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Combining spatial wavelets and sparse Bayesian

learning for extended brain sources reconstruction
Samy Mokhtari, Jean-Michel Badier, Christian G. Bénar, Bruno Torrésani

Abstract—Objective: the accurate reconstruction of extended
cortical activity from M/EEG data is a difficult, ill-conditioned
problem. This work proposes to model unknown sources as
expansions on a wavelet system defined on the cortical surface,
and addresses resulting numerical optimization problems. The
objective is to obtain accurate source localization, together with
quantitatively relevant amplitude and time course.

Approach: Unknown sources are expanded on a system of
spectral graph wavelets (SGW) defined on the cortical surface.
Unknown wavelet coefficients are estimated using either vari-
ational or Bayesian formulations, involving priors that favor
extended source through sparsity in the wavelet domain: sparsity-
inducing regularization, or sparse Bayesian learning (SBL). These
approaches are tested and compared with concurrent approaches
on numerical simulations. The quality of reconstructions is
assessed using a set of complementary metrics.

Results: SGW-based approaches are able to identify accurately
extended sources. The combination with SBL is particularly
attractive, as it doesn’t involve hyperparameter tuning. It yields
accurate and robust results with respect to all considered metrics,
and performs remarkably well in terms of depth bias.

Conclusion: This paper demonstrates the usefulness of cortical
wavelets for reconstructing cortical activity from M/EEG data,
and the impact of sparse Bayesian learning in this context.

Significance: Being able to identify localization, depth and time
course of brain activity from M/EEG data is important in clinical
applications such as epilepsy, as it can improve the detection of
potential sources of seizures.

Index Terms—M/EEG inverse problem, extended sources,
spectral graph wavelets, Sparse Bayesian Learning.

I. INTRODUCTION

Magneto- and Electro-encephalography (M/EEG) are the

main (non-invasive) imagery modalities which allow, thanks

to their high temporal resolution, physicians and clinicians

to detect and localize cortical activities. From a given set

of sensors and measurements (which contain cortical activity,

brain background activity and sensor noise), the aim is to

reconstruct the sources activity. This is done by solving the

M/EEG inverse problem [1], [2], [3]. To address this challenge,

multiple methods have been designed, generally classified

in parametric versus imaging/distributed methods. While the

former considers a few equivalent current dipoles of unknown

locations, the latter considers a fine spatial discretization of the
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brain cortical surface, with ∼ 104 unknown cortical sources

with known and fixed locations. While inherently leading to

very under-determined inverse problems, distributed methods

can be expected to be better suited to large cortical activities.

However, results tend to depend strongly on prior information,

which is injected into the chosen approach through regulariza-

tion (in variational methods) or prior (in Bayesian approaches).

The goal of this paper is to introduce and study variational

and Bayesian approaches which rely on a spatial transforma-

tion, and aim at promoting extended solutions compressed

in a relevant transformed domain. We particularly focus on

a spatial wavelet transform which, combined with sparsity-

promoting regularizations/priors is indeed able to produce

extended solutions. While variational approaches suffer, as

often, from the difficulty of choosing appropriate values for

hyperparameters, we show that the integration of wavelet-

based regularization into the sparse Bayesian learning (SBL)

paradigm yields more robust solutions. Wavelet-based solu-

tions had already been studied in [4], where spherical wavelet

bases were used in the framework of variational approaches.

We rather rely here on spectral graph wavelets [5], which

provide expansions on an overcomplete spatial wavelet family,

and investigate corresponding variational and SBL solutions.

These solutions are compared with reference solutions using

extensive numerical simulations designed to mimic real evoked

potentials. Performance assessment is done through a set of

metrics, which include standard ones (implemented in special-

ized computer packages such as MNE-Python [6], which we

therefore use) as well as new ones, which we found convenient

in the context of sparse solutions.

Besides methodological contributions (in particular the use

of cortical wavelet frames and additional comparison metrics),

the main outcome of this paper is the fact that the combination

of cortical wavelet expansions for the brain activity with the

sparse Bayesian learning framework, provides relevant and

robust source estimates in the case of extended activity, which

do not rely on difficult parameter choices, and outperform

significantly concurrent approaches of the same family (vari-

ational and Bayesian, in distributed source models).

The paper is organized as follows. After the current in-

troduction, Section II presents reference solution that will

be used in this paper. The construction of wavelets and

the corresponding solvers are described in Section III, and

evaluation metrics are discussed in Section IV. Section V

presents the simulation protocol, and discusses and compares

results obtained using various solvers. Finally, Section VI is

devoted to discussion and conclusions. Preliminary results of

this work were presented in the conference paper [7].
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II. STATE OF THE ART AND REFERENCE SOLUTIONS

Suppose M/EEG data are measured at J0 sensors during L
time steps, and the cortical surface is discretized on N source

points. The M/EEG inverse problem starts with the observation

equation connecting cortical sources to measurements :

Z0 = G0S+B0 , (1)

where Z0 ∈ R
J0×L denotes space-time measurements, S ∈

R
N×L the unknown sources activity, B0 ∈R

J0×L the space-

time matrix of both observation noise and background brain

activity (zero-mean, with known covariance matrix ΣB0
),

and G0 ∈ R
J0×N is the leadfield matrix which encodes

electromagnetic propagation from cortex to sensors.

Given G0 and ΣB0
(and some additional assumptions),

M/EEG inverse problem aims to estimate sources S from

observations Z0. Before explicitly addressing observation

equation (1), data are often pre-processed to correct for noise

correlations between sensors; this can be done with a whiten-

ing and dimension reduction of the noise covariance matrix.

The resulting matrix B = ΥB0 ∈ R
J×L (where Υ ∈ R

J×J0

denotes the whitener) is thus white with zero mean and unit

variance. For the sake of simplicity, we will hereafter consider

whitened noise B, leadfield G and data Z matrices.

Several approaches are routinely used in literature to tackle

observation equation (1), which include among others dipole

localization [8], [9] or various forms of beamformers [10],

[11]. This article will be mainly concerned with variational and

Bayesian approaches for distributed source models (see [1]).

Most variational methods boil down to the following generic

optimization problem (2), which involves a quadratic data

fidelity term and a penalty term f(S) :

S∗ = argmin
S∈RN×L

[
1

2
‖Z−GS‖2F + f(S)

]
, (2)

where ‖ · ‖F stands for the Frobenius norm, i.e. the square

root of the sum of squared matrix coefficients.

A wide variety of penalizations/regularizations can be found

in literature. While the current paper does not aim to provide a

comprehensive review, we nevertheless recall the penalizations

that will be of most interest for the present study.

A. Closed-form solutions with quadratic regularizations

The most commonly used penalization is quadratic :

f(S) = ‖DS‖2F , (3)

for some symmetric, generally diagonal, invertible matrix D.

With the above penalization, the solution of the optimization

problem (2) admits a closed-form expression:

S∗ = D
−2

G
T
(
IJ+GD

−2
G

T
)−1

Z . (4)

Special cases of (3) include the MNE (minimal norm estimate)

solution [12] (D =
√
λIN ), and the wMNE (weighted minimal

norm estimate) solution [13], [14], where D is a weight matrix

intended to correct MNE depth bias. In e-LORETA [15], an

iterative algorithm yields a data driven estimate for D and

therefore a corresponding source estimate.

While closed form solutions are very convenient, MNE and

wMNE are however known to overestimate the spatial extent

of sources S, and underestimate corresponding amplitudes.

In addition, the parameter λ, linked to the source spatial

covariance matrix Γ = D
−2, is an extra parameter whose

fine tuning is not obvious. In many situations, the interest is

more focused on the spatial extent, namely source localization.

A number of post-processings are used to yield more accurate

support estimates. dSPM [16] and s-LORETA [17] are among

the most popular.

B. Sparse solutions through non-differentiable penalizations

To reduce the blurring effect, other penalizations f have

been proposed in literature, often promoting some form of

sparsity. There is now a vast literature on the subject, we refer

to [18] for a review and a comparison of some recent con-

tributions in the context of M/EEG inverse problem. In these

approaches, no closed form solution exists as the penalization

is no longer differentiable, and the optimization problem (2)

has to be solved numerically. One may first think of the

MCE (minimal current estimate) solution [19], [20], where

f(S) = λ‖S‖1 tends to yield very "spiky" source estimates,

with quite irregular time courses. One may also cite the VB-

SCCD approach [21], where f(S) = λ‖S‖TV = λ‖∇S‖1 .

The latter is based on total variation (TV), where ∇ is a

discrete gradient operator which has to be properly defined on

the surface mesh. TV-based solutions tend to enforce sparsity

in a transformed domain, here the gradient. A slightly modified

and sparser version, called sVB-SCCD [21], [22] is based upon

a combined ℓ1-TV penalization f(S) = λ (α‖S‖1 + ‖S‖TV ).
Hereafter, we shall rather consider the following form:

f(S) = λ (γ‖S‖1 + (1− γ)‖S‖TV) , γ ∈ [0, 1] (5)

In [22], α ∈ [0.01, 1], and α = 0.67 is advocated as a

reasonable choice for the tested scenarios. For both MCE

and sVB-SCCD, numerical algorithms have to be carefully

chosen, [22] advocates for ADMM. Regularization (5) allows

for an easier interpretation of the hyperparameters, where λ
plays the same role as for the MCE solver, while γ drives the

convex combination of ℓ1 and TV-penalizations. Generalized

TV penalization have been studied in [23].

Lastly, mixed norms (MxNE) combining sparsity in space

with persistence in time were proposed and studied in [24],

[25]. The regularization term is of the form f(S) = λ‖S‖21 =
λ
∑

k ‖S[:, k]‖2. Mixed norms were also used in combination

with time-frequency dictionaries [26], and combined with TV

spatial regularization [22].

C. Bayesian point of view

A major weakness of the above mentioned approaches is

the difficulty of tuning the hyperparameters involved in the

formulations (e.g. regularization parameter λ). In simple sit-

uations, Bayesian interpretations yield a relationship between

these parameters and quantities such as signal to noise ratio

(SNR), which can be guessed or measured from sensor signals.

For instance, wMNE may be interpreted in terms of a Maxi-

mum A Posteriori (MAP) estimation, modeling columns of B

(baseline) as iid samples from a normal distribution N (0, I),
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and columns of S as iid samples from a normal distribution

N (0,Γ), with Γ = λ−1IN in the case of MNE. The posterior

distribution of sources p (s(l)|z(l)) is multivariate normal,

with covariance matrix

ΣS = Γ− ΓG
T
(
ΣB +GΓG

T
)−1

GΓ . (6)

In the MCE case, modeling columns of S as iid samples from

a product of 1D Laplacian distributions with parameter λ−1,

the sources covariance matrix is given by Γ = 2λ−2IN . For

both MNE and MCE solutions, heuristics can be derived to

connect the regularization parameter λ to the square signal to

noise ratio ρ2 = Tr (ΣZ0
) /Tr (ΣB0

) (signal and noise levels

in the sensor domain are defined by the traces of the covariance

matrices ΣZ0
and ΣB0

) :

λMNE =
‖G0‖2F

(ρ2 − 1)Tr (ΣB0
)

; λMCE =
√
2λMNE (7)

Such heuristics are more difficult to obtain for penalization

terms f(S) that involve TV or mixed norms, and even worse

for combinations of norms that involve several parameters.

Remark 1: The above heuristics differ slightly from expres-

sions routinely used in reference softwares, which perform

similar calculations from whitened observations Z instead of

original ones Z0 as we do. We believe the expressions we use

are more relevant when interpreted in a Bayesian context.

D. Sparse Bayesian Learning

Beside MAP approaches, Sparse Bayesian Learning (SBL,

see for example [27], [28]) allows estimating simultaneously

the sources amplitudes and their covariance matrices, assumed

to be diagonal Γ = diag(γ1, . . . , γN ). SBL-based inverse

problems have recently been put into a unifying context [29],

for which most algorithms fall into the class of Majorization-

Minimization algorithms (MM, see [30] for a review). They

essentially boil down to solving the following non-convex

optimization problem, with respect to the source variances

γ = (γ1, . . . , γN ) ∈ (R+)
N

γ∗ = argmin
γ∈(R+)N

[
1

L
Tr

(
Z
T
ΣZ

−1
Z
)
+ ln det(ΣZ)

]
, (8)

where ΣZ =
(
IJ+GΓG

T
)

is the posterior covariance matrix.

Once Γ has been estimated, its value can be plugged in the

(wMNE closed-form) expression of S.

For the record, let us mention the alternative Bayesian

approach, based on the MEM (maximum entropy on the mean)

principle [31], [32], [33]. Remarkably, the MEM approach

leads to a smooth optimization problem in the domain of

sensors (instead of sources), hence of much lower complexity,

and for which simple and faster differentiable optimization

tools can be used. The wavelet techniques to be explained

below would easily be included in this approach.

III. USE OF A FAMILY OF CORTICAL WAVELETS

Approaches that exploit sparsity in the spatial domain, such

as dipole models or MCE/MxNE are well adapted to identify

focal activity. However, when the activity of interest has a

significant spatial extent, they produce estimates that are often

too sparse. In such situations, it is wise to search for solutions

that are sparse in a transformed domain. As an example, VB-

SCCD [18] optimizes the sparsity of a spatial gradient of the

solution. Similar approaches based on Laplacian and spherical

wavelet transform have been considered in [4], where authors

report improved results for localizing extended activity.

A. Problem formulation

Bases or redundant systems of waveforms have often been

used to describe time dependence and perform dimension

reduction in the time domain. Examples include wavelets [32],

[33], time-frequency systems, or waveforms estimated from

data. Such approaches do not seem to have been considered for

the spatial dependence of sources (except [4], and approaches

based upon cortex parcellation [32]), due to the lack of such

simple waveform families. In this section, we introduce and

use spatial wavelets for the M/EEG inverse problem.

We define wavelets as functions wk ∈ R
N on the cortex,

labelled by a vertex and a scale index. Concatenating these

vectors into a matrix W =
(
w1 . . . wNw

)T ∈ R
Nw×N ,

the family of wavelets forms a frame for functions on the

surface if W is left invertible (in other words the family

of wavelets is a complete set in R
N ). The construction of

such a frame will be detailed in the next section. W is the

analysis operator of the wavelet frame. A space-time matrix

S ∈ R
N×L can be written as S = W

T
A, in terms of

a wavelet-time coefficient matrix A ∈ R
Nw×L. Putting the

focus on the matrix A is called a synthesis-based approach,

as opposed to the analysis-based approach which rests on the

matrix WS ∈ R
Nw×L. In this synthesis-based setting, the

generic inverse problem (2) may be written as

A∗ = argmin
A∈RNw×L

[
1

2
‖Z−GWA‖2F + g(A)

]
(9)

with GW = GW
T the transformed leadfield matrix. This

formulation is very close to the usual one, the difference

being that the optimization is done in the synthesis coefficients

domain. Notice that when solving (9), the waveform system

is used only twice, for the computation of the transformed

leadfield matrix GW and for the synthesis of the solution S∗.

All reference solvers for the M/EEG inverse problem can be

transposed mutatis mutandis to this new setting. We stress that

the dimension of the transformed space (Nw × L) may be

significantly larger than the one of the original space (N×L),
as the number Nw of waveform atoms used to decompose the

solution may be, in the case of a redundant wavelet family,

several times larger (depending on the number of wavelet

scales considered) than the number of sources N .

B. Signals, Fourier transform and wavelets on graphs

We now detail the construction of the wavelet frame W

for the graph describing cortical sources. In the present work,

we decided to follow the spectral graph wavelets (SGW)

framework developed in [5].

Consider the cortical mesh graph (V , E , ω) (with vertex set

V , edge set E and weight function ω, the latter allowing to

define the graph adjacency matrix A). The graph Laplacian

is given by L = D − A, where D is the diagonal degree
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matrix, whose diagonal elements di equal the number of

edges connected to edge i. L is a real symmetric matrix (for

undirected graphs), and therefore possesses a complete set

of orthonormal eigenvectors {χ1, . . . , χN}, associated to real,

non-negative and increasing eigenvalues {λ1, . . . , λN}. The

minimal eigenvalue λ1 equals zero, with a multiplicity equal to

the number of connected components of the graph. The linear

transform F : X ∈ R
N 7−→ {F [X ](n) = 〈χn, X〉}1≤n≤N

may be interpreted as the graph analogue of the Fourier trans-

form. The orthonormality of the basis {χ1, . . . χN} gives the

Parseval formula and the inverse transform: for any X ∈ R
N ,

‖F [X ]‖ = ‖X‖ and X =
∑N

n=1 F [X ](n)χn.

Following [5], a graph analogue of the wavelet transform

can be derived from the above graph Fourier transform. Given

a dilation parameter s > 0 and a vertex n, the graph wavelet

transform of a signal X ∈ R
N may be defined as follows :

W [X ](s, n) = 〈Ψs,n, X〉 , (10)

with Ψs,n the wavelet atom associated to the vertex n and

dilation parameter s. In [5], these atoms Ψs,n are generated in

the spectral domain, as the graph Fourier transforms of Dirac

functions centered on each vertex, multiplied by a band-pass

positive kernel g : for any l ∈ {1, . . . , N} :

F [Ψs,n] (l) = g (sλl) 〈χl, δn〉 (11)

As outlined in [5], such a construction may lead to an ill-

conditioned matrix for the synthesis operator (frame vectors

associated to small scales s may become numerically parallel).

To bypass this difficulty, [5] suggests to encapsulate the low-

frequency component of signals through an ad hoc "scaling

function" Φn (labelled by a vertex index), defined indepen-

dently, in the spectral domain, via a low-pass kernel h :

F [Φn] (l) = h(λl) 〈χl, δn〉 (12)

For the specific design of both low-pass h and band-pass g
kernels, we refer the reader to [5].

C. Wavelet-sparse solutions

We now consider the inverse problem formulated in the

wavelet domain, using the synthesis point of view. This

requires computing the transform-domain leadfield matrix

GW = GW
T . This is the most costly part of the approach.

1) Variational formulations: Denote by A=[AΨ,AΦ] the

vector of multiscale (wavelet+scaling) synthesis coefficients:

S = W
T
A = Ψ

T
AΨ +Φ

T
AΦ .

In addition to classical regularizations in the sources or gra-

dient domains, the wavelet domain optimization problem (9)

will hereafter be solved using two different penalizations :

gMNE(A) = ‖DA‖2F , gMCE(A) = λMCE‖A‖1 (13)

The first one will be coupled with a wavelet-SBL approach

to estimate the weight matrix D, while the second aims at

promoting sparsity in the wavelet coefficient domain.

2) Sparse Bayesian Learning approaches: The wavelet

version of SBL is also a simple transposition of classical SBL

approach, and yields the non convex problem

γA
∗= argmin

γA∈(R+)Nw

[
Tr
(
CZΣZ(γA)

−1
)
+lndet(ΣZ(γA))

]
(14)

where ΓA = diag(γA) is the prior covariance matrix of

wavelet synthesis coefficients, ΣZ(γA) = IJ + GWΓAG
T
W

is the posterior covariance matrix of observations, and CZ =
1
L
ZZ

T is the sample covariance matrix. Once γA
∗ has been

obtained, estimated sources are obtained via

A∗ = Γ
∗
AG

T
W

[
ΣZ(γA

∗)
]−1

Z , S∗ = W
T
A∗ . (15)

This approach will be called sgw-SBL or w-SBL.

IV. ANALYSIS OF EVALUATION METRICS

To assess, qualitatively and quantitatively, the performances

of any inverse problem model for the distributed sources

framework, evaluation metrics are mandatory. Given a sim-

ulation case where the ground truth is known, one may try to

encapsulate, with well-chosen metrics :

• purely-distance based information (spatial extent of

true/estimated sources, spatial deviation or discrepancy be-

tween these two sets...);

• information related to the number of true/estimated active

sources, the number of true positives/negatives and false

positives/negatives ;

• amplitude-based information ;

• or a mix of these features.

Beside these various choices and associated metrics, one

shall first state which physical value will be studied under

these scopes. Indeed, one could study straightforwardly the

sources time-dependent amplitudes, their time-dependent ab-

solute or squared value, or rather a time-average of these

amplitudes on a given time segment of interest. One may also

consider either normalized amplitudes or not. In the following,

to facilitate interpretation and comparisons among all consid-

ered inverse problem solvers, all chosen metrics/scopes will be

applied on time-averaged values, as hereafter detailed : given a

space-time matrix S∗ ∈ R
N×L gathering the amplitude maps

for all time snapshots, a time-average 〈S2
∗〉 is computed on a

prescribed time segment of interest denoted by soi, thus leading

to an amplitude map A ∈ R
N describing the amount of energy

contained in the segment of interest :

A =
√
〈S2

∗〉soi (16)

In this section, we lay down and describe the several evaluation

metrics that will be used to assess the models performances.

To this end, let us first detail some notations.

Notations: from now on,

• I denotes the index set of true active sources; its cardinality

is denoted by ♯I .

• Îα denotes the index set of estimated active sources, defined

with respect to a threshold parameter α > 0 ;

• |s̃i| = 1∑
N
k=1 |sk|

|si| denotes the normalized (positive, sum

to 1) sources amplitudes;

• ‖ · ‖ denotes the 3D Euclidean norm;

• ri denotes the 3D vector position of source # i.
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A. Region Localization Error : purely distance-based metrics

We start with the classical Region Localization Error (RLE).

Given a thresholding parameter α > 0 (by default a percentage

of the maximum value), and assuming I∩ Îα 6= ∅ and Îα 6≡ I ,

the RLE metrics is computed as follows :

RLE(α) =
1

2 ♯I

∑

k∈I\(I∩Îα)

min
l∈Îα

‖rk − rl‖

+
1

2 ♯Îα

∑

l∈Îα\(I∩Îα)

min
k∈I

‖rk − rl‖ (17)

RLE combines equi-balanced information related to, on the

one hand, the average smallest distance between the set of

unexplained true sources/false negatives
(
I \

(
I ∩ Îα

))
(and

its relative population) and the estimated sources Îα, and on

the other hand, the average smallest distance between the set

of "false" estimated sources/false positives
(
Îα \

(
I ∩ Îα

))

(and its relative population) and the true sources.

Notice that RLE does not measure any "distance" between

true and estimated sources amplitudes, and is of course sensi-

tive to the amplitude thresholding parameter α.

B. Spatial Deviation (SD) error

Spatial Deviation (SD) is another distance-based metrics,

which interestingly involves an amplitude-weighting. Given a

true active source in ri, SDi measures the spatial spread of

the estimated sources around ri, following

SDi =

N∑

p=1

|s̃p| ‖rp − ri‖2, (18)

Despite amplitude-weighting, SD is, like RLE, blind to a possi-

ble discrepancy between reference and estimated amplitudes.

In the case of a single true source, this metrics reaches

its optimal value (zero, without any thresholding) when the

estimated sources are concentrated in the true location ri.
In the case of spatially-extended sources, the optimal value

of the SD metrics is no longer zero. Indeed, for all true point

sources ik ∈ I (♯I ≥ 2), one has, for an optimal reconstruction

(with respect to localization) :

SDopt
ik

=
∑

p∈I

|s̃p| ‖rp − rik‖2 (19)

One may derive lower and upper bounds for this optimal value

SDopt
ik

from the term 1
♯I

∑
p∈I ‖rp − rik‖2 = SDref

ik
, which

corresponds to the SD error for spatially-extended sources

with identical amplitude. For a sub-optimal reconstruction with

respect to localization, one may show that :

SDik = (1− β)SDopt
ik

+ β SDik|Ic (20)

where β =
(N−♯I)Save|Ic

NSave
, and Save|Ic refers to the average

absolute amplitude on the complementary index set Ic. Thus,

the SD metrics for each point source ik ∈ I of a spatially-

extended activity is the convex combination of :

• an optimal SD error SDopt
ik

, where only true sources loca-

tions are reconstructed by the model (i.e. no false positives);

• an SD error SDik|Ic computed by only taking into account

false positives sources i /∈ I .

The weight β in (20) takes into account the relative popula-

tion of "false positives" (N − ♯I), and their average amplitude

(relatively to the global average). We stress that, unlike the

RLE metrics, SD is blind to the position of false negatives, as

their zero-amplitude do not affect the SD error value.

To derive a global metric from the local SD value, we shall

hereafter consider the maximum difference :

δSD = max
i

|SDest
i − SDref

i | (21)

C. Depth metrics and distance between centers of mass

To investigate the possible depth bias phenomenon, well-

known for the MNE solution, one may compare the local

orthogonal distance to the inner-skull for both estimated and

reference sources centers of mass, assuming that the brain

curvature has a minimal impact on these measurements.

We stress that these centers of mass may either be restricted

or not to the graph describing cortical sources, thus affecting

the interpretation of the depth bias. In addition to depth,

it is also interesting to keep track of the 3D Euclidean

distance between estimated and reference centers of mass,

as a large distance may affect the interpretation of the depth

metrics. Notice that, even if these metrics take into account

the respective estimated and reference amplitudes to compute

centers of mass, they do not measure any "distance" between

the two amplitudes.

D. Entropy, number of active sources, and spatial extent

Shannon entropy has been used in signal processing lit-

erature as a measure of dispersion. Unlike SD, entropy

does not measure dispersion away from a reference loca-

tion, and rather focuses on spreading/concentration. It is

well suited to deal with a discrete set of sources am-

plitudes and possibly not-connected active cortical regions.

Indeed, let us consider the discrete set of probabilities{
P
(
X∆ ≡ sourcei

)
= |s̃i|

}
1≤i≤N

. Its entropy is given by:

HX∆ = −
N∑

i=1

|s̃i| ln |s̃i| (22)

and its link with the number of active sources N can be made

explicit (using the normalized amplitudes s̃i) as:

HX∆ =ln(N)+
1

NSave

N∑

i=1

[Save ln (Save)−|si| ln |si|] (23)

Thus, Shannon entropy mixes information related to the
number N of considered active sources, their average ampli-

tude value Save, and the deviation of each amplitude term

|si| ln |si| from its average value. Shannon entropy may then

be compared to its "reference" counterpart, where Nref active

sources are for instance known to share the same amplitude.

Indeed, in such a case, one has (with Href

X∆ = ln (Nref )):
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HX∆ = Href

X∆ + ln

(
N

Nref

)

+
ln (Save)

N

N∑

i=1

(
1− |si| ln (|si|)

Save ln (Save)

)
(24)

For connected active cortical regions, to link the Shannon

entropy to an estimate of the sources spatial extent, one

may consider the previous discrete set of probabilities as

sorted with respect to the increasing Euclidean distance to

the sources center of mass. Then, considering that the spatial

discretization steps ∆xi between two consecutive sources are

uniform, denote by dN = N∆x the distance of the furthest

estimated active source with respect to the center of mass.

Thus, one may re-write equation (24) as follows :

HX∆ = Href

X∆ + ln

(
dN
dref

)

+
∆x ln (Save)

dN

N∑

i=1

(
1− |si| ln (|si|)

Save ln (Save)

)
(25)

Shannon entropy thus encapsulates both population-based

(or distance-based) and amplitude-based information. Notice,

however, that it does not measure any "distance" between Save

and its reference counterpart Sref
ave , which does not take part

in Href

X∆ computation for identical sources.

E. Binary classifier metrics : Precision, Recall, F1 score

The models performances may also be assessed using bina-

rization of amplitude maps, through classical scores such as:

the precision score, which measures the ability of a classifier

not to label as false positive (FP) a sample that is truly negative

(TN); the recall, which measures the ability of the classifier

to find all the positive samples :

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(26)

Precision and Recall range between 0 and 1. The F1 score

is the harmonic mean of Precision and Recall, and thus

deteriorates as soon as one of them decreases :

F1 = 2× Precision × Recall

Precision + Recall
∈ [0, 1] (27)

These scores are known to be more robust to unbalanced

sets than Receiver Operator Curves (and their associated Area

Under the Curve).

F. Wasserstein distance : an Optimal Transport metrics mea-

suring a distance between estimated and reference amplitudes

To take into account a "distance" between estimated and ref-

erence sources amplitudes, one may turn towards an Optimal

Transport metrics, such as Wasserstein distance [34]. Given :

• a reference distribution µa =
∑N

i=1 aiδxi
, with weights ai

(positive, sum to 1) associated with true sources amplitudes;

• an estimated distribution µb =
∑N

i=1 biδyi
with weights bi

(positive, sum to 1) associated with estimated amplitudes;

one may compute the minimum cost (with respect to a distance

d) to move the estimated distribution µb such that it coincides

with the reference one µa. This minimum cost is given by the

following optimization problem. Given p ∈ [1,+∞[, set

Wp(d; a, b) = min
γ ∈ R

N×N



∑

i,j

γi,jd (xi, yj)
p




1
p

(28)

under the constraints that γ.1RN = a and γT .1RN = b; γ ≥ 0.

The solution of the above optimization problem (28) results in

the Wasserstein distance Wp(d; a, b). In the above definition,

γ refers to any transportation map from R
N to R

N which

preserves mass between the distributions µa and µb. The

"distance" between estimated and reference amplitudes is thus

encapsulated within the constraints on γ, while the geometrical

distance between estimated and reference sources is tracked

by d. No thresholding is required in the definition of the

Wasserstein distance, only a normalization of reference and

estimated amplitudes. In the following numerical experiments,

the 1-Wasserstein distance W1 is used, with respect to the

Euclidean distance, to assess the model performances in terms

of both amplitude and localization.

V. NUMERICAL EXPERIMENTS

A. Wavelet Frame design

For the current paper and the following performance eval-

uation section, we hereafter consider up to 3 wavelet scales,

in addition to the low-frequency component recovered by the

scaling function. Following [5], wavelets resulting from the

band-pass kernel g are defined in a piecewise manner : cubic

spline within the bandwidth, and 2nd degree polynomial in-

crease and decrease outside. This results in a common quality

factor (Q ≈ 1.38), and rather close frame bounds 0.71 and

1.41. As can be seen on Fig. 1, the finest wavelet is designed

to that its bandwidth catches the largest eigenvalue λmax.

All frequencies below the green bandwidth are then either

encapsulated with the low-frequency component, or taken

into account with additional wavelet scales, whose dilation

parameters s are spread along a logarithmic scale.
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wavelet λ= 3.132
wavelet λ= 6.264

Fig. 1. Distribution of spectral graph wavelets along the graph Laplacian
spectrum - vertical lines indicate the bandwidth

B. Experimental setup

In the current paper, we focus on simulated data, and for the

sake of reproducibility and future comparisons, we decided to

stick as much as possible to datasets and resources included

in the MNE-Python software package [6].
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1) Simulation protocol: Brain geometry, leadfield and base-

line covariance matrices were imported from the "audiovisual"

dataset, which contains EEG/MEG evoked data from one

subject performing an audiovisual experiment. MNE-Python

was also used to simulate a uniform brain activity over patches

of two different sizes, generated using parcels from Destrieux

atlas (74 × 2 parcels). Examples are given in Fig. 3. Time

courses for source activity (see Fig. 2) were given an evoked

response shape, still using MNE-python resources. A real

spatial covariance matrix was imported from the MNE-python

database to simulate baseline data, and added to simulated

evoked sensor data. To reproduce the classical 1/f behavior

of the noisy signal Power Spectral Density, an AR model was

fitted on raw experimental data, and simulated evoked time

series were filtered using the corresponding IIR filter. For each

case, 320 epochs were simulated, and the trial average was

used for the inverse problem.

2) Compared solutions: In the results section below, we

compared a number of solutions described in Section II

together with wavelet based solutions proposed in this paper.

The variational reference solutions include MNE (quadratic

penalization f(S) = λMNE‖S‖2F , closed form solution), MCE

(f(S) = λMCE‖S‖1, solved using the FISTA algorithm),

sVB-SCCD (f(S) = λMCE (γ‖S‖1 + (1− γ)‖S‖TV ), solved

using the ADMM algorithm), with γ = 0.40 (L1-TV1) and

γ = 0.60 (L1-TV2). These are compared with (sg)w-MCE 3

(g(A) = λMCE‖A‖1, 3 wavelet scales, solved using FISTA)

and (sg)w-SBL 1/2/3 (see equations (14-15)), using 1 to 3

wavelet scales and Champagne algorithm (100 iteration steps).

Remark 2 (Regularization of the noise spatial covariance

matrix): despite a whitening and dimension reduction process

on the noise spatial covariance matrix, most inverse problem

solvers require a regularization step of the covariance matrix

before solving the inverse problem ; interestingly, that is

not the case for solvers using Sparse Bayesian Learning

(SBL) approaches, in which the cortical source variances are

"learned" through an optimization algorithm.
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Fig. 2. Time course signal designed to mimick an evoked response

For the following model performance evaluation, all EEG

and MEG channels were considered as input data for the

inverse problem. Given two specific spatial extents (10 and

20 mm from each parcel center, see Fig. 3) for the simulated

activity, noisy evoked-like response activities were generated

extent 10 mm extent 20 mm
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Fig. 3. Reference cortical activity # 1 (over 148) simulated from Destrieux’s
brain parcellation - extent 10 mm (upper left) and 20 mm (upper right) and
SNR values boxplot (lower)
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Fig. 4. RLE (upper) and entropy (lower) for the 10 mm case - quartiles q1
(dashed), q2 and q3 (dashed) are represented for each solver

for each of the 148 cortical regions of Destrieux’s brain

parcellation, with rather similar SNR, as displayed on Fig. 3.

Given this simulation protocol, all the considered solvers

were compared and challenged with respect to the previously

detailed metrics. To facilitate interpretation and comparison,

let us start with all threshold-based metrics.

Threshold-based metrics (without binarisation)

For all threshold-based metrics (RLE, Shannon entropy,

nb. active sources and spatial extent), (sg)w-SBL outperforms

significantly the other solvers, from low threshold values, as

can be seen on Fig. 4 and 5 for the 10 mm case : (sg)w-SBL
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Fig. 5. Nb. active sources (upper) and spatial extent (lower) - quartiles q1
(dashed), q2 and q3 (dashed) are represented for each solver
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Fig. 6. RLE (upper) and entropy (lower) - quartiles q1 (dashed), q2 and q3
(dashed) are represented for each solver

minimizes (with its tight q1, q2, q3 quartiles) the RLE metrics,

and reaches the fastest the reference value for the other

metrics. Notice, however, that (sg)w-SBL 1 deviates from the

reference solution when amplitude thresholding exceeds 40%.

Similar results are obtained for the 20 mm case (see Fig. 6-

7), where (sg)w-SBL reaches the reference extended solution

even quicker. As for w-MCE 3, which promotes sparsity in the

synthesis wavelet coefficients domain, its outperforms L1-TV

solvers with respect to RLE and spatial extent, and MCE with

respect to the number of active sources.

Geometrical metrics with amplitude weighting

Fig. 8 displays, for the 20 mm case, the boxplots obtained

for two geometrical metrics with amplitude weighting : the

maximum difference between reference and estimated SD

vectors (δSD) and Euclidean distance between 3D centers

of mass. Again (sg)w-SBL clearly minimizes these metrics.
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Fig. 7. Nb. active sources (upper) and spatial extent (lower) - quartiles q1
(dashed), q2 and q3 (dashed) are represented for each solver
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Fig. 8. Boxplots for geometrical metrics with amplitude-weighting : δSD

(upper) and distance between 3D centers of mass (lower)

Furthermore, given the small distance between centers of mass

obtained with (sg)w-SBL, the depth metrics is less affected by

the skull curvature. w-MCE 3 solver comes in second position

behind (sg)w-SBL, improving a bit MCE results.

Fig. 9 focuses on the depth metrics for the estimated

centers of mass (here restricted to the cortex graph). Again,

(sg)w-SBL exhibits the best performances, in both cases.

Note that one retrieves the classical MNE depth bias towards

superficial solutions. L1-TV (1 and 2) solvers also exhibit very

unsatisfactory results, with an even stronger bias.

Fig. 10 displays the evolution of the difference between

reference and estimated depth (for a c.o.m. restricted to the
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Fig. 9. Boxplots for geometrical metrics with amplitude-weighting : depth
of centers of mass (restricted to the graph)
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Fig. 10. Depths of centers of mass (restricted to the graph) with respect to
reference depth

graph) with respect to the reference depth. While MNE and

L1-TV solvers clearly exhibit a linearly evolving bias with the

reference depth, (sg)w-SBL shows very good and stationary

performances throughout all the tested samples and depths.

For clarity, MCE and w-MCE 3, which did not exhibit good

results in Fig. 9, were not included in Fig. 10.

Binary classifier metrics

Now considering binary statistical maps built from reference

and estimated energy maps, Fig. 11 displays the Precision,

Recall and F1 score of the multiple tested solvers. (sg)w-SBL

clearly exhibits, by far, and from low threshold values, the best

performances with respect to Precision and F1 score. Both

scores are rapidly increasing with the threshold value. The

recall decay is also more contained with (sg)w-SBL.

1-Wasserstein distance between amplitudes maps

To assess solvers performances with respect to amplitude re-

construction, Fig. 12 displays, for the 20 mm case, boxplots for

the 1-Wasserstein distance between normalized reference and

estimated amplitudes maps. Once again, (sg)w-SBL minimizes

by far this amplitude and geometry-based metrics. Note that

L1-TV best results with respect to the 1-Wasserstein distance

are better than (sg)w-SBL, but once again the huge results

dispersion undermines the robustness of this solver.

l2-norm conservation between amplitudes maps

To further evaluate solvers quantitative performance with

respect to amplitude, Fig. 13 displays the ratio of l2 norms

between (un-normalized) reference and estimated amplitudes

maps averaged on a time segment of interest A =
√
〈S2

∗〉soi.
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Fig. 11. Statistical scores with respect to threshold
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Fig. 12. 1-Wasserstein distance boxplot - extent 20 mm

Similarly to the Wasserstein metrics, (sg)w-SBL (especially

with 3 wavelet scales) again outperforms the other solvers,

with tight q1, q2, q3 quartiles very close to the ideal unit value.

w-MCE 3 then yields the second best results after (sg)w-SBL

with respect to this purely amplitude-based metrics.

The impact of SNR on L1-TV solvers and hyperparameters

Finally, in order to better comprehend the surprisingly

unsatisfactory results obtained with L1-TV solvers, one may

investigate the impact of SNR on the solvers performances.

Fig. 14 displays SNR impact on the 1-Wasserstein distance

between normalized amplitudes maps. Thus, given the con-

sidered heuristics for the hyperparameters involved in L1-TV

solvers, higher SNR values (≥ 4) appear necessary to see

results improve from the MNE solution, while (sg)w-SBL

performances take the lead from low SNR values.

Visualization of a reconstructed activity
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Fig. 13. l2-norm ratio boxplot on amplitudes A=

√
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Fig. 14. 1-Wasserstein distance with respect to SNR - extent 20 mm

Finally, Fig. 15 displays the visualization of a reference and

reconstructed activity (time-dependent absolute amplitude),

for patch #128 (SNR = 4.14, 20 mm extent case), which

corresponds to the first quartile for the w-SBL 3 solver with

respect to the 1-Wasserstein distance. For snapshots taken

at peak-amplitude time, (sg)w-SBL recovers the true source

location, with a good spatial extent and a time course close to

the reference one. L1-TV solution deviates notably from the

true location (from medial to parietal view), and is not able

to reproduce the reference time course.

C. Discussion

From these extensive simulations of extended (non-focal)

sources, one may note that, as expected, (w)MNE tends to

produce source estimates that are too diffuse, and require

post-processing (not addressed here) to yield fairly reliable

source localization. MCE produces source estimates that are

extremely focal, and is therefore not suitable for extended

sources. Surprizingly enough, L1-TV approaches such as sVB-

SCCD turn out to be extremely unstable, and often yield

source estimates that are too extended and superficial. The

simulation protocol was expected to favor these approaches.

Our interpretation is that the two hyper-parameters involved

there are difficult to tune, and the heuristics used in this work

is not sufficient (to our knowledge, no systematic approach

has been proposed in the literature). Wavelet-based solvers are

indeed able to reconstruct such sources, more accurately and

robustly than the other tested approaches. More specifically,

(sg)w-MCE (ℓ1 penalization on wavelet coefficients) yields

fairly good estimates, that compare favourably to the state of

Fig. 15. Reference (upper) and reconstructed (lower : w-SBL 3 then L1-TV2)
activity - patch 128 - parietal and medial views - extent 20 mm

the art for most evaluation metrics tested here. It however

requires choosing an hyperparameter value, for which the

heuristics derived in this paper seems relevant. The sparse

Bayesian learning (sgw-SBL) approach, which provides an

estimate for the wavelet covariance matrix together with

wavelet coefficients, turns out to outperform consistently and

significantly other approaches, with respect to a set of metrics

designed to capture various aspects and possible artifacts.

Quite remarkably, the sgw-SBL approach tends to perform

quite well in terms of depth bias, which is a major difficulty

in the M/EEG inverse problem.

We also plan to study similar approaches that use (or-

thonormal) wavelet bases on the cortical surface, instead of

overcomplete wavelet frames as we do here. In the sgw case,

scaling coefficients (low spatial frequencies) turn out to be

almost systematically set to zero or very small values by the

solvers (sgw-MCE or sgw-SBL). While relevant in practice,

we conjecture that this could be a side effect of the redundancy

of the wavelet frame, which we would like to confirm. We

also plan to study the problem of hyperparameters tuning, in

particular for L1-TV models.

VI. CONCLUSIONS

This paper proposed a new approach for the M/EEG inverse

problem, in the framework of the distributed sources model,

which exploits sparsity in the spectral graph wavelet (spa-

tial) domain. Such wavelets forming an overcomplete system,

wavelet expansion of the solution is not unique. We have

chosen to focus on the so-called synthesis approach, where
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optimization is performed with respect to wavelet coefficients.

In variational approaches, the unknown (solutions, or wavelet

coefficients) are obtained as solutions of an optimization

problem, for which hyperparameters have to be chosen. The

sparse Bayesian learning paradigm was adapted to the con-

sidered wavelet setting, leading to an optimization problem

where hyperparameters are also optimized. These approaches

were compared with standard ones using numerical simula-

tions of joint EEG/MEG data provided by the MNE-python

software. These extensive simulations and the numerous and

discussed evaluation metrics show that the combination of

spatial wavelets with sparse Bayesian learning brings a real

improvement for extended brain sources reconstruction, both

in terms of localization and quantitative estimation.

In a forthcoming paper, we will exploit the proposed so-

lutions on real data for specific applications, and investigate

evaluation of M/EEG source localization using companion

intracerebral data.

Being able to identify localization, depth and time course

of brain activity is important in clinical applications for all

diseases that require source localization from MEG or EEG

measurements. Our results show that the proposed approach

improves significantly the state of the art for the reconstruction

of extended brain sources.
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