the movement cycle, for example: positive and negative drifts in early and late
gait phases, respectively. The purposes of this study were to describe cycle-level detrending and to
investigate the frequencies with which cycle-level trends (i) exist, and (ii) statistically a↵ect results.
Anterioposterior ground reaction forces (GRF) from the 41-subject, 8-speed, open treadmill walking
dataset of Fukuchi (2018) were analyzed. Of a total of 574 analyzed trials, significant cycle-level
trends were found approximately three times more frequently (21.1%) than significant trial-level
trends (7.4%). In statistical comparisons of adjacent walking speeds (i.e., speed 1 vs. 2, 2 vs.
3, etc.) just 3.3% of trials exhibited cycle-level trends that changed the null hypothesis rejection
decision. However 17.6% of trials exhibited cycle-level trends that qualitatively changed the stance
phase regions identified as significant. Although these results are preliminary and derived from just
one dataset, results suggest that cycle-level trends can contribute to analysis bias, and therefore
that cycle-level trends should be considered and/or removed where possible. Software implementing
the proposed cycle-level detrending is available at https://github.com/0todd0000/detrend1d.
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1. Introduction12

Time series can contain drift, which may be generally defined as a low-frequency process that is13

not considered to belong to the measured signal of interest. Drift may occur secondary to a variety14

of hardware-related factors including changes in electronic and thermal environments (Wilmshurst,15

1990). Reducing this type of drift can be done at hardware, firmware or software levels and remains16

an ongoing area of research (e.g. Velásquez et al., 2019). In human experiments, fatigue and other17

behavioral factors can also produce drift (Song et al., 2009) and this type of drift must be dealt18

with at the software stage. This paper focuses on the influence of drift on statistical comparisons19

of time series and o↵ers software for the proposed drift corrections.20

In the human biomechanics literature several movement tasks — especially treadmill gait —21

involve measurements over several minutes or even seconds, and in these measurements drift is22

generally reduced through high-pass filtering (Murphy and Robertson, 1993; Valentin and Zsoldos,23

2016) or detrending (Fig.1). Both high-pass filtering and detrending regard low-frequency content24

as noise and are unconcerned with the electromechanical or physiological nature of that noise.25

Detrending is particularly important to detrended fluctuation analysis (DFA), which has become26

an important analysis framework for investigating the structure of motor variability (Ducharme and27

van Emmerik, 2018; Ravi et al., 2020); detrending is useful for motor variability studies, for example28

postural sway studies, to dissociate low- from higher-frequency content, which are associated with29

very di↵erent (e.g. high- vs. low-level) neural control processes. Unlike the simple long-term30

detrending depicted in Fig.1, DFA instead uses local detrending to identify and remove multiple31

trends that occur in adjacent movement segments. While detrending is often employed in routine32

analyses, we are unaware of explicit previous reports of trend prevalence, nor of the prevalence of33

inferential errors which may occur if detrending is not employed.34

A key limitation to existing detrending approaches is that they do not consider cycle-level35

drifts (Fig.2). In cyclical tasks like gait di↵erent parts of the cycle may drift di↵erently and36

even oppositely (Fig.2a-b). As a plausible biomechanical example, consider ground reaction force37

(GRF) in treadmill walking which increases posteriorly in early stance over 100 cycles and also38

increases anteriorly in late stance; these opposite changes must occur to maintain constant walking39



speed. For example, maximal Floquet multipliers (representing the stability of the system at certain40

instants of the gait cycle) have been found to vary within the gait cycle (Kang and Dingwell, 2009),41

thus emphasizing the need to consider trends as non-constant within the cycle. Moreover, simple42

simulation shows that trial- and cycle-level detrending can generally yield qualitatively di↵erent43

results (Fig.2c-d). We are unaware of any previous study that has considered cycle-level drift.44

The purposes of this study were: (1) to describe a generic cycle-level detrending procedure, (2)45

to estimate the prevalence with which significant cycle-level trends exist in an open treadmill GRF46

dataset, and (3) to estimate the frequency with which these cycle-level trends can qualitatively47

a↵ect hypothesis testing results. Software implementing all subsequently described detrending48

procedures is available at https://github.com/0todd0000/detrend1d along with notebooks and49

data files that replicate this paper’s main results.50

2. Methods51

2.1. Dataset52

A subset of an open gait dataset was analyzed (Fukuchi et al., 2018). The dataset contains53

a barrage of biomechanical measurements made during overground and treadmill walking in 4254

individuals (24 young adults: 27.6 ± 4.4 years, 171.1 ± 10.5 cm, 68.4 ± 12.2 kg; 18 older adults:55

62.7 ± 8.0 years, 161.8 ± 9.5 cm, 66.9 ± 10.1 kg).; data for 41 individuals are available in the56

open dataset. Here analyses are limited to anterioposterior and vertical GRF during treadmill57

walking (Fig.3), for which 30 s trials were recorded at eight di↵erent walking speeds for each58

subject. Data recording started after steady-state walking was achieved. GRF data were originally59

recorded at 300 Hz and were smoothed here with a fifth-order lowpass Butterworth filter with a60

cuto↵ frequency of 20 Hz. Cycles were segmented (i.e. stance phase identified) with a preliminary61

threshold of 30 N on vertical GRF followed by a walk-back (from the first point) or walk-forward62

(from the last point) to the time points where vertical GRF reached zero, equalized or increased.63

To avoid overpowering analyses only the first 10 recorded steps of each trial were analyzed here;64

one-dimensional numerical power analyses (Pataky, 2017) suggest that 10 steps yielded power in65

the range of 0.7-0.9 for a moderate e↵ect size of 0.5.66



2.2. Detrending67

Trial-level detrending (common detrending) was conducted by fitting the following model to68

each GRF time series:69

y(t) = at+ b (1)

where y(t) is the GRF value at time t, a is the slope and b is the intercept. Detrended data were70

then calculated as the di↵erence between the observed data and the fitted model. This type of71

detrending is available in several software packages including Scipy (Virtanen et al., 2020) and72

MATLAB (MATLAB, 2023).73

Cycle-level detrending was conducted separately at each cycle point as depicted in Fig.2. First74

the data were linearly registered (Ramsay and Li, 1998; Sadeghi et al., 2000)(i.e., time-normalized)75

by linearly interpolating to 101 points. The following linear model was then fitted to the registered76

data, separately for each cycle time point tc:77

y(tc) = actc + bc ; c 2 [1, 101] (2)

where tc represents the time for cycle point c and y(tc) contains only y values for that cycle point.78

Thus y(tc) contained n values where n is the number of cycles recorded in a single trial. Since79

the model was fitted separately for each of the 101 cycle points, the fitted parameters ac and bc80

generally vary over the course of the cycle (Fig.2b). Following model fitting the detrended results81

were obtained, as above, by calculating the di↵erence between the observed data and the fitted82

model.83

2.3. Trend prevalence84

Since the aforementioned statistical tests pertained to a small subset of the Fukuchi et al.85

(2018) dataset, and since we manually selected that subset to highlight specific e↵ects regarding86

detrending, it is possible that those tests are not representative of the larger dataset. We therefore87

aimed to summarize trends across the larger dataset using two approaches. First, the prevalence of88

statistically significant (at ↵ = 0.05) trial- and cycle-level trends was assessed separately for each89



trial using Eqns.1 and 2, respectively. For the latter, random field theory (Pataky, 2016) was used90

to correct for multiple comparisons across the 101 data points (Eqn.2) and thus retain a Type I91

error rate of ↵ = 0.05.92

Second, the prevalence of trial- and cycle-level trends that a↵ected a statistical comparison of93

two adjacent walking speeds (i.e., speed 1 vs. 2, 2 vs. 3, . . . 7 vs. speed 8) was assessed as depicted94

in Fig.4. After fitting equations 1-2 to the data (Fig.4a-d) the detrended, registered data (Fig.4e-95

h) were compared using statistical parametric mapping (Friston et al., 1995) as implemented in96

the two-sample t test in spm1d version 0.4 (Pataky, 2012). If the statistical results qualitatively97

changed with the detrending approach then that test was deemed to have had a substantial e↵ect98

on the statistical results. Here ‘qualitative change’ was determined subjectively, based on whether99

supracluster thresholds emerged in qualitatively di↵erent parts of the gait cycle. For example,100

the suprathreshold clusters depicted in Figs.4e and 4f were deemed to be qualitatively di↵erent101

because the significant e↵ect at approximate time=60% in Fig.4f did not reach significance in102

Fig.4e. We felt that this qualitative approach was necessary because a purely objective approach103

overstated prevalence, for example by suggesting that results changed even for minor time shifts in104

suprathreshold signal. As we are unaware of any robust, objective statistical method for comparing105

these types of statistical outcomes we chose this qualitative approach, which we feel most accurately106

and conservatively conveys true prevalence. These qualitative checks were conducted independently107

by two raters (the co-authors), for all subjects, all adjacent speed pairs, and for both anterioposterior108

and vertical GRF components. From the potential total of 574 combinations (41 subjects, 7 speed109

pairs, 2 force components) 22 combinations were discarded due to missing or noisy data, so a total110

of 552 tests were conducted. Inter-rater agreement was near perfect across the 552 tests, with just111

7 disagreements that were resolved with discussion.112

3. Results113

Significant trial- and cycle-level trends were observed in 7.4% and 21.1% of all trials, respectively.114

Figs.4a-b depict an example trial that had a non-significant trial-level trend but a significant cycle-115

level trend, respectively.116



An example statistical comparison of a single speed pair for a single subject showed that trial-117

and cycle-level detrending could produce results whose interpretations were substantially di↵erent,118

with some temporal regions’ statistical regions suppressed and others amplified, depending on the119

detrending technique employed (Figs.4i-j).120

Relative to no detrending, trial-level detrending a↵ected the null hypothesis (H0) rejection121

decision in just 2.4% of the 41 subjects and just 0.2% of the 552 trials. In contrast, cycle-level122

detrending a↵ected the H0 rejection decision approximately ten times more frequently: in 24.4%123

of subjects and 3.4% of trials (Table 1). Similarly, trial- and cycle-level detrending a↵ected the124

‘regional interpretation’ (i.e., whether or not a cycle region reached statistical significance) in 5.1%125

and 18.3% of trials, respectively. In total, 92.7% of the 41 subjects had at least one trial where the126

regional interpretation changed upon cycle-level detrending.127

Table 1: Summary of detrending-a↵ected results. For each trial a result was considered a↵ected by detrending if
results were qualitatively di↵erent from the no-detrending case. For subject- and trial-level analyses percentages are
relative to the total number of subjects (41) and total number of trials (552), respectively. H0 = null hypothesis.

Across all... A↵ected result Trial-level
detrending

Cycle-level
detrending

... Subjects H0 rejection 2.4% 24.4%
Regional interpretation 46.3% 92.7%

... Trials H0 rejection 0.2% 3.4%
Regional interpretation 5.1% 18.3%

4. Discussion128

The results of this study indicate that statistically significant cycle-trends were approximately129

three-times more common than trial-level trends in the considered treadmill GRF dataset. They130

also indicate that cycle-level detrending a↵ects statistical conclusions substantially more than trial-131

level detrending (Table 1). Collectively these results suggest that cycle-level trends may be a132

more important source of analysis bias than trial-level trends, and thus that cycle-level trends133

should be considered in analyses where detrending is deemed to be a suitable data processing134

step. The proposed cycle-level detrending supports experimental protocol involving cycle-level135

independent variable control like tripping initiated at a specific gait cycle instant. Additionally,136



our results showed qualitative influences of cycle-level trends in (92.7%) of the 41 participants, thus137

emphasizing the need for subject-specific methodology (Harry et al., 2020). Although not reported138

in the Methods and Results above due to space constraints, sensitivity analyses showed that the139

results reported above were robust to processing parameter tweaks including: filter frequency, stance140

phase identification threshold, etc. Also not reported above was a consideration of the ‘Young’ vs.141

‘Older’ age groups in the Fukuchi et al. (2018) dataset. We found that separately considering the142

age groups did not qualitatively a↵ect the prevalence results reported above in Table 1 so these143

results were excluded due to space constraints.144

Common detrending procedures, including both simple trial-level detrending (Fig.1) and piece-145

wise detrending as implemented in the widely-employed detrended fluctuation analysis (DFA)146

(Ducharme and van Emmerik, 2018; Ravi et al., 2020), consider trends only over a finite number of147

adjacent time segments. This type of detrending is fundamentally di↵erent from the proposed cycle-148

level detrending, which instead considers a trend profile that varies across the cycle (Figs.2b,4d).149

The proposed cycle-level detrending is coherent with bias reduction, in that an experiment con-150

trols the influence of an independent variable like walking speed but does not directly control drift151

through the time-series.152

This study has several limitations. The most serious limitation is that just one dataset and153

one data modality were considered. Examinations of other data modalities, populations, and trend154

types are needed before general conclusions can be made regarding both the prevalence of cycle-level155

trends and their results-a↵ecting implications. Nevertheless, this paper’s main findings are simply156

that cycle-level results generally exist and that they can substantially a↵ect data interpretation;157

we expect this main finding would be consistent across a broad range of datasets just as trends158

themselves also exist a range of datasets (Song et al., 2009; Ravi et al., 2020).159

A second, minor limitation is that this paper considered only linear models (Eqns.1-2). While160

linear drift is also commonly used in alternative detrending procedures including DFA (Ducharme161

and van Emmerik, 2018; Ravi et al., 2020), it is unclear whether a linear approximation is a162

suitable model for cycle-level trends. While the software we have developed (https://github.com/163

0todd0000/detrend1d) supports several models including: polynomial, exponential, and linear164



(with or without intercept), further research is needed to consider the appropriateness of these165

drift models.166

A final limitation is that we did not consider sample size directly. On one hand, detrending167

is like filtering in that it is applied to single observations, so sample size is not directly related to168

detrending. On the other hand, when planning experiments one must consider sample size to ensure169

that the experiment is both adequately powered but not over-powered. For such power analysis, it170

would be necessary to understand how detrended results may be a↵ected by factors like recording171

length. As this study focusses on detrending itself as a data processing procedure, we leave the172

connection between sample size and detrending for future work.173

In summary, this study has found that cycle-level trends can generally be present in cyclical174

biomechanical data, and that these trends can nontrivially bias statistical analyses — and ultimately175

biomechanical interpretations — with a moderately high frequencies of 24.4% of the 552 trials and176

92.7% of the 41 participants in the analyzed dataset. It appears advisable to consider cycle-level177

trends and possibly also to detrend at the cycle level when possible.178
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Figures229

Figure 1: Common trial-level detrending example. (a) Example noisy data with a linear trend. (b) Detrended data:
observed data minus estimated trend.



Figure 2: Example cycle-level detrending. (a) Synthetic knee flexion data based on averages from Schwartz et al.
(2008), but with a cycle-level trend (i.e., a trend that varies across the cycle). (b) Fitted trend parameters. (c)
Trial-level detrended data; curve color encodes cycle number. (d) Cycle-level detrended data.



Figure 3: Example trial from the Fukuchi et al. (2018) dataset. (a) Raw ground reaction force (GRF) data recorded
during treadmill walking. (b) Same data as (a) but smoothed and segmented into separate cycles.



Figure 4: Overview of methods for evaluating whether statistical results di↵ered following trial- vs. cycle-level
detrending. (a-b) Raw data depicting estimated trends. (c-d) Trends’ slope as a function of cycle time; while trial-
level detrending estimates just a single slope (Eqn.1), cycle-level detrending estimates slope separately for each cycle
time point (Eqn.2). (e-f) Detrended and temporally registered (time-normalized) data. (g-h) Same as panels e-f but
with an additional speed depicted; these two speeds are statistically compared in the last panel row. (i-j) Two-sample
t-test results; if the regions identified as significant di↵ered qualitatively — as in this case — detrending was deemed
to have had a substantial e↵ect on the statistical analysis.


