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SUMMARY
Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculop-
athy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN)
production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set
of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we
performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma
from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-b. Our
data reveal a subset of disease-associatedmonocyte, expressing elevatedCCL3, CCL4, and IL-6, aswell as a
strong integrated stress response, whichwe suggest is the result of direct PERK activation by STING. Cell-to-
cell communication inference indicates that these monocytes lead to T cell early activation, resulting in their
senescence and apoptosis. Last, we propose a transcriptomic signature of STING activation, independent of
type I IFN response.
INTRODUCTION

Stimulator of interferon genes (STING)-associated vasculopathy

with onset in infancy (SAVI) is a rare monogenic disease charac-

terized by uncontrolled production of type I interferons (IFNs).1,2

Type I IFNs are the first line of defense against pathogenic infec-
Cell Repor
This is an open access article under the CC BY-N
tion. They lead to robust activation and increased effector func-

tions of immune cells. However, type I IFNs are highly potent cy-

tokines that can become detrimental when uncontrolled. SAVI is

a type I interferonopathy that usually occurs during the first few

years of life and is characterized by severe pulmonary and cuta-

neous manifestations.3 SAVI is caused by gain-of-function
ts Medicine 4, 101333, December 19, 2023 ª 2023 The Authors. 1
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mutations in STING1, which codes for STING, a key component

of innate immunity. To date, approximately 100 cases of SAVI

have been reported.4

The STING pathway acts as a sensor of cytoplasmic nucleic

acids, a potential danger signal. Upon sensing of cytoplasmic

nucleic acids, by the sensor cyclic guanosine monophosphate-

AMP synthase, STING is activated and changes conformation

to traffic from the endoplasmic reticulum (ER) to the Golgi appa-

ratus.5,6 There, STING triggers the phosphorylation of IRF3 and

nuclear factor kB (NF-kB), leading to the expression of type I

IFNs and other pro-inflammatory cytokines.7–9 Other molecular

pathways can also be triggered by STING, such as ER stress

and senescence.10,11 Moreover, STING can induce cell type-

specific programs, such as apoptosis, which is induced in

T cells but not in macrophages or dendritic cells.12

In SAVI, STING is constitutively activated and present at the

Golgi apparatus.1,13 SAVI is associated with T cell lymphopenia

and decreased percentages of effector andmemory T cells.3,14 A

low number of circulating natural killer (NK) cells has also been

reported in some patients.15 At the molecular levels, IFN-a/b

and IFN-stimulated genes (ISGs) are consistently upregulated

in the plasma of all patients.1–3 Patients have elevated inflamma-

tory cytokines plasma concentrations, including tumor necrosis

factor-a (TNF-a) and interleukin-6 (IL-6),16 suggesting the

involvement of the NF-kB pathway. Patients’ vascular endothe-

lial cells also have increased expression of genes involved in

apoptosis, cell adhesion, and coagulation.2 Many pathways

are thought to be triggered by STING activation. Some of

them, such as type I IFN production and NF-kB activation, are

upregulated in SAVI. T cell activation or increased ER stress

have also been demonstrated in murine models but have yet to

be confirmed in SAVI patients.11

As uncontrolled production of type I IFNs is a hallmark of SAVI,

treatment with Janus kinase (JAK) inhibitors has been proposed

to patients. These drugs block the signal transduction upon IFN-

a/b binding to the IFN-a/b receptor (IFNAR), by inhibiting either

JAK1 and JAK2 (ruxolitinib and baricitinab) or JAK1 and JAK3

(tofacitinib). These treatments lead to partial improvements of

the symptoms.3,17,18 However, in cases where the interstitial

lung disease is too advanced, JAK inhibitor treatment has

proved inefficient,3,17 suggesting, in SAVI, an alternative role of
2 Cell Reports Medicine 4, 101333, December 19, 2023
STING activation, independent of type I IFN signaling. A deeper

understanding of the pathways modulated in patients seems to

be crucial to propose alternative therapeutic strategies. Here,

we aim to identify pathways modulated in a cell-type-specific

manner and address their dependency to primary type I IFN

production.

The functional impairment of STING gain of function has

mostly been assessed using in vitro cell lines or mouse

models.11,19,20 Others have used patients’ cells but evaluated in-

dividual cell types.14 Here, we propose to evaluate peripheral

blood mononuclear cells (PBMCs) at the single cell level to

gain a systemic overview of the transcriptomic dysregulations

of SAVI, identify disease-associated cells, infer cell-cell commu-

nication, and compare the pathways specifically modulated in

different immune cell types. Additionally, to decipher type I

IFN-mediated signaling from other dysregulated pathways

driven by STING constitutive activation, we compare the primary

response to IFN-b in PBMCs coming from healthy donors to the

pathways modulated in SAVI patients.

RESULTS

Circulating effector lymphocytes are decreased in SAVI
To better understand the molecular physiopathology of SAVI, we

profiled at the single-cell transcriptomic level a dataset of

PBMCs from five SAVI patients, previously clinically described

and carrying different gain-of-function mutations in STING1, as

well as seven healthy donors (CTRLs) (SAVI dataset)

(Figures 1A and S1A).1,3,15,18,21

In parallel, to better determine the contribution of type I IFN

secretion to the transcriptomic profile of SAVI patients, we per-

formed single cell RNA sequencing (scRNA-seq) on PBMCs

from three CTRLs, stimulated with human recombinant IFN-b

at different timepoints (IFN-b dataset) (Figure 1B). Response to

IFN-b stimulation was assessed by following the kinetics of

expression at the mRNA level of six ISGs commonly used to

evaluate type I IFN response in patients1 (Figure S1B).

After quality control, integration, and unsupervised clustering,

we obtained 23 cell populations in the SAVI dataset and 29 in the

IFN-b dataset (Figures 1C, 1D, and S1C‒S1F). We compared

cell population proportions in SAVI patients to CTRLs

mailto:mickael.menager@institutimagine.org
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(Figures 1C, 1E, and S1G) and confirmed the previously

described increase of naive CD4+ andCD8+ T cells and decrease

of their effector/memory counterpart,14 as well as NK cells15

(particularly NK CD56bright cells). We also observed a drastic

reduction in mucosal associated invariant T cells and gd T cells

in SAVI patients (Figures 1C and 1E). Significant differences in

cell type proportions before and under JAK inhibitor treatment

were not observed. These observations were validated by flow

cytometry or cytometry by time of flight for the SAVI dataset

and the IFN-b dataset, respectively (Figures S1I‒S1J). Of note,

no overt decrease of effector T cells was observed in healthy

PBMCs challenged in vitro with type I IFN for 36 h (Figures 1D,

1F, S1H, and S1J).

SAVI patients’ cells display type I IFN response, NF-kB
activation, cell stress, and death
STING activation triggers NF-kB signaling and type I IFN produc-

tion.22 Here, response to type I IFNs was increased in all PBMC

populations in SAVI patients, with the strongest induction

observed in monocytes and dendritic cells (DCs) (Figures 2A

and S2A). This type I IFN response was only partially corrected

by JAK inhibitor treatment (Figure S2A). After in vitro stimulation

with IFN-b, a robust type I IFN response ismeasured, peaking af-

ter 2 h (Figures 2B and S2B), with the strongest type I IFN

response persisting at later time points in monocytes and DCs.

In the SAVI dataset, the transcriptomic signature of NF-kB acti-

vation follows the pattern of type I IFN response (Figure 2C). Un-

der JAK inhibitor treatment, NF-kB activation was back to CTRL

levels. In the IFN-b dataset, NF-kB activation was induced as

soon as 1 h post-IFN-b stimulation and continued to increase

in monocytes and DCs until 36 h (Figure 2D).

To explore the dysregulated pathways in SAVI patients, we

performed differential expression and pathway analysis between

untreated SAVI and CTRLs in each major cell population. We

observed, inmost cell types, an enrichment in pathways involved

in response to IFNs and/or linked to inflammation (Figure 2E;

Table S1) that were downregulated by JAK inhibitors but re-

mained higher than in CTRLs (Figures S2A and S2C; Table S1).

These pathways were also found to be activated in PBMCs

treated with IFN-b for 36 h (Figure 2F; Table S2). Cell death path-

ways were enriched in both SAVI patients and in PBMCs stimu-

lated with IFN-b for 36 h. JAK inhibition also seemed to partially

correct the induction of these cell death-related pathways (Fig-

ure S2C). Interestingly, whereas actin/integrin-related pathways

are predicted to be downregulated in all PBMCs in SAVI patients,

in healthy PBMCs 36 h after IFN-b stimulation, these pathways

are predicted to be upregulated in T and B cells while inhibited
Figure 1. A scRNA-seq cohort of PBMCs from five SAVI patients show

with IFN-b

(A) Description of the SAVI dataset: five SAVI patients, with three different STING

treated), and seven healthy donors (CTRLs). Ruxo, ruxolitinib; Tofa, tofacitinib; y

(B) Description of the IFN-b dataset.

(C) UMAP and cell type assignment of all 112,060 cells from the SAVI dataset (to

(D) UMAP and cell type assignment of all 115,503 cells from the IFN-b dataset (t

(E) Boxplot of the proportion of PBMCs found in several clusters of the SAVI datas

followed by a post hoc Dunn’s test. *p < 0.05, **p < 0.01, ***p < 0.001.

(F) Evolution of the proportion of PBMCs found in several clusters in the IFN-b d

(C and D) nCD4, naive CD4; eCD4, effector CD4; nCD8, naive CD8; eCD8, effec
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in monocytes and NK (Figures 2E and 2F). Additionally, in both

PBMCs from SAVI patients and in vitro-stimulated PBMCs, we

observed a robust modulation of pathways linked to the ISR,

with downregulation of EIF2 signaling and oxidative phosphory-

lation as well as an upregulation of the unfolded protein response

(UPR). Of note, EIF2 signaling is predicted to be strongly in-

hibited inmost cell typeswith the exception of T cells. In patients’

CD8+ T cells, EIF2 signaling is predicted to be activated both

prior and during treatment, indicating JAK-STAT pathway-inde-

pendent mechanism. In the IFN-b dataset, UPR was induced as

soon as 4 h with increasing levels of induction throughout the

time course. Meanwhile, ISR and EIF2 responses were inhibited

in all populations in a time-dependent manner (Figure S2D;

Table S3).

T lymphocytes of SAVI patients are hyperactivated,
senescent, and apoptotic with increased IFN-b signaling
Imbalance between naive and effector T cells, along with prolif-

eration defects, has previously been described in SAVI.14 To bet-

ter characterize transcriptomic dysregulations in patients’ circu-

lating T cells, we performed differential analysis between

untreated SAVI patients and CTRLs in each cluster of the T cell

compartment (Table S1). Pathways analyses revealed a strong

enrichment of inflammatory response genes (Figure 3A). It also

pointed to actin and integrin-related pathways and particularly

the leukocyte extravasation signaling (Figure 3A). Several other

associated pathways, including RAC signaling and integrin

signaling, were decreased in effector cells. We hypothesized

that this may reflect an impaired lymphocyte trafficking machin-

ery, which was supported by the decrease of a lymphocyte traf-

ficking signature score particularly in effector T cells (Figure 3B).

This signature was also decreased after IFN-b challenge of

PBMCs from CTRLs (Figure 3C), suggesting that type I IFNs

may cause impaired T cell trafficking in SAVI patients.

As T cells of StingN153S/+ mice were shown to undergo spon-

taneous activation,11 we examined the expression of the early

activation marker CD69. Patients displayed increased CD69

mRNA levels (Figures 3D and S3A), mostly in naive T cells

(Figures 1C and S1E). CD69 expression was also induced by

IFN-b challenge at early timepoints but returned to basal levels

between 4 and 12 h after stimulation (Figures 3E and S3B). A

global T cell activation signature score was increased in both

SAVI patients and IFN-b-challenged cells, mostly in naive cells

of SAVI patients, and in all T cell clusters in IFN-b-challenged

PBMCs (Figures 3F and 3G).

We then evaluated a senescence signature and the proportion

of cells in the growth and mitotic phases (G2/M) of the cell cycle
s loss of effector cells not replicated by challenging healthy PBMCs

mutations sampled before (SAVI) and under JAK inhibitor treatment (SAVI_-

o, years old.

p) dataset separated by group (bottom).

op) and separated by time of IFN-b stimulation (bottom).

et. p values are calculated by the Kruskal-Wallis test for multiple comparisons,

ataset.

tor CD8.
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Figure 2. Type I IFN and NF-kB signature scores are elevated in SAVI patients

(A and B) Signature score of the type I IFN response in (A) the SAVI dataset and (B) the IFN-b dataset (nCD4, naive CD4; eCD4, effector CD4; nCD8, naive CD8;

eCD8, effector CD8; gd, gd T cells).

(C and D) Violin plot of the signature score of NF-kB activation in (C) the SAVI dataset and (D) the IFN-b dataset (dark lines indicate medians).

(E and F) Heatmap of the pathway enrichment analysis (E) between SAVI and CTRL and (F) between healthy PBMCs stimulated with IFN-b for 36 h and un-

stimulated PBMCs. Dots indicate non-significant pathways (Bonferroni-Hochberg corrected p values >0.05). Side color bar indicate groups of pathways based

on broader functions.
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(Figures 3H, 3I, S3C, and S3D). Patients’ T cells had increased

senescence signature score compared with CTRLs, reduced

by JAK inhibitor treatment in naive T cells (Figure 3H). We also

observed significantly decreased proportion of naive T cells

from SAVI patients in the G2/M phase, partially rescued by the

treatment, suggesting reduced proliferation capacity (Fig-

ure S3C). Similarly, in the IFN-b dataset, IFN-b induced

increased senescence and decreased proportion of cells in

G2/M phase, even though the proportion of cell in the G2/M

phase is back to normal after 36 h (Figures 3I and S3D). Finally,

we revealed increased transcriptomic signature score of

apoptosis, particularly in patients’ naive T cells, restored by

JAK inhibitor treatment (Figure 3J). The IFN-b-treated cells

showed a sharp increase in apoptosis signature score after 2 h

of treatment, while the signature score is decreased afterward

(Figure 3K).

Taken together, these data suggest that naive T cells are high-

ly activated in SAVI but have reduced ability to proliferate and

differentiate into effector cells, ultimately leading to cell death.

Identification of disease-associated monocytes in SAVI
patients, presenting hyperinflammation and
transcriptomic signature of an ISR
As type I IFN response and NF-kB signaling signature scores

were predominantly detected in monocytes and DCs, we exam-

ined these populations in greater details. We observed a shift in

the distribution of classical monocytes, without changes of

global monocytes proportions (Figures 1G, S1G, S1I, 4A, 4B,

and S4A). Cluster 17, named ‘‘disease-associated cluster,’’ is

composed at 85% of cells from patients, with 66.7% of cells

from patients before JAK inhibitor treatment, and 18.3% of cells

from patients under treatment (Figures 4B and S4A). In this dis-

ease-associated cluster (Figure S1E), both type I IFN response

score and NF-kB activation score were elevated. Other mono-

cytes (clusters 5 and 12) from SAVI patients also had an elevated

score for both signatures, although to a lesser extent (Figure 4C).

Expression of type I and type III IFNs were increased in SAVI pa-

tients compared with CTRLs and partially decreased upon JAK

inhibitor treatment (Figure S4B). In SAVI patients, we observed

that disease-associated monocytes were the main source of

IFN-bmRNA (Figures 4D and S4C). We then performed differen-

tial expression analysis between disease-associated monocytes

of SAVI patients (cluster 17) and their classical monocytes (clus-

ter 5). We observed 984 differentially expressed genes (Fig-

ures 4E and S4D; Table S4), with the upregulation of key players

involved in the ISR, cell activation, and transcripts of pro-inflam-

matory cytokines including IL1B and several type I IFNs (such as
Figure 3. T cells of SAVI have impaired signature score of trafficking

senescence signature score

(A) Heatmap of the pathway enrichment analysis between SAVI and CTRL.

values > 0.05). Side color bar indicate groups of pathways based on broader fun

(B and C) Heatmaps of a lymphocyte trafficking signature in T cells of (B) the SA

(D and E) Feature plots of CD69mRNA expression level in T cells in (D) the SAVI d

naive CD8; eCD8, effector CD8.

(F and G) T cell activation signature score in T cells of (F) the SAVI dataset and (

(H and I) Senescence signature score in T cells of (H) the SAVI dataset and (I) th

(J and K) Apoptosis signature score in (J) the SAVI dataset and (K) the IFN-b da

medians. (G–I and K) Each dot is the average score of the signature for a sample
IFNB1, IFNA1, and IFNA2). Pathway analysis revealed a strong

enrichment of genes negatively regulating the EIF2 signaling

pathway, which can be associated to increased ISR23

(Figures 4F and S4D; Table S5). To validate the upregulation of

the ISR, we evaluated PPP1R15A, which encodes the ISR

marker GADD34. PPP1R15A expression reached the highest

level in the disease-associated monocytes of the SAVI group

(Figures 4E and 4G). An UPR signature,24 known to contribute

to the ISR, was similarly upregulated in patients’ disease-associ-

atedmonocytes. Notably, patients’ non-classical monocytes ex-

pressed increased PPP1R15A and UPR signature score. JAK in-

hibitor treatments seem to partially reduce these pathways in

both non-classical and disease-associated clusters (Figure 4G).

In the stimulated monocytes of the IFN-b dataset, both

PPP1R15A and the UPR signature score were increased after

36 h of stimulation (Figure S4E). Among the other pathways up-

regulated in the disease-associated cluster, we report pathways

linked to response to IFN, production of inflammatory cytokines,

and cell death along with an enrichment of genes involved in

oxidative phosphorylation (Figure S4D). Overall, our data sug-

gest that this disease-associated monocytic cluster corre-

sponds with classical monocytes presenting a high level of

inflammation and ISR at the transcriptomic level and likely

related to the constitutive STING activation.

Cell-to-cell communication inference predicts that
hyperinflammatory monocytes in SAVI could drive
hyperactivation and death of effector T cells
To better understand howmonocytes fromSAVI patientsmay in-

fluence T cells (Figures 3 and 4), we inferred monocyte-to-T cell

communications. Thus, we used ICELLNET,25 which computes a

score of cell-to-cell communication based on the transcriptomic

level of ligands expressed by a sender cell type (here, both clus-

ters of classical monocytes: cluster 5 and cluster 17) and the

transcriptomic level of their receptors expressed by a receiving

cell type (here, T cells) (Figure 5A). We applied this method to

the SAVI dataset to infer communications between classical

monocytes and each T cell cluster in the SAVI group and the

CTRL group separately (Figure 5B). We reproduced a similar

analysis on the IFN-b dataset for each time point (Figure 5C), al-

lowing us to decipher IFN-dependent from IFN-independent pre-

dicted interactions. Hierarchical clustering of T cells based on

their communication score with monocytes showed a clear sep-

aration between clusters from untreated SAVI patients and

CTRLs (Figure 5D). We observed a predicted increase of type I

IFN-IFNAR interactions in SAVI patients, which probably reflects

the drastic upregulation of IFN transcripts in the monocytes of
machinery, and naive cells have increased activation markers and

Dots indicate non-significant pathways (Bonferroni-Hochberg corrected p

ctions.

VI dataset and (C) the IFN-b dataset.

ataset and (E) the IFN-b dataset. nCD4, naive CD4; eCD4, effector CD4; nCD8,

G) the IFN-b dataset over the time course of IFN-b stimulation.

e IFN-b dataset over the time course of IFN-b stimulation.

taset over the time course of IFN-b stimulation. (J and F) Dark lines indicate

.
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Figure 4. SAVI patients present a disease-associated cluster of monocytes characterized by elevated type I IFN response, NF-kB activation,

and ISR

(A) UMAP of the monocytes and DCs in the SAVI dataset, separated by groups. Black circle indicates cluster 17 (disease-associated monocytes).

(B) Composition of monocyte and DC clusters in the SAVI dataset.

(C) Violin plots of the signature score of type I IFN response (top) and of NF-kB activation (bottom) in the SAVI dataset.

(D) Dot plot of the expression levels of all type I and type III IFNs, in each monocyte and DC clusters, in the SAVI group.

(E) Volcano plot of the differentially expressed gene (DEGs) between the cells from SAVI patients in cluster 17 (disease-associated monocytes) and cluster 5

(classical monocytes).

(F) Pathway enrichment analysis between cells from SAVI patients in cluster 17 (disease-associated monocytes) and cluster 5 (classical monocytes). Side color

bar indicate groups of pathways based on broader functions.

(G) Violin plot of the expression of PPP1R15A which codes for GADD34 (top) and a UPR signature of 85 genes (bottom) in the SAVI dataset. (C and G) Dark lines

indicate medians.
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SAVI patients (Figure 4D), although this interaction is not pre-

dicted in the IFN-b dataset (Figures 5D and 5E). Other chemo-

kines and pro-inflammatory cytokines, including CXCL9,

CXCL10, and CXCL11 with their common receptor CXCR3, as

well as the pair IL-6/IL-6R, are predicted to have increased inter-

actions in a type I IFN-dependent manner (Figures 5D and 5E). In

contrast, increased interactions of IL-12 and IL-27 with their re-

ceptors is likely type I IFNs-independent, as absent from the pre-

dictions in the IFN-b dataset.

Strikingly, the strongest predicted interaction in SAVI patients

was reported for the CCL19/CCR7 ligand/receptor couple,

which plays an essential role in T cell activation.26 This commu-

nication was not inferred in healthy PBMCs treated with IFN-b or
8 Cell Reports Medicine 4, 101333, December 19, 2023
in SAVI patients under JAK inhibitor treatment (Figures 5E and

S5A), arguing for amechanism independent of type I IFN produc-

tion. Checkpoint interactions, such as CD80/CD28, Nectin2/

CD226, Nectin2/TIGIT, and Nectin2/CD96, involved in T cells

stimulations27 were also increased in both SAVI patients and af-

ter IFN-b stimulation but should be interpreted with caution as

monocytes are not professional antigen-presenting cells. More-

over, our analyses predicted enhanced crosstalk between LAG3,

involved in immune exhaustion and regulation of effector func-

tion,28 and its ligands LGALS3 and MHC class II molecules in

SAVI, corresponding to the strongest induction predicted in the

IFN-b dataset (Figure S5B). We also observed in SAVI patients

and IFN-b stimulated cells increased communications involved
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in apoptosis induction with TNFSF10/TNFRSF10B and LGALS1/

CD69 (Figures 5D and 5E).29,30 In CD8+ T cell interactions with

monocytes, the pair MICA/KLRK1was predicted to be increased

both in SAVI patients and IFN-b stimulated cells, an interaction

leading to cell lysis31 (Figure 5D). Overall, these data point to-

ward a role of the disease-associated monocytes in favoring

T cells chronic activation and death.

Circulating cytokines in the plasma of SAVI patients as
biomarkers of the disease
As several cytokines/chemokines were upregulated in SAVI pa-

tients at the transcriptomic level, we evaluated 96 inflammation-

related proteins in both datasets using the proteomic proximity

extension assays. We confirmed the previously known increase

of IL-616 and observed increased plasmatic levels of CXCL10

and CCL19 (Figure 5F), which were predicted to play a role in

monocyte-to-T cell communications (Figure 5D). Other pro-in-

flammatory cytokines, such as CCL3, CCL4, CCL7, and CCL8,

were also increased in the plasma of SAVI patients compared

with CTRLs (Figure 5F). The secretory profile of PBMCs stimu-

lated with IFN-b for 36 h was characterized by induction of

CXCL10, VEGFA, and CCL19 (Figure 5G). To assess the corre-

spondence between the protein and the mRNA levels of the cy-

tokines measured in the plasma of SAVI patients, we evaluated

the expression of the 12 cytokines found to be increased in the

plasma of SAVI patients in the scRNA-seq data (Figure 5H).

Our results suggest a strong role of the disease-associated

monocytes in the secretion of several of these cytokines and,

therefore, validate our cell-to-cell communication predictions

(Figures 5H and S5C). Of note, CCL3, CCL4, and IL-6 were

among the most upregulated genes in the disease-associated

monocytes (Figure 4E). IFN-b-stimulated PBMCs had amore ho-

mogeneous expression of inflammatory cytokines across cell

types, in particular monocytes, DCs, and NK cells (Figures 5I

and S5D). The specific elevation of type I IFN-independent cyto-

kines, in particular CCL3, CCL4, and IL-6, suggests that they

may be used as blood biomarkers of SAVI to aid the differential

diagnosis with other type I interferonopathies.

A transcriptomic signature specific to STING activation
and independent of response to IFN-b
We next sought to identify a transcriptomic signature of STING

activation, independent of response to IFN-b stimulation (Fig-
Figure 5. Cell-to-cell communication inference indicate that hyperinfl
through cytokine secretion

(A–C) (A) Cell-to-cell communications are inferred from the expression of ligand

monocytes) and receptors expressed by a receiver cell (here, T cells). UMAP of

dataset.

(D) Heatmap of the score of each ligand/receptor pair between each T cell cluster a

based on Pearson correlation. Colored arrows indicate association to specific pa

(E) Heatmap of the score of the same ligand/receptor pair as observed in the SAV

the IFN-b dataset.

(F) Volcano plot of the differential protein secretion between SAVI patients and as

are in agreement with cell-to-cell interaction predictions.

(G) Volcano plot of the differential protein secretion between PBMCs stimulated

pernatant using the Olink inflammation panel. Genes written in red are also incre

(H and I) Heatmaps of the scaledmRNA levels of the 12 proteins found upregulated

in cell treated with IFN-b for 36 h.
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ure 6A; Table S6). The first step consisted in extracting the 95

genes most specific to the disease-associated monocytes clus-

ter (step 1, Figure 6B). One gene,G0S2, was filtered out from the

list as its expression was not increased in SAVI compared with

CTRLs (step 2, Figure 6C). To obtain a type I IFN-independent

signature, another step of the workflow was removing all genes

related to type I IFNs and type I IFN response. We first removed

type I IFN transcripts that were found in the list (step 3, Figure 6C)

and genes upregulated by IFN-b at any time point of the IFN-b

dataset, in monocytes and DCs (step 4, Figure 6D). Conse-

quently, 21 genes remained in the STING-activation signature

(Figure S6A). These genes were mostly associated with TNF-a

signaling via NF-kB (Figure 6E). We confirmed that this signature

was specific to the SAVI patients, as compared with the CTRL

group, and partially reduced in JAK inhibitor-treated patients

(Figure 6F). We also confirmed in the IFN-b dataset that the re-

sulting signature score was not increased by type I IFN at any

time point (Figure S6B).

To further evaluate the relevance of this signature in the

context of STING activation, independent of type I IFN response,

we designed an in vitro model of STING activation, in which

PBMCs from a CTRL were stimulated with ADUS100 (a STING

agonist), with or without JAK inhibitor. After scRNA-seq, type

I-IFN response and NF-kB activation signature score were

both increased by ADUS100 and dampened by JAK inhibitor

(Figure S6C). We observed a strong increase of the STING-acti-

vation signature score in ADUS100-stimulated monocytes and

DCs, which remained elevated under JAK inhibitor (Figure 6G).

The STING activation signature score was restricted to mono-

cyte and DCs in both the SAVI patients (Figure S6D) and the

ADUS100-stimulated PBMCs (Figure S6E).

Overall, this list of 21 genes may represent a signature specific

to STING activation and independent of type I IFN response.

Identification of a second genetic variant in PERK in a
SAVI patient with a low UPR
While analyzing the transcriptome of SAVI patients, we identified

several pathways that were differentially modulated in P1. We

noted, in this patient, a marked reduction of the UPR, which

was largely increased in other patients (Figure 7A). Of note,

IFN-b stimulation induced a slight increase of the UPR (Fig-

ure S7A). This observation is accompanied by low expression

of the ISRmarker PPP1R15A in monocytes and DCs (Figure 7B).
ammatory monocytes of SAVI drive activation and death of T cells

s (secreted or presented at the membrane) expressed by a sender cell (here

the clusters involved in the inference in (B) the SAVI dataset and (C) the IFN-b

nd themonocytes, either in the SAVI or the CTRL group. Hierarchical clustering

thways.

I dataset, between each T cell cluster and the monocytes, in each time point of

sociated CTRL for 96 proteins measured from the plasma. Genes written in red

with IFN-b for 36 h and unstimulated for 96 proteins measured from the su-

ased in the plasma of SAVI.

in the blood of SAVI patients in (F), in (H) the SAVI patients, and (I) each cell type
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Figure 6. Design of a STING-activation signature, independent of type I IFN response, based on the transcriptome of the disease-associated
monocytes

(A) Workflow used for the extraction of an IFN-independent STING-activation signature.

(B) Volcano plot of the differentially expressed genes between cluster 17 and cluster 5, in SAVI. The 95 genes highlighted in pink have log2FC > 1 and were

selected as the basis of the STING activation signature.

(C) Heatmap of the 95 genes of selected in (B), in the monocyte and DCs of CTRL, SAVI, and SAVI treated. Blue writing represents the genes whose expression is

higher in CTRL than SAVI and are filtered out in step 2. Red writing represents the IFN transcripts that are filtered out in step 3.

(D) Upset plot of the genes of the STING-activation signature. Red bar represents the genes uniquely found in the signature and not upregulated by IFN-b at any

time point. These 21 genes are kept in the final STING activation signature.

(E) Bar chart of pathways significantly enriched for the 21 genes of the STING activation signature in MSigDB_Hallmark_2020. *p < 0.05, **p < 0.01, ***p < 0.001,

**** p < 0.0001. Numbers indicate genes detected/total genes in the pathway. Color scale is proportional to adjusted p value.

(F) Feature plot of the signature score of the STING activation signature in monocytes and DCs in the SAVI dataset.

(G) Violin plot of the signature score of the STING activation signature in the monocytes and DCs in the ADUS100 dataset. Dark lines indicate medians.
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Further exploration showed differences in induction of the

apoptosis signature and NF-kB signaling, although less drastic

than the UPR (Figures 7C and 7D). These differences are even

observable when compared with P2, P1’s father’s homozygotic

twin (Figure S7E). In contrast, type I IFN response is found simi-

larly increased in P1 as compared with other SAVI patients

(Figures S7B–S7D). Of note, P1 is the only patient in this study

to present with a systemic lupus erythematosus (SLE)-like

phenotype,1 in addition to the SAVI phenotype.

These observations prompted us to reanalyze the exome

sequencing previously performed for this patient, including her

mother and her paternal uncle (P2).1 We specifically explored

the 85 genes of the UPR signature (Figure 7E). Exome analysis

revealed SNPs in four genes: CTH, VEGFA, ZCCHC8, and EI-

F2AK3 (Figure 7F). Variants in CTH and VEGFA are intronic or

in untranslated regions and, therefore, may not induce a change

in protein function. In contrast, variants in ZCCHC8 and EIF2AK3

induced core changes in amino acid chain and may be of impor-

tance. While the STING p.V155M mutation was inherited from

the father, both variants were inherited from the healthy mother,

suggesting they could play a role in the transcriptomic differ-

ences observed between P1 and her uncle P2, regarding the

UPR signature score (Figure S7E). However, the variant in

ZCCHC8 had an allele count in the population higher than ex-

pected for a pathogenic variant (it was seen 110 times in gno-

mAD, giving an allele frequency of 0.000405), and ZCCHC8

seemed to be a downstream target of the UPR pathway. There-

fore, we focused on the variant in EIF2AK3. This private

missense variant (p.P649T) in EIF2AK3, which encodes PERK,

a key activator of the UPR, was confirmed by Sanger sequencing

(Figure S7F). PERK was recently shown to be activated upon

STING activation through direct interaction between its kinase

domain and the C-terminal tail of STING.20 Once activated,

PERK induces the phosphorylation of key components of the

ISR. The p.P649T variant carried is in the kinase domain of

PERK, which carries the ISR-inducing function. Importantly,

the UPR signature score of the mother who carries the variant

(C9) appeared in T and B lymphocytes slightly lower than the

score observed in the healthy paternal aunt (C8), who is not car-

rying the EIF2AK3variant (Figure 7A). Overall, these findings sup-

port a potential causal effect of the p.P649T variant of PERK in

the reduction of the UPR signature in P1.

DISCUSSION

Here, we combined scRNA-seq on PBMCs from five SAVI pa-

tients with the analysis of in vitro IFN-b-stimulated PBMCs

from CTRLs (1–36 h). We highlighted the main pathways dysre-

gulated in the immune cells of SAVI patients, including inflamma-
Figure 7. Exome analysis of a patient with low UPR reveals another SN

(A) Heatmap of a UPR signature in the SAVI dataset.

(B) Violin plot of PPP1R15A expression (encoding GADD34) in monocytes and D

(C) Heatmap of an apoptosis signature in the SAVI dataset.

(D) Heatmap of an NF-kB activation signature in the SAVI dataset.

(E) Workflow of the exome analysis based on the 85 genes of the UPR signature

(F) Table of the four SNPs found in P1.

(A, C, and D) Gray squares indicate clusters not found in a sample.
tion, exacerbated ISR and cell death, and extracted, from dis-

ease-associated monocytes, 21 genes specific to STING

activation but independent of type I IFN response. We also re-

ported in the plasma of SAVI patients a specific elevation of

CCL3, CCL4, and IL-6 independent of a primary stimulation by

type I IFN. Together, our findings provide a deeper understand-

ing of the SAVI pathogenesis.

Effector T cell lymphopenia is a clinical hallmark of SAVI,1,14

confirmed in our cohort of SAVI patients. We report that naive

T cells are maintained in an early activation state, which con-

cords with previous reports suggesting that T cells carrying a

gain-of-function STING1 mutation are constitutively acti-

vated.11,32 While activation should prompt T cell proliferation,

we highlight increased activation of the senescence pathway in

patients’ naive T cells, associated with decreased proportions

of cells reaching the G2M phase of the cell cycle. This particular

phenotype may be linked to the increased EIF2 signaling

observed in patients’ T cells. Indeed, a STING-PERK-eIF2a

axis has been shown to induce senescence in a human cell

line.20 Our data have shown that EIF2 signaling is activated,

particularly in CD8+ T cells, both prior and during JAK inhibitor

treatment, reinforcing the link between STING activation, EIF2

signaling, and senescence, independently of type I IFN signaling.

In addition, several studies have highlighted the ability of chronic

IFN-b to trigger senescence33,34 and our observations from the

IFN-b dataset support these studies, although the decrease in

cell cycle is only transiently observed. Moreover, we have

observed an increase in apoptosis transcriptomic signature,

suggesting that activated senescent T cells may head toward

programmed cell death. These results concur with the antiproli-

ferative role of STING,14 as well as its pro-senescence10,35 and

pro-apoptotic1,12,14 roles. Altogether, our results could suggest

that the decrease of effector T cells may result from the altered

naive T cell compartment. We propose that naive T cells could

lose their ability to transition into an effector state due to an hy-

peractivation state combined with premature senescence and

apoptosis.

Clustering of the SAVI dataset revealed a disease-associated

cluster composed of 85% of patients’ cells. This cluster was of

classical monocyte origin and presented an increased expres-

sion of activation and inflammatory markers. It had elevated

GADD34 gene expression, an increased UPR signature score,

and decreased ribosomal genes expression, which altogether

implies activation of the ISR. While our results did not allow us

to conclude on the exact mechanism driving the ISR, the recent

discovery of the direct activation by STING of an ISR mediator,

PERK, suggests that this could be mediated through PERK.20

PERK is an ER stress sensor that, like inactivated STING, is

found on the ER membrane. Upon unfolded protein sensing,
P in EIF2AK3

Cs of the SAVI dataset. Dark lines indicate medians.

. MAF, major allele frequency.
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PERKphosphorylates eIF2a, thereby triggering the ISR. Its direct

activation by STING, independent of unfolded proteins, has

recently been demonstrated in human cell lines and in mice,

and was shown to be responsible for organ fibrosis as well as

cellular senescence, both hallmarks of SAVI.20 These observa-

tions suggest that elevated UPR in this cluster reflects a

STING-induced activation of PERK. However, as PERK is not

the only trigger for UPR, we cannot exclude that other mecha-

nisms are involved in these disease-associated monocytes.

Intriguingly, we observed in the patient P1, as opposed to

other patients, a low UPR signature score. This observation

helped us to reveal a missense p.P649T variant in EIF2AK3, en-

coding PERK, inherited from her healthymother. This residue lies

in the kinase domain of PERK, which is responsible for eIF2a

phosphorylation, a key event for the initiation of the ISR. This

never-described variant was predicted to be highly deleterious,

suggesting that it might be highly detrimental in combination

with STING-activating mutations. As the kinase domain of

PERK is responsible for eIF2a phosphorylation, it strengthens

the importance of PERK-mediated ISR in disease-associated

monocytes of SAVI patients.

By inferring monocyte-to-T cells interactions,25 we provided

clues that hyperinflammatory monocytes could promote activa-

tion of T cells, as well as cell death. We revealed the establish-

ment of known T cell-activating signaling in SAVI patients, with

increase of CCL19/CCR7 and LGALS1/CD69, which play a role

in T cell activation.26,29 Additionally, we note several communi-

cations that trigger T cell death, such as TRAIL(TNFSF10)/

TNFRSF10B36 or MIKA/KLRK1,31 or involved in immune exhaus-

tion such as LAG3 and its ligands.28 These data point toward a

potent role of the monocytes to prime T cells toward activation

and cell death. Although these interactions were predicted at

the transcriptomic level, several of the cytokines involved in

the predicted monocyte-to-T cells communications were also

elevated at the protein level in the plasma of SAVI patients.

To further evaluate the relevance of the disease-associated

cells in the pathogenesis of SAVI, we suggest that their presence

should be investigated in the lungs of SAVI patients, as the role of

monocytes and monocyte-derived macrophages is increasingly

recognized in pulmonary fibrosis.37–40 The ISR has also been

proposed as an important driver of pulmonary fibrosis,41 which

further supports the hypothesis that the disease-associated

monocytes may drive the pulmonary damage in SAVI patients

and could constitute an interesting indication for treatmentmoni-

toring. Other potential targets of interest in SAVI are PERK and

the ISR, which are the targets of compounds under development

for other diseases.42

While JAK inhibitors are beneficial to SAVI patients, they do

not allow for complete remission, and patients with advanced

lung disease prior to treatment show little to no amelioration.3

Here, we have assessed the transcriptomic impact of JAK inhibi-

tion, supporting an incomplete impact of the treatment at the

molecular level. In naive T cells, while treatments seemed to cor-

rect the senescence and apoptosis, they did not correct the acti-

vation of EIF2 signaling, nor restore the proportion of T cells to

normal levels.

Current diagnosis of type I interferonopathies, including SAVI,

relies on clinical evaluation followed by measurement of ISGs in
14 Cell Reports Medicine 4, 101333, December 19, 2023
PBMCs or whole blood of suspected patients. This approach is

common to all type I interferonopathies, and subsequent

sequencing (either Sanger or exome sequencing) is required to

pinpoint a specific gene.1 There is therefore an unmet need for

an easy-to-use, differential diagnosis strategy between the

different type I interferonopathies. We noticed elevated CCL3,

CCL4, and IL-6 at the transcriptomic level in the disease-associ-

ated monocytes and at the protein level in the plasma, and we

propose that they be added to the panel of six ISGs routinely

measured at the transcriptomic level. Elevated expression of

these cytokines associated with high ISG score could lead to a

suspicion of STING1 gain-of-function mutation. In addition, we

identified a STING-activation signature and have tested if it could

serve as another tool to discriminate SAVI patients from other in-

terferonopathies. We have observed that patients with SAVI had

a uniquely high level of the signature comparedwith patients with

Aicardi-Goutières syndrome or COPA syndrome (data not

shown), reinforcing the specificity of that signature. Interestingly,

IL1B, encoding inflammasome activation marker IL-1b, is part of

the STING activation signature, consistent with STING’s ability to

induce NLRP3 inflammasome activation.43 Even though the in-

flammasome activates IL-1b at the protein level, IL-1b activation

may lead to a positive feedback loop enhancing IL1B gene

expression.44 Therefore, the presence of IL1B in the STING acti-

vation signature may reflect the activation of NLRP3. Further-

more, the SAVI signature may be relevant in the stratification of

SLE patients. Indeed, SLE has been shown the represent not

one disease but up to seven group of ‘‘sub-diseases,’’45 and

STING may be activated in some patients.46,47 Thus, we think

that our signature may bring new insights into SLE patient

stratification.

Limitations of the study
Our study has several limitations, including a low number of sam-

ples and the exclusive assessment of PBMCs, both caused by

the rareness of SAVI patients and the consequent freezing of

any blood sample. However, PBMCs exclude several cell types

that may have been interesting to study in SAVI.4 In endothelial

cells, STING activation was shown to control T cells transendo-

thelial migration,48 potentially into the lungs.49 Endothelial cells in

patients’ lungs also display elevated immune functions,19 further

emphasizing their critical role in the SAVI pathogenesis. In addi-

tion, fibroblasts have also been implicated in lung fibrosis of SAVI

patients.50 Nonetheless, the view of the immune system pro-

vided by PBMCs, even partial, has allowed to draw several

meaningful conclusions regarding the pathogenesis of SAVI.

To reinforce the analysis, we compared the results driven from

these patients to a dataset of PBMC stimulated with IFN-b. The

system that we have set up only represents the consequence of

an acute IFN-b stimulation while SAVI is a chronic disease with

an onset in the first weeks of life, making comparison of the mo-

lecular pathways challenging to interpret. However, comparing

the patients’ PBMCs with the IFN-b stimulation PBMCs has led

to several insights into disease pathogenesis.

Finally, in an attempt to overcome the limitation of studying

proteomic pathways at the transcriptomic level, we have used

functional signatures composed of targets of a pathway, as

opposed to components of said pathways. Nevertheless,
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some observations made on the transcriptomics data were vali-

dated in the plasma at the protein level. In addition, other papers

have already reported at the protein level whatwe have observed

at the transcriptomic level,14 further reinforcing the strength of

the transcriptomic analysis.

Despite these limitations, our results provide a deeper under-

standing of the dysregulated responses in patient immune cells

and how monocytes and their downstream effect on T cells

can reflect SAVI pathogenesis, as well as proposing biomarker

candidates for the disease.
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Avenir, by government grants managed by the Agence National de la Re-

cherche as part of the ‘‘Investment for the Future’’ program (Institut

Hospitalo-Universitaire Imagine, grant ANR-10-IAHU-01, Recherche Hospi-

talo-Universitaire, grant ANR-18-RHUS-0010), by a Sanofi iAward Europe,

and by the ‘‘Emergence ville de Paris’’ program. F.R.L. received grants from
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Seurat v4 Hao et al.51 https://satijalab.org/seurat/

FlowJo v10 BD https://www.flowjo.com/solutions/flowjo

EnrichR Chen et al.52 https://maayanlab.cloud/Enrichr/

Spotfire� v.10.3.2.7 TIBCO� https://www.tibco.com/products/tibco-

spotfire

CyTOF software version 8.0.14050 Standard BioTools https://go.fluidigm.com/cytofsw/v8

MaxPar Pathsetter V.2.0.45.4 Standard BioTools https://www.standardbio.com/products/

software/maxpar-pathsetter

Ingenuity pathway analysis v57662101 Qiagen https://www.qiagen.com/us/products/
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Mickaël

Ménager (mickael.menager@institutimagine.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The scRNA-seq data from the SAVI and the IFN-b datasets have been deposited in GEOand are publicly available as of the date

of publication, under the superseries number GSE226601, with respective series number GSE226598 and GSE226572 for the

SAVI and IFN-b datasets respectively. Accession numbers are listed in the key resources table.
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d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAIL

We performed analysis on 5 SAVI patients previously described clinically, as mentioned in the first paragraph of the results section,

and selected for their gain-of-functionmutations inSTING1. Patients are female ormale between 4 years old and 34 years old (P1, P2,

P4, P5, P6), P2 being P1’s uncle. 7 healthy controls in the SAVI dataset were selected for their absence of STING1mutation and for

matching age range of SAVI patients. Control donors aremale and female under 18 years old (for C7, C10, C11) or adults (C1, C2, C8,

C9) among which two samples are relatives, C8 being P1’s paternal aunt and C9 being P1’s mother. Healthy donors for generation of

the IFN datasets are male of 19–22 years old and were obtained from the Etablissement Français du Sang. Primary PBMCs ex vivo

culture is described in method details part of the STAR Methods text.

METHOD DETAILS

Sample collection of the SAVI dataset
Peripheral blood samples were collected on lithium heparin. Blood samples were centrifuged at 2,300 rpm (1,065g) for 10 min to

collect supernatant (plasma), which was stored at �20�C. Peripheral blood mononuclear cells (PBMCs) were isolated by density

gradient centrifugation (2,200 rpm or 974g without break for 30 min) using Ficoll (Eurobio Scientific, Les Ulis, France). After centrifu-

gation, the pellet was resuspended in Phosphate-Buffered Saline (PBS) (Thermo Fisher scientific, Illkirch, France) and cells were

centrifuged at 1500 rpm (453g) for 5 min. Finally, the pellet was frozen in a medium containing 90% of Fetal Bovine Serum (FBS)

(GIBCO, Thermo Fisher scientific, Illkirch, France) and 10% of Dimethyl Sulfoxide (DMSO) (Sigma Aldrich, St. Quentin Fallavier,

France), and stored in liquid nitrogen.

Cell phenotyping by flow cytometry
For each sample of the SAVI dataset, 500,000 cells were stained. After an initial wash and 350g centrifugation, Zombie NIR Fixable

Viability kit was used to stain dead cells according to manufacturer instructions. Cells were washed and resuspended in 200mL of

wash buffer (PBS, 5% BSA, 1mM EDTA), before staining with 90mL of antibody mix with antibodies diluted 1/50. The antibodies

used in each one of the three panels are listed in Table S7. Fc Block (Biolegend Europ, Netherland) and wash buffer were used to

avoid unspecific bindings. For each panel, extracellular staining has been performed for 30 min at 4�C protected from light. Samples

were analyzed using the Sony SP6800 spectral flow cytometers.

IFN-b stimulation of healthy PBMC
Buffy coats from three healthy young male (19–22 years old) were obtained from the Etablissement Français du Sang. PBMCs were

isolated using Ficoll (Eurobio Scientific, Les Ulis, France) density gradient and centrifugation at 800g without brakes for 25 min.

Following centrifugation, cells were washed in wash buffer and centrifuged at 160g for 9 min at 4�C and the pellet was resuspended

in 10mL of wash buffer. Cells were plated in 96-wells tissue culture plates, with 150,000 cells per wells in an initial volume of 125mL of

RPMI (Gibco), 10% FBS (heat inactivated, Sigma), 10 mM HEPES, 55 mM b-mercaptoethanol, 6 mM L-glutamine, 50 mg/mL Genta-

micin and 100 U/mL Penicilin/Streptomycin (Gibco). One plate was made for each donor for each timepoint to plate a total of 15

million cells per condition.

Cells were challenged with 25mL of recombinant IFN-b (Human interferon beta 1a, mammalian, Catalog No 11410-2, PBL assay

Science, USA) at 6,000 IU/mL for a final concentration of 1000 U/mL per well, at one of several timepoints: 1h, 2h, 4h, 8h, 12h,

24h or 36h. Stimulations were done so that all cells, even unstimulated, would be kept a total of 36h in culture. After 36h of culture

at 37�C, 5% of CO2, cells were collected and counted. 10,000 cells were sent to scRNA-seq and 2 million to cell phenotyping by

CyTOF. Supernatant was frozen at �20�C and kept for analysis of secreted proteins.

Cell phenotyping by cytometry by time-of-flight
High dimensional immune profiling of the cultured cells was obtained using theMaxpar Direct Immune Profiling System (Fluidigm, Inc

France) with a 30-marker antibody panel, for CyTOF (Cytometry by Time-Of-Flight), (Table S7). Briefly, 2 million cells were washed

withMaxPar Cell Staining Buffer, and the cells were transferred in polypropylene tubes and incubated at room temperature for 10min

with 5 mL of TruStain FcX (Biolegend Europ, Netherland). Cells were then transferred into the tube containing the dry antibody cock-

tail, vortexed and incubated for 30 min at room temperature. After washing, the cells were fixed with 1mL of 1.6% paraformaldehyde

solution (SigmaAldrich, France) and incubated at room temperature for 10 min. After washing, 1mL CellID intercalator-Ir at 125nM

(pentamethylcyclopentadienyl-Ir (III)- dipyridophenazine, Fluidigm, Inc France) was added onto the cells and incubated overnight.

Cells were then stored at �80�C until acquisition.

Cells were thawed at room temperature thenwashed 3 times inMaxpar Cell Acquisition Solution Plus (CAS+), a high-ionic-strength

solution, and resuspended at a concentration of 1 million cells per mL in CAS+. 10% of EQ Four Element Calibration Beads were

added to the cells immediately before acquisition. Sample acquisition and data normalization were made on the CyTOF XT mass
e3 Cell Reports Medicine 4, 101333, December 19, 2023
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cytometer and CyTOF software version 8.0.14050 (Fluidigm, Inc Canada) at the ‘‘Plateforme de Cytométrie de la Pitié-Salpetriere

(CyPS).’’ An average of 500,000 events were acquired per sample. Dual count calibration, noise reduction, cell length threshold be-

tween 10 and 150 pushes, and a lower convolution threshold equal to 12 were applied during acquisition. Data cleaning was per-

formed using Maxpar Pathsetter software v2.0.45. 4 parameters (center, offset, residual and width) were used to resolve ion fusion

events (doublets) from single events using the Gaussian distribution generated by each event. After data cleaning, the program pro-

duces new FCS files consisting of only intact live single cells.

Cleaned FCS files were loaded in R using the flowCore package. FCS files from all samples were concatenated into a

SingleCellExperiment object. Clustering was performed using the cluster function from the CATALYST package to identify 60 initial

clusters. Clusters were manually identified based on marker expression following Fluidigm Maxpar Immune Profiling manufacturer

instruction. Clusters were merged into cohesive cell populations, resulting in 26 final cell types (including 3 groups of contaminants

that were removed). Kinetics of cell type proportions over time was plotted using the ggplot2 package.

scRNA-seq libraries and sequencing
scRNA-seq experiments were performed at the ‘‘Labtech SingleCell@Imagine’’, in 3 batches for the SAVI dataset, and 3 batches for

the IFN-b dataset. 8 libraries of the STING1 batch were generated using Chromium Single Cell 30 Library & Gel Bead Kit v.2 (10x Ge-

nomics) according to the manufacturer’s protocol, while the remaining 9 libraries (STING2 and STING3) were generated using Chro-

miumSingle Cell 30 Library &Gel Bead Kit v.3 (10xGenomics). Briefly, cells were counted, diluted at 1,000 cells/mL in PBS+0.04%and

20,000 cells were loaded in the 10x Chromium Controller to generate single-cell gel-beads in emulsion. After reverse transcription,

gel-beads in emulsion were disrupted. Barcoded complementary DNA was isolated and amplified by PCR. Following fragmentation,

end repair and A-tailing, sample indexes were added during index PCR. All libraries were sequenced on a Novaseq (Illumina). The 8

purified libraries generated from the v2 kit were sequenced with 26 cycles of read 1, 8 cycles of i7 index and 98 cycles of read 2, while

the 9 libraries generated with v3 were sequenced with 28 cycles of read 1, 8 cycles of i7 index and 91 cycles of read 2.

The 24 scRNA-seq libraries of the IFN-b dataset were generated using Chromium Single Cell Next GEM 30 Library & Gel Bead Kit

v.3.1 (10x Genomics) according to themanufacturer’s protocol, following the same steps as in the SAVI dataset. The purified libraries

were sequenced on a Novaseq (Illumina) with 28 cycles of read 1, 8 cycles of i7 index and 91 cycles of read 2.

Bioinformatics analysis of scRNAseq data
Sequencing reads were demultiplexed and aligned to the human reference genome (hg38), and counted using the CellRanger Pipe-

line v6.0. Unfiltered RNA UMI counts were loaded into Seurat v4 for quality control, data integration and downstream analyses.

Apoptotic cells and empty sequencing capsules were excluded by filtering out cells with low number of features (Filters were defined

based on the batch: STING1: nFeature <300; STING2 and STING3 <500; IFN-stim <750) or a mitochondrial content higher than 20%.

Data from each sample were normalized using sctransform, before batch correction using Seurat’s FindIntegratedAnchors, on the

3,000 most variable features. For the IFN-b dataset, for computational efficiency, integration anchors were determined with a canon-

ical correlation analysis, using all unstimulated samples as reference. For the SAVI dataset, to avoid over-aligning samples, a recip-

rocal principal component analysis (PCA) was used to find integration anchors. On the resulting integrated datasets, we computed

the PCA on the 3000 most variable genes, before computing a UMAP (on 20 PCs for SAVI and 30 PCs for IFN-stimulation). Commu-

nity detection was performed using the graph-based modularity-optimization Louvain algorithm from Seurat’s FindClusters function

with a 1.2 resolution. Cell types labels were assigned to resulting clusters based on amanually curated list of marker genes as well as

previously defined signatures of the PBMC subtypes.53 Despite filtering for high quality cells, 11/34 clusters in the SAVI dataset and

7/36 in the IFN-b dataset stood out as poor quality clusters and were removed from further analysis. They represented low UMI cells,

dying cells, cycling cells, doublets, or contaminants (progenitor cells, basophils, platelets or megakaryocytes). A total of 112,060 and

115,503 cells were kept in the SAVI and IFN-b datasets respectively. Transcriptomic signatures scores were calculated using Seur-

at’s AddModuleScore function. The signatures and their origin are described in Table S7. Differential expression testing was con-

ducted using the FindMarkers function in Seurat, with default Wilcoxon testing. p-values were controlled using Bonferroni correction.

Genes with an absolute log(fold-change) R0.25 and an adjusted p value% 0.05 were selected as differentially expressed. Pathway

analysis was performed using both the Ingenuity pathway analysis v57662101 software (IPA (QIAGEN Inc.) and EnrichR.52,54 Heat-

maps were extracted from the comparison module in IPA. Pathways with an absolute Z score lower than 2 or a Bonferroni-Hochberg

corrected p values higher than 0.05 were filtered out. The TRRUST transcription factors 201921 used for the transcription factors

enrichment analysis was performed using Enrich R.

The cell cycle phase was defined using the CellCycleScoring function of Seurat V4, with the default gene lists and adjusting the

parameters to better reflect expected proportions of CTRL cells in each phase of the cell cycle.

Cell-to-cell interactions were predicted using the ICELLNET framework.25 We filtered out filtered the gene expression matrix to

only keep the genes that were expressed in at least 5% of the cells in at least one of the clusters. We combined together cluster

5 and cluster 17 into a single classical monocyte group and considered this group as the ‘‘central cells’’. Each cluster of CD4+ or

CD8+ T cell was considered as the ‘‘partner cells’’. In the SAVI dataset, the predictions were performed separately for the CTRLs,

the SAVI, and the SAVI_treated groups. In the IFN-b dataset, the predictions were performed separately for each timepoint.
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Cytokine measurements
The plasma samples and conditioned media from in vitro stimulated PBMC were analyzed by proximity extension assays (PEA), a

targeted, antibody-based, proteomics method. We used the PEA Olink Target96 Inflammation panel which targets 92 biomarkers.

Briefly, 2 DNA-labeled antibodies bind to a targeted protein, followed by hybridization of the oligonucleotides when the antibodies

come in close proximity to each other. Adding DNApolymerase to the sample generates a unique PCR target sequence, which is then

detected and quantified using a quantitative PCR (qPCR) readout (BiomarkHD, Data collection and Real-Time PCR analysis software

4.7.1, Fluidigm).

The Olink PEA Quality control process consists of technical controls to monitor the performance of all 3 steps of the assays (im-

munoreaction, extension, and amplification/detection) as well as the individual samples. Internal controls are spiked into each sam-

ple to provide a non-human assay control, a positive extension control consisting of an antibody coupled to a unique DNA-pair and,

finally, a positive detection control based on a double stranded DNA amplicon. In addition, each experimental run includes a control

strip with control samples used to estimate the accuracy of protein detection and quantification (intra- and inter-coefficient of vari-

ation). A negative control (buffer) run in triplicate is used to set background levels and calculate limit of detection (LOD), a plate control

(plasma pool) is run in triplicate for plate normalization, and a sample control (reference plasma) is included in duplicate to estimate

CV between runs.

Data are presented as NPX (Normalized Protein eXpression) values. NPX is Olink’s relative protein quantification unit on log2 scale.

Data generation of NPX (obtained using Olink NPX Manager 3.3.2.434) consists of normalization to the extension control (known

standard), log2-transformation, and level adjustment using the plate control (plasma sample).

Serial dilutions of samples are performed to determine a potential Hook effect (observedwhen there is an antigen excess relative to

the reagent antibodies, resulting in falsely lower values). Conditioned media are tested at 1:1, 1:4 and 1:10 dilutions for Target96

Inflammation. Plasma samples are not diluted.

For plasma cytokine measurement, differential protein expression was performed using Multiple comparisons parametric test

(TIBCO Spotfire v.10.3.2.7) with Benjamini-Hochberg (BH) False Discovery Rate adjustment. For the IFN-b dataset, pairwise analysis

by donor was performed by timepoint. For patient samples, SAVI samples were compared to healthy donors. An adjusted p

value < 0.05 was considered statistically significant.

Exome analysis
The exome sequencing used in this study has been described by Jeremiah et al..1 Exome sequencing was performed by the Center

National de Génotypage, Institut de Génomique, CEA. After quality control by the DNA Bank Laboratory, genomic DNA (3mg) was

captured using in-solution enrichmentmethodology (Human All Exon v5 – 50Mb, Agilent Technologies, CA, USA). Library preparation

and exome enrichment protocol (�20,000 targeted genes) was performed on an automated platform, using NGSx (PerkinElmer Inc,

MA, USA) and Bravo (Agilent Technologies, CA, USA) robots respectively, according tomanufacturer’s instructions (SureSelect, Agi-

lent Technologies CA, USA). After normalization and quality control, exome enriched libraries were sequenced on a HiSEQ 2000 (Illu-

mina Inc., CA,USA) aspaired-end100base reads. Sequencingwasperformed inorder toprovide ameancover of at least 60 to70X for

each sample. Image analysis and base calling was performed using Illumina Real Time Analysis (RTA) Pipeline. Sequence quality pa-

rameterswere assessed daily throughout the 12 days sequencing run. Sequenceswere aligned to the reference human genome hg19

using theBurrows-Wheeler Aligner. Downstreamprocessingwascarriedoutwith theGenomeAnalysis Toolkit (GATK), SAMtools, and

Picard, following documented best practices (http://www.broadinstitute.org/gatk/guide/topic?name=best-practices).

We searched for SNPs in the 85 genes of the UPR signature, to extract the SNPs found in less than 5% of the general population.

No other filter was used.

We generate a HOPE report55 for the p.P649T mutation in PERK (encoded by EIF2AK3), by using PERK uniprot identifier Q9NZJ5.

Generation of the ADUS100 dataset
Human PBMC samples were obtained from Promocell (C-12907 promocell, lot 434Z036). Briefly, after thawing and a quality control

on cell viability (>90%), a minimal of of 2*106 cells cells were incubated either with or without ADUS100 (3mM final concentration), an

STING agonist, during 4h in RPMI1640 medium complemented with 10% heat inactivated fetal bovine serum. In some conditions,

cells were pre-incubated 15min with a JAK1-2 inhibitor (baricitinib, 10mM final concentration) prior and during ADUS100 exposure.

After 4h, cells were washedwith PBSwithout Ca/Mg containing 0.04%BSA and aminimum of 6,105 harvested for single cell analysis

(10X Genomics). Libraries were generated using Chromium Single Cell 30 Library & Gel Bead Kit v.2 (10x Genomics) according to the

manufacturer’s protocol. Libraries were sequenced on a Novaseq (Illumina), with 26 cycles of read 1, 8 cycles of i7 index and 98 cy-

cles of read 2.

Primary and SV40-fibroblasts
Patient’s primary fibroblasts were obtained by cultivating skin biopsies in RPMI 1640 supplemented with 20% FBS, 1% penicillin/

streptomycin, 1X gentamicin, and 1X amphotericin B. Primary fibroblasts were transformed by lipofection of pBSSVD2005 (Addgene

#21826) coding the large-T antigen of Simian virus-40. After 3 to 4 cycles of cultures, fibroblasts change of their shape and growing

rate and were considered immortalized. This was later confirmed by evaluating expression of SV40 by confocal microscopy. SV40-

fibroblasts were then maintained in DMEM supplemented with 10% FBS and 1% penicillin/streptomycin.
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Sanger sequencing
Sanger sequencing was performed on SV40-fibroblast genomic DNA to confirm the next-generation sequencing results for EIF2AK3.

The primers used for PCR are as follow: Forward TCAGATATGAACAGCCTTCAGTGT; Reverse AACCAAAATTTCACAAGTGGCT.

Purified PCR products were directly sequenced using BigDye Terminators (version 1.1) and a 3500xL Genetic Analyzer (Applied

Biosystems).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests for cellular composition analysis in both the CyTOF and scRNA-seq datasets were performed in R v3.6.1. Kruskal-

Wallis test followed by post-hoc multiple comparison Dunn’s test was applied to assess differences in cell population proportions

(*: p % 0.05; **: p % 0.01; ***: p % 0.001).
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