

# Genetic manipulation of giant viruses and their host, Acanthamoeba castellanii

Nadege Philippe, Avi Shukla, Chantal Abergel, Hugo Bisio

# ▶ To cite this version:

Nadege Philippe, Avi Shukla, Chantal Abergel, Hugo Bisio. Genetic manipulation of giant viruses and their host, Acanthamoeba castellanii. Nature Protocols, 2023, 19 (1), pp.3-29. 10.1038/s41596-023-00910-y . hal-04590186

# HAL Id: hal-04590186 https://amu.hal.science/hal-04590186v1

Submitted on 28 May 2024

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Distributed under a Creative Commons Attribution 4.0 International License

# 1 Ready for Production

2

# 3 H1 Genetic manipulation of giant viruses and their host Acanthamoeba castellanii

4 Nadege Philippe,<sup>1, 2</sup> Avi Shukla,<sup>1</sup> Chantal Abergel,<sup>1, \*</sup> Hugo Bisio,<sup>1, 2,\*</sup>

<sup>1</sup>Aix–Marseille University, Centre National de la Recherche Scientifique, Information Genomique &
 Structurale, Unite Mixte de Recherche 7256 (Institut de Microbiologie de la Mediterranee, FR3479, IM2B),
 13288 Marseille Cedex 9, France.

- 8 <sup>2</sup> These authors contributed equally: Hugo Bisio, Nadege Philippe.
- 9 \*Correspondence: hugo.bisio@igs.cnrs-mrs.fr (H.B.), chantal.abergel@igs.cnrs-mrs.fr (C.A.).

10

- 11 H1 Editorial Summary: This protocol enables genetic manipulation of nuclear and cytoplasmic giant
- 12 viruses, and their host *Acanthomoeba castellani*, using either CRISPR/Cas9 or homologous
- 13 recombination.
- 14

# 15 H1 Key references

- 16 Liu, Y. et al. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 184,
- 17 4237-4250 e4219 (2021). https://doi.org:10.1016/j.cell.2021.06.032
- Bisio, H. *et al.* Evolution of giant pandoravirus revealed by CRISPR/Cas9. *Nat Commun* 14, 428 (2023).
   <u>https://doi.org:10.1038/s41467-023-36145-4</u>
- 20 Alempic, J-M. et al. No fitness impact of the knockout of the two main components of mimivirus genomic
- 21 fiber and fibril layer. *bioRxiv*, 2023.04.28.538727 (2023). https://doi.org/10.1101/2023.04.28.538727
- 22

# 23 H1 Key points

- This protocol enables genetic manipulation of nuclear and cytoplasmic giant viruses, and their
   host Acanthomoeba castellanii, using either CRISPR/Cas9 or homologous recombination.
- The methodology allows the generation of stable gene modifications, which wasn't possible
   using RNA silencing, the only previously available reverse genetic tool.

# 28 H1 ABSTRACT

- 29 Giant viruses (GVs) provide an unprecedented source of genetic innovation in the viral world and are thus,
- 30 besides their importance in basic and environmental virology, in the spotlight for bioengineering advances.
- 31 Their host, Acanthamoeba castellanii is an accidental human pathogen that acts as a natural host and
- 32 environmental reservoir of other human pathogens. Tools for genetic manipulation of viruses and host
- 33 were lacking. Here, we provide a detailed method for genetic manipulation of *A. castellanii* and the GVs it
- 34 plays host to by utilizing either CRISPR/Cas9 and/or homologous recombination. We detail the steps of

35 vector preparation (4 days), transfection of amoeba cells (1 h), infection (1 h), selection (5 days for viruses, 36 2 weeks for amoebas), and cloning of recombinant viruses (4 days) or amoebas (2 weeks). This procedure 37 takes about 3 weeks or a month for the generation of recombinant viruses or amoebas, respectively. This 38 methodology allows the generation of stable gene modifications, which wasn't possible using RNA 39 silencing, the only previously available reverse genetic tool. We also include detailed sample-preparation 40 steps for protein localization by immunofluorescence (4 hs), western blotting (4 hs), quantification of viral 41 particles by optical density (15 min), calculation of viral lethal dose 50 (7 days) and quantification of DNA 42 replication by quantitative PCR (4 hs) to allow efficient broad phenotyping of recombinant organisms. This 43 methodology allows the function of thousands of ORFan genes present in GVs, as well as the complex 44 pathogen-host, pathogen-pathogen, or pathogen-symbiont interactions in A. castellanii to be studied in 45 vivo.

46

# 47 H1 INTRODUCTION

48 Acanthamoeba spp. is an opportunistic human pathogen with increasing importance for ocular health<sup>1</sup>. 49 Moreover, this organism has been largely recognized as a host and environmental reservoir for pathogenic organisms like Legionella, Mycobacterium, or Cryptococcus<sup>2</sup>. More recently, Acanthamoeba castellanii has 50 51 also been utilized as an experimental host for the discovery of several giant viruses (GVs), which contain genomes of up to 2.8 megabases and viral particles exceeding 1  $\mu$ m in size<sup>3-5</sup>. Different examples of GVs 52 53 include Pandoravirus salinus (linear 2.8 Mb genome, 1µ particle)<sup>4</sup>, Mollivirus sibericum (linear 0.65 Mb 54 genome, 500nm particle)<sup>6</sup>, Pithovirus sibericum (circular 0.6 Mb genome, 1.5μM particles)<sup>5</sup> and Mimivirus 55 (linear 1.2 Mb genome, 400nm particle)<sup>3</sup>. Importantly, GVs not only play key roles in ecology but also 70% 56 of the thousands of genes encoded by these organisms are ORFan genes (unrelated to any other protein 57 known so far)<sup>7</sup>. Thus, these viruses represent an unexplored resource of innovations for bioengineering 58 advances<sup>8</sup>. Yet, genetic manipulation of both GVs and their host A. castellanii, has been largely neglected 59 due to the difficulty in implementing it on these organisms. Specifically, A. castellanii is a highly polyploid organism (25n approx.)<sup>9</sup> with amitotic nuclear division leading to aneuploidy and random segregation of 60 genetic material<sup>10,11</sup>. Moreover, selection markers for drug resistance are scarce (currently limited to two, 61 geneticin<sup>12</sup> and nourseothricin<sup>13</sup>). Cytoplasmic GVs protect their DNA by establishing viral factories<sup>14</sup> which 62 63 segregate their DNA from protein effectors like Cas9 (ref. 15). Thus, previous gene functional assessment was mostly accomplished by RNA silencing<sup>16,17</sup>. Here we describe a protocol for rapid genetic engineering 64 of both fully cytoplasmic and nuclear GVs as well as their host A. castellanii. CRISPR/Cas9 can be utilized 65 66 for the modification of nuclear GVs and A. castellanii, while both cytoplasmic and nuclear GVs can also be 67 genetically engineered by recombination in combination with selection markers. Investigators should be 68 able to obtain recombinant viruses in 3 weeks and recombinant amoebas in a month.

69

# 70 H2 Overview of the genetic manipulation techniques.

A schematic overview of our protocols is provided in Figure 1. Our methods utilise both homologous recombination (HR) and non-homologous-end joining (NHEJ) for modifications of the genome of amoeba and viral DNA<sup>13,15,18</sup>. CRISPR-Cas (Clustered Regularly Interspersed Short Palindromic Repeats) has proved invaluable for the genetic manipulation of many organisms, based on the tunable selectivity of a dsDNA endonuclease (like Cas9) for a 20 base pair sequence-specific region of the genome<sup>19</sup>. Such selectivity is 76 accomplished by annealing of the DNA with a guide RNA (gRNA) which binds to the endonuclease and directs it to its targeting site<sup>19</sup>. Double strand breaks generated by Cas9 can consequently be repaired by 77 two major mechanisms: HR and NHEJ. Particularly relevant for this protocol, we have demonstrated that 78 79 CRISPR/Cas9 can be efficiently used for manipulation of the genome of A. castellanii and nuclear GVs like 80 mollivirus and pandoravirus<sup>15</sup>. We have utilized this technology to generate knockouts in A. castellanii and 81 nuclear GVs by inducing NHEJ repair<sup>15</sup>. In addition, HR can also be exploited in the absence of doublestrand breaks to prompt modifications on the genomic DNA. Thus, when combined with selection markers 82 83 for the enrichment of recombinant organisms, it can also be utilized for genetic engineering independently 84 of CRISPR-based modifications. We have demonstrated that HR can be efficiently used for the modification of cytoplasmic GVs like marseillevirus and mimivirus<sup>18</sup>, but also for nuclear GVs like mollivirus and 85 pandoravirus<sup>15</sup>. HR allows not only the generation of gene knockouts but also the endogenous tagging of 86 genes (for protein localization) or the introduction of exogenous DNA (*i.e.* for cis-complementation)<sup>15</sup>. 87

88

### 89 H2 Comparison with previous reverse genetic techniques.

90 Reverse genetics of GVs and A. castellanii were limited to RNA silencing before we developed genetic tools for these organisms. While silencing has proven efficient for the functional analysis of A. castellanii genes, 91 92 particularly for genes involved in encystment<sup>16,20</sup>, gene knockdowns are usually only partial and transient<sup>21</sup>. Thus, silencing is mostly limited to a certain window of time and the study of vulnerable genes<sup>22</sup> (i.e. genes 93 94 where low expression inhibition will result in a decrease in organismal fitness). Moreover, highly stable 95 proteins might also be difficult to downregulate, hampering their study by RNA silencing (i.e. highly stable proteins might take days for efficient protein downregulation<sup>23</sup>). On the other hand, gene knockout of 96 97 essential genes is lethal and thus provides only partial information about the functionality of a gene. In 98 such cases, RNA silencing might result in a better way to address the functionality of a gene. Since 99 conditional knockout in A. castellanii has not been developed so far, RNA silencing is the only available 100 technique for the study of essential genes.

Gene function has also been previously studied by RNA silencing in mimivirus (a cytoplasmic GV)<sup>17,24,25</sup>. 101 While the same pros and cons that were discussed for amoeba reverse genetics apply to GVs, only 3 102 publications have been shown to be successful in applying this technology for the silencing of GVs genes 103 104 (all in mimivirus)<sup>17,24,25</sup>. Reports associated to the use of RNA silencing of mimiviral genes were generated 105 by a single research team and no other group has reported successful reverse genetics using this tool. 106 Moreover, the study of the essential genes of GVs can be studied by generating gene knock-out viruses in 107 trans-complementing amoeba cells<sup>13</sup>, eliminating the usual advantage of gene knockdown over gene 108 knockout to study essential genes. In addition, a previous study has described the replacement of the 109 mimiviral gene R349 by green fluorescent protein using homologous recombination<sup>26</sup>. Unfortunately, even 110 when infected cells were sorted by the presence of GFP, the strategy did not allow the isolation of stable recombinant viruses<sup>26</sup> and has not been applied since its publication. We have overcome such limitations 111 112 by introducing a selection cassette to allow enrichment of the recombinant viruses<sup>13,15,18</sup>.

Overall, while we believe that the field will be inclined to use the tools described in this protocol, traditional silencing approaches and emerging genetic tools will likely also be necessary to unveil different aspects of

115 viral and host biology.

### 117 H2 Potential applications and limitations of the method.

The versatility and efficiency of CRISPR/Cas9 are exploited in this protocol for the genetic manipulation of 118 119 A. castellanii. This organism possesses about 25 copies of each chromosome<sup>9</sup>, thus 25 alleles of every gene 120 in their genome need to be modified to achieve successful gene knockout. Regardless, we have recently 121 shown that it is possible to target multicopy genes in a single experiment, using CRISPR/Cas9 with 100% 122 efficiency<sup>15</sup>. Specifically, we targeted the three genes of the cellulose synthase using 2 guide RNAs (gRNAs) 123 simultaneously and demonstrated modification in the 125 targeting sites (1 gRNA targeting the 3 genes 124 (3x25=75 target locus) and 1 gRNA targeting 2 of the genes (2x25=50 target locus)) without traces of the 125 wild-type alleles<sup>15</sup>. Such modifications were performed by NHEJ, generating random indels (insertion-126 deletions). Moreover, we have shown that upon Cas9-mediated cleavage of A. castellanii genome, small indels are preferentially generated upon repair of the targeting site<sup>15</sup>, thus, making it necessary to perform 127 extensive genotyping to demonstrate non-sense modification and complete gene knockout. Importantly, 128 129 while this limitation of the technology needs to be addressed in every experiment by cloning of 130 recombinant amoebas and sequencing to identify amoebas with non-sense mutations, the use of 131 polycistronic gRNA expression allows users to partially bypass such issues. Specifically, the use of multiple 132 gRNAs targeting a single gene significantly decreases the chances of getting functional recombinant genes 133 by increasing the sites to be repair by NHEJ and thus, the generation of potential non-sense mutations. 134 Thus, we expect that the use of such tools for the manipulation of A. castellanii will allow gene functionality 135 to be studied in this human-pathogenic organism as well as the complex sets of interactions among 136 microorganisms resistant to amoeba digestion which have made A. castellanii their environmental host.

137 Nuclear and cytoplasmic GVs modification can be easily achieved by recombination techniques<sup>13,15,18</sup>. We 138 have currently set up selection cassettes that allow efficient selection of recombinant viruses in pandoravirus/mollivirus<sup>15</sup> and mimivirus/megavirus<sup>18</sup>. Importantly, promoters from pandoravirus have 139 been used for the expression of selection cassettes in different pandoravirus and mollivirus<sup>15</sup>, while 140 141 megavirus promoters have been used to express selection cassettes in mimivirus and megavirus<sup>18</sup>. Thus, our arsenal of vectors shows a broad usage for different viruses. Regulatory elements can also easily be 142 143 exchanged to modify other GVs. To achieve efficient drug resistance by virally encoded drug selection cassettes, we have selected promoters with early and constant expression during the infectious cycle of 144 the virus. Such traits in viral promoters should be prioritized by any investigator wishing to adapt our 145 146 vectors for the modification of different viruses. Recombination allows precise modifications of the 147 genome of all viruses and has shown high rates of success in our experience. The main limitation of the 148 system lies in the limited amount of selection cassettes currently available (limited to two, geneticin<sup>12</sup> and 149 nourseothricin<sup>13</sup>). Thus, we are currently limited to two modifications per genome (only one if trans-150 complementation is needed). Finally, the modification of essential genes remains challenging. It is worth 151 mentioning that marker-free recombinant viruses cannot be generated for cytoplasmic viruses since 152 selection cassettes are indispensable to achieve selection of recombinant viruses. On the other hand, 153 nuclear viruses can be generated marker-free by combining CRISPR/Cas9 and homologous recombination 154 to repair the cleaved DNA. Another limitation of the technique involves the study of essential genes due 155 to the current lack of conditional systems for gene inactivation. In order to address this issue, we have 156 developed a trans-complementation strategy to allow the expression of the gene to be knocked-out by 157 the amoeba<sup>13</sup>, bypassing the essentiality of the genes. The basis of trans-complementation is related to 158 the fact that independently of where transcription occurs, viral and amoeba mRNAs are transported into 159 the cytoplasm for translation. Thus, localization of the gene coding sequence is irrelevant for protein 160 production and functionality. This allows ectopic expression of viral genes from plasmids localized at the 161 nucleus of the amoeba to produce fully functional proteins. We have experienced that early expressed 162 genes are easier to trans-complement, while genes expressed late in the infectious cycle of the virus tend 163 not to be efficiently complemented in trans. These differences are likely related to protein expression 164 levels and/or timing. Thus, the success of this strategy is gene dependent and should be tested empirically. 165 Importantly, we suggest trans-complementation only as a tool to generate recombinant viruses with 166 modifications that otherwise would impair viral replication. To confirm that the phenotype observed upon 167 gene knockout is specific to the gene modification and not an off-target effect would be accomplished by 168 cis-complementation, by inserting the gene back at the right locus with the endogenous promoter.

Finally, CRISPR/Cas9 can also be used for the modification of nuclear GVs<sup>15</sup>. Cytoplasmic giant viruses 169 efficiently protect their DNA, rendering the use of Cas9 impossible<sup>15</sup>. Cas9 can be used to induce double-170 171 strand breaks in the genome of nuclear GVs and allow NHEJ to generate recombinant viruses<sup>15</sup>. This 172 technique allows the generation of marker-free viruses and thus, an unlimited number of modifications. 173 NHEJ is however rather inefficient in pandoravirus and mollivirus and usually generates large deletions. 174 Accordingly, mutant viruses should be screened to isolate viruses with short deletions and avoid the 175 knockout of neighboring genes. Importantly, HR and CRISPR/Cas9 can be combined to generate marker-176 free viruses with precise modifications, bypassing most of the limitations of the system and might be 177 preferred to NHEJ repair depending on the aims of the researcher. Regardless of the tools used for gene 178 modification, gene knockout of essential genes remains still challenging and the success of trans-179 complementation should be empirically tested. Future efforts should be directed to generate vectors and 180 protocols to achieve conditional depletion of genes (like Cre recombinase<sup>27</sup>, auxin-inducible degron<sup>28</sup> or 181 mRNA degradation<sup>29</sup>) in order to attain the full potential of genetic manipulation in GVs.

182

# 183 H2 Experimental design.

### 184 H3 Endogenous tagging of viral genes with epitope tags (HA or FLAG)

185 We have currently designed vectors for endogenous tagging (HA and FLAG epitope tags) at the C-terminus 186 of proteins. These vectors can be adapted for N-terminal tagging or internal tagging if necessary (vector 187 maps and sequences are available at Addgene. IDs are provided in Table 1). A schematic representation of 188 the design is shown in Figure 2a. After the identification of a gene of interest, homology arms (250-500 189 bp) should be selected in the area where the tag will be inserted. If the tag is to be introduced at the C-190 terminal of the protein, the stop codon should be excluded from the 5'-homology arm. Homology arms 191 can be amplified by PCR from genomic DNA (gDNA) using primers bearing homology to the tagging 192 acceptor vector (Table 1). These flanking regions allow the cloning of the homology arms by In-Fusion<sup>®</sup> 193 seamless cloning (TaKaRa) into the desired vector (Primer templates are shown in Table 2). Other cloning 194 methods can also be utilized to insert the homology arms in the vector.

- Several critical steps should be considered. First, confirm that the tag is in frame with the open reading frame of the gene of interest (goi) and that the endogenous stop codon was removed. We currently utilize
- 197 ApE plasmid editing software with this aim (https://jorgensen.biology.utah.edu/wayned/ape/). Second,
- ensure that the homology arms do not contain the restriction sites used for the linearization of the vector.
- 199 If that is the case, a second restriction site (absent in the homology arms and the acceptor vector) can be
- introduced in the primers. Alternatively, PCR amplification can be used as a substitute to plasmid digestion.

Finally, in order to efficiently assess integration and clonality of recombinant lines, a negative control must be produced for every independent set of transfections. This negative control is done by incubating amoebas with PolyFect Transfection Reagent but no DNA. Infection and drug selection are performed in parallel with other samples. Differences in viral growth as well as DNA amplification by PCR will be critical to assess if the experiment is successful or not.

# 206 H3 Gene knockout by HR

207 Vectors for gene knockout using HR in mimivirus/megavirus and pandoravirus/mollivirus are currently 208 available (Table 1). Homology arms of about 250-500 bp should be selected to target a gene of interest as 209 shown in Figure 2b. We recommend designing two homology arms, wherein 5' arm covers the beginning 210 of the gene whereas the 3' arm covers the end of the gene, allowing the deletion of a section of the coding 211 region. Homology arms can be amplified by PCR from gDNA using primers bearing homology to the tagging 212 acceptor vector (Table 1). These flanking regions allow the cloning of the homology arms by In-Fusion<sup>®</sup> 213 seamless cloning (TaKaRa) into the desired vector (Primer templates are shown in Table 2). Any other 214 cloning method can also be used.

Several critical steps should be considered. First, ensure that the homology arms do not contain the restriction sites used for the linearization of the vector. If that is the case, a second restriction site (absent in the homology arms and the acceptor vector) can be introduced in the primers. Alternatively, PCR amplification can be used as a substitute to plasmid digestion. Finally, negative control as described in *Endogenous tagging* section must be included.

# 220 H3 Gene knock out by CRISPR/Cas9

221 The basic principles of CRISPR/Cas9 and the rules to select appropriate gRNA sequences can be found in<sup>30</sup>. 222 gRNA target sequences must include a PAM (protospacer adjacent motif) sequence and be significantly 223 different from other sequences in the genome of A. castellanii (if gene knockout will be performed in this 224 organism) or both A. castellanii and nuclear GV (if gene knockout will be performed in a nuclear GV). We 225 CRISPR currently utilize the Eukaryotic Pathogen gRNA Design Tool 226 (EuPaGDT)(http://grna.ctegd.uga.edu/), which allows users to rank gRNA target sequences (by analyzing 227 GC content and flanking microhomology pair score) and analyzes potential off-target editing in the genome 228 of A. castellanii. Potential off-target sites are manually identified by BLASTn using the reference genome 229 of the GV to be genetically modified. We remind any researcher interested in carrying out gene editing by 230 CRISPR/Cas9 that potential off-target sites have a lower risk of cleavage when mismatches with the 3' 231 (seeding region) of the gRNA or lack of a PAM are observed. Once one or multiple gRNAs are selected, 232 these can be inserted into vector vHB8 by mutagenesis (Figure 3). Primers should be designed containing 233 the new gRNAs and bear homology sequences to clone the gRNAs by In-Fusion<sup>®</sup> seamless cloning (TaKaRa) 234 into vHB8 (Primer templates are shown in Table 2).

Importantly, a second plasmid encoding for Cas9 and gRNAs which do not target the desired genome should be generated and transfected simultaneously with any set of transfections. Selection and genotyping must be done in parallel with other samples in order to assess if the experiment is successful or not. If amoebas are being genetically modified, this strain will be the baseline control for any phenotypic characterization.

# 240 H3 Complementation in cis or in trans

241 Each time a gene is knocked out and mutant organisms are generated, a confirmation that the phenotype 242 observed is due to the expected modification and not to any off-target modifications is needed. A 243 traditional way to assess this is by complementation of the gene function through reintroducing the coding 244 sequence of the gene knocked out. If the phenotype is restored, it can be concluded that the phenotype 245 associated with the genome modification is due to the knockout of the gene being studied. Importantly, 246 complementation in cis, at the endogenous locus and utilizing the endogenous promoter, is recommended 247 and can be achieved by re-introducing the coding sequence of the gene by homologous recombination. 248 Genome sequencing might also be explored if gene complementation is not possible. Trans-249 complementation allows the generation of recombinant viruses lacking essential genes. In order to trans-250 complement the lack of these genes, we have generated a battery of vectors that allows the expression of 251 genes under the regulation of Acanthamoeba castellanii weak, medium, or strong promoters (vectors 252 modified from <sup>31</sup>); specific expression levels are usually important for efficient complementation of gene function). Moreover, vectors encoding geneticin<sup>12</sup> or nourseothricin<sup>13</sup> are available (see Table 1). The 253 254 coding sequence of the gene of interest should be cloned into one (or multiple) of these vectors, which 255 are consequently transfected into amoebas for expression of the recombinant protein.

256 Gene knockout of essential viral genes can be obtained if recombination/CRISPR is performed in an A. 257 castellanii host expressing a trans-complementing copy of the gene (mutagenesis or codon optimization 258 are required in order to avoid cleavage by CRISPR/Cas9). Many companies provide services for gene 259 synthesis (which includes codon optimization upon providing a codon usage table for the organism of 260 interest) including Integrated DNA technologies (https://eu.idtdna.com/pages), Genewiz 261 (https://www.genewiz.com/en-GB/) or GeneScript (https://www.genscript.com/). In this case, all steps of 262 selection and propagation of the recombinant viruses might be performed in trans-complementing 263 amoebas.

264 Several critical steps should be considered. First, codon optimization for expression in A. castellanii is 265 highly recommended to achieve optimal expression levels. Second, if trans-complementation is designed 266 to complement gene knockout by CRISPR/Cas9, silent mutations at the gRNA targeting site are necessary 267 to avoid cleavage of the vector by Cas9. Finally, in order to assess efficiency of drug selection, a negative 268 control must be produced for every independent set of transfections. This negative control is done by 269 incubating amoebas with PolyFect Transfection Reagent but no DNA. After one or two days of drug 270 selection, no amoebas in the trophozoite stage should be detected. No amoebal growth should appear 271 until the end of the experiment.

# 272 H3 Selection of mutant viruses by drug cassettes

273 Selection of viral mutants using selection cassettes is currently performed by the utilization of drugs 274 targeting the translation of their host A. castellanii. Thus, amoebas infected by WT viruses and non-275 infected amoebas will succumb to the inhibition of protein synthesis. Only amoebas infected by a virus 276 conferring resistance to such drugs will be able to complete the round of infection and release a pool of viruses enriched in recombinant ones. Such a strategy allows a single round of infection per culture, 277 278 because freshly released viruses will not be able to infect amoebas in their neighborhood for a second 279 round, as the selection killed them. Thus, viral growth in the presence of the drug is slow. In order to speed 280 up the process, we have designed a protocol that alternates rounds of infection under selection pressure 281 and in the absence of the drug, allowing faster amplification of the virus.

282 Importantly, multiplicity of infection (MOI) must be kept 0.1 to 1 when the selection of recombinant 283 viruses is attempted. If a recombinant virus and a wild-type virus infect the same cell, production of the 284 selection cassette by the recombinant virus will trans-complement the lack of it in the wild-type virus, 285 defeating the purpose of the drug selection.

286 H3 Selection of amoebas by drug selection cassettes.

A. castellanii segregates its genetic material randomly<sup>10,11</sup>. Concordantly, the level of expression of genes
 from vectors in A. castellanii shows intrinsic variation which cannot be corrected by cloning the amoebas.
 Therefore, to select transfected amoebas, we utilize a protocol increasing the concentration of the
 selective drug at different passages of the transfected amoebas<sup>32</sup>. This allows an increase in the production
 of expressed genes, likely by increasing the copy number of the plasmids.

292

### 293 H2 Expertise needed to implement the protocol.

- 294 The protocols here described are simple and do not require particular expertise in molecular biology to be
- 295 carried out. A. castellanii is however a human pathogen and thus requires L2 biosafety measures.
- 296

# 297 H1 MATERIALS

### 298 H2 BIOLOGICAL MATERIALS

- Acanthamoeba castellanii strain NEFF (ATCC 30010<sup>™</sup>) (<u>https://www.atcc.org/products/30010</u>)
- 300 Escherichia coli Stellar™ competent cells (TaKaRa, cat. no. 636763)
- 301 Mimivirus reunion (MW004169.1)<sup>18</sup>
- Pandoravirus neocaledonia (MG011690.1)/ Mollivirus kamchatka (MN812837.1)<sup>15</sup>
- 303

# 304 H2 REAGENTS

- 305 H3 Growth media and buffers
- Proteose peptone (Merck, cat. no. 82450)
- Yeast extract (ThermoFisher Scientific, cat. no. BP1422-500)
- 308 MgSO<sub>4</sub> 7 H<sub>2</sub>O (Merck, cat. no. 63138)
- CaCl<sub>2</sub> anhydrous (Merck, cat. no. 1.02378)
- Fe(NH<sub>4</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> (Merck, cat. no. 215406)
- 311 Na<sub>2</sub>HPO<sub>4</sub> (Merck, cat. no. S9763)
- 312 KH<sub>2</sub>PO<sub>4</sub> (Merck, cat. no. P5379)
- 313 Glucose (Merck, cat. no. G8270)
- NaCl (Euromedex, cat. no. 1112)
- 315 KCl (Merck, cat. no. P3911)
- 316 NaOH (Merck, cat. no. S8045)
- LB (Luria/Miller) (Carl-Roth, cat. no. X968.4)
- Agar (ThermoFisher Scientific, cat. no. BP1423-500)
- TAE 10X Tris Acetate EDTA Buffer 10X (Merck, cat. no. T9650-1L)

- 320 H3 Antibiotics
- Geneticin<sup>™</sup> (G418 sulfate, 50 mg / ml) (ThermoFisher Scientific cat. no. 10131035)
- Nourseothricin (Jena Biosciences, cat. no. AB-102L)
- Ampicillin (Euromedex, cat. no. EU0400)
- Kanamycin monosulfate (Euromedex, cat. no. UK0010-D)
- 325 H3 PCR and cloning
- SsoFast<sup>™</sup> EvaGreen<sup>®</sup> Supermix for qPCR (Biorad, cat. no. 1725202)
- PureLink<sup>®</sup> Genomic DNA Kit from Invitrogen (ThermoFisher Scientific, cat. no. K182001)
- Wizard<sup>®</sup> Genomic DNA Purification Kit (Promega, cat. no. A1120)
- Monarch plasmid miniprep kit (New England Biolabs, cat. no. T1010S)
- Monarch PCR & DNA Cleanup Kit (New England Biolabs, cat. no. T1030S)
- QIAEX II Gel Extraction Kit (Qiagen, cat. no. 20021)
- Phusion<sup>™</sup> High-Fidelity DNA Polymerase (2 U/µL) (ThermoFisher Scientific, cat. no. F530L)
- 333 Terra<sup>™</sup> PCR Direct Red Dye Premix (TaKaRa cat. no. 639286)
- GoTaq<sup>®</sup> DNA polymerase (Promega, cat. no. M3008)
- In-Fusion<sup>®</sup> Snap Assembly Master Mix (TaKaRa cat. no. 638943)
- Agarose (Merck, cat. no. A9539-500G)
- Nuclease free water (Dutscher, cat. no. 972090)
- Ethidium bromide (Merck, cat. no. E1510-10ML) !CAUTION Ethidium Bromide is a known mutagen.
   Wear a lab coat, eye protection and gloves when working with this chemical. You may prefer to use
   safe products as SYBR Safe dye instead of ethidium bromide according to the manufacturer's
   instructions.
- SYBR<sup>™</sup> Safe DNA Gel Stain (ThermoFisher Scientific, cat. no. S33102)
- 1kb DNA Ladder Plus (Euromedex, cat. no. 03B-1411)
- 6X Loading Dye Solution (Euromedex, cat. no. 10-0111)
- All restriction enzymes are ordered from New England Biolabs (<u>https://international.neb.com/</u>)
- PCR Primers are ordered from Eurofins Genomics (<u>https://eurofinsgenomics.eu/</u>)
- 347 H3 Transfection
- PolyFect Transfection Reagent (Qiagen, cat. no. 301105)
- 349 H3 Immunofluorescence
- HA Tag Recombinant Rabbit Monoclonal Antibody (Thermo Fisher Scientific Cat# MA5-27915, RRID:AB\_2744968)
- Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor<sup>™</sup> 594 (Thermo
   Fisher Scientific Cat# A-21207, RRID:AB\_141637)
- Triton X-100 (EUROMEDEX, 2001-C)
- 37% Formaldehyde (Sigma-Aldrich, 252549-100ml)
- Hoechst 33258 Pentahydrate (ThermoFisher Scientific, H1398)
- BSA (Euromedex, cat. no. 04-100-812-C)
- 358 H3 SDS-PAGE and Western-blot
- Acrylamide:bisacrylamide 40% (37,5:1) (Euromedex, cat. no. EU0062-C)
- 360 Tween 20 (Euromedex, cat. no. 2001-C)

- Tris-Glycine-SDS buffer 10x (Euromedex, cat. no. EU0510-B)
- 362 SDS (Merck, cat. no. 436143)
- TEMED (N,N,N',N'-Tetramethylethylenediamine) (Merck, cat. no. T9281-25ml)
- APS (Ammonium persulfate) (Merck, cat. no. A7460-100G)
- 365 2-Mercaptoethanol (Merck, cat. no. 63689-100ML-F)
- Coomassie brilliant blue G250 (ThermoFisher Scientific, cat. no. 20279)
- Acetic acid glacial (Carlo Erba, cat. no. 401424)
- Ethanol 96° (Carlo Erba, cat. no. 528151)
- Ethanol absolute (Carlo Erba, cat. no. 528151)
- BSA (Euromedex, cat. no. 04-100-812-C)
- cOmplete<sup>™</sup>, EDTA-free Protease Inhibitor Cocktail (Merck, cat. no. 5056489001)
- Prestained Protein Ladder 10-180 kDa (Euromedex, cat. no. 06P-0111)
- Unstained Prot MW Marker 14.4-116 kDa (Euromedex, cat. no. 06U-0511)
- Western Blotting Filter Papers (ThermoFisher Scientific, cat. no. 88600)
- nitro blue tetrazolium / 5-bromo-4-chloro-3-indolyl-1-phosphate (NBT / BCIP) (Sigma-Aldrich, B1911 100ml)
- Invitrogen<sup>™</sup> Power Blotter 1-Step<sup>™</sup> Transfer Buffer (5X) (ThermoFisher Scientific, cat. no. PB7300)
- 378

# 379 H2 REAGENT SETUP

- 380 **PYG** In a 2 I glass bottle, add 40 g of proteose peptone and 2 g of yeast extract. Complete with water 381 to ~1.8 I and autoclave at 121°C for 20 min. Prepare 1 I stock solutions of MgSO<sub>4</sub> (400mM), CaCl<sub>2</sub> (50 382 mM), Fe(NH<sub>4</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub> (5 mM), Na<sub>2</sub>HPO<sub>4</sub> (250 mM), KH<sub>2</sub>PO<sub>4</sub> (250 mM) and glucose (2 M), sterilized with 383 filtration units Stericups. In the autoclaved solution, add 20 ml of MgSO<sub>4</sub>,  $Fe(NH_4)_2(SO_4)_2$ ,  $Na_2HPO_4$  and 384 KH<sub>2</sub>PO<sub>4</sub>, 16 ml of CaCl<sub>2</sub>, and 50 ml of glucose. Complete to 2 l with distilled water (use the graduations 385 of the bottle). Mix well and sterilize on 2 filtration units of 1 l. Work in a class II BioSafety cabinet to 386 ensure sterility of the medium. Medium and stock solutions can be stored at room temperature (22°C 387 approx.) for several months, as long as they are not contaminated.
- LB-agar Prepare LB as described by the supplier. In a 500 ml glass bottle, add 4.8 g of agar, and 400 ml of LB. Don't mix. Autoclave at 121°C for 20 min. Mix and use to prepare petri dishes for bacterial culture. Medium can be stored at room temperature for several months, as long as it is not contaminated.
- Tris Acetate EDTA (TAE) 0.5X electrophoresis solution Dilute TAE buffer 10X in distilled water to 0.5X
   working solution for casting agarose gels and for use as a buffer for gel electrophoresis. Buffer can be
   stored at room temperature for several months.
- Tris-Glycine-SDS buffer 1X Dilute TG-SDS 10X in distilled water to 1X working solution for use as a
   buffer for SDS-PAGE acrylamide gel electrophoresis. Buffer can be stored at room temperature for
   several months.
- PBS For 1 | PBS, in a beaker, mix 900 ml distilled water with 8 g NaCl (136.8 mM final), 0.4 g KCl (5.36 mM final), 1.44 g Na<sub>2</sub>HPO<sub>4</sub> (10.1 mM final), 0.24 g KH<sub>2</sub>PO<sub>4</sub> (1.76 mM final). Adjust the pH to 7.4 with NaOH 1M. Adjust the volume to 1 l with distilled water. Filter sterilize or autoclave at 121°C for 20 min. Buffer can be stored at room temperature for several months.

PBS Triton X-100 0.2% (PBST) For 1 | PBST, in a beaker, mix 900 ml distilled water with 8 g NaCl (136.8 403 mM final), 0.4 g KCl (5.36 mM final), 1.44 g Na<sub>2</sub>HPO<sub>4</sub> (10.1 mM final), 0.24 g KH<sub>2</sub>PO<sub>4</sub> (1.76 mM final) 404 and 2mL of Triton X-100 (final 0.2%). Adjust the pH to 7.6 with NaOH 1M. Adjust the volume to 1 l with distilled water. Buffer can be stored at room temperature for several months.

405 406

#### 407 H2 EQUIPMENT

- 408 Motic<sup>™</sup> AE31 Main Body, Binocular Microscope (ThermoFisher Scientific, cat. no. 15485342)
- 409 Epifluorescence microscope AXIO Observer Z1 Zeiss • https://www.zeiss.com/corporate/int/home.html 410
- 411 • Class II Biosafety cabinet for Acanthamoeba and virus manipulations. ADS Laminaire, Optimale 12
- 412 • Incubator for amoebas and viruses. Froilabo, Bioconcept https://www.froilabo.com/
- 413 Incubator for bacteria plates. Froilabo, Bioconcept https://www.froilabo.com/ •
- Shaking incubator for bacteria. InFors Multitron Eco https://www.infors-ht.com/fr/ 414 •
- 415 • Transilluminator for agarose gels and western-blots imaging. Vilber Fusion FX Spectra 416 https://www.vilber.com/fusion-fx-spectra/
- 417 Electrophoresis system for agarose gels. Mupid-One (Dutscher, cat. no. 088900) •
- 418 Electrophoresis system for acrylamide gels from Biorad (Power supplier : PowerPac Basic, 419 Electrophoresis chambers and accessories: Mini-PROTEAN Tetra Handcast Systems) 420 https://www.bio-rad.com/fr-fr/category/electrophoresis-chambers?ID=N3F2N0E8Z
- 421 Western-Blot transfer system (ThermoFisher Scientific, Power Blotter Station cat. no. 15896152)
- 422 Thermocycler (Analytic Jena, Biometra Trio) https://www.analytik-jena.com/products/life-• 423 science/pcr-gpcr-thermal-cycler/thermal-cycler-pcr/biometra-trio-series/
- 424 • Water bath (ThermoFisher Scientific, Precision GP 05, cat. no. 15385857)
- 425 NanoDrop spectrophotometer (ThermoFisher Scientific) •
- 426 Centrifuge 5425R (Eppendorf)
- 427 • Centrifuge 4-16kS (Sigma-Aldrich)
- 428 High-definition Neubauer counting chamber (hemocytometer) (Dutscher, cat. no. 900504) •
- 429 • Cell scrapers 24 cm (Sarstedt, cat. no. 83.3951)
- 430 • Cell culture flask Cellstar 25 cm<sup>2</sup> filter cap Greiner Bio-One (Dutscher, cat. no. 690175)
- 431 Plates 6 wells cell culture Cellstar standard Greiner Bio-One (Dutscher, cat. no. 657160)
- 432 Plates 96 wells flat bottom for cell culture Cellstar standard Greiner Bio-One (Dutscher, cat. no. 433 020035)
- 434 • Greiner Bio-One 96-well sterile cell culture plate with flat bottom, black with transparent bottom, for 435 fluorescence imaging (Dutscher, cat. no. 655090)
- 436 • Greiner Bio-One EASYseal<sup>™</sup> adhesive foil for seal microtiter plate (Dutscher, cat. no. 676001)
- 437 Parafilm tape (Dutscher, cat. no. 090260) •
- 438 Precision wipes Kimtech Science (Dutscher, cat. no, 002907B) •
- 439 Petri dishes 90mm (Sarstedt, cat. no. 82.1472) •
- 440 • Filtration unit Stericup 1L (Dutscher, cat. no. 051248B)
- 441 • Tubes 15 ml (Sarstedt, cat. no. 62.554.502)
- 442 Microtubes 1.5 ml (Sarstedt, cat. no. 72.690.001) •

| 443 | • | Microtube Multiply <sup>®</sup> Pro 0,2 ml with cap (Sarstedt, cat. no. 72.737.002) |  |
|-----|---|-------------------------------------------------------------------------------------|--|
|-----|---|-------------------------------------------------------------------------------------|--|

- Microtube Multiply<sup>®</sup> µStrip 0,2 ml (Sarstedt, cat. no. 72.985.002) 444
- 445 Caps for PCR tubes strips (Sarstedt, cat. no. 65.989.002) •
- 446 Filtration unit Stericup PES 0,2µm 1L (Dutscher, cat. no. 051248B) •
- 447

#### 448 H2 SOFTWARE

- 449 Primer design and tools for In-Fusion<sup>®</sup> cloning https://www.takarabio.com/learning-450 centers/cloning/primer-design-and-other-tools
- New England Biolabs Tm calculator https://tmcalculator.neb.com/#!/main 451
- New England Biolabs double digestion https://nebcloner.neb.com/#!/redigest 452 ٠
- 453 gRNAs design http://grna.ctegd.uga.edu/ •
- 454 Blastn sequence alignment tool https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST\_SPEC=GeoBlast&PAGE\_TYPE=Bla 455 456 stSearch
- 457 Expasy translate tool https://web.expasy.org/translate/
- Clustal omega multiple sequence alignment tool <u>https://www.ebi.ac.uk/Tools/msa/clustalo/</u> 458
- Reverse complement tool https://www.bioinformatics.org/sms/rev\_comp.html 459 •
- ApE plasmid editing software<sup>33</sup> https://jorgensen.biology.utah.edu/wayned/ape/ 460 •
- 461

#### 462 **H1 PROCEDURE**

- 463 H2 Mutagenesis of nuclear viruses and A. castellanii using CRISPR/Cas9
- 464

465 H3 Vector preparation for Cas9 and gRNAs expression in A. castellanii • TIMING 5 days (5-6 hs hands on 466 time)

467 The following protocol describes how to clone 2 gRNAs in vHB8 starting from primers containing the gRNAs 468 and vHB16 as a template (See Figure 3).

- 469
  - 470

1. Prepare a PCR mix for gRNAs amplification according to table below and using the primer templates shown in Table 2.

|                            | Amount           | Final Concentration |
|----------------------------|------------------|---------------------|
| Nuclease-free water        | Make up to 50 µl |                     |
| 5X Phusion HF or GC Buffer | 10 µl            | 1x                  |
| 10 mM dNTPs                | 1 μΙ             | 200 μΜ              |
| 10 μM Forward Primer 1     | 2.5 μl           | 0.5 μΜ              |
| 10 μM Reverse Primer 2     | 2.5 μl           | 0.5 μΜ              |
| Template vHB16             | 20 ng            | 0.4 ng/μl           |
| DMSO (optional)            | (1.5 μl)         | 3 %                 |
| Phusion DNA Polymerase     | 0.5 μΙ           | 1 unit/50 μl PCR    |

471 ▲ CRITICAL STEP DMSO is used to inhibit the formation of secondary structures on the DNA 472 templates and should be considered for GC rich templates or templates with predicted secondary 473 structures.

475 *2.* Perform PCR following the cycling conditions below.

| Cycle number | Denature     | Anneal       | Extend       | Final      |
|--------------|--------------|--------------|--------------|------------|
| 1            | 98°C, 30 sec |              |              |            |
| 2-30         | 98°C, 10 sec | 55°C, 30 sec | 72°C, 15 sec |            |
| 31           |              |              | 72°C, 5 min  |            |
| 32           |              |              |              | 10°C, Hold |

Analyze the product by migrating 1 μl of the PCR reaction on a 2 % agarose gel using standard gel
electrophoresis conditions (135V, 20 min). Purify the rest of the PCR reaction with Monarch<sup>®</sup> PCR
& DNA Cleanup Kit (see Supplementary Methods). Elute with nuclease-free water.

- PAUSE POINT Purified DNA can be stored at -20°C.
- **?TROUBLESHOOTING**
- 480 481 482

483

479

4. Digest the PCR product purified from Step 3 with DpnI in order to eliminate remaining parental plasmid and 1 μg of vHB8 with NotI in parallel at 37°C for 3 hours following the reactions:

|                     | Amount                           | Final Concentration |
|---------------------|----------------------------------|---------------------|
| PCR product or vHB8 | All purified PCR or 1 μg of vHB8 |                     |
| NEB CutSmart buffer | 2 μΙ                             | 1x                  |
| Dpnl or Notl (HF)   | 20 U                             | 1 U/μl              |
| Nuclease-free water | Το 20 μΙ                         |                     |

484

PAUSE POINT Digestion can be performed overnight.

- 485 5. Analyze digestion efficiency of vHB8 by NotI by migrating 1 μl of the mixture using standard gel
  486 electrophoresis (135V, 20 min). Purify the rest of digested plasmid with Monarch<sup>®</sup> PCR & DNA
  487 Cleanup Kit according to the manufacturer's instructions (Supplementary Methods)
  488 **?TROUBLESHOOTING**
  - 6. Assemble an In-Fusion<sup>®</sup> seamless cloning reaction as follows:

|                                     | Amount      | Final Concentration |
|-------------------------------------|-------------|---------------------|
| Digested and purified PCR           | 200 ng      | 20 ng/μl            |
| fragment from Step 4                |             |                     |
| Linearized vector from Step 5       | 50 ng       | 5 ng/μl             |
| 5X In-Fusion <sup>®</sup> HD Enzyme | 2 μΙ        | 1x                  |
| Premix                              |             |                     |
| Nuclease-free water                 | Up to 10 µl |                     |

- 490 7. Incubate the reaction for 15 min at 50 °C, then place it on ice.
- 491 8. Transform Stellar<sup>™</sup> Competent Cells (according to manufacturer's specifications) using 5 µl of the
   492 In-Fusion<sup>®</sup> reaction and at least 25 µl of chemically competent bacteria.
- 493**A CRITICAL STEP** The incubation allowing the recovery of bacteria after transformation is not494necessary when using plasmids containing ampicillin resistance (bacteriostatic).
- 495 *9.* Plate cells on LB agar dishes containing Ampicillin 100  $\mu$ g.ml<sup>-1</sup>
- 496 *10.* Incubate plates overnight at 37 °C.
- 497 11. Perform a colony screening PCR to identify positive clones. The PCR mixture is assembled as498 follows (one reaction per colony tested):

|                                    | Amount | Final Concentration |
|------------------------------------|--------|---------------------|
| 5X Green GoTaq <sup>®</sup> Buffer | 3 μΙ   | 1x                  |
| 10 mM dNTPs                        | 0.3 μΙ | 200 μΜ              |

| 10 µM Forward Primer from         | 0.75 μl     | 0.5 μΜ      |
|-----------------------------------|-------------|-------------|
| Step 1                            |             |             |
| 10 µM Reverse Primer (11,         | 0.75 μl     | 0.5 μΜ      |
| see Table 1)                      |             |             |
| GoTaq <sup>®</sup> DNA Polymerase | 0.075 μl    | 0.375 units |
| Nuclease-free water               | Up to 15 µl |             |
| Template                          | See Step 12 |             |

501

502

503

504

▲ CRITICAL STEP Primer 11 was designed next to the insertion site on vHB8 plasmid. Forward primer used in step 1 can be used in combination.

- 12. To perform the PCR reactions, number each colony to be analyzed by PCR using a marker pen on the petri dish, to later recognize the colonies bearing the desired vector. Using a pipette tip, collect approximately half of each colony and vigorously shake it in the PCR reaction solution.
  - 13. Perform PCR following the cycling conditions below, and analyze the products by running a standard gel electrophoresis (135V, 20 min).
- 505 506

| Cycle number | Denature     | Anneal          | Extend         | Final      |
|--------------|--------------|-----------------|----------------|------------|
| 1            | 95°C, 2 min  |                 |                |            |
| 2-30         | 95°C, 45 sec | 42–65°C, 45 sec | 72°C, 1 min/kb |            |
| 31           |              |                 | 72°C, 5 min    |            |
| 32           |              |                 |                | 10°C, Hold |

- 507 **CRITICAL STEP** Calculate annealing temperature using the NEB Tm Calculator 508 (https://tmcalculator.neb.com/#!/main), selecting Tag DNA Polymerase from the given options
- 509
   14. Pick individual colonies bearing the desired plasmid from the plates in Step 10 and incubate them
   510 in 5 ml of LB (Luria-Bertani) medium in presence of 100 μg.ml<sup>-1</sup> ampicillin at 37 °C, 200–250 RPM
   511 agitation for 12-16 hours (one colony per tube).
- 512 15. Centrifuge the tubes at 3000 g for 10 min at 4°C, remove the supernatant and purify the plasmid
   513 in the pellet using Monarch<sup>®</sup> Plasmid DNA Miniprep Kit Protocol, following manufacturer's
   514 instructions.

16. Send an aliquot of the plasmid for sequencing and confirm the absence of undesirable mutations.

- 515
- 516

# 517 H3 Transfection of A. castellanii • TIMING 2 days (2-3 hs hands on time)

518

**▲ CRITICAL** This protocol can be used to transfect any kind of DNA into *Acanthamoeba castellanii*, i.e. linear DNA serving as a template for recombination or circular DNA (plasmid) designed for the stable expression of a transgene like *cas9*, gRNAs, or any other fusion gene. The vector should also contain a selection marker such as *neo* (Neomycin phosphotransferase) conferring resistance to geneticin, or *NAT* (Nourseothricin N-Acetyl Transferase) conferring resistance to nourseothricin (Table 1).

- 524
- 525 17. In a 25 cm<sup>2</sup> flask, inoculate 5 x  $10^5$  fresh *A. castellanii* cells in 5 ml PPYG medium (2 x  $10^4$  cells / cm<sup>2</sup>). Incubate at 32 °C for 24 hs.
- 527 *18.* Recover the amoebas into a 15 ml tube after scraping the flask with a cell scraper.
- 528 *19.* Count the cells and determine their concentration with a hemocytometer.

- 20. In a 6-well dish, add 1.5 x 10<sup>5</sup> cells in one well per assay containing 2 ml PYG. Incubate for a few minutes to allow the cells to adhere at the bottom (5 minutes is usually enough for healthy cells). **A CRITICAL STEP** Include an additional well for the negative control which will be transfected with no DNA. Such amoebas will be treated using the same selection procedure as other samples. No trophozoites should be observed after 1 or 2 days of drug selection (refer to <sup>34</sup> for brightfield images of different stages of *Acanthamoeba*). At the end of the experiment, no cells should be observed in the negative control sample.
- CRITICAL STEP If CRISPR/Cas9 vectors are transfected, include a vector expressing Cas9 and
   gRNAs which do not target the organism of interest as negative control for future genotyping or
   phenotypic characterization.
- **CRITICAL STEP** Before using the culture, with a bench microscope, check that the cells in the
   flask are in a good shape, i.e. adherent, in trophozoite stage, and in monolayer. This drastically
   enhances the transfection efficiency.
- 542 21. Simultaneously, in a 1.5 ml microtube, mix ~4 μg of DNA diluted in PBS to a final volume of 100 μl,
   543 then add 10 μl PolyFect (Qiagen), vortex for 20 sec, and incubate for 5-10 min at room temperature
   544 to allow the formation of transfection complexes.
- 545 A CRITICAL STEP The use of PBS is critical to ensure maximum transfection efficiency. Homogenize
   546 the PolyFect solution by tapping before pipetting.
- 54822. During the incubation of the transfection mix, remove the supernatant from the cells from Step54920, carefully wash them by adding 1 ml of PBS, and gently rock the plate.
- CRITICAL STEP Add the liquid on the walls of the wells, not directly onto the cells, to avoid their
   detachment from the plate. The use of PBS is critical to ensure maximum transfection efficiency.
- 552 23. Repeat Step 22 and leave the PBS in the wells.
- 553 24. Delicately add the transfection mix from Step 21 (110 μl) drop by drop onto the cells. Homogenize
   554 by gently rocking the plate.
- 555 *25.* Incubate for 1 h at 32 °C.
- 556 26. Gently aspirate the PBS using a pipette tip without disturbing attached cells, and delicately add 2
   557 ml PYG.
- 558 A CRITICAL STEP Add the liquid on the walls of the wells, not directly onto the cells, to avoid their
   559 detachment from the plate.
- 560 27. For stable transfection in *A. castellanii*, to express Cas9 and gRNAs for example, continue to the 561 next section.
- 562 For genomic manipulations of viruses by homologous recombination, infect the cells directly with 563 the desired virus (Steps 37-75).
- 564

- H3 Selection of amoebas stably expressing a transgene such as cas9 and gRNAs TIMING 7-10 days (2-3
  hs hands on time)
- 567
- 56828. Seal the plate with parafilm to avoid evaporation and incubate overnight at 32 °C. Overnight569growth allows the recovery of the cells and the expression of the selection marker.

570 ▲ CRITICAL STEP Check the appearance of the cells with a microscope: they should be mainly at 571 the trophozoite stage. 572 29. Remove the supernatant by pipetting/aspiration and replace it delicately with 2 ml PYG containing 573 30 µg.ml<sup>-1</sup> geneticin or 30 µg.ml<sup>-1</sup> nourseothricin (according to the vector selection cassette (see 574 Table 1)). 575 30. Incubate for 2 days at 32 °C. 576 31. Check the appearance of the cells using an inverted microscope magnification x 400. ▲ CRITICAL STEP: As the transfection efficiency is quite low, most cells should appear dead, i.e. 577 578 round and detached from the bottom of the dish, and a few should remain as healthy trophozoites. 579 These ones are most probably containing the vector and stably expressing the selection marker. 580 **?TROUBLESHOOTING** 581 32. Remove dead cells by replacing the culture media every 2-3 days with fresh PYG containing 30 582 µg.ml<sup>-1</sup> of the selection drug until a confluent monolayer of trophozoïites is observed. The timing 583 needed to obtain a confluent monolayer is highly variable according to transfection efficiency and 584 the effect of the transgene on the growth of the amoebas. A minimum of one week is needed. 585 *33.* Recover the cells from the wells either by scraping or by carefully pipetting up and down. 34. Prepare two 25 cm<sup>2</sup> flasks per culture, one containing 5 ml PYG and 30 µg.ml<sup>-1</sup> 586 587 geneticin/nourseothricin, and one with 5 ml PYG and 100 µg.ml<sup>-1</sup> geneticin/nourseothricin. 588 35. Distribute 1 ml of cells in each flask. Visualization of the amoebas by fluorescence microscopy 589 should be used to confirm expression of GFP-Cas9. Clear nuclear localization should be observed. 590 Change the medium every 2-3 days until the cultures can be used for further experiments and 591 passage into a new dish whenever cultures reach confluency. Amoebas can be maintained 592 indefinitely in this condition. 593 ▲ CRITICAL STEP: The medium containing 100 µg.ml<sup>-1</sup> antibiotic allows increased expression of 594 plasmid-contained genes likely by increasing copy number of the plasmid. The medium containing 595 30 µg.ml<sup>-1</sup> of antibiotic will serve as a backup in case the amoebas do not grow properly in the first 596 one. 597 36. At this point, there are two options according to the aim of the experiment: Option A, Mutagenesis 598 of nuclear viruses with CRISPR/Cas9 or Option B, Mutagenesis of amoebas using CRISPR/Cas9. 599 600 A. Mutagenesis of nuclear viruses with CRISPR/Cas9 • TIMING 7-10 days (3-4 hs hands on time) 601 In a 25 cm<sup>2</sup> flask, inoculate 5 x 10<sup>5</sup> fresh A. castellanii cells expressing Cas9 and gRNAs 602 i. 603 produced during Step 35 in 5 ml PYG medium containing geneticin 100  $\mu$ g.ml<sup>-1</sup> to keep 604 selecting for Cas9 expression  $(2 \times 10^4 \text{ cells} / \text{ cm}^2)$ . Incubate at 32 °C for 24 hs. 605 ii. Infect the culture with the virus you wish to mutagenize with an approximate MOI of 5-10 606 for pandoravirus and mollivirus. Gently rock the plate to homogenize. 607 iii. Incubate 1 h at 32 °C. 608 iv. Remove the supernatant by pipetting/aspiration to remove the viruses that were not 609 internalized and replace with 5 ml PYG containing geneticin 100 µg.ml<sup>-1</sup>.

- 610v.Incubate at 32 °C until you start to observe cell lysis and production of new viruses611(approximately 2 to 5 days). Evaluate the production of viruses by observing the flask with612an inverted microscope magnification x 400.
- 613 **CRITICAL STEP** Part of the suspension corresponds to mutant viruses.

614 A CRITICAL STEP Infected cells appear lysed or round, and the viruses appear as small dots
 615 between the cells. This step is important to evaluate roughly how much suspension is needed for
 616 next round of infection.

- vi. Recover the viruses by pipetting up and down to resuspend viral particles and transfer into
  a 15 ml tube, transfer 500 μl into two separate 1.5 ml microtubes, and proceed to cloning
  and genotyping to detect mutant viruses (see Steps 76-91 and 97-102). Keep the
  remaining suspension at 4 °C. PAUSE POINT: Samples are stable for at least 1 year if there
  is no bacterial contamination.
- vii. Prepare a culture of *A. castellanii* expressing Cas9 and gRNAs by repeating Step 36Ai and
  infect with the viral suspension obtained in Step 36Avi (use 500 μl from one of the
  microtubes), as described in Step 36Aii. Continue to Step 36Aiii-vi.
- 625 viii. Repeat step 36Avii two more times.
- A CRITICAL STEP Due to the low efficiency of NHEJ in nuclear giant viruses and its tendency to
   generate large deletions, the number of passages needed to increase the proportion of mutants
   with discrete deletions needs to be analyzed empirically for each gene (usually between 1 and 3
   passages). Over 5 consecutive passages might increase natural mutations in the gRNA targeting
   site and thus, should also be avoided.
- 631 **CRITICAL STEP** Cloning (Steps 76 91) and genotyping of clones (Steps 97 102) should be
   632 performed at each passage to maximize the success rate of the experiment. Viral lines should be
   633 collected and passaged every day.
- 634

# 635 *B. Mutagenesis of amoebas using CRISPR/Cas9* • TIMING 3 weeks (10-15 hs hands on time)

- 636i.Prepare a vector designed for CRISPR/Cas9 mutagenesis targeting the gene of interest as637described in Steps 1-16
- 638 ii. Transfect *A. castellanii* with this plasmid as described in Steps 17-27.
- 639 iii. Select and amplify cells expressing Cas9 and gRNAs as described in Steps 2 8-36.
- 640iv.When a confluent population is obtained, proceed to cloning of amoebas (see Steps 92-64196). ▲ CRITICAL STEP Modification of the genome of *A. castellanii* occurs during the642selection and amplification process.
- 643 v. Identify mutant strains by genotyping (see Steps 97-102).
- 644 A CRITICAL STEP Ensure that the mutations obtained create an efficient knock-out. *i.e.* the indels
   645 generate frameshifts or the absence of protein production is confirmed by detection with
   646 antibodies (Western blot).
- 647
- 648 **H2** *Mutagenesis of nuclear and cytoplasmic viruses using recombination*
- 649

```
650 H3 Vector preparation for homologous recombination experiments • TIMING 10 days (4-6 h hands-on
651 time)
```

37. Prepare a PCR mix for amplification of each homology arm according to the following table and using the primer templates shown in Table 2. The genomic DNA of the selected virus must be used as a template for PCR amplification. gDNA is obtained using PureLink® Genomic DNA Kit from Invitrogen by extracting it from purified viral particles or infected cells, following manufacturer's instructions.

|                              | Amount      | Final Concentration |
|------------------------------|-------------|---------------------|
| Nuclease-free water          | Up to 50 μl |                     |
| 5X Phusion HF or GC Buffer   | 10 μl       | 1x                  |
| 10 mM dNTPs                  | 1 μΙ        | 200 μΜ              |
| 10 μM Forward Primer 1, 3, 5 | 2.5 μl      | 0.5 μΜ              |
| or 7                         |             |                     |
| 10 μM Reverse Primer 2, 4, 6 | 2.5 μl      | 0.5 μΜ              |
| or 8                         |             |                     |
| Template gDNA                | 100 ng      | 2 ng/μl             |
| DMSO (optional)              | (1.5 μl)    | 3%                  |
| Phusion DNA Polymerase       | 0.6 μΙ      | 1 unit/50 μl PCR    |

657 A CRITICAL STEP DMSO is used to inhibit the formation of secondary structures on the DNA
 658 templates and should be considered for GC rich templates or templates with predicted secondary
 659 structures.

- 660
- 660

661

Perform PCR following the cycling conditions below, and analyze the products by running 1  $\mu$ l of the PCR reaction using standard agarose gel electrophoresis (135V, 20 min).

662

| Cycle number | Denature     | Anneal          | Extend       | Final      |
|--------------|--------------|-----------------|--------------|------------|
| 1            | 98°C, 30 sec |                 |              |            |
| 2-30         | 98°C, 10 sec | 45-72°C, 30 sec | 72°C, 15 sec |            |
| 31           |              |                 | 72°C, 5 min  |            |
| 32           |              |                 |              | 10°C, Hold |

663 ▲ CRITICAL STEP Calculate the annealing temperature using the NEB Tm Calculator
 664 (<u>https://tmcalculator.neb.com/#!/main</u>) without considering the 15 bp corresponding to the receptor
 665 vector and used for In-Fusion<sup>®</sup> recombination

# 666 **?TROUBLESHOOTING**

38.

.

- 667 39. Purify the rest of the PCR reaction with Monarch<sup>®</sup> PCR & DNA Cleanup Kit according to the
  668 manufacturer's recommendations (Supplementary Methods). PAUSE POINT Purified DNA can
  669 be stored at -20°C.
- 40. In parallel, linearize at least 1 μg of the desired receptor vector (Table 1) by digesting it with
  HindIII or EcoRI for the cloning of 5' homology arm at 37°C for 3 hours following the reaction:

|                                | Amount   | Final Concentration |
|--------------------------------|----------|---------------------|
| Vector                         | 1 μg     | 50 ng/μl            |
| NEB 3.1 or NEB CutSmart buffer | 2 μΙ     | 1x                  |
| HindIII or EcoRI               | 20 U     | 1 U/μl              |
| Nuclease-free water            | Το 20 μΙ |                     |

672

**PAUSE POINT** Digestion can be performed overnight.

- Analyze digestion efficiency by running 1 μl of the digested plasmid using standard agarose
   gel electrophoresis (135V, 20 min). Purify the rest of the digested plasmid with Monarch<sup>®</sup>
   PCR & DNA Cleanup Kit according to the manufacturer's instructions (Supplementary
   Methods). **?TROUBLESHOOTING**
  - PAUSE POINT Purified DNA can be stored at -20°C.
- 42. Proceed as described in Steps 6-16 to clone the 5' homology arm in the digested vector.
- 67943.Digest the vector obtained in the previous step using NotI as described in Step 4 to clone680the 3'HR in the previously obtained vector, following Steps 5-16.
- 681

- H3 Mutagenesis of viruses by recombination with the insertion of a resistance cassette TIMING 5-7 days
  (8-10 hs hands-on time)
- 684
- 685
- 686
- 687

| 44. | Linearize 6 $\mu g$ of the vector produced in Step 43 by digesting it overnight with appropriate |
|-----|--------------------------------------------------------------------------------------------------|
|     | restriction enzymes (HindIII/EcoRI and NotI, See Figures 1, 2) as follows                        |

**Final Concentration** Amount Vector 120 ng/µl 6 µg Appropriate NEB buffer 5 µl 1x Enzyme 1 20 U 0.4 U/μl Enzyme 2 20 U 0.4 U/μl Nuclease-free water To 50 μl

688

693

694

695

696

- Analyze digestion efficiency by running 1 μl of the digested plasmid using standard agarose
  gel electrophoresis (135V, 20 min). Purify the rest of the digested plasmid with Monarch<sup>®</sup>
  PCR & DNA Cleanup Kit according to the manufacturer's instructions (Supplementary
  Methods).
  - ▲ CRITICAL STEP It is not necessary to separate the two fragments of the plasmid obtained after restriction digestion, for transfection.
  - ▲ CRITICAL STEP Split the sample in two and purify using two columns to avoid saturation and DNA loss during purification.

697 <u>**?TROUBLESHOOTING</u>**</u>

- 698 46. Transfect wt *A. castellanii* with the linearized vector as described in Steps 17-27.
- 699 A CRITICAL STEP Include as a negative control a well with cells transfected with no DNA. samples
   700 must be collected in parallel in order to assess the specificity of genotyping.
- 701 47. Infect transfected cells with a high MOI of virus. Gently rock the plate to homogenize.
- 702**A CRITICAL STEP** The aim is to infect every transfected cell. For genetic manipulation of703Mimiviridae, a MOI of 10 is sufficient, for pandoravirus or mollivirus, a MOI of 50-100 is preferable.
- 704 48. Incubate 1 h at 32 °C.
- 70549.Remove the supernatant to wash away non-internalized viruses and replace with 2 ml706PYG.
- 707 50. Incubate overnight at 32 °C.

| 708 | PA 🗖   | USE POINT Viruses can be kept in the incubator for several days (typically 2-3 days), in which                     |
|-----|--------|--------------------------------------------------------------------------------------------------------------------|
| 709 | case,  | seal the plates with parafilm to avoid evaporation of the culture media. If more time is                           |
| 710 | neede  | ed, perform the incubation at room temperature.                                                                    |
| 711 | 51.    | In 25 cm <sup>2</sup> flasks, prepare one culture per assay, including the negative control. Inoculate             |
| 712 |        | 5 x $10^5$ A. castellanii cells in 5 ml PYG (2 x $10^4$ cells / cm <sup>2</sup> ), and incubate 24 hs at 32 °C, to |
| 713 |        | obtain healthy amoebas in a monolayer for the next round of infection.                                             |
| 714 | 52.    | Recover each well into 2 separate 1.5 ml microtubes (1 ml/tube). Centrifuge one of the                             |
| 715 |        | tubes at maximum speed (~16,000 g) for 20 min at room temperature to pellet the viruses.                           |
| 716 |        | Remove the supernatant by pipetting/aspiration and keep the pellet for genotyping.                                 |
| 717 |        | Proceed to PCR genotyping to assess the successful integration of the genomic                                      |
| 718 |        | modification (see Steps 97-102).                                                                                   |
| 719 |        | ITICAL STEP At this point, recombination events should be independent of the phenotype                             |
| 720 | assoc  | iated with the modification of the genome and thus, recombinant DNA should be identified                           |
| 721 | by g   | enotyping. Lack of amplification using primers P1+P3 (Figure 4) indicates inefficient                              |
| 722 | trans  | fection or problems with PCR amplification.                                                                        |
| 723 | PA     | USE POINT Pellets can be stored at -20 °C for at least one month to proceed later to                               |
| 724 | genot  | typing.                                                                                                            |
| 725 | ?-TRC  | DUBLESHOOTING                                                                                                      |
| 726 | 53.    | Infect a 25 cm <sup>2</sup> flask of confluent cells produced in step 51 with the contents of the second           |
| 727 |        | tube obtained during step 52.                                                                                      |
| 728 | 54.    | Incubate 1 h at 32 °C.                                                                                             |
| 729 |        | ITICAL STEP: Incubation for 1 h without a selection marker allows the expression of the                            |
| 730 | resist | ance cassette by the virus.                                                                                        |
| 731 | 55.    | Wash twice with 1 ml of PYG to eliminate extracellular viruses. Proceed carefully to avoid                         |
| 732 |        | detaching cells from the surface.                                                                                  |
| 733 | 56.    | Add 5 ml of PYG containing nourseothricin 100 µg.ml <sup>-1</sup> or geneticin 100 µg.ml <sup>-1</sup> according   |
| 734 |        | to the selection cassette introduced in the viral genome.                                                          |
| 735 | 57.    | Incubate overnight at 32 °C.                                                                                       |
| 736 | PA     | USE POINT Viruses can be kept in the incubator for several days (typically 2-3 days). If more                      |
| 737 | time   | is needed, perform the incubation at room temperature.                                                             |
| 738 | 58.    | Prepare cultures of amoebas as described in step 51.                                                               |
| 739 | 59.    | Recover the contents of the flasks in 15 ml tubes and centrifuge at maximum speed                                  |
| 740 |        | (depending on the centrifuge 6,800 g for 45 min (swinging buckets) or 16,000 g for 20 min                          |
| 741 |        | (fixed rotor)) at room temperature to pellet the viruses. Discard the supernatants and                             |
| 742 |        | leave only a small volume to resuspend the pellets.                                                                |
| 743 | ▲ CR   | ITICAL STEP Centrifugation is necessary to remove the selection marker and allow a new                             |
| 744 | round  | d of viral infection.                                                                                              |
| 745 | 60.    | For each assay, infect one 25 cm <sup>2</sup> flask of confluent cells produced in step 58 with the                |
| 746 |        | content of a tube obtained during step 59.                                                                         |
| 747 | 61.    | Repeat steps 54-57                                                                                                 |
| 748 | 62.    | Prepare cultures of amoebas as described in step 53.                                                               |
| 749 | 63.    | Recover the viruses as described in step 59.                                                                       |
| 750 | 64.    | Repeat steps 54-55                                                                                                 |
| 751 | 65.    | Replace medium with 5 ml of PYG without selection.                                                                 |

| 752 | 66.           | Incubate overnight at 32 °C.                                                                                |  |  |  |  |  |
|-----|---------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 753 | PAL           | JSE POINT Viruses can be kept in the incubator for several days (typically 2-3 days). If more               |  |  |  |  |  |
| 754 | time i        | s needed, perform the incubation at room temperature.                                                       |  |  |  |  |  |
| 755 | 67.           | Control viral production by observing the culture using an inverted microscope                              |  |  |  |  |  |
| 756 |               | magnification x400.                                                                                         |  |  |  |  |  |
| 757 | ▲ CRI         | TICAL STEP At this step, significant differences between the samples and the negative                       |  |  |  |  |  |
| 758 | contro        | control are expected. Viruses and cell lysis should be easily recognized in the samples while less          |  |  |  |  |  |
| 759 | abunc         | lant in the negative control.                                                                               |  |  |  |  |  |
| 760 | ▲ CRI         | <b>TICAL STEP</b> Long incubation of the culture will decrease the differences between the samples          |  |  |  |  |  |
| 761 | and th        | ne negative control. This will not affect the overall success of the experiment.                            |  |  |  |  |  |
| 762 | ?-TRO         | UBLESHOOTING                                                                                                |  |  |  |  |  |
| 763 | 68.           | Recover the contents of the flasks in 15 ml tubes. Transfer 100 $\mu l$ in one 1.5 ml microtube             |  |  |  |  |  |
| 764 |               | for the last round of enrichment in mutant viruses. Keep the remaining suspension at 4 °C.                  |  |  |  |  |  |
| 765 |               | (OPTIONAL) Transfer 1 ml in a 1.5 ml tube and centrifuge at maximum speed and room                          |  |  |  |  |  |
| 766 |               | temperature. Proceed to genotyping (step 97).                                                               |  |  |  |  |  |
| 767 | 69.           | Prepare cultures of amoebas as described in step 51.                                                        |  |  |  |  |  |
| 768 | 70.           | Infect a 25 cm <sup>2</sup> flask produced in step 68 with 5-100 $\mu$ l of viruses according to the amount |  |  |  |  |  |
| 769 |               | of viral particle present in the culture.                                                                   |  |  |  |  |  |
| 770 | 71.           | Repeat steps 54-57                                                                                          |  |  |  |  |  |
| 771 | PAU           | JSE POINT Viruses can be kept in the incubator for several days (typically 2-3 days). If more               |  |  |  |  |  |
| 772 | time i        | s needed, perform the incubation at room temperature.                                                       |  |  |  |  |  |
| 773 | 72.           | Control viral production with an inverted microscope magnification x 400 to evaluate the                    |  |  |  |  |  |
| 774 |               | quantity of produced viruses. Differences between samples and negative control are                          |  |  |  |  |  |
| 775 |               | expected.                                                                                                   |  |  |  |  |  |
| 776 | 73.           | Recover the contents of the flasks in 15 ml tubes.                                                          |  |  |  |  |  |
| 777 | 74.           | Transfer 1 ml in a 1.5 ml tube and centrifuge at maximum speed at room temperature for                      |  |  |  |  |  |
| 778 |               | genotyping of the virus pellet (steps 97-102). Eliminate the supernatant. Keep the                          |  |  |  |  |  |
| 779 |               | remaining suspension at 4 °C.                                                                               |  |  |  |  |  |
| 780 | ?-TRO         | UBLESHOOTING                                                                                                |  |  |  |  |  |
| 781 | 75.           | Proceed to cloning to isolate recombinant viruses (steps 76-91)                                             |  |  |  |  |  |
| 782 |               |                                                                                                             |  |  |  |  |  |
| 783 | H2 CLONING A  | AND GENOTYPING OF VIRUSES AND AMOEBAS                                                                       |  |  |  |  |  |
| 784 |               |                                                                                                             |  |  |  |  |  |
| 704 | H2 Cloning of | viruses • TIMING 5.7 days (2.5 h hands on time)                                                             |  |  |  |  |  |
| 705 | ns cloning of |                                                                                                             |  |  |  |  |  |
| 780 | 70            |                                                                                                             |  |  |  |  |  |
| /8/ | 76.           | In one 25 cm² flask, inoculate 5 x 10° wt amoebas in 5 mi PYG (2 x 10° cells / cm²), and                    |  |  |  |  |  |
| /88 |               | incubate 24 h at 32 °C, to obtain a monolayer of healthy amoebas.                                           |  |  |  |  |  |
| /89 | 77.           | Recover cells from step 76                                                                                  |  |  |  |  |  |
| 790 | 78.           | Determine their concentration using a hemocytometer.                                                        |  |  |  |  |  |
| 791 | 79.           | In a 6-well dish, add 1.5 x 10° wt cells per well, one well per assay. Let the amoebas adhere               |  |  |  |  |  |
| 792 |               | to the bottom, 5 minutes is usually enough with fresh cells.                                                |  |  |  |  |  |

80. Infect the cells prepared in step 77 with 2-10 μl of viral suspension, i.e. add 2 μl if the
apparent quantity of viruses is high, to 10 μl if few viruses are visible in steps vi and 72.
Gently rock the plate. Incubate 1 h at 32 °C.

▲ CRITICAL STEP In order to isolate/clone the viruses, the MOI should be less than 1. This way, each cell will likely be infected by a single virus. Bear in mind that the proportion of infectious particles of mimivirus are higher than pandoravirus or mollivirus. Thus, particle numbers should be adapted for each different virus. Moreover, gene modification might affect infectivity and consequently, the optimal number of viruses must be addressed empirically.

- 81. Wash 5-10 times with 1 ml of PYG to eliminate the maximum of extracellular viruses.
- 82. Collect the viruses from the wells by gently pipetting up and down into a 1.5 ml microtubes.
  - 83. Determine the cell concentration with a hemocytometer and dilute the sample with PYG to adjust the concentration to  $\sim$ 1 amoeba/µl of PYG.

**CRITICAL STEP** Control the concentration by depositing 5 drops of 1  $\mu$ l in an empty well of the 6-well dish and observing with an inverted microscope magnification x100 or less. There should be 0-3 amoeba(s)/drop. Adjust the dilution if necessary.

- 84. Dilute the suspension in PYG 10 times to have 1 amoeba / 10  $\mu$ l, which is easier to handle with a multichannel pipet.
- 81185.Prepare one 96 well dish per viral strain. In each well, add 100-1,000 of wt amoebas in 200812 $\mu$ L PYG.  $\blacktriangle$  CRITICAL STEP It is recommended to add 100 amoebas/well for assays with813pandoravirus and mollivirus, as their infectious cycle is long and amoebas tend to814overgrow the viruses. For experiments with mimivirus or megavirus, 1000 cells per well is815appropriate. No control is needed at this point.
- 816 86. Add 10 μl of diluted infected amoebas from step 84 to each well of the plate prepared in
  817 step 85 using a multichannel pipette. Seal the plates to avoid evaporation, with parafilm
  818 or adhesive seals.
- 819 87. Incubate at 32 °C for at least 2 days (generally 3 to 4 days).
- 82088.Every well with an infection contains a potential recombinant virus. Observe each well of821the 96 well plates with an inverted microscope magnification x 400 to detect the822production of viruses.

823 A CRITICAL STEP If all wells appear infected, repeat the procedure from step 80 infecting with a
 824 lower quantity of viruses. When all wells are lysed, it usually indicates infection with multiple
 825 viruses.

CRITICAL STEP Lysis induction depends not only on the type of virus (pandoravirus and mollivirus tend to induce a lower degree of cell lysis), but also on the gene knocked out (and the phenotype associated with that deletion). Concordantly, the infection should be carefully assessed in each well to identify the presence or absence of viruses.

830 831

796

797

798

799

800

801

802

803

804

805

806 807

808

809

810

89. Mix the wells by pipetting vigorously up and down and transfer 100  $\mu$ l of viral/cell suspension from ~8 wells into a 1.5 ml microtube. Keep the plates sealed at 4 °C.

CRITICAL STEP Label tubes and wells picked from the 96 wells plate. Upon identification of
 recombinant and clonal viruses, the remaining 100 μl left in the wells will be used to amplify the
 viruses.

| 835 |         | 90.        | Centrifuge the microtube                                                                           | es of step 89 at maximum spee                | d (~16,000 g) for 20 min at room                |  |  |
|-----|---------|------------|----------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|--|--|
| 836 |         | <b>0</b> 4 | temperature and use the pellets for genotyping (see steps 97-102).                                 |                                              |                                                 |  |  |
| 837 |         | 91.        | Once mutant clones are i                                                                           | identified, use the remaining cor            | itent of the wells to infect 25 cm <sup>2</sup> |  |  |
| 838 |         |            | flasks containing monola                                                                           | yers of amoebas. At this step an             | d the next ones, no selection with              |  |  |
| 839 |         |            | nourseothricin is needed                                                                           | . Incubate at 32 °C until an acce            | otable quantity of viruses and cell             |  |  |
| 840 |         |            | lysis are observable. The                                                                          | n, proceed to the purification of            | viral particles <sup>35</sup> and phenotyping   |  |  |
| 841 |         |            | (see Supplementary Met                                                                             | hods).                                       |                                                 |  |  |
| 842 |         |            |                                                                                                    |                                              |                                                 |  |  |
| 843 | H3 Clon | ing of a   | moebas 🕈 TIMING 5-7 da                                                                             | ys (2 h hands on time)                       |                                                 |  |  |
| 844 |         |            |                                                                                                    |                                              |                                                 |  |  |
| 845 |         | 92.        | Collect the cells prepare                                                                          | d in Step 36Biv, either by scrap             | ing or by gently pipetting up and               |  |  |
| 846 |         |            | down.                                                                                              |                                              |                                                 |  |  |
| 847 |         | 93.        | Repeat Steps 83-86.                                                                                |                                              |                                                 |  |  |
| 848 |         | 94.        | Incubate at 32 °C until gr                                                                         | owth can be observed in the we               | ells.                                           |  |  |
| 849 |         |            | ICAL STEP Seal the plates v                                                                        | with parafilm or adhesive seals to           | o avoid evaporation of the culture              |  |  |
| 850 |         | media.     |                                                                                                    |                                              |                                                 |  |  |
| 851 |         | 95.        | Repeat Step 89.                                                                                    |                                              |                                                 |  |  |
| 852 |         | 96.        | When clones carrying th                                                                            | e desired mutation are identified            | ed, use the remaining content of                |  |  |
| 853 |         |            | the wells to inoculate 25                                                                          | cm <sup>2</sup> flasks containing 5 ml of PY | G. At this step, and the next ones,             |  |  |
| 854 |         |            | no selection is needed. Ir                                                                         | ncubate at 32 °C until cells have            | sufficiently grown. Then, proceed               |  |  |
| 855 |         |            | to phenotyping.                                                                                    |                                              |                                                 |  |  |
| 856 |         |            |                                                                                                    |                                              |                                                 |  |  |
| 857 | H3 Gen  | otyping    | of viruses and amoebas                                                                             | TIMING 4 days (3 hs hands-on                 | time)                                           |  |  |
| 858 |         |            |                                                                                                    |                                              |                                                 |  |  |
| 859 |         | 97.        | Design primers for genot                                                                           | yping according to Figure 4. Diffe           | erent sets of primers should allow              |  |  |
| 860 |         |            | the identification of rec                                                                          | combinant and wild-type locus.               | To facilitate PCR amplification,                |  |  |
| 861 |         |            | design primers to amplify DNA products no longer than 2 kb in size.                                |                                              |                                                 |  |  |
| 862 |         |            | TICAL STEP Calculate the annealing temperature using the NEB Tm Calculator                         |                                              |                                                 |  |  |
| 863 |         | (https:/   | ://tmcalculator.neb.com/#!/main). Preferentially, design primers with annealing                    |                                              |                                                 |  |  |
| 864 |         | temper     | eratures between 55 and 60°C.                                                                      |                                              |                                                 |  |  |
| 865 |         | 98.        | Resuspend the pellets of cultures in 20 $\mu$ l to 100 $\mu$ l DNase-RNase free water depending on |                                              |                                                 |  |  |
| 866 |         |            | the size of the pellet.                                                                            |                                              |                                                 |  |  |
| 867 |         |            | <b>ITICAL STEP</b> Include a sample of parental amoebas or virus (wild-type) as control for PCR    |                                              |                                                 |  |  |
| 868 |         | specific   | amplification.                                                                                     |                                              |                                                 |  |  |
| 869 |         | 99.        | Use samples prepared ir                                                                            | n step 98 as direct templates fo             | or PCR amplification with Terra™                |  |  |
| 870 |         |            | PCR Direct Red Dye Prem                                                                            | nix (TaKaRa) according to the fol            | lowing reaction mixture:                        |  |  |
|     |         |            | ·                                                                                                  | Amount                                       | -<br>Final Concentration                        |  |  |
|     |         | Nucle      | ase-free water                                                                                     | To 15 μl                                     |                                                 |  |  |

| Nuclease-free water         | To 15 μl |        |
|-----------------------------|----------|--------|
| 2X Terra PCR Direct Red Dye | 7.5 μl   | 1x     |
| Premix                      |          |        |
| 10 μM Forward Primer        | 0.45 μl  | 0.3 μΜ |
| 10 μM Reverse Primer        | 0.45 μl  | 0.3 μΜ |
|                             |          |        |

|             |        |          |                                                                                  |                            | 1        |                                 | T                     |                          |
|-------------|--------|----------|----------------------------------------------------------------------------------|----------------------------|----------|---------------------------------|-----------------------|--------------------------|
|             |        | Temp     | late                                                                             |                            | 1 µl     |                                 |                       |                          |
| 871         |        |          |                                                                                  |                            |          |                                 |                       |                          |
| 872         |        | 100.     | Perform P                                                                        | CR following               | the c    | ycling conditions               | below, and analy      | ze the products by       |
| 873         |        |          | migrating t                                                                      | he PCR reacti              | ion usiı | ng standard agaro               | se gel electrophore   | sis conditions (135V,    |
| 874         |        |          | 20 min).                                                                         |                            |          | 1                               | - <b>F</b>            |                          |
|             |        | Cycle    | number                                                                           | Denature                   |          | Anneal                          | Extend                | Final                    |
|             |        | 1        |                                                                                  | 98°C, 2 min                |          |                                 |                       |                          |
|             |        | 2-28     |                                                                                  | 98°C, 10 seo               | 2        | 50-60°C, 15 sec                 | 68°C, 1-2 min         |                          |
| 675         |        | 29       |                                                                                  |                            | -        |                                 |                       | 10°C, Hold               |
| 875         |        | ?-TROU   | JBLESHOOTI                                                                       | NG See Table               | 3        |                                 |                       | c · · · · ·              |
| 876         |        | 101.     | Check the s                                                                      | sequence of t              | the mu   | itations with the h             | elp of a company      | performing standard      |
| 877         |        |          | Sanger sequ                                                                      | uencing, acco              | ording t | o their recommen                | dations.              |                          |
| 878         |        |          | ICAL STEP N                                                                      | ext-Generatio              | on Seq   | uencing is an effici            | ent way of analyzir   | ng all the alleles of A. |
| 879         |        | castelle | a <i>nii</i> in a sing                                                           | le experimer               | nt. If p | rimers are barcod               | ed, multiple clones   | of amoebas can be        |
| 880         |        | analyze  | ed in a single                                                                   | run of seque               | ncing.   |                                 |                       |                          |
| 881         |        | 102.     | Select the c                                                                     | lones carrying             | g the d  | esired genomic mo               | difications (See Fig  | ure 4 and Anticipated    |
| 882         |        |          | results sect                                                                     | ion), and pro              | ceed t   | o amplification, pu             | urification using the | e protocol previously    |
| 883         |        |          | described in                                                                     | n <sup>35</sup> (in case o | f viruse | es) and phenotypir              | ng (Step 109).        |                          |
| 884         |        |          | ICAL STEP In                                                                     | case Terra a               | mplifica | ations do not lead              | to conclusive result  | s, purify the gDNA of    |
| 885         |        | the sar  | nples using F                                                                    | oureLink® Ger              | nomic l  | ONA Kit (Invitroger             | n) or Wizard® Geno    | mic DNA Purification     |
| 886         |        | Kit (Pro | omega) and e                                                                     | lute in the m              | inimal   | possible volume a               | ccording to manufa    | cturers' instructions.   |
| 887         |        | Then, p  | proceed to ge                                                                    | enotyping usi              | ng Phu   | sion™ High-Fidelity             | / DNA Polymerase (    | see steps 1-2 for PCR    |
| 888         |        | conditi  | ons).                                                                            | 11 0                       | 0        | 0                               |                       | •                        |
| 889         |        |          | ,-                                                                               |                            |          |                                 |                       |                          |
| 890         | H3 Vec | tor prep | aration for t                                                                    | rans-complen               | nentati  | on • TIMING 5 da                | ys                    |                          |
| <b>Q</b> Q1 |        | 103      | Dronaro a D                                                                      | PCR mix as de              | scribo   | l in ston 1 using th            | a annronriate tem     | nlate most probably      |
| 892         |        | 105.     |                                                                                  | -50 ng ner 50              | 0-ul rea | action volume) from             | m the studied virus   | or <i>A</i> castellanii  |
| 893         |        | 104      | Perform PC                                                                       | R following t              | he cvcli | ing conditions held             | w and analyze the     | products by running      |
| 894         |        | 104.     | 1 ul of the F                                                                    | PCR reaction               | using s  | tandard gel electro             | onhoresis (135V-20    | min)                     |
| 895         |        |          |                                                                                  | entreaction                | 45116 5  |                                 | photesis (1997) 20    |                          |
| 000         |        | Cvcle    | number                                                                           | Denature                   |          | Anneal                          | Extend                | Final                    |
|             |        | 1        |                                                                                  | 98°C. 30 sec               | 2        |                                 | Excerta               |                          |
|             |        | 2-30     |                                                                                  | 98°C. 10 sec               |          | 45-72°C. 30 sec                 | 72°C. 30 sec/kb       |                          |
|             |        | 31       |                                                                                  |                            | -        |                                 | 72°C, 5 min           |                          |
|             |        | 32       |                                                                                  |                            |          |                                 |                       | 10°C, Hold               |
| 896         |        |          | <b>CRITICAL</b>                                                                  | STEP Calcu                 | late th  | e annealing temp                | perature using the    | NEB Tm Calculator        |
| 897         |        |          | (https://tm                                                                      | calculator.ne              | b.com/   | /#!/main) without               | considering the 15    | bp corresponding to      |
| 898         |        |          | the recepto                                                                      | or vector and              | used fo  | or In-Fusion <sup>®</sup> recor | nbination             |                          |
| 899         |        | 105.     | Analyze and                                                                      | d purify PCR r             | eactio   | n as described in st            |                       |                          |
| 900         |        | ?TROU    | BLESHOOTIN                                                                       | NG                         |          |                                 |                       |                          |
| 901         |        | 106.     | Linearize at                                                                     | t least 1 µg (             | of the   | desired vector (Ta              | able 1) by digesting  | g it with one or two     |
| 902         |        |          | restriction enzymes at 37°C between 3 hours to overnight following the reaction: |                            |          |                                 |                       |                          |

| Amount | Final Concentration |
|--------|---------------------|
|        |                     |

| Vector                         | 1 μg                | 50 ng/μl                     |
|--------------------------------|---------------------|------------------------------|
| NEB 3.1 or NEB CutSmart buffer | 2 μΙ                | 1x                           |
| Restriction enzyme(s)          | 20 U (or 10U + 10U) | 1 U/μl (or 0.5 U/μl of each) |
| Nuclease-free water            | Το 20 μΙ            |                              |

- 107. Repeat steps 5-16. **?TROUBLESHOOTING**
- 108. Proceed to transfection and selection of amoebas as described in steps 17-37
- 906

905

# 907 H3 Viral phenotyping TIMING: variable

908109.Refer to Supplementary Methods for viral particle quantification15, infectious dose909determination15,36, DNA replication measurements15, Immunofluorescence assays910(adapted from37) or western blotting (adapted from38).

# 911 H1 ANTICIPATED RESULTS

912 Successful examples of genome manipulation are shown in Figure 4. Genotyping and sequencing of PCR 913 products must be performed in parallel with a negative control (amplified from parental virus/amoebas) 914 to demonstrate specificity of the PCR reactions. Other examples of gene manipulation can be found in our 915 publications<sup>15,18</sup>. We typically obtain recombinant viruses or amoebas in 3 weeks or one month, 916 respectively), with low rates of unsuccessful attempts (less than 5%). Importantly, in our experience, 917 essential genes are still difficult to modify and further effort to develop conditional systems for gene 918 depletion will be essential to efficiently target the variety of genes encoded by both *A. castellanii* and GVs.

# 919 H1 TIMING

- 920 Steps 1-16, Vector preparation for CRISPR/Cas9 expression: 5 days.
- 921 Steps 17-27, Transfection in *A. castellanii*: 2 days.
- 922 Steps 28-35, Selection of amoebas stably expressing a transgene such as cas9 and gRNAs: 7-10 days.
- 923 Step 36A, Mutagenesis of viruses with CRISPR/Cas9: 7-10 days.
- 924 Step 36B, Mutagenesis of amoebas using CRISPR/Cas9: 3 weeks.
- 925 Steps 37-43, Vector preparation for homologous recombination experiments: 10 days.
- 926 Steps 44-75, Mutagenesis of viruses by recombination with the insertion of a resistance cassette: 5-7 days.
- 927 Steps 76-91, Cloning of viruses: 5-7 days.
- 928 Steps 92-96, Cloning of amoebas: 5-7 days.
- 929 Steps 97-102, Genotyping of viruses and amoebas: 4 days
- 930 Steps 103-108, Vector preparation for trans-complementation: 5 days
- 931 Step 109, Viral phenotyping: variable

### 933 H1 TROUBLESHOOTING

- 934 Troubleshooting advice can be found in Table 3.
- 935

# 936 H1 REFERENCES

- Rayamajhee, B., Willcox, M. D., Henriquez, F. L., Petsoglou, C. & Carnt, N. Acanthamoeba keratitis:
   an increasingly common infectious disease of the cornea. *Lancet Microbe* 2, e345-e346,
   doi:10.1016/S2666-5247(21)00093-8 (2021).
- Guimaraes, A. J., Gomes, K. X., Cortines, J. R., Peralta, J. M. & Peralta, R. H. Acanthamoeba spp. as
  a universal host for pathogenic microorganisms: One bridge from environment to host virulence. *Microbiol Res* 193, 30-38, doi:10.1016/j.micres.2016.08.001 (2016).
- 943
   3
   Raoult, D. et al. The 1.2-megabase genome sequence of Mimivirus. Science 306, 1344-1350, doi:10.1126/science.1101485 (2004).
- 9454Philippe, N. *et al.* Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of946parasitic eukaryotes. *Science* **341**, 281-286, doi:10.1126/science.1239181 (2013).
- 947 5 Legendre, M. et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with 948 pandoravirus morphology. Proc Natl Acad Sci US 111, 4274-4279, а Α 949 doi:10.1073/pnas.1320670111 (2014).
- 9506Legendre, M. et al. In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting951Acanthamoeba. Proc Natl Acad Sci U S A 112, E5327-5335, doi:10.1073/pnas.1510795112 (2015).
- 9527Schulz, F., Abergel, C. & Woyke, T. Giant virus biology and diversity in the era of genome-resolved953metagenomics. Nat Rev Microbiol, 20, 721–736, doi:10.1038/s41579-022-00754-5 (2022).
- 954 8 de Oliveira, E. G. *et al.* Giant Viruses as a Source of Novel Enzymes for Biotechnological Application.
   955 *Pathogens* 11, 1453, doi:10.3390/pathogens11121453 (2022).
- 956
   9
   Byers, T. J. Molecular biology of DNA in Acanthamoeba, Amoeba, Entamoeba, and Naegleria. Int

   957
   Rev Cytol **99**, 311-341, doi:10.1016/s0074-7696(08)61430-8 (1986).
- 95810Gicquaud, C. & Tremblay, N. Observations with Hoechst Staining of Amitosis in Acanthamoeba-959Castellanii. J Protozool **38**, 221-224, doi:DOI 10.1111/j.1550-7408.1991.tb04432.x (1991).
- 960 11 Matthey-Doret, C. *et al.* Chromosome-scale assemblies of Acanthamoeba castellanii genomes
   961 provide insights into Legionella pneumophila infection-related chromatin reorganization. *Genome* 962 *Res* 32, 1698-1710, doi:10.1101/gr.276375.121 (2022).
- Peng, Z., Omaruddin, R. & Bateman, E. Stable transfection of Acanthamoeba castellanii. *Biochim Biophys Acta* 1743, 93-100, doi:10.1016/j.bbamcr.2004.08.014 (2005).
- 96513Liu, Y. *et al.* Virus-encoded histone doublets are essential and form nucleosome-like structures.966*Cell* **184**, 4237-4250 e4219, doi:10.1016/j.cell.2021.06.032 (2021).
- 96714Fridmann-Sirkis, Y. et al. Efficiency in Complexity: Composition and Dynamic Nature of Mimivirus968Replication Factories. J Virol 90, 10039-10047, doi:10.1128/JVI.01319-16 (2016).
- 969 15 Bisio, H. *et al.* Evolution of giant pandoravirus revealed by CRISPR/Cas9. *Nat Commun* 14, 428, doi:10.1038/s41467-023-36145-4 (2023).
- 971 16 Aqeel, Y., Siddiqui, R. & Khan, N. A. Silencing of xylose isomerase and cellulose synthase by siRNA
  972 inhibits encystation in Acanthamoeba castellanii. *Parasitol Res* 112, 1221-1227,
  973 doi:10.1007/s00436-012-3254-6 (2013).
- 97417Sobhy, H., Scola, B. L., Pagnier, I., Raoult, D. & Colson, P. Identification of giant Mimivirus protein975functions using RNA interference. *Front Microbiol* **6**, 345, doi:10.3389/fmicb.2015.00345 (2015).
- 97618Alempic, J.-M. *et al.* Knockout of GMC-oxidoreductase genes reveals functional redundancy in<br/>mimivirus. *bioRxiv*, 2023.2004.2028.538727, doi:10.1101/2023.04.28.538727 (2023).

- 978 19 Jiang, F. & Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. *Annu Rev Biophys* 46, 505-529,
   979 doi:10.1146/annurev-biophys-062215-010822 (2017).
- Moon, E. K., Hong, Y., Chung, D. I., Goo, Y. K. & Kong, H. H. Down-regulation of cellulose synthase
  inhibits the formation of endocysts in Acanthamoeba. *Korean J Parasitol* 52, 131-135,
  doi:10.3347/kjp.2014.52.2.131 (2014).
- 983 21 Groenenboom, M. A., Maree, A. F. & Hogeweg, P. The RNA silencing pathway: the bits and pieces 984 that matter. *PLoS Comput Biol* **1**, 155-165, doi:10.1371/journal.pcbi.0010021 (2005).
- 98522Wei, J. R. *et al.* Depletion of antibiotic targets has widely varying effects on growth. *Proc Natl Acad*986Sci U S A 108, 4176-4181, doi:10.1073/pnas.1018301108 (2011).
- 987
   23
   Curtis, C. D. & Nardulli, A. M. Using RNA interference to study protein function. *Methods Mol Biol* 988
   **505**, 187-204, doi:10.1007/978-1-60327-575-0\_11 (2009).
- 24 Levasseur, A. *et al.* MIMIVIRE is a defence system in mimivirus that confers resistance to virophage.
   990 *Nature* 531, 249-252, doi:10.1038/nature17146 (2016).
- Bekliz, M. *et al.* Experimental Analysis of Mimivirus Translation Initiation Factor 4a Reveals Its
  Importance in Viral Protein Translation during Infection of Acanthamoeba polyphaga. *J Virol* 92, doi:10.1128/JVI.00337-18 (2018).
- 994 26 Mougari, S., Abrahao, J., Oliveira, G. P., Bou Khalil, J. Y. & La Scola, B. Role of the R349 Gene and 995 10, lts Repeats in the MIMIVIRE Defense System. Front Microbiol 1147, 996 doi:10.3389/fmicb.2019.01147 (2019).
- 99727Bisio, H. *et al.* The ZIP Code of Vesicle Trafficking in Apicomplexa: SEC1/Munc18 and SNARE998Proteins. *mBio* 11, e02092-20, doi:10.1128/mBio.02092-20 (2020).
- 99928Bisio, H., Krishnan, A., Marq, J. B. & Soldati-Favre, D. Toxoplasma gondii phosphatidylserine1000flippase complex ATP2B-CDC50.4 critically participates in microneme exocytosis. *PLoS Pathog* 18,1001e1010438, doi:10.1371/journal.ppat.1010438 (2022).
- 1002
   29
   Ali, Z., Mahas, A. & Mahfouz, M. CRISPR/Cas13 as a Tool for RNA Interference. *Trends Plant Sci* 23,

   1003
   374-378, doi:10.1016/j.tplants.2018.03.003 (2018).
- 1004
   30
   Pallares Masmitja, M., Knodlseder, N. & Guell, M. CRISPR-gRNA Design. *Methods Mol Biol* 1961, 3 

   1005
   11, doi:10.1007/978-1-4939-9170-9\_1 (2019).
- 100631Bateman, E. Expression plasmids and production of EGFP in stably transfected Acanthamoeba.1007Protein Expr Purif **70**, 95-100, doi:10.1016/j.pep.2009.10.008 (2010).
- 100832Fabre, E. *et al.* Noumeavirus replication relies on a transient remote control of the host nucleus.1009Nat Commun 8, 15087, doi:10.1038/ncomms15087 (2017).
- 101033Davis, M. W. & Jorgensen, E. M. ApE, A Plasmid Editor: A Freely Available DNA Manipulation and1011Visualization Program. Front Bioinform 2, 818619, doi:10.3389/fbinf.2022.818619 (2022).
- 101234Dos Santos, D. L. *et al.* Clinical and molecular diagnosis of Acanthamoeba keratitis in contact lens1013wearers in southern Brazil reveals the presence of an endosymbiont. *Parasitol Res* 121, 1447-1454,1014doi:10.1007/s00436-022-07474-y (2022).
- 101535Bertaux, L., Lartigue, A. & Jeudy, S. Giant Mimiviridae CsCl Purification Protocol. *Bio Protoc* 10,1016e3827, doi:10.21769/BioProtoc.3827 (2020).
- 1017
   36
   Lei, C., Yang, J., Hu, J. & Sun, X. On the Calculation of TCID(50) for Quantitation of Virus Infectivity.

   1018
   Virol Sin **36**, 141-144, doi:10.1007/s12250-020-00230-5 (2021).
- Burda, P. C., Bisio, H., Marq, J. B., Soldati-Favre, D. & Heussler, V. T. CRISPR/Cas9-Based Knockout
   of GNAQ Reveals Differences in Host Cell Signaling Necessary for Egress of Apicomplexan Parasites.
   *mSphere* 5, e01001-20, doi:10.1128/mSphere.01001-20 (2020).
- Bisio, H., Lunghi, M., Brochet, M. & Soldati-Favre, D. Phosphatidic acid governs natural egress in
  Toxoplasma gondii via a guanylate cyclase receptor platform. *Nat Microbiol* 4, 420-428,
  doi:10.1038/s41564-018-0339-8 (2019).

### 1025 H1 Acknowledments

1026 We thank Sandra Jeudy for helpful advice during the development of the protocol. This study was founded

1027 by the European Research Council (ERC) under the European Union's Horizon 2020 research and 1028 innovation program (grant agreement No 832601; C.A.). H.B. is the recipient of an EMBO Long-Term 1029 Fellowship (ALTF 979-2019).

### 1030 H1 Data availability

1031 All data supporting this paper are included within the article in the form of figures and tables. Raw data 1032 associated with Figure 4 are provided in the primary articles<sup>15,18</sup>. All plasmids were deposited in Addgene 1033 (reference number indicated in Table 1).

### 1034 H1 Author Contributions Statement

H.B. Writing of the original draft. N.P. Writing of the original draft. A.S. Writing of the original draft. C.A.
Project administration, funding acquisition and writing of the original draft.

### 1037 H1 Competing interests

1038 The authors declare no competing interests as defined by Nature Research, or other interests that might

1039 be perceived to influence the interpretation of the article



#### 1041 Figure 1. Schematic representation of the overall methodology for genetic manipulation of A. castellanii 1042 and GVs.

1043 A general workflow of the Procedure is shown. Genome modification by recombination or CRISPR/Cas9 are depicted, including vector preparation, transfection, selection, cloning, and phenotyping. The nature 1044 1045 of the modification expected on the genomes of A. castellanii or GVs is also indicated. vAS1, vHB46, and 1046 vH47 were developed for gene editing in cytoplasmic GVs (mimivirus, megavirus). vHB178, vHB179, and 1047 vHB63 were developed for gene editing of nuclear GVs (pandoravirus, mollivirus) (Table 1). pmg741, 1048 pmg153 are the promoters from the Megavirus chilensis early genes mg741 and mg153. They are efficient 1049 in Mimivirus as well. pneo650 is the promoter from *Pandoravirus neocaledonia pneo* cds 650 early gene. 1050 NAT: Nourseothricin N-Acetyl Transferase conferring resistance to nourseothricin. NEO: Neomycin 1051 phosphotransferase conferring resistance to geneticin. GOI: Gene Of Interest. N: nucleus of A. castellanii. 1052 pU6: type III promoter from U6 gene of A. castellanii driving the transcription of small RNAs such as tRNAs. 1053 Green ellipses in vectors vAS1, vHB178, and 179: HA or FLAG tags. The yellow box in vAS1, green box in 1054 vHB178 and 179, and boxes in 3' position of NAT: 3' UTRs. vHB16 template to produce a DNA sequence 1055 containing 2 consecutive gRNAs that will be cloned into vHB8 digested with NotI. NLS: nuclear localization 1056 signal. GFP: green fluorescent protein. HR: homologous recombination. NHEJ: Non-homologous end 1057 joining. Restriction enzymes are shown in purple with purple arrowheads indicating the cut site.



1058

#### 1059 Figure 2. Design of homology arms for gene modification by homologous recombination.

1060 Schematic representation of the strategy to endogenously tag a gene using recombination. a. 1061 Example primer sequences, labelled 1-4, are shown in Table 2. 500bp at the end of the gene of 1062 interest (goi), excluding the stop codon, and 500bp at the 3' of the gene are amplified by PCR and 1063 used as homology arms for recombination. Homology arms are cloned into a vector containing the 1064 epitope tag and a drug-resistance cassette for the selection of recombinant viruses. Homologous 1065 recombination allows the insertion of the linearized cassette into the locus of the goi. Asterisks 1066 denotate stop codons and dashed line delimitate areas of homologous recombination.

1067 b. Schematic representation of the strategy for gene knockout using recombination as an example. 1068 Example primer sequences, labeled 5-8, are shown in Table 2. 500bp at each extremity of the goi 1069 are amplified by PCR and cloned into a vector containing a drug resistance cassette. Homologous recombination allows the insertion of the linearized cassette into the targeted locus. Asterisksdenotate stop codons and dashed line delimitate areas of homologous recombination.

1072



### 1073

# 1074 Figure 3. Cloning of polycistronic DNA sequences for gRNAs expression.

1075 Schematic representation of the strategy to clone 2 gRNA sequences in the plasmid vHB8 encoding 1076 CRISPR/Cas9. Primers I and J containing the new gRNA sequences (coloured diamonds) are used for PCR 1077 amplification of a tracrRNA and tRNA, using vHB16 as a template (upper panel). The resulting product is 1078 then cloned into vHB8 digested with NotI which encodes a single tRNA and tracrRNA (lower panel). vHB8 1079 does not contain any gRNA but rather a NotI site instead, allowing the insertion of the PCR product 1080 between the tRNA and tracrRNA.



1082 Figure 4. Design of primers for genotyping.

A. Design of primers and genotyping for modification of GVs by homologous recombination. Primers
 should be designed outside of the homology arms to detect recombination at the expected locus.
 'Pool' indicates suspension of viruses after drug selection but prior to cloning (Step 75). 'Clone'

1086 indicates a homogeneous population after successful cloning (Step 91). Primers P1 and P2 allow 1087 to detect unmodified locus while primers P1 and P3 would allow amplifying the recombinant locus. 1088 Analyzing the presence of recombinant viruses right after transfection (Step 66) is highly recommended and both P1+P2 and P1+P3 are expected to display positive amplification. As an 1089 1090 example, genotyping of the insertion of a second copy of mcp into the genome of Mollivirus *sibericum* is shown<sup>15</sup>. 1091

- 1092 B. Design of primers and genotyping for modification of nuclear GVs by CRISPR/Cas9. Primers should 1093 be designed flanking the regions targeted by gRNAs (black arrows). Clonal viruses that display a 1094 smaller PCR amplification product should be preferentially selected. The absence of PCR product 1095 indicates larger deletions including one or both of the primer annealing sequences. As an example, 1096 genotyping of the knockout of pneo 254 in Pandoravirus neocaledonia is shown<sup>15</sup>
- 1097 C. Design of primers and genotyping for modification of A. castellanii by CRISPR/Cas9. Primers should be designed flanking the regions targeted by gRNAs (black arrows). A. castellanii tends to repair 1098 1099 double-strand breaks by small indels and thus, shifts in PCR product size are rarely observed. 1100 Sequencing of PCR products is necessary for the analysis of recombinant cells. Importantly, since 1101 A. castellanii is a polyploid organism, multiple recombinant alleles are expected for each PCR 1102 amplification. As an example, genotyping of the knockout of the cellulose synthase 1 of A. *castellanii* is shown<sup>15</sup> 1103
- 1104

| Identifier | Genotype   |  |
|------------|------------|--|
| PAM1       | pTFIID-GFP |  |

#### 1105 **Table 1. Vectors**

| Identifier | Genotype        | Resistance     | Comments                                  | Addgene |
|------------|-----------------|----------------|-------------------------------------------|---------|
|            |                 | cassette       |                                           | ID      |
| PAM1       | pTFIID-GFP      | Geneticin      | Expression in A. castellanii (weak        | 198740  |
|            |                 |                | promoter)                                 |         |
| PAM2       | pGAPDH-GFP      | Geneticin      | Expression in A. castellanii (strong      | 198741  |
|            |                 |                | promoter)                                 |         |
| PAM3       | pTPBF-GFP       | Geneticin      | Expression in A. castellanii (medium      | 198742  |
|            |                 |                | promoter)                                 |         |
| PAM10      | pEF1-GFP        | Geneticin      | Expression in A. castellanii (very strong | 198743  |
|            |                 |                | promoter)                                 |         |
| PAM22      | pEF1-GFP        | Nourseothricin | Expression in A. castellanii (very strong | 193453  |
| (vc241)    |                 |                | promoter)                                 |         |
| PAM24      | pGAPDH-GFP      | Nourseothricin | Expression in A. castellanii (strong      | 198744  |
|            |                 |                | promoter)                                 |         |
| vAS1       | 3xHA-3'UTRmg105 | Nourseothricin | 3xHA endogenous tagging in mimivirus      | 198745  |
|            | -pmg153-NAT     |                | and megavirus                             |         |
| vHB8       | pEFI-Cas9-NLS,  | Geneticin      | Expression of nuclear Cas9 and gRNAs      | 193454  |
|            | pU6-tRNA-NotI-  |                | in amoebas (for cloning)                  |         |
|            | tracrRNA        |                |                                           |         |
| vHB16      | pEFI-Cas9-NLS,  | Geneticin      | Expression of nuclear Cas9 and gRNAs      | 193455  |
|            | pU6-2x(tRNA-    |                | in amoebas (template for PCR)             |         |
|            | gRNA-tracrRNA)  |                |                                           |         |
| vHB46      | pmg153-NAT      | Nourseothricin | Vector for knockout in                    | 198746  |
|            |                 |                | mimivirus/megavirus                       |         |

| vHB47  | pmg741-NAT      | Nourseothricin | Vector   | for          | knockout    | in | 198747 |
|--------|-----------------|----------------|----------|--------------|-------------|----|--------|
|        |                 |                | mimiviru | us/megaviru  | IS          |    |        |
| vHB63  | pneo650-NAT     | Nourseothricin | Vector   | for          | knockout    | in | 198748 |
|        |                 |                | pandora  | virus/molliv | /irus       |    |        |
| vHB178 | 3xHA-pneo650-   | Nourseothricin | 3xHA     | endogeno     | us tagging  | in | 193457 |
|        | NAT             |                | pandora  | virus and m  | ollivirus   |    |        |
| vHB179 | 3xFLAG-pneo650- | Nourseothricin | 3xFLAG   | endogen      | ous tagging | in | 193458 |
|        | NAT             |                | pandora  | virus and m  | ollivirus   |    |        |

# 1107 Table 2. Primers

| Primer | Sequence                                      | Comments                              |
|--------|-----------------------------------------------|---------------------------------------|
| 1      | CTTTTGCAAA <u>AAGCTT</u> NNNNNNNNNNNNNNNNNN   | Contains the 5' homology arm for      |
|        |                                               | cloning in vector vAS1 HindIII.       |
|        |                                               | Forward                               |
| 2      | GAACATCGTATGGGTANNNNNNNNNNNNNNNNNNN           | Contains the 5' homology arm for      |
|        |                                               | cloning in vector vAS1 HindIII.       |
|        |                                               | Reverse                               |
| 3      | AAATAGTCCTTTAGANNNNNNNNNNNNNNNNNNNN           | Contains the 3' homology arm for      |
|        |                                               | cloning in vector vAS1 Notl. Forward  |
| 4      | CTTATCGCT <u>GCGGCCGC</u> NNNNNNNNNNNNNNNNNN  | Contains the 3' homology arm for      |
|        |                                               | cloning in vector vAS1 Notl. Reverse  |
| 5      | CTTTTGCAAA <u>AAGCTT</u> NNNNNNNNNNNNNNNNNNNN | Contains the 5' homology arm for      |
|        |                                               | cloning in vector vHB47 HindIII.      |
|        |                                               | Forward                               |
| 6      | CTAATATTTTAAGCTNNNNNNNNNNNNNNNNNNNN           | Contains the 5' homology arm for      |
|        |                                               | cloning in vector vHB47 HindIII.      |
|        |                                               | Reverse                               |
| 7      | TCCTTTAGAGCGGCCNNNNNNNNNNNNNNNNNNNN           | Contains the 3' homology arm for      |
|        |                                               | cloning in vector vHB47 Notl. Forward |
| 8      | CTTATCGCT <u>GCGGCCGC</u> NNNNNNNNNNNNNNNNNN  | Contains the homology arm for         |
|        |                                               | cloning in vector vHB47 Notl. Reverse |
| 9      | TCCCCATACTGGCCANNNNNNNNNNNNNNNNNNNN           | Contains homology arms to insert      |
|        | TTTAGAGCTAGAAATAGC                            | into vHB8 Notl. N region depicts the  |
|        |                                               | sequence of the gRNA #1. Forward      |
| 10     | TTCTAGCTCTAAAACNNNNNNNNNNNNNNNNNNNNN          | Contains homology arms to insert      |
|        | GCCAGTATGGGG                                  | into vHB8 Notl. N region depicts the  |
|        |                                               | sequence of gRNA #2. Reverse          |
| 11     | GTTGTTCCGGGTCGACTCTAG                         | Primer used for colony screening of   |
|        |                                               | vHB8 plasmids                         |

1108 Restriction sites are indicated with underlined text.

1109

# 1110 Table 3. Troubleshooting Table

| Step Problem Possible reason Solution |      |         |                 |          |
|---------------------------------------|------|---------|-----------------|----------|
|                                       | Step | Problem | Possible reason | Solution |

| 5, 41,107        | Multiple bands are visible | Incomplete digestion of the    | Perform digestion for a longer     |
|------------------|----------------------------|--------------------------------|------------------------------------|
|                  | on the electrophoresis     | vector                         | period of time or slice a single   |
|                  | gel                        |                                | band of interest from an           |
|                  |                            |                                | agarose gel and purify it with a   |
|                  |                            |                                | DNA gel extraction kit (e.g.       |
|                  |                            |                                | QIAEX II Gel Extraction Kit from   |
|                  |                            |                                | Qiagen)                            |
| 3, 38, 105       | Multiple bands are visible | PCR conditions or primers      | Modify the PCR conditions or       |
|                  | on the electrophoresis     | do not allow specific          | slice the band from the gel with   |
|                  | gel                        | amplification                  | the correct size and purify with   |
|                  |                            |                                | a DNA gel extraction kit (e.g.     |
|                  |                            |                                | QIAEX II Gel Extraction Kit from   |
| 45               | Mara than two bands are    | Incomplete disection of the    | Qiagen)                            |
| <u>45</u>        | visible on the             | Incomplete digestion of the    | Purify the plasmid as described    |
|                  | electrophoresis gel        | vector                         | from Step 44                       |
| 3 <del>2</del> 1 | Low transfection           | i) Cells are not in good       | i) Make sure to use cells that are |
| -                | efficiency                 | enough condition               | healthy. adherent.                 |
|                  |                            | ii) PolyFect was not           | preferentially with low passage    |
|                  |                            | homogenized before             | rate.                              |
|                  |                            | transfection and its           |                                    |
|                  |                            | concentration is not           | ii) Make sure to homogenize        |
|                  |                            | sufficient                     | the PolyFect solution by           |
|                  |                            | Sumercine                      | inverting or gently tapping the    |
|                  |                            | iii) DelyFeet officiency has   | tube (ne vertexing)                |
|                  |                            | decreased due to poor          | tube (no voi texing).              |
|                  |                            | conservation or expiration     |                                    |
|                  |                            | date                           | III) Try a new batch of PolyFect.  |
| 52               | Absence of amplification   | i) Problems of amplification   | i) Proceed to troubleshooting      |
|                  | using primers P1+P3        | with Terra PCR                 | for step 100                       |
|                  | (Figure 4)                 | ii) Absence of recombinant     | ii) Repeat transfection. If the    |
|                  |                            | viruses in the population      | lack of recombinant viruses        |
|                  |                            |                                | persists, new vectors should be    |
|                  |                            |                                | prepared with different            |
|                  |                            |                                | homology arms.                     |
| 67               | Similar high production    | i) Too long incubation time    | i) Use low MOI for Step 84         |
|                  | of viruses in samples and  | of viruses                     |                                    |
|                  | negative control           | ii) Inefficient drug selection | ii) Replace the stock of the       |
|                  |                            |                                | selection drug or increase its     |
|                  |                            |                                | concentration. Confirm the         |
|                  |                            |                                | lack of contamination of wild-     |
|                  |                            |                                | type viruses (parental) and        |
|                  |                            |                                | negative control by PCR            |
|                  |                            |                                | amplification with primers         |

|            |                           |                             | annealing on the selection      |
|------------|---------------------------|-----------------------------|---------------------------------|
|            |                           |                             | cassette.                       |
|            |                           |                             |                                 |
| 67         | Apparent lack of viruses  | i) Modification introduced  | i) Proceed to genotyping (steps |
|            | in samples                | is lethal or highly fitness | 115-120) to determine the       |
|            |                           | costing                     | presence or absence of          |
|            |                           |                             | recombinant viruses             |
|            |                           |                             | ii) Use high MOI for Step 84    |
|            |                           | ii) Low inoculum of viruses |                                 |
| 7 <b>4</b> | Lack of amplification     | i) Inefficient TERRA        | i) Proceed to troubleshooting   |
|            | using primers P1+P3       | amplification               | 118.                            |
|            | (Figure 4)                | ii) Modification introduced | ii) New vectors should be       |
|            |                           | is lethal                   | prepared with different         |
|            |                           |                             | nomology arms in order to       |
|            |                           |                             | effects If still unsuccessful   |
|            |                           |                             | repeat transfection and         |
|            |                           |                             | selection using trans-          |
|            |                           |                             | complemented amoebas (Steps     |
|            |                           |                             | 120-125). If trans-             |
|            |                           |                             | complementation also fails,     |
|            |                           |                             | RNA silencing would be a more   |
|            |                           |                             | of the gene of interest.        |
| 100        | Lack of PCR amplification | TERRA polymerase is         | Perform genomic DNA             |
|            | or inconclusive results.  | designed to amplify PCR     | extraction of leftover samples  |
|            |                           | fragments from unpurified   | (as described in supplementary  |
|            |                           | templates without the       | protocol 34-49), followed by    |
|            |                           | need for extracting         | PCR amplification with Phusion  |
|            |                           | genomic DNA, thereby        | DNA polymerase                  |
|            |                           | saving time and money.      | (ThermoFisher Scientific).      |
|            |                           | However, the results may    |                                 |
|            |                           | not be conclusive, noisy or |                                 |
|            |                           | some PCR product            |                                 |
|            |                           | untenable.                  |                                 |
|            |                           |                             |                                 |

# 1112 H1 Related links

# 1113 Key references where this protocol has been used:

1114 Liu, Y. et al. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 184,

1115 4237-4250 e4219 (2021). <u>https://doi.org:10.1016/j.cell.2021.06.032</u>

- Bisio, H. *et al.* Evolution of giant pandoravirus revealed by CRISPR/Cas9. *Nat Commun* 14, 428 (2023).
   https://doi.org:10.1038/s41467-023-36145-4
- 1118 Alempic, J-M. et al. No fitness impact of the knockout of the two main components of mimivirus genomic
- 1119 fiber and fibril layer. *bioRxiv*, 2023.04.28.538727 (2023). https://doi.org/10.1101/2023.04.28.538727