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ARTICLE OPEN

Arithmetic skills are associated with left fronto-temporal gray
matter volume in 536 children and adolescents
Nurit Viesel-Nordmeyer 1,2,3✉ and Jérôme Prado 1✉

There are large individual differences in arithmetic skills. Although a number of brain-wide association studies have attempted to
identify the neural correlates of these individual differences, studies have focused on relatively small sample sizes and have yielded
inconsistent results. In the current voxel-based morphometry study, we merged six structural imaging datasets of children and
adolescents (from 7.5 to 15 years) whose levels of arithmetic skills were assessed, leading to a combined sample of n= 536.
Controlling for individual differences in age, gender, as well as language, and intelligence, we found a unique positive relation
between arithmetic skill and gray matter volume in the left inferior frontal gyrus (IFG) and middle temporal gyrus (MTG). Our results
suggest that individual differences in arithmetic skills are associated with structural differences in left fronto-temporal areas, rather
than in regions of the parietal cortex and hippocampus that are often associated with arithmetic processing.

npj Science of Learning            (2023) 8:56 ; https://doi.org/10.1038/s41539-023-00201-x

INTRODUCTION
Although numeracy is crucial for education and social participa-
tion in our modern society1, studies regularly point to large
disparities in math skills as early as in elementary school1,2. This
suggests that these disparities can be traced back to differences in
foundational numerical skills, and notably to differences in the
ease with which individuals can solve simple arithmetic pro-
blems3. Therefore, it is important to improve our understanding of
the neuro-cognitive mechanisms underlying individual differences
in arithmetic skills to inform instruction and assessment.
Functional imaging studies suggest that a number of brain

areas are involved in arithmetic processing4. These notably
include regions of the parietal cortex, such as the intraparietal
sulcus and left angular gyrus. Because the intraparietal sulcus (IPS)
has long been thought to support the representation of symbolic
and non-symbolic numerical quantity5, it has been argued that it
may be involved in the manipulation of numbers during mental
calculation4–6. In contrast, the left angular gyrus (AG) is particularly
activated when participants solve arithmetic problems that are
reported to be retrieved from memory7, which suggests a specific
role for this region in the retrieval of solutions from long-term
memory7.
However, studies have also found that arithmetic processing is

supported by a number of other brain regions. For example, it has
been suggested that, in addition to the left AG, the left middle
temporal gyrus (MTG) might critically support the retrieval of
solutions from memory given its role in phonological processing8.
This idea is supported by several studies that have demonstrated
that the left MTG is involved when participants are presented with
problems that have been learned by rote in school, such as single-
digit multiplication9–11. Studies also implicate regions of the left
inferior frontal gyrus (IFG), particularly when calculation becomes
more demanding and taxes verbal working memory9,10,12. Finally,
studies in children also suggest that the hippocampus might play
a role in the encoding and retrieval of associations between

arithmetic problems and answers, particularly during the early
stages of arithmetic learning12,13.
Although the studies above have undoubtedly helped identify

the overall brain regions subserving arithmetic processing across
individuals, they do not necessarily inform about the neural
correlates of individual differences in arithmetic skills. Can such
individual differences be linked to individual differences in brain
function and structure? Some functional neuroimaging studies
(using functional magnetic resonance imaging, infrared spectro-
scopy, or electroencephalography) have attempted to answer that
question by comparing patterns of brain activity during math
tasks in individuals with lower versus higher math skills. These
studies, however, have led to relatively heterogeneous results. In
young adults, for example, reduced activation in both the left IFG
and temporal cortex during mental arithmetic has been observed
in lower-skilled individuals14,15. Other studies have found a
reduced modulation of parietal and prefrontal responses with
increasing arithmetic complexity in children with math learning
difficulty as compared to their typically developed peers16,17. More
generally, studies are inconsistent regarding the location and
direction of differences observed between lower and higher-
skilled children16–18.
A smaller number of studies have also focused on the structural

correlates of individual differences in arithmetic skill4,19. Most
studies comparing individuals with lower versus higher math skills
have found reduced gray matter volume (GMV) in math-impaired
children in the parietal lobe as well as in the bilateral inferior or
middle frontal gyrus20–22. Studies that examined brain-behavior
correlations across entire samples have found relations between
arithmetic skill and GMV in the parietal lobe23,24, but also in the
fusiform gyrus19, hippocampus25, and ventrotemporal occipital
cortex23. Recently, Suárez-Pellicioni and colleagues24 found a
positive relation between GMV of the left MTG and multiplication
skills in 10–12-year-olds. Overall, then, neuroimaging studies have
identified a number of structural correlates of arithmetic skills
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encompassing parietal, frontal, temporal, but also hippocampal
regions25.
A major shortcoming of these previous neuroimaging studies,

however, is that they were conducted with relatively small
numbers of participants. For example, in their review of the
literature, Peters and de Smedt4 indicate that sample sizes of
structural brain-wide association studies (BWAS) investigating
correlates of arithmetic skills ranged from n= 11 to n= 59, with
an average of n= 24. As emphasized in a growing number of
reports26,27, BWAS with such relatively small sample sizes may be
characterized by effect sizes that are inflated and difficult to
replicate because studies are underpowered to detect functional
or structural brain-behavior associations. A recent study investi-
gating associations between GMV and math skills in a relatively
large sample of children (n= 224) already suggests that this might
be the case. Indeed, after adjusting for total brain volume, the
authors found no concurrent associations between GMV and math
skills at age 7 and only a unique association with GMV in the left
superior temporal cortex at age 1328. Yet, most children included
in that study were born preterm, and even that sample size
remains modest for a BWAS26,27.
To address the power and reliability issue of BWAS of arithmetic

skills, we gathered here data from six different datasets29–34,
leading to a combined sample size of n= 536. Each dataset
included structural brain imaging of children or adolescents
whose levels of arithmetic skills were measured outside of the
scanner (as part of a comprehensive behavioral testing session).
We then used voxel-based morphometry (VBM) to assess the

relation between levels of arithmetic skills and GMV in several
brain regions that have been identified as supporting mental
arithmetic in previous studies, while controlling for a number of
other languages (vocabulary and reading skills) and cognitive (IQ)
skills that are known to play a role in arithmetic learning35. To our
knowledge, our study is the largest BWAS of arithmetic skills to
date.

RESULTS
Samples
Demographic information about the six datasets included in the
present study is shown in Table 1. These datasets are hereafter
referred to as set #129, set #230, set #331, set #432, set #533 and set
#634. Participants from set #1 and set #2 come from the Lyon area
in France while participants from set #3 to set #6 come from the
greater Chicago metropolitan area in the United States (US). Note
that different models of scanners were used for data acquisition at
these two sites (see “Methods”). Our final sample includes 536
children and adolescents from age 7.5 to age 15 (mean= 10.58,
SD= 1.60).

Behavioral results
Results of descriptive analyses for all behavioral data, including
control variables of sex, scanning site, attention deficit hyper-
activity disorder (ADHD) status, and age can be found in Table 2.
Because different instruments were used for measuring children’s
skills in the six datasets (see “Methods”), raw scores were

Table 1. Demographic information.

Dataset n Age Sex (female) Native language Scanning location

Mean (SD) Range

Set #1 53 8.47 (35) 8.01–9.24 30.2 % French CERMEP, Lyon, France

Set #2 42 11.05 (1.25) 8.47–11.05 54.8 % French CERMEP, Lyon, France

Set #3 132 11.26 (1.46) 8.36–15.00 53.0 % English CAMRI, Chicago Illinois, US

Set #4 185 10.48 (1.62) 7.50–14.38 48.1 % English CAMRI, Chicago Illinois, US

Set #5 56 11.20 (1.64) 8.47–15.00 57.1 % English CAMRI, Chicago Illinois, US

Set #6 68 10.34 (.94) 8.59–11.96 5.9 % English CAMRI, Chicago Illinois, US

Total 536 10.58 (1.60) 7.50–15.00 43.7 % NA NA

CAMRI Northwestern University Center for Advanced Magnetic Resonance Imaging, CERMEP Center d’Exploration et de Recherche Multimodale et
Pluridisciplinaire.

Table 2. Descriptive statistics and correlations for behavioral variables in the full sample (n= 536).

Variables Cat. 1 % Cat. 2 % (1) (2) (3) (4) (5) (6) (7) (8)

(1) Sex Male 56.3 Female 43.7

(2) Scanning site F 17.7 US 82.3 0.02

(3) ADHD no 78.4 yes 21.6 –0.18** 0.24**

Mean SD Min Max

(4) Age 10.58 1.60 7.50 15.00 –0.05 0.28** 0.03

(5) Verbal IQ 0.00 1.00 –3.45 2.37 0.03 0.00 –0.10* −0.07

(6) Non-verbal IQ 0.00 1.00 –3.46 2.04 0.01 0.00 –0.10* –0.12** 0.41**

(7) Arithmetic 0.00 1.00 –3.01 2.49 –0.01 0.00 –0.18** –0.05 0.43** 0.46**

(8) Vocabulary 0.00 1.00 –2.49 2.65 0.02 0.00 –0.08 –0.11** 0.68** 0.44** 0.44**

(9) Reading 0.00 1.00 –3.70 3.22 0.12* 0.00 –0.14** –0.09* 0.35** 0.31** 0.40** 0.40**

Pearson correlation, *p ≤ 0.05, **p ≤ 0.01. Scores of IQ verbal, IQ non-verbal, vocabulary, reading, and arithmetic are z-standardized because different
measurements were used in the six datasets (see Table S1). Cat. 1= Category 1, Cat. 2= Category 2. F= France, US= United States. Significant (p < 0.05)
correlations are in bold.
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z-transformed within each dataset and are shown in z-standar-
dized form for the full sample (n= 536) in the table. Separate
information for the six datasets with the original mean and
standard deviation of the measurements are shown in the
supplemental file (see Tables S1–6).
Correlations between measures of verbal and non-verbal IQ,

vocabulary, reading, and arithmetic skills were medium to large
across the whole sample. Scanner site was only associated with
age and ADHD status, mainly because (1) sets #3 to #6 were
collected on children who were older than in sets #1 and #2 and
(2) only sets #3 to #6 included children diagnosed with ADHD. Sex
was only weakly correlated to reading skills across the whole
sample. In line with previous research36, there was also a small
negative correlation between ADHD status and all skills (with the
exception of vocabulary).

VBM results
For each participant and each dataset, average GMV was
extracted from seven regions of interest (ROIs) that have been
found associated with mental arithmetic in previous studies (see
“Introduction”). All ROIs were defined anatomically to avoid
circularity in analyses37 (see “Methods”). These ROIs were the
bilateral IPS, the left AG, the left MTG, the left IFG, and the
bilateral hippocampus (see Fig. 1). For each ROI, GMV was
entered in a linear mixed-effect model to analyze its relation with
arithmetic skill, while taking into account the nested structure of
the data. Fixed-effects covariates were total intracranial volume
(TIV), age, sex, and ADHD. Because sets differed with respect to

the scanning site (France versus US) and arithmetic test (WJ-III
versus CMAT), these were considered random effects. Across all
mixed-model analyses, a relation between GMV and arithmetic
score was only observed in the left IFG (Table 3) and left MTG
(Table 4). Results from other ROIs are shown in the supplemental
file (see Tables S8–12) (note that an exploratory whole-brain
analysis confirming relations between GMV and arithmetic score
in the left IFG and left MTG is presented in the supplementary
information, see Fig. S1).
Frequentist statistics, however, cannot provide evidence for a

null hypothesis. In other words, a nonsignificant relation
between GMV and arithmetic score in a given ROI does not
mean that a relation does not exist. Therefore, we used Bayesian
mixed-effect models to estimate the strength of evidence (i.e.,
the Bayes factor, BF) for the null hypothesis of no relation
between GMV and arithmetic score (H0) versus the alternate
hypothesis of a relation (H1) in each ROI. Evidence for a lack of
relation between GMV and arithmetic score was strong in the
left AG (BF01= 11.58) and hippocampus (left: BF01= 10.38, right:
BF10= 12.43), substantial in the left IPS (BF01= 7.10), and
anecdotal in the right IPS (BF01= 2.82). In contrast, there was
substantial evidence for a relation between GMV and arithmetic
score in the left IFG (BF10= 4.95), and very strong evidence for
that relation in the left MTG (BF10= 37.61). Therefore, not only
do the results show that arithmetic score relates to GMV in the
left IFG and left MTG, there is also evidence that it does not
relate to GMV in the other ROIs.

Fig. 1 ROI locations. Location of ROIs displayed on a rendering of the MNI-normalized brain.

Table 3. Mixed-model analysis of GMV in the left IFG without covariates of language and cognitive measures.

Fixed effects Estimated coefficient SE Lower Upper df t p

(Intercept) 0.410 0.00 0.403 0.417 1.08 114.49 0.00

Arithmetic 0.004 0.00 0.001 0.006 528.96 2.79 0.01

ADHD (1–0) –0.003 0.00 –0.010 0.004 503.77 –0.80 0.43

Sex (2–1) 0.001 0.00 –0.006 0.008 528.22 0.31 0.76

Age –0.003 8.05e-4 –0.005 –0.001 416.32 –3.71 < 0.001

TIV 2.67e-4 1.04e-5 2.47e-4 2.88e-4 515.33 25.61 < 0.001

Sex*ADHD –0.002 0.01 –0.015 0.011 528.32 –0.28 0.78

Random effects Variance SD ICC

Arithmetic Test
(Intercept)

1.19e-19 3.45e-10 1.44e-16

Scanning Site (Intercept) 1.72e-5 0.00 0.02

Residual 8.26e-4 0.03

Random effects are correlated. AIC= –2268.02; BIC= –2141.83; R-squared marginal= 0.64; R-squared conditional= 0.64. Significant (p < 0.05) fixed effects are
in bold.
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To further evaluate the specificity of the relation between
arithmetic skill and GMV in the left IFG and left MTG, we included
other language and cognitive measures as covariates in the
frequentist mixed-model analyses. Results indicated that the
relation between arithmetic skill and GMV remained significant
when adding as covariate reading skill (left IFG: β= 0.004,
SE= 0.001, t= 3.169, p= 0.002; left MTG: β= 0.004, SE= 0.001,
t= 3.604, p < 0.001), vocabulary skill (left IFG: β= 0.004, SE=
0.001, t= 2.459, p= 0.014; left MTG: β= 0.004, SE= 0.001,
t= 2.741, p= 0.006), non-verbal IQ (left IFG: β= 0.003, SE= 0.002,
t= 2.258, p= 0.024; left MTG: β= 0.003, SE= 0.001, t= 2.688,
p= 0.007), and verbal IQ (left IFG: β= 0.004, SE= 0.002, t= 2.304,
p= 0.022; left MTG: β= 0.003, SE= 0.001, t= 2.569, p= 0.010).
The relation between arithmetic skill and GMV also remained
significant when all four covariate measures were included in the
model (see Table 5 for the left IFG and Table 6 for the left MTG).
Therefore, there was a relation between arithmetic skill and GMV
in these ROIs over and above individual differences in verbal and
non-verbal skills.

DISCUSSION
Previous studies have shown relations between arithmetic skills
(or math skills more broadly) and neuroanatomy in a variety of
brain areas, including regions of the parietal, frontal, occipital, and
temporal cortex, as well as the hippocampus19–25. Controlling for
individual differences in a range of language and cognitive skills
and studying the largest sample of participants to date, we found
here that individual differences in arithmetic skills were related to
individual differences in GMV of the left fronto-temporal cortex
rather than areas of the parietal cortex or hippocampus that have
also been implicated in arithmetic studies4.
With the exception of Ranpura et al.21 and Rotzer et al.22 who

found a decrease in GMV of the left IFG in children with math
learning difficulty, most previous studies have not identified the
left IFG as a neuroanatomical substrate of arithmetic skills.
However, this region has been identified in several functional
neuroimaging studies. For example, Yang and colleagues38 found
greater activity for subtraction compared to addition in a number
of regions on the left hemisphere, including the IFG in adults.

Table 4. Mixed-model analysis of GMV in the left MTG without covariates of language and cognitive measures.

Fixed effects Estimated coefficient SE Lower Upper df t p

(Intercept) 0.466 0.00 0.460 0.471 1.05 176.44 0.00

Arithmetic 0.004 0.00 0.002 0.006 528.69 3.54 < 0.001

ADHD (1–0) 0.003 0.00 –0.002 0.009 484.20 1.20 0.23

Sex (2–1) 0.006 0.00 3.48e-4 0.011 528.28 1.85 0.07

Age –0.003 6.71e-4 –0.005 –0.002 357.50 –4.88 < 0.001

TIV 3.12e-4 8.72e-6 2.95e-4 3.29e-4 503.57 35.80 < 0.001

Sex*ADHD –0.005 0.01 –0.006 0.016 528.40 0.96 0.34

Random effects Variance SD ICC

Arithmetic Test
(Intercept)

1.19e-19 3.45e-10 1.44e-16

Scanning Site (Intercept) 1.72e-5 0.00 0.02

Residual 8.26e-4 0.03

Random effects are correlated. AIC= –2460.43; BIC= –2331.15; R-squared marginal= 0.77; R-squared conditional= 0.77. Significant (p < 0.05) fixed effects are
in bold.

Table 5. Mixed-model analysis of GMV in the left IFG with covariates of language and cognitive measures.

Fixed effects Estimated coefficient SE Lower Upper df t p

(Intercept) 0.409 0.00 0.402 0.416 1.08 114.30 0.00

Arithmetic 0.004 0.00 5.32e-4 0.007 524.14 2.30 0.02

Reading –0.002 0.00 –0.006 4.63e-5 524.54 –1.93 0.05

Vocabulary 0.003 0.00 –6.36e-4 0.006 524.22 1.61 0.11

Comparison –9.02e-4 0.00 –0.004 0.003 524.00 –0.52 0.60

Matrix 5.17e-4 0.00 –0.002 0.003 524.80 0.34 0.73

ADHD (1–0) –0.003 0.00 –0.010 0.003 500.10 –0.97 0.33

Sex (2–1) 0.001 0.00 –0.006 0.009 524.45 0.37 0.71

Age –0.003 8.16e-4 –0.005 –0.001 397.92 –3.59 < 0.001

TIV 2.67e-4 1.09e-5 2.46e-4 2.88e-4 502.25 24.58 < 0.001

Sex*ADHD –0.003 0.01 –0.016 0.010 524.27 –0.41 0.69

Random effects Variance SD ICC

Arithmetic Test (Intercept) 0.00 0.00 0.00

Scanning Site (Intercept) 1.73e-5 0.00 0.02

Residual 8.24e-4 0.03

Random effects are correlated. AIC= –2265.85; BIC= –2077.90; R-squared marginal= 0.64; R-squared conditional= 0.64. Significant (p < 0.05) fixed effects are
in bold.
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Studies have also indicated increased activity in the left IFG with
problem complexity15,38–40. Chang et al.41 found enhanced activity
in the left IFG during arithmetic processing in children, while de
Smedt et al.12 found greater activity in this region for large versus
small arithmetic problems. Evans et al.42 also found greater left IFG
activity for single-digit addition than an active control condition in
the left IFG in a sample of adults and children.
In contrast to the left IFG, a positive relation between arithmetic

skills and GMV has previously been reported in the MTG. For
example, Suárez-Pellicioni and colleagues24 showed a positive
association between GMV and multiplication skills in the MTG.
McCaskey et al.20 also demonstrated reduced GMV in the MTG in
children with dyscalculia compared to their typically developed
peers. Therefore, our study replicates these findings with a larger
sample of participants. The involvement of the left MTG in
arithmetic processing is further suggested by several functional
neuroimaging studies. For example, Prado and colleagues9 found
enhanced activity in the left MTG when adults solve single-digit
multiplication problems, while Prado and colleagues10 found age-
related increases of activity in that region in children solving the
same task. Activity in the left temporal cortex has also been shown
to increase with arithmetic fact fluency15. In a longitudinal study,
Suárez-Pellicioni and colleagues43 demonstrated that age-related
decreases of connectivity between the left MTG and the left IFG
support efficient learning of multiplication facts.
As is the case in all BWAS investigating structural brain-

behavioral correlations, we can only speculate about the specific
cognitive processes supported by the left IFG and left MTG during
mental arithmetic. For instance, it has been proposed that the left
MTG might support the association between arithmetic facts and
their answers through their phonological codes8, consistent with
the role of this region in phonological processing44. This would be
broadly consistent with the idea that arithmetic learning is
characterized by a shift from procedural (e.g., counting) to verbal
retrieval, such that operands and answers of at least some single-
digit problems would become associated in memory through their
phonological codes45,46.
Note that associations between operands and answers within a

network of facts are likely to lead to verbal interferences, notably
as the size of the problem increases45. Suppression of verbal
interferences has been attributed to the left IFG and some have
proposed that this might explain the involvement of this region in

mental arithmetic47. However, others have also argued that the
left IFG might support mental arithmetic because of its role in the
sequential processing of linguistic stimuli. For instance, Nakai and
colleagues48,49 found shared processing of arithmetic and
linguistic syntax in the left IFG. Evans et al.42 found enhanced
activity in the same region of the left IFG in single-digit addition
and word reading tasks, suggesting that the region supports
processes common to arithmetic and reading. An earlier study
also found shared activity between verbal working memory and
digit processing in the left IFG50. Again, note that the above
interpretations largely rely on reverse inferences and need to be
interpreted with caution51. For instance, Ashkenazi and collea-
gues52 found in the left IFG a positive correlation between activity
associated with complex addition and block recall, which is a
measure of visuo-spatial rather than verbal working memory.
Therefore, it is also possible that the left IFG also contributes to
mental arithmetic through its role in visual attention53. Functional
neuroimaging studies are the best positioned to shed light on the
role of the left IFG and left MTG in mental arithmetic.
To our knowledge, our study is the largest structural BWAS of

arithmetic skills to date. However, it is important to acknowledge a
number of limitations. First, arithmetic skills were defined based
on the calculation subtest of the WJI-III54 for four of the datasets.
Because the test merges different types of arithmetic operations
(addition, subtraction, multiplication, division), it is not possible to
evaluate whether the link between GMV and arithmetic skills
changes with the type of operation. Second, we assessed
individual differences in brain structure using VBM. It is possible
that associations between arithmetic skills and other brain regions
might be found with other types of measures (e.g., deformation-
based morphometry25; surface-based analyses21). In fact, we
performed an exploratory analysis of the relation between cortical
thickness (CT) and arithmetic skills using the CAT12 toolbox on the
same sample of participants (including the same covariates as in
our main VBM analysis). This analysis did not reveal any significant
relation across the whole brain (see “Methods”). Unlike CT, VBM
captures a mixture of measures of gray matter, including cortical
surface area and cortical folding in addition to cortical thickness.
Therefore, it is possible that the relation between arithmetic skills
and left IFG structure may specifically relate to cortical folding or
cortical surface area, though this needs to be investigated in
future studies. Finally, although our overall sample size of more

Table 6. Mixed-model analysis of GMV in the left MTG with covariates of language and cognitive measures.

Fixed effects Estimated coefficient SE Lower Upper df t p

(Intercept) 0.466 0.00 0.460 0.471 1.03 179.29 0.00

Arithmetic 0.003 0.00 7.88e-4 0.01 524.18 2.57 0.01

Reading –0.002 0.00 –0.004 7.08e-4 524.68 –1.38 0.17

Vocabulary 0.002 0.00 –9.15e-4 0.005 524.29 1.35 0.18

Comparison 0.001 0.00 –0.002 0.004 524.00 0.77 0.44

Matrix –4.17e-4 0.00 –0.003 0.002 524.94 –0.33 0.74

ADHD (1–0) 0.003 0.00 –0.003 0.009 477.39 1.10 0.27

Sex (2–1) 0.006 0.00 –3.68e-4 0.012 524.57 1.84 0.07

Age –0.003 6.79e-4 –0.005 –0.002 326.18 –4.73 < 0.001

TIV 3.11e-4 9.07e-6 2.93e-4 3.29e-4 481.17 34.30 < 0.001

Sex*ADHD 0.005 0.01 –0.006 0.016 524.36 0.93 0.35

Random effects Variance SD ICC

Arithmetic Test (Intercept) 0.00 0.00 0.00

Scanning Site (Intercept) 7.85e-6 0.00 0.01

Residual 5.76e-4 0.02

Random effects are correlated. AIC= –2458.45; BIC= –2265.90; R-squared marginal= 0.77; R-squared conditional= 0.77. Significant (p < 0.05) fixed effects are
in bold.
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than 500 participants is a significant improvement in the literature
investigating relations between brain structure and arithmetic
skills, it remains limited and does not allow us to perform reliable
additional analyses with subgroups of participants (e.g., split by
age)26,27. Future well-powered studies with more specific age
groups are needed to investigate how the relation between brain
structure and arithmetic skills changes with age.
In sum, our results highlight brain-wide associations between

arithmetic skills and GMV of the left IFG and left MTG in the largest
sample of children and adolescents to date. To some extent, these
results conflict with previous BWAS of arithmetic skills that have
often identified the parietal cortex as a structural correlate of
individual differences in arithmetic skills. Here not only did we not
find any relation between arithmetic skill and GMV in the parietal
cortex, Bayesian analyses indicated evidence for a lack of relation.
More generally, our results emphasize the need to study
associations between math skills and brain structure using large
sample sizes, in line with current recommendations in the field26.

METHODS
Sample
Across all six datasets (see Table 1), exclusion criteria included
hearing deficit, magnetic resonance imaging (MRI) contraindica-
tion, history of neurological and psychiatric disorders, prematurity
less than 36 weeks, and medication affecting central nervous
system processing. Participants with a diagnosis of ADHD were
only excluded from set #1 and set #2, but not from set #3 to set #6
(see Tables S2 to S7 for proportion). Note that, although set #6
included a relatively high proportion of children and adolescents
with a clinical diagnosis of ADHD, participants were instructed to
not take stimulant medication for at least 24 h prior to the testing
sessions34. Also note that although set #4 and set #6 originally
included 18832 and 7934 participants, three participants from set
#4 and 11 participants from set #6 had to be excluded from the
present analyses because of missing data of interest. One
participant from set #1 also had to be excluded because of image
artifacts (see below). Informed written consent for study
participation was provided by parents and participation was
consented to by children. Data collection for set #1 and set #2 was
approved by a French national ethics committee (CPP Lyon Sud-
Est II), while data collection for set #3 to set #6 was approved by
the Institutional Review Board at Northwestern University in
the US.

Behavioral assessment
Children’s skills in arithmetic and in a range of other cognitive and
academic skills (vocabulary, reading, verbal and non-verbal IQ)
were assessed in all six datasets. The instruments of interest are
indicated in Table S1.
In all datasets, arithmetic skills were assessed using the

calculation subtest of the Woodcock-Johnson III Tests of Achieve-
ment (WJ-III)54 or the Basic Calculations Composite of the
Comprehensive Mathematical Abilities Test (CMAT)55. Both tests
are untimed paper- and pencil tests in which children solve
increasingly difficult arithmetic problems from the four operations
(addition, subtraction, multiplication, division). An aggregate score
including the four operations is used in the present study. Each
correct answer is scored 1 and each incorrect answer is scored 0.
Vocabulary skills were assessed in each dataset using vocabulary

subtests from either the Nouvelle Echelle Métrique de l’Intelligence-2
(NEMI-2)56 or the Wechsler Abbreviated Scale of Intelligence
(WASI)57. In both subtests, children have to orally define words
that are presented visually and orally. Each correct answer is
scored 1 and each incorrect answer is scored 0.
Reading skills were assessed in all datasets using the indice de

precision (CM) of the Alouette reading test58 (set #1 and set #2) or

the Sight Word Efficiency Subtest (SWE) of the Test of Word Reading
Efficiency (TOWRE)59 (sets #3 to #6). In the Alouette test, children
read a nonsensical text in 2 min. The CM is calculated by dividing
the number of words correctly read by the number of words in the
text (multiplied by 100). In the TOWRE, children have to
pronounce real words that are printed on paper within 45 s. The
level of difficulty increases from single syllables to multiple
syllables. A reading score is calculated based on reading accuracy
and number of words read.
Verbal IQ was measured in all datasets either using the

comparison subtest of the NEMI-256 or the similarities subtest of
the WASI57. In these subtests, participants have to find the
common characteristics between different verbal terms. Each
correct answer is scored 1 and each incorrect answer is scored 0.
Non-verbal IQ was measured in all datasets using the Matrix

subtests of the NEMI-256 and of the WASI57. In both tests, an
incomplete matrix of shapes was shown to the children, who had
to select the response option that completes the matrix. Each
correct answer is scored 1 and each incorrect answer is scored 0.

MRI data acquisition
In each of the six datasets, high-resolution anatomical scans were
collected during the MRI session. In set #1 and set #2, brain
imaging data were acquired using a 64-channel head coil and a
Siemens 3 T Prisma Scanner (Siemens Healthcare, Erlangen,
Germany). Parameters of the anatomical scan for set #1 and #2
were as follow: TR= 3500ms, TE= 2.24 ms, flip angle= 8°, matrix
size= 256 × 256, slice thickness= 0.90 mm, number of slices=
192, voxel size resolution= 0.875 mm isotropic. In sets #3 to #6,
brain imaging data were acquired using either a 16-channel or a
32-channel head coil and a Siemens 3 T Trio-Tim Scanner (Siemens
Healthcare, Erlangen, Germany). Parameters of the anatomical
scan for sets #3 to #6 were as follows: TR= 2300ms, TE= 3.36 ms,
flip angle= 9 °, matrix size= 256 × 256, slice thickness= 1mm,
number of slices= 160, voxel size resolution= 1mm isotropic.

VBM analyses
Structural images were analyzed using the Computational
Anatomy Toolbox (Cat 12)60 within the Statistical Parametric
Mapping Software Package (SPM 12)61. Preprocessing of all
images included the following steps. First, images were segmen-
ted into GM, WM, and cerebrospinal fluid (CSF) images using
Tissue Probability Maps provided in the CAT12 toolbox62. Second,
images were spatially normalized using DARTEL registration63 with
an MNI template also provided by the CAT12 toolbox60. At that
point, normalized and segmented images were systemically
checked for artifacts or orientation issues (one participant from
set #1 had to be excluded at that stage). Third, to account for brain
differences in size and volume, TIV was estimated. Data
homogeneity was also checked for possible outliers (no partici-
pant was excluded). Finally, GM images were spatially normalized
and smoothed with an 8mm3 Gaussian Kernel.
Based on previous functional neuroimaging studies on arith-

metic processing (see Introduction), we focused on seven
anatomically defined regions of interest (ROIs). These included
five ROIs from the automated anatomical atlas 3 (AAL3)64: the left
AG, the left MTG, the left IFG (including the left opercular and
triangular part), and the bilateral hippocampus. We also used the
Anatomy Toolbox (Version 2.265) to define ROIs in the left and
right IPS. Following several of our previous studies30, these IPS
ROIs consisted of voxels with at least a 50% probability of
belonging to one of the IPS subdivisions (hIP1, hIP2, and hIP3), as
defined in the Anatomy Toolbox.
In each ROI, differences in GMV between participants were

assessed by evaluating differences in mean voxel intensity from
GM images. Specifically, for each participant, we extracted the
mean voxel intensity within an ROI by averaging the values across
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all voxels within that ROI. Note that mean voxel intensities are not
absolute values of GMV (which typically take into account the
number of voxels in ROI and volume per voxel). However,
individual differences in mean voxel intensity are a proxy for the
relevant dimension in the current study, i.e., individual differences
in GMV (number of voxels in ROI and volume per voxel being held
constant across participants).
Mean intensity from each ROI was entered as the dependent

variable in several linear mixed-model analyses to evaluate the
significance of the relation between GMV and arithmetic skill,
taking into consideration the nested structure of the data. Fixed
effects systematically included TIV, ADHD status, age, and sex.
Additional models included vocabulary, reading, verbal and non-
verbal IQ as covariates to evaluate whether these affected a
potential relation between arithmetic skill and GMV. In all
analyses, random effects included type of arithmetic test (WJI-III,
CMAT) and scanning site (France, US). To preserve model
parsimony66 in all models and for each ROI, we checked the
improvement of model fit by including the slopes of the relation
between GMV and arithmetic skill across arithmetic tests and
scanning sites in addition to intercepts across sites. In all cases,
more complex models including random intercepts and random
slopes led to improvements in goodness of fit that were inferior to
5 % compared to models that only included random intercepts,
which speaks against using the most complex models with
random slopes67. This was also confirmed by likelihood-ratio
tests66. Therefore, we only allowed the intercepts to vary across
sites and arithmetic tests in all models. All analyses were
conducted using Jamovi version 2.3.2468 including the jmv69

and GAMLj modules70.
Furthermore, to quantify the strength of evidence for a lack of

relation between arithmetic score and GMV in each ROI, we used
the BayesFactor package71 in R72 to compute mixed-model
Bayesian analyses with mean voxel intensity as dependent
variable, arithmetic score, TIV, ADHD status, age, and sex as fixed
effects, and both arithmetic test and scanning site as random
effects. Default priors as well as random intercepts were used. The
BF associated with the relation between GMV and arithmetic skill
was estimated by comparing mixed-effect models differing only in
the presence or absence of the arithmetic score covariate. A BF < 3
was considered anecdotal evidence, a 3 < BF < 10 was considered
substantial evidence, a 10 < BF < 30 was considered strong
evidence, a 30 < BF < 100 was considered very strong evidence,
and a BF > 100 was considered extreme evidence that our data are
more likely under the alternate than the null hypothesis (i.e., BF10)
or under the null hypothesis than the alternate hypothesis
(i.e., BF01).
Finally, the relation between VBM and the arithmetic score was

also analyzed using an exploratory linear regression model across
the whole brain. Note that this analysis was exploratory because
the whole-brain regression did not take into account the nested
structure of the data. The variable of interest was arithmetic score
and covariates were measures of TIV, ADHD status, age, sex, and
scanning site. Clusters were considered significant if they survived
a voxelwise Family-Wise Error rate corrected threshold of p < 0.05
(with a minimum cluster size of 0.30 cc), either across the whole
brain or within an anatomical mask representing the union of all
anatomically defined ROIs (see above) used in the main analyses
(i.e., small volume correction). Results are shown in Supplementary
Fig. 1.

Exploratory cortical thickness (CT) analyses
In another set of exploratory analyses, we estimated CT73 using
the surface-based morphometry (SBM) processing pipeline in the
CAT12 toolbox60. Cortical thickness is a measure of the width of
gray matter, calculated as the distance between the white and
gray cortical surfaces. We used the default processing pipeline,

which included five steps. First, cortical thickness and central
surface for the left and right hemispheres were estimated using a
projection-based thickness (PBT) method74, which also includes
partial volume correction, sulcal blurring, and sulcal asymmetries
without sulcus reconstruction. Second, topological correction was
performed using a method based on spherical harmonics75. Third,
to enable inter-participant comparison, an algorithm for spherical
mapping of the cortical surface was used. Fourth, an adapted
volume-based diffeomorphic DARTEL algorithm was applied to
the surface for spherical registration76. The cortical thickness data
were finally smoothed with a 15 mm full-width half-maximum
Gaussian kernel. CT data were analyzed using linear regression
models across the whole sample of participants. This analysis was
also exploratory because it did not take into account the nested
structure of the data. The variable of interest was arithmetic score
and covariates were measures of TIV, ADHD status, age, sex,
scanning site, as well as measures of language and IQ. This
analysis did not show any relation between arithmetic score and
CT (voxel-level threshold of p ≤ 0.001, cluster-level threshold of
p ≤ 0.05, family-wise error corrected for multiple comparisons).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Raw MRI data are available on Open Neuro for sets #3 (https://openneuro.org/
datasets/ds001486/versions/1.3.1), #4 (https://openneuro.org/datasets/ds002424/
versions/1.2.0), #5 (https://openneuro.org/datasets/ds001894/versions/1.4.1), and #6
(https://openneuro.org/datasets/ds002886/versions/1.1.0). Individual behavioral and
ROI data for all datasets are available from Zenodo, as well as ROI masks shown in Fig.
1 (https://doi.org/10.5281/zenodo.7866555).
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