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Leaching of chemicals and DOC
from tire particles under simulated
marine conditions Q1
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Tire wear Q7particles (TWPs) represent one of the major anthropogenic pools of
particles ending up in the environment. They contain a large variety of chemicals, a
part of which may be released into the environment through leaching, although
the influence of sunlight and other environmental factors during this process is still
unclear. This laboratory study compares the leaching of organic compounds from
TWP in seawater in the dark and under artificial sunlight for 1) cryo-milled tire tread
(CMTT), 2) ‘virgin’ crumb rubber (VCR) and 3) crumb rubber immersed in the sea
for ≥12 months prior to the experiments (WCR). Leachates were analyzed for
dissolved organic carbon (DOC) and 19 tire-derived chemicals, benzothiazoles
and phenylguanidines as well as phenylendiamines by liquid chromatography-
high resolution-mass spectrometry. For DOC and most chemicals, the amounts
released decreased in the order CMTT > VCR >WCR and increased when leaching
occurred under artificial sunlight. sunlight also led to the formation of
23 transformation processes related to 1,3-diphenylguanidine (DPG). In
contrast, 4-hydroxydiphenylamine (4-HDPA) and N-(1,3-dimethylbutyl)-N′-
phenyl-p-phenylenediamine quinone (6-PPDQ) were found in lower amounts
upon sunlight exposure. The 19 quantified chemicals, however, did only account
for 6%–55% of the DOC in the leachates; most of the DOC, thus, remained
unexplained. This study highlights that the amount of chemicals leached from tire
particles depends upon their aging history and may be modulated by
environmental conditions.

KEYWORDS

photodegradation, transformation products (TPs), ocean, automobile, additives,
antioxidants, vulcanization accelerators Q8

1 Introduction Q9

Tire wear particles (TWPs) originate from the abrasive friction between roads and the
treads of tires from car, truck, bicycle or e-scooter tires. The particles originating from this
process are usually further referred to as tire and road wear particles (TRWP), since they
include road materials as well as the original tire material.

Tires are commonly made of styrene-butadiene-rubber (SBR) and butadiene rubber
(BR) and can contain high amounts of filling agents, vulcanization agents (e.g.,
benzotriazoles and benzothiazoles) and other additives, such as zinc (Wagner et al.,
2018). Zn has therefore previously been proposed as an elemental marker for the
detection of TWP in particulate samples (Klöckner et al., 2019). Currently, a widely used
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antioxidant, N-(1,3-dimethylbutyl)-N′-phenyl-p-
phenylenediamine (6-PPD) and its derivative 6-PPD quinone
(6-PPDQ) receive growing attention, since a study reported 6-
PPDQ to induce acute mortality in juvenile coho salmon
(Oncorhynchus kisutch) (Tian et al., 2021), with a revised LC50

level of 95 ng/L (Tian et al., 2022). Interestingly, a follow-up
study confirmed that short-term (<24 h) exposure to TWP
leachate was acutely lethal in adult coho salmon, but not in
adult chum salmon (Oncorhynchus keta), a closely related
species, raising questions concerning the mechanisms behind
these inter-species differences (McIntyre et al., 2021).
Environmental data on TWP additives are still scarce and
laboratory scale experiments have been used to describe the
chemical composition of tire leachables (Müller et al., 2022).
A study investigating TWP additives in surface waters of an
urban tributary in Australia reported a maximum total
concentration of 2,760 ng/L for 15 chemicals after a storm
event, with 1,3-diphenylguanidine (DPG) being the dominant
compound (1,079 ng/L). While a correlation between the
presence of SBR, BR and additives was observed, the authors
noted that for most of the detected chemicals other sources than
tires exist and might have contributed to the observed
concentrations (Rauert et al., 2022).

Estimations on the amount of TRWP generated by
automotive traffic are available (Baensch-Baltruschat et al.,
2020; Wagner et al., 2022), but the percentage to which it
reaches the marine environment is not clear, yet. It, certainly,
depends on regional aspects such as the distance between urban
source regions and the receiving ocean and on their connectivity.
The leaching of chemicals from tire particles can be influenced by
biotic (biodegradation) and abiotic (e.g., oxidation, mechanical
degradation) factors (Wagner et al., 2022). Photodegradation
studies on TWP have been performed to investigate the
influence of photoaging on both particles and related
chemicals (Unice et al., 2015; Fohet et al., 2023). These studies
were, however, performed in dry conditions and dedicated
studies simulating marine environmental conditions have not
been published, yet.

Therefore, our objective was to investigate the leaching behavior
of three different TWP materials in natural seawater when exposed
to artificial sunlight to simulate processes expected to occur when
tire particles reach the marine environment. This study was
performed with cryo-milled tire tread (CMTT) and end-of-life
tires ground into crumb rubber granulate for use in artificial
sports fields.

2 Material and methods

2.1 Chemicals

All chemicals were of analytical grade and used as received
without further purification. Methanol, acetonitrile, and formic acid
for UPLC-MS analysis were provided by Biosolve (Valkenswaard,
Netherlands) whereas ultrapure water was obtained from a Merck
MilliQ Integral 5 system (Merck, Darmstadt, Germany). All
standards used are listed in Supplementary Table S1, with purity
grade and supplier information.

2.2 Artificial sunlight exposure

Surface seawater was collected in the Bay ofMarseille (France) in
July 2021 using pre-combusted glass bottles, then filtered in the
laboratory through a 0.22 μm polyethersulfone (PES) filter pre-
rinsed with Milli-Q water and filled into 50 mL quartz tubes
containing 1 g/L of the test material; i.e., 50 ± 2 mg per tube. The
samples were exposed in laboratory conditions to artificial sunlight
using a Suntest CPS + system (ATLAS) equipped with a daylight
filter according to (Para et al., 2010). Irradiance intensity was set at
300 W/m2 (300–800 nm) and temperature at 22°C ± 2°C, both
representing environmental conditions as encountered in
Marseille (France) during summer (reference data from July
2021: monthly mean solar radiation = 298 W/m2, monthly mean
surface seawater temperature = 22°C). The quartz tubes were hereby
partially submerged in a basin connected to a Minichiller® (Huber
Kältemaschinenbau AG) inducing a constant water flow to ensure
the maintenance of the desired temperature. In parallel, samples
were kept under dark conditions by using the same experimental set-
up and temperature, but in complete darkness. At each sampling
timepoint, three replicates of UV exposed and dark condition
samples were sacrificed, each. Hereby, 10 mL were collected for
dissolved organic carbon (DOC) analysis, acidified (20 μL of 85%
H3PO4 acid) and stored in glass vials in the dark at 4°C until analysis
within a month by using a TOC-5000 total carbon analyzer (Sohrin
and Sempéré, 2005). The natural seawater collected at the surface in
the Bay of Marseille exhibited a DOC value of 76.8 (±16.4) µM,
which is consistent with DOC concentrations previously measured
in the same area (72.5–90 µM in summer-fall; Paluselli et al., 2018).
This background DOC concentration from the seawater was
subtracted from the DOC values observed in the leachates, to
further investigate the DOC which derived from the test materials.

The remaining volume was stored in amber glass vials in the
dark at 4°C until analysis of organic compounds using UPLC-TOF-
MS (see section 2.5). Samples were collected at three sampling
timepoints: after (t1) 66 h, (t2) 158 h and (t3) 336 h, representing
6, 14.4 and 30.6 simulated days, respectively. Simulated days were
calculated using the following equation from Gewert et al. (2018): Q10

Simulated days � Total irradiance exposed
Mean European irradiance

x 365

where the total irradiance exposed is the product of the intensity (in
W/m2) and the number of hours of exposure (in h) and the
European mean irradiance equals 1,200 kWh/m2 per year

2.3 Test material

Three types of test material were used for this study. The
“CMTT” comprises a mix of tire tread from 20 different, new
tires (see Supplementary Table S2), which were homogenized
through a ball milling in cryogenic conditions (Mixer Mill MM
400, Retsch, Germany) and represents small particles as they can be
found in road runoff. The size distribution and particle shape images
are provided in Supplementary Figure S1. The two other test
materials are made of crumb rubber granulate as used in artificial
sports fields or playgrounds. The original material (hereafter called
“virgin crumb rubber”, VCR) was sourced from a sports field in

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Frontiers in Environmental Science frontiersin.org02

Foscari et al. 10.3389/fenvs.2023.1206449

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1206449


Tromsø (Norway) prior to application on the field and has
previously been used for leaching and toxicity testing (Halsband
et al., 2020).

Finally, part of the VCR was exposed in situ to natural seawater
in Tromsø for 12–18 months (hereafter called “weathered crumb
rubber”, WCR) to create a test material of high environmental
relevance. For this, the particles were placed in a cylindric stainless-
steel container covered with a mesh and submerged in surface waters
(3–4 m depth). The outside of the container was mechanically
cleaned at regular intervals to remove algal and bivalve growth
and permit the sunlight to transpierce. While the choice of stainless
steel limited the exposure of the contained particles to natural
sunlight, it was considered as preferable to plastic materials to
avoid a chemical contamination of the test material. The particles
exposed for 12 and for 18 months were mixed together to have
sufficient material to perform the experiment. After recovery from
the sea, theWCR was not modified (i.e., no removal of the biofilm or
other cleaning), but stored in dry conditions prior to use.

2.4 QA/QC

All glassware was heated (450°C, 6 h) prior to use and covered
with burnt aluminum foil. Plastic and rubber materials were avoided
at all times. All sample processing steps were conducted in an ISO
class 6 clean room equipped for organic trace analysis. Cotton lab
coats and nitrile gloves were worn during sample handling.
Instrument and water media blank controls performed during
the sample analysis were below LOD/LOQ levels or otherwise
subtracted from the sample values.

2.5 Analysis with UPLC-TOF-MS

Aqueous samples were analyzed for 19 tire-related chemicals
(Supplementary Table S1) by ultra-performance liquid
chromatography time-of-flight mass-spectrometry (LC-TOF-
MS). The instrument consisted of an ACQUITY UPLC-System
(HSS T3 column; 100 × 2.1 mm, 1.7 μm) coupled to a XEVO XS
Q-TOF-MS (Waters GmbH, Eschborn, Deutschland) as described
elsewhere (Klöckner et al., 2021; Klöckner et al., 2020). A flow rate
of 0.45 μL/min, a column temperature of 45°C and a capillary
voltage of 0.7 kV (positive ionization mode) were applied. The
source temperature was set at 140°C, while the desolvation
temperature was set at 550°C. The sampling cone voltage was
20 V and the source offset was 50 V. Nitrogen was used as a cone
gas and argon as a collision gas. The desolvation gas flow was set at
950 L/h and the scan time at 0.15 s. A collision energy of 4 eV
(molecular ions) and 15–35 eV (fragment analysis) was applied.
The mobile phase consisted of A) water with 0.1% formic acid and
B) methanol with 0.1% formic acid. The solvent gradient was as
follows: 0 min 2% B, 12.25 min 99% B, 15.00 min 99% B, 15.10 min
2% B, 17.00 min 2% B. A volume of 10 µL of the leachates was
directly injected into the LC-HRMS system and the first minute
was forwarded to waste, not to the MS. The target substances
(Supplementary Table S1) were quantified using an external
calibration, which was comparable to seawater (checked
separately). Therefore, TargetLynx was used with 0.01 Da mass

accuracy and 0.1 min accurate retention time and a calibration
range from 0.03 to 30 μg/L.

2.6 Identification of transformation products

Identification of transformation products (TPs) was done by
evaluating the RPLC-MS data in a retention time window of
1–10 min and a mass range of m/z 50–1,200. MarkerLynx was
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FIGURE 1
DOC release from (A) CMTT (B) VCR and (C) WCR exposed to
artificial sunlight (yellow lines) and dark conditions (black lines) over
14 days. This time corresponds to a simulated sunlight exposure of
31 days. The red dotted line in (A) indicates the y-axis limit used
in graphs (B) and (C) for better comparison. Error bars indicate the
standard deviation (n = 3) of independent samples. The columns report
the amount of DOC in the artificial sunlight exposed samples (orange
columns) and in dark conditions (grey columns), which can be explained
by the quantified organic compounds. Q16
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used to perform the peak picking for the molecular ion trace
(function 1) with 0.1 min deviation in retention time and 0.01 Da
deviation in exact mass. The marker table with relative intensities (to
the total marker intensity) was exported to Excel and all further
evaluations were performed there. The peaks with a relative intensity
above 1 and present in the leachates compared to controls were
selected. Sum formulas were assigned by using a mass tolerance of
5 ppm and an elemental composition of C (0–100), H (0–100), N
(0–20), O (0–20), S (0–3) and Na (0–2), and by taking into account
the fragment ions. The fragment ions were used, if available, to
assign the elemental composition. For DPG related TPs the
fragments were screened for those containing m/z 212.118
(C13H14N3), 195.0922 (C13H11N2), 131.0599 (C8H7N2) and/or
119.06 (C7H7N2), 106.0648 (C7H8N). DCH related TPs were
identified by having the fragment m/z 180.1755 (C12H22N). The
integration of the areas was done in TargetLynx.

3 Results and discussion

3.1 Release of dissolved organic carbon

All three test materials released DOC into the seawater in the
range of 20–500 μg/g within 14 days (Figure 1). Under dark
conditions CMTT released the highest amount of organic carbon
(140 μg/g; Figure 1A), followed byWCR and VCR (23–28 μg/g). The
stronger DOC release from CMTT may in part be due to a higher
content of low molecular weight additives in that material (see
section 3.2) and its significantly lower mean particle size (180 µm)
compared to VCR and WCR (3 mm). A higher DOC concentration
(316 μg/g) was previously reported for a freshly pulverized crumb
rubber after 3 days of leaching, after which the concentration
decreased (Selbes et al., 2015). The authors suggested that freshly
generated particles would release more DOC; this may explain their
higher values compared to the crumb rubber in this study.

It is noteworthy that the VCR released only slightly higher
amounts of organic carbon (20%–25%) than the same material after
being exposed to marine water for about 1 year. This suggests that
the pool of organic compounds that can be released from crumb
rubber is large and is not much depleted within 1 year. The release
rate of organic compounds from the rubber into the surrounding
water is determined by the (low) diffusion speed of these compounds
from the interior of the particles towards the surface (Huntink,
2003). A part of the organic matter released from WCR may,
however, also be natural organic matter adsorbed to it during the
exposure period.

For CMTT there is a slight decrease in average DOC
concentrations from day 7 to day 14 (Figure 1A), which may
reflect the onset of biodegradation of some of the organic
chemicals released from the material, as the experiments were
not run under sterile conditions.

For all three materials parallel exposure to artificial sunlight
drastically increased the release of organic matter over 14 days by a
factor of 3–5 compared to the dark conditions (Figure 1.). Several
hypotheses might be made to explain this observation: 1) The UV
exposure could induce an aging and loosening of the rubber matrix,
which would increase its accessibility for water and speed up
leaching of organic compounds. 2) A sunlight induced

transformation of tire constituents with a relatively lower
tendency for leaching into TPs of lower molecular weight and
higher polarity, with a stronger leaching tendency might occur.
3) While the temperature within the irradiation chamber was
controlled (22°C ± 2°C), the black color of the particles might
have led to a higher temperature of the particles themselves
exposed to artificial sunlight, supporting the leaching compared
to the dark conditions. A combination of these aspects as well as
other factors may be responsible for the enhancing effect of sunlight
exposure.

While the leaching of chemicals from tire material has been
studied (Halsband et al., 2020; Tian et al., 2021; Jeong et al., 2022;
Müller et al., 2022), the total amount of organic matter measured as
DOC has been reported so far only for crumb rubber (Selbes et al.,
2015) but not for a smaller dimensional size range of tire particles.

3.2 Leachate composition

A total of 19 tire-related chemicals were quantified in the
leachates based on LC-HRMS analysis (Supplementary Table S1).
Among them were the vulcanization accelerators 2-
mercaptobenzothiazole (2-MBT), benzothiazole (BT),
benzothiazole-2-sulfonic acid (BTSA), 2-hydroxybenzothiazole (2-
OHBT), 1,3-diphenylguanidine (DPG) and its degradation product
phenylguanidine (PG), and dicyclohexylamine (DCH), as well as the
antioxidant N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine
(6-PPD) and its hydrolysis and oxidation products 4-
hydroxydiphenylamine (4-HDPA) and 6-PPD quinone (6-
PPDQ), respectively.

3.2.1 Vulcanization accelerators
Benzothiazoles were the most abundant substances found in the

leachates (from 58 to 342 μg/g and from 111 to 589 μg/g in dark and
sunlight exposed conditions, respectively). 2-MBT is a prominent
transformation product of the vulcanization accelerators found in
tires. Similar amounts were released from the three materials, even
after 1 year of exposure to marine waters (WCR). This suggests that the
reservoir of 2-MBT in the materials is large enough not to be exhausted
in this period of time. For all three materials 2-MBT leaching was lower
during sunlight exposure, likely due to direct or indirect
photodegradation of 2-MBT (Zajíčková and Párkányi, 2008). This
photodegradation may have occurred either on the particle surface
before 2-MBT was released or in solution after its release.

BT, BTSA and 2-OHBT all are putative transformation products
of MBT. For BT and BTSA, the leached amounts were significantly
higher from CMTT, compared to VCR and WCR, especially under
sunlight exposure (CMTT 160–350 μg/g, VCR and WCR 6–50 μg/
g). CMTT with its much smaller particle size offers more surface per
mass. This enhances both, release of chemicals from the surface as
well as transformation reactions on the surface. And it might explain
why much higher amounts of BT and BTSA were detected in CMTT
samples exposed to artificial sunlight (Figures 2B,C), even though
the amount of the parent compound, 2-MBT, in solution under dark
conditions was even lower than for VCR and WCR samples
(Figure 2A).

BT was also detected in 14-day leachates of crumb rubber in
seawater, at concentrations of 80 ± 46 μg/g (Halsband et al., 2020)
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when considering the same crumb rubber concentration as used in
our study (1 g/L). This is comparable to our results for VCR and
WCR after 14 days of leaching (11–50 μg/g, depending on the
conditions).

Furthermore, 2-aminobenzothiazole (NH2-BT) was determined
in the leachates (0.2–2 μg/g). As for BTSA and BT, sunlight exposure
increased the release of NH2-BT from CMTT more strongly than
from VCR and WCR (Supplementary Figure S2).

For 2-OHBT the difference between CMTT and the other
materials is less strong (WCR) or even absent (VCR); also, the
difference between dark and light leaching conditions is less
pronounced (Figure 2D). This, likely, indicates that the
formation of 2-OHBT occurred inside the tire particles and is
only partially due to sunlight exposure during the leaching. The
amount of 2-OHBT released from WCR was approximately 20%
of that released from the VCR material (Figure 2D). It appears
that a significant proportion of 2-OHBT leached out of the WCR
during the 1 year of weathering in marine waters. Such a strong
difference between WCR and VCR was not visible for BT and
BTSA, supporting the assumption that they are formed by
different processes than 2-OHBT. On a molar basis, the
enhancing effect of sunlight exposure, however, was equally

strong for VCR (+118 nM) and WCR (+100 nM) probably
due to their similar particle size range, while it was three
times higher for CMTT (+300 nM).1,3-diphenylguanidine
(DPG) is another curing agent and a prominent chemical in
tire rubber and tire leachates (Schulze et al., 2019; Zahn et al.,
2019; Johannessen et al., 2021; Müller et al., 2022). This was
visible for CMTT with 40–50 μg/g being released under dark and
sunlight conditions (Figure 2E). Release of DPG from VCR and
WCR was one order of magnitude lower, with 3–4 μg/g. The
transformation of DPG to PG is a hydrolytic process.
Nevertheless, sunlight exposure appears to support this
transformation, as the PG concentration in the CMTT
leachate continuously increased from 0.3 to 21 μg/g in
artificial sunlight conditions (Figure 2E). Besides PG, a large
number of transformation products have previously been
reported to occur in tire leachates (Müller et al., 2022), Fohet
et al. (2023) reported two DPG TPs, one being more stable
(C19H23N3, 13 days) and the other less stable (C19H23N3O,
4 days) than DPG (8 days) under photoaging conditions.

To search for additional DPG related TPs a screening was
performed in the LC-HRMS data of the CMTT leachates based
on characteristic fragment ions (see section 2.6). In total, 23 putative
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FIGURE 2
Amounts of (A) 2-mercaptobenzothiazole (2-MBT), (B) benzothiazole (BT), (C) benzothiazole-2-sulfonic acid (BTSA), (D) 2-hydroxybenzothiazole
(2-OHBT), (E) 1,3-diphenylguanidine (DPG), (F) phenylguanidine (PG), (G) dicyclohexylamine (DCH), (H) 6-PPD quinone (6-PPDQ) released from CMTT,
VCR andWCR by leaching over 14 days in the dark (blue lines) and under artificial sunlight (orange lines). Error bars represent standard deviation (n = 3) of
independent replicates.
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TPs were detected in the leachate after 14 days. Just one of these TPs
(DPG + C3H3O2) corresponds to those reported by (Müller et al.,
2022); all the others have not been reported before. Among others,

five isomers with the formula DPG + C2H2O2 and three isomers
corresponding to DPG + C5H6O2 were detected (Figure 3; details
provided in the Supplementary Table S4). Such sets of isomers point
at their formation by radical processes, as those are often of limited
regio-selectivity. It is not clear, if these 23 TPs were formed directly
from DPG, or if they were formed from DPG related transformation
products already present in the tire material. It has been shown that
only 50% of the initial amount of DPG in a starting material may
remain unaltered after rubber curing (Unice et al., 2015). Artificial
sunlight strongly supported the formation of these TPs, as they were
hardly detectable under dark conditions (Figures 3A, B).

DCH was the amine with the highest intensity found in all the
leachates and is suspected to be formed by hydrolysis from
different vulcanization accelerators, such as N,N-
dicyclohexylbenzothiazole-2-sulphenamide (Seiwert et al.,
2020). An amount of 20–50 μg/g was released from the three
tested materials (Figure 2G). The lack of a difference between the
three materials is unexpected. However, the concentration of a
chemical detected in the leachate is not only a consequence of its
concentration in the test material, but governed by several
parallel processes such as the migration from the particles
interior to its surface, the release from the particles into
solution, the formation of precursor compounds and its
transformation to TPs, either in the particles or in solution.
For all three materials, artificial sunlight led to slightly increasing
concentrations of DCH of approx. 25% (Figure 2G).
Furthermore, a screening for DCH TPs was performed in the
LC-HRMS data. Indeed, five isomeric TPs were detected in the
sunlit leachate, which all carried an additional hydroxy group
(Figure 3C). These TPs were hardly detected in the dark
condition samples.

Another chemical often reported is
hexamethoxymethylmelamine (HMMM) (Alhelou et al., 2019). It
was detected in all leachates (0.5–1.8 μg/g), exhibiting a relatively
stable behavior in all samples (CMTT, VCR and WCR), with
comparable concentrations both in dark and artificial sunlight
conditions (Supplementary Table S3).

3.2.3 Antioxidants
Among the antioxidant compounds detected, 4-

hydroxydiphenylamine (4-HDPA), a hydrolysis product of 6-
PPD (Unice et al., 2015), was most abundant, with higher
amounts released from CMTT than from VCR and WCR
(Supplementary Figure S1). Since 6-PPD and diphenylamine
react rapidly with reactive oxygen species and as 4-HDPA is also
reactive (Seiwert et al., 2022), the 4-HDPA concentrations in the
CMTT leachates under sunlight exposure were extremely low, with
near-zero concentration values during the whole experiment.

The 6-PPD oxidation product 6-PPDQ (Tian et al., 2021) was
detected in all leachates, with the amounts following the order
CMTT (0.4 μg/g) > VCR (0.2 μg/g) > WCR (0.03 μg/g)
(Figure 2H). The concentrations were always lower in the
samples exposed to artificial sunlight, according to the reactivity
of 6-PPDQ towards oxidative species. However, 6-PPDQ
quantification was compromised by its adsorption to the PES
membrane filters (>50%) used during the experimental procedure
(Supplementary Figure S3). This data therefore needs to be
considered with caution.
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FIGURE 3
Peak areas of DPG transformation products (TPs) detected in the
leachates of CMTT after 14 days (A) at high intensity and (B) low
intensity, and (C) TPs of DCH. The peak intensities in the artificial
sunlight exposed samples (orange color) are compared with the
dark condition samples (blue color), highlighting the impact of UV
irradiance on the formation of TPs from the considered parent
compounds.
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3.3 Contributions of target compounds
to DOC

For the 19 tire related chemicals quantified in the leachates
(Supplementary Table S1), their contribution to the DOC
amount was calculated, grouped into vulcanization
accelerators (15 compounds, including thiazoles and
guanidines) and antioxidants (4 phenylenediamine
compounds) (Table 1). For all three tire materials, the
explainable DOC is always significantly higher for the leachate
generated in the dark than under sunlight exposure. This
corresponds to the much higher DOC in the leachate with
artificial sunlight. Obviously, sunlight exposure leads to the
release of larger amounts of yet unknown compounds.
sunlight exposure transforms parent chemicals into TPs, many
of which are either unknown or not available as reference
compounds and are, therefore, not considered in this balance.
A typical example for this are the 23 TPs of DPG, which were
detected by LC-HRMS screening in the sunlit CMTT leachate,
but could not be quantified (Figure 3, Supplementary Table S4).
The oxidative transformation of 6-PPD has been shown to lead to
an even larger number of TPs (Seiwert et al., 2022), three of which
are available as standards and have been included in this study.

In all three tire materials, vulcanization accelerators played a
predominant role in the explainable DOC. On the contrary,
antioxidants explain only 1% of DOC in most cases. This is not
only because of the lower number of quantified antioxidant
compounds, but also due to the fast degradability of antioxidants
through hydrolysis and oxidation, which may lead to an extremely
high number of possible TPs (Seiwert et al., 2022).

For the CMTT leachates (Table 1), the explainable DOC during
the UV exposure was 10% in the first timepoint but then decreased

to 7% as the amount of DOC significantly increased. In dark
conditions, the explainable DOC corresponds to almost the
double compared to the UV exposed samples. While the smaller
particle size of the CMTT favors the release of all chemicals
compared to the coarser VCR and WCR material, this effect can
be expected to be stronger for chemicals with a lower diffusion
coefficient, i.e., compounds of higher molecular weight, e.g.,
oligomers of HMMM and poly (1,2-dihydro-2,2,4-
trimethylquinoline) (TMQ). These compounds were not included
in the target list, which may explain the lower percentage of
explained DOC for CMTT.

The WCR material, which has been weathered in marine water
for about 1 year, may additionally release natural organic matter into
the leachate, which was taken up during this long-time exposure to
seawater. As a consequence of these different trends, the highest
percentage of “explainable” DOC was obtained for VCR in the dark
(55%) and the lowest percentages for CMTT and WCR under
sunlight exposure (7%–8%).

4 Conclusion

This study investigated the leaching of tire materials
(CMTT, VCR and WCR) while simulating marine
environmental conditions as encountered in Europe during
summer. DOC concentrations found in leachates increased
from WCR over VCR to CMTT. For all three materials DOC
increased significantly upon sunlight exposure, highlighting
that sunlight favors the release of organic compounds from
tire materials. Likely, particle aging and transformation of
chemicals into more soluble products contribute to this
enhanced leaching.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

TABLE 1 Percentages of the DOC contributions which can be explained by the quantified compounds under artificial sunlight (light orange) and dark conditions
(grey) by CMTT a), VCR b) and WCR c).

t1 (3 days) t2 (7 days) t3 (14 days)

a) Light Dark Light Dark Light Dark

DOC Explained (%) 10 22 7 12 7 18

Vulcanization Accelerators (%) 9 20 6 11 6 17

Antioxidants (%) 1 2 1 1 1 1

t1 (3 days) t2 (7 days) t3 (14 days)

b) Light Dark Light Dark Light Dark

DOC Explained (%) 25 46 22 47 18 55

Vulcanization Accelerators (%) 24 25 21 46 17 54

Antioxidants (%) 1 1 1 1 1 1

t1 (3 days) t2 (7 days) t3 (14 days)

c) Light Dark Light Dark Light Dark

DOC Explained (%) 6 16 8 25 9 19

Vulcanization Accelerators (%) 5 15 7 24 8 18

Antioxidants (%) 1 1 1 1 1 1
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Of the 19 tire-derived chemicals that were quantified, BT, BTSA,
2-OHBT, DPG and DCH were released in largest amounts.
Exposure of the tire materials to artificial sunlight during
leaching increased the release of TPs such as BT, BTSA, and PG
and led to the occurrence of 23 TPs of DPG and 5 TPs of DCH in the
CMTT leachate, most of which were absent in the dark condition
leachate. Accordingly, highly reactive chemicals, such as 2-MBT, 4-
HDPA and 6-PPDQ, decreased in concentration. Although a total of
19 tire related chemicals were quantified, the largest proportion of
the organic carbon released from the three tire materials remained of
unknown origin.

This study outlines that the nature of chemicals released
from tire material depends on the history of the tire particles
and the leaching conditions. It indicates that the release of
chemicals from larger tire particles, such as crumb rubber
(3 mm mean diameter), can be a slow process taking several
years.
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