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Abstract 202 

Perennial plants create productive and biodiverse hotspots, known as fertile islands, 203 

beneath their canopies. These hotspots largely determine the structure and functioning 204 

of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands 205 

under conditions of contrasting grazing by livestock, the most prevalent land use in 206 

drylands, remain virtually unknown. We evaluated the relative importance of grazing 207 

pressure and herbivore type, climate, and plant functional traits on 24 soil physical 208 

and chemical attributes that represent proxies of key ecosystem services related to 209 

decomposition, soil fertility, and soil and water conservation. To do this we conducted 210 

a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We 211 

show that aridity and plant traits are the major factors associated with the magnitude 212 

of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had 213 

little influence on the capacity of plants to support fertile islands. Taller and wider 214 

shrubs and grasses supported stronger island effects. Stable and functional soils 215 

tended to be linked to species-rich sites with taller plants. Together, our findings 216 

dispel the notion that grazing pressure or herbivore type are linked to the formation or 217 

intensification of fertile islands in drylands. Rather, our study suggests that changes in 218 

aridity, and processes that alter island identity and therefore plant traits, will have 219 

marked effects on how perennial plants support and maintain the functioning of 220 

drylands in a more arid and grazed world.  221 

  222 

Keywords: carbon sequestration, drylands, decomposition, fertile patch, soil fertility, 223 

soil condition, soil health, soil stability  224 
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Introduction 225 

Drylands are characterized by a sparse plant cover, with patches of perennial plants 226 

nested within an ocean of unvegetated bare soil 1,2. These plant patches and the 227 

enriched soil beneath their canopies, act as biogeochemical hotspots, critical for the 228 

maintenance of plant and animal diversity, and essential functions and services related 229 

to nutrient mineralisation and storage, and water regulation 1,3,4. Dryland vegetation, 230 

and the “fertile islands” they create, are predicted to be affected by livestock grazing, 231 

the most pervasive land use in drylands 5. Overgrazing by livestock and wild (native) 232 

herbivores is known to alter surface soils, suppress the infiltration of water, and 233 

increase runoff water and sediment discharge 6,7, potentially intensifying the fertile 234 

island effect by exacerbating the loss of resources from the interspaces and its 235 

supplementation in nearby islands 8. Yet, there is little support for this notion, other 236 

than studies showing that overgrazing leads to a greater relative effect of woody 237 

island soils over interspace soils, but that severe overgrazing leads to total collapse 9. 238 

Globally, there is little empirical support for the putative importance of grazing as a 239 

causal agent of the fertile island effect 10,11, particularly when considering the wide 240 

range of plant types characterizing drylands, from grasses to shrubs and trees. This 241 

makes it difficult to disentangle grazing effects from the inherent effects of those 242 

plants that form the islands. This is an important knowledge gap, as predicted declines 243 

in rainfall, changes in the structure of island plants, and forecasted increases of 244 

grazing over the next century will likely place increasing pressure on drylands and 245 

their perennial components, compromising their ability to sustain livestock, people, 246 

and their cultures 12.  247 

Yet, despite the extensive body of knowledge dedicated to their study, the relative 248 

importance of grazing, climate, and the traits of the focal island species on the 249 

distribution and magnitude of fertile islands across global drylands remains virtually 250 

unknown. To address this knowledge gap, we assess, for the first time, the relative 251 

association between grazing, plant traits, climate and soil properties, and fertile 252 

islands in grazed drylands worldwide. This improves our ability to predict the future 253 

of dryland biodiversity and function, and can improve the management of perennial 254 

vegetation, particularly as grasslands are likely to contract and woody dominated 255 

systems increase in a drier and more heavily grazed world 8,13.  256 

We examined the fertile island effect by comparing 24 soil physical, chemical 257 

and functional attributes beneath the canopy of perennial vegetation compared with 258 

their adjacent unvegetated interspaces across global drylands. The 24 attributes were 259 

assembled into three synthetic functions that represent the capacity of soils to 260 

mineralise organic matter (Decomposition), enhance fertility (Fertility), and conserve 261 

water and maintain stability (Conservation, see Methods). We gathered data from 288 262 

dryland sites across 25 countries on six continents (Fig. 1) to test the following two 263 

contrasting hypotheses. First, we expected that the magnitude of the fertile island 264 

effect would increase with increasing levels of both recent (standardised dung mass) 265 

and long-term or historic (heuristic assessment; ungrazed to high) grazing pressure 266 

(Hypothesis 1a). This prediction is based on the understanding that greater grazing 267 
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pressure will destabilise surface soils, mobilising sediment, seed, nutrients, and 268 

organic matter from unvegetated interspaces to plant patches, strengthening fertile 269 

islands 14,15. Additionally, livestock might be expected to have a greater effect than 270 

wild herbivores because they have not co-evolved with indigenous vegetation and 271 

therefore have more deleterious effects on both island plants and their soils 6, 272 

Hypothesis 1b). Alternatively, changes in climate and plant traits, factors that operate 273 

at much larger (regional and global) scales, could overwhelm the impacts of grazing, 274 

a factor that operates at the local scale, on fertile islands (Hypothesis 2a). More 275 

specifically, irrespective of grazing pressure, we would expect that plants would make 276 

a greater contribution to fertile islands in arid and hyper-arid ecosystems where soils 277 

are extremely bare and infertile compared with less arid ecosystems where the 278 

influence of plants would be relatively lower. For example, reduced rainfall and/or 279 

increased temperature would increase the harshness of the interspaces compared with 280 

the vegetated and more protected islands, thereby strengthening the fertile island 281 

effect. Plant effects might also be expected to vary among broad functional groups 282 

(tree vs shrub vs grass; Hypothesis 2b). These broad groups could have varying 283 

effects on soil biogeochemistry because of marked differences in shape, size, and 284 

structural complexity. Quantifying the contribution of grazing by different herbivores 285 

at different pressures, plant traits, climate, and soil properties on fertile islands 286 

allowed us to assess current and future impacts of grazing on ecosystem structure and 287 

functioning across global drylands, where woody vegetation is a predominant plant 288 

form 12. 289 

 290 

Results and Discussion 291 

We found stronger associations among factors such as aridity and plant traits 292 

(Hypothesis 2) than factors such as grazing pressure (Hypothesis 1a) and herbivore 293 

identity (Hypothesis 1b) and the fertile island effect in drylands worldwide. This 294 

knowledge is key to contextualise the ecosystem consequences of increased livestock 295 

grazing pressure on the capacity of plants to create and maintain hotspots of 296 

biogeochemical activity.  297 

Prior to exploring potential effects of grazing, plant traits, or environmental 298 

conditions, we examined the RII relationships of the 24 attributes distributed among 299 

the three synthetic functions. This exploration gives us a better understanding of how 300 

individual biogeochemical attributes and their three synthetic ecosystem functions 301 

might differ between islands and their interspaces (the fertile island effect). We found 302 

strong empirical evidence of a pervasive fertile island effect across all sites and 303 

continents and for 16 (67%) of the 24 attributes (Fig. 2). Our results are consistent 304 

with findings from empirical local studies revealing greater resource accumulation 305 

beneath perennial plant canopies for attributes as diverse as soil geochemistry 306 
11,13,16,17, soil physical properties 9, hydrology 18,19 and microbial community structure 307 
4. Of all possible effects, the Decomposition function (which comprised C, N and P 308 

mineralisation), was the most strongly developed function within the islands (Fig. 2), 309 
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likely due to greater litter inputs 4,20, microbial activity and plant biomass 21 beneath 310 

perennial plant canopies 22,23. The fertile island effect for the other functions was 311 

mixed, with strong positive effects for C, and to a lesser extent P, but not for 312 

micronutrients (Fig. 2). The fertile island effect for C and N was also greater in more 313 

arid drylands. These findings reinforce the view that perennial plant patches are 314 

hotspots of biological activity in drylands 4, and this likely accounts for their potential 315 

role as facilitators of protégé plant species through resource supplementation 24. 316 

We then sought to quantify the importance of potential associations among 317 

measures of grazing and fertile islands. Using hierarchical linear mixed modelling 318 

(see Methods) we found no consistent influence of grazing, either recent (standardized 319 

grazing pressure) or long-term (ungrazed, low, medium, high) grazing pressure on the 320 

mean (overall) fertile island effect (the average standardized value of all 24 attributes 321 

shown in Table S1 in Supplementary Information). We also found a consistent, but 322 

extremely weak negative effect of recent grazing pressure on Decomposition, contrary 323 

to the results of global meta-analyses 25. There were no significant effects of 324 

increasing recent grazing pressure on either the Fertility or Conservation function 325 

(Fig. 3a, Table S2). There were no significant effects of long-term (historic) grazing 326 

pressure (ungrazed, low, medium, high) on any measures (Fig. S1, Table S2). 327 

Of all effects, aridity was by far the strongest (Table S2), with a strong positive 328 

effect on the Decomposition function, weak effects on the Fertility, but no effect on 329 

the Conservation function (Fig. S3a, Table S2). Although the effects of island type 330 

(tree, shrub, grass) were minor compared with the large aridity effect, we did identify 331 

some trends. For example, there were consistent positive, though weak, fertile island 332 

effects beneath shrubs, and to a lesser extent trees, irrespective of grazing pressure. 333 

The only other noteworthy grazing-related effect was the negative interaction between 334 

shrubs, and to a lesser extent trees, and mixed herbivores (Table S2). 335 

Our results provide fresh insights into the links between grazing and fertile 336 

islands, demonstrating that, across global drylands, grazing cannot be considered a 337 

causal agent of the fertile island effect. Thus, placed in a global context, the local 338 

influence of grazing on fertile islands is overshadowed by global environmental 339 

variability. This result challenges the view of fertile islands and their formation, 340 

which posits that islands are a biproduct of grazing 11. This view has largely been 341 

shaped by studies from the Chihuahuan Desert in the western United States where 342 

increases in woody plant (generally shrub) density are linked to a dominance of 343 

woody plant islands and ensuing desertification 26. Undoubtedly, grazing-induced 344 

disturbance can aggravate differences between perennial plants and their interspaces 345 

in some situations by disturbing interspaces and intensifying the movement of 346 

resources from interspace to island patches 27. However, neither short- nor long-term 347 

grazing pressure, nor herbivore type, were associated with the fertile island effect 348 

under the conditions experienced across our extensive global dryland survey. 349 

Given the importance of plant traits, a Random Forest algorithm was then used to 350 

examine the degree to which a comprehensive suite of 15 functional traits of island 351 
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woody plant species explained differences in the fertile island effect for the three 352 

synthetic functions studied. These traits, which are related to plant size and structure, 353 

leaf characteristics, and the ability to respond to environmental stimuli (palatability, 354 

resprouting, deciduousness, allelopathy, see Methods) potentially influence the way 355 

nutrients are stored, mineralized, and made available to plants, and how soil and water 356 

are conserved beneath plant canopies 28. Our trait data, which represent the most 357 

comprehensive dataset gathered to date across global drylands, were used to evaluate 358 

the relative importance of island plant structure. We used site-specific trait values 359 

rather than global averages, allowing us to account for potential differences in the 360 

morphology of island plants under different grazing pressure, herbivore type and 361 

environmental conditions. The extent to which different plant traits affected the three 362 

synthetic functions varied depending on the function considered (Fig. S4 in 363 

Supplementary Information). We found that the relative fertile effect for our three 364 

synthetic functions was generally greater when the islands were dominated by taller 365 

and wider plants, and to a lesser extent, by plants with larger leaves. Plant height was 366 

important for all functions, while the Decomposition function responded mostly to 367 

plant and leaf size, and the Fertility function was driven mostly by changes in plant 368 

size and leaf characteristics (Fig. S4 in Supplementary Information). 369 

We then used Structural Equation Modelling 29 to explore potential associations 370 

among biotic and abiotic factors and the fertile island effect. Our a priori model (Fig. 371 

S5 in Supplementary Information) included environmental drivers (aridity, 372 

temperature, rainfall seasonality), soil (sand content, pH) and vegetation (perennial 373 

plant richness, relative cover of woody plants) properties, plant traits (the nine most 374 

important plant traits related to size, leaf characteristics, and inherent properties of 375 

woody plants such as the type of roots or whether they are allelopathic; identified 376 

using the Random Forest analyses, see Methods), and grazing (recent grazing, long-377 

term grazing, and herbivore type). Grazing was included to test its potential indirect 378 

effects on the relative fertile island effect for the three soil functions evaluated. Our 379 

models revealed that decomposition was enhanced in areas of greater aridity 380 

(consistent with the hierarchical linear modelling, though not for carbon 381 

mineralisation, Fig. S2 Supplementary Information), more sandy soils, and where 382 

focal island species were more palatable (Fig. 4; Fig. S6 Supplementary Information). 383 

Fertility tended to be greater in sandy soils and with taller palatable species. Soils 384 

with larger values of the Conservation function (more stable, with greater water 385 

holding capacity) tended to be associated with taller island plants, potentially through 386 

mechanisms involving hydraulic lift 30, and at plots supporting more perennial plant 387 

species (Fig. S6 Supplementary Information. A potential explanation for the link 388 

between the Conservation function, and both plant height and richness could relate to 389 

a greater leaf area 31 of larger island plants and therefore reduced surface evaporation 390 
32. After accounting for all direct and indirect pathways from both abiotic and biotic 391 

factors, our SEMs confirm that grazing had no effects on the three functions 392 

evaluated. 393 
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Among plant traits, plant size (height and canopy) was particularly important, 394 

with larger canopies associated with greater RII values of all three functions (but only 395 

for grasses), and taller grasses with greater RII values of the Decomposition function 396 

(Fig. S7 in Supplementary Information. Larger grasses are functionally more efficient 397 

at capturing resources 33 and enhancing hydrological functions 34,35 and may be a 398 

response to declining landscape productivity 36. Larger plants may be avoided more 399 

by herbivores due to higher concentrations of tannins and secondary compounds 37. 400 

Similarly, taller shrubs were associated with larger values of the Conservation and 401 

Fertility, but not Decomposition, functions (Fig. S7 in Supplementary Information). 402 

Taller shrubs would return more litter to the soil surface 38, provide more varied 403 

habitat 39 and concentrate more resources excreted by canopy-resident invertebrates 404 
40, potentially accounting for greater fertility 20. Finally, larger shrubs would support a 405 

greater density of understorey protégé species 41 and have a larger legacy effect on 406 

soils after death 42. Interestingly, trees with larger canopies were associated with 407 

lower values of the Decomposition and Conservation functions (Fig. S7 in 408 

Supplementary Information). Large tree canopies are often preferred camping sites for 409 

herbivores 39, leading to declines in soil structure 43, and reductions in soil water 410 

holding capacity due to the proliferation of surface roots. Our results could suggest a 411 

waning of the fertile island effect under large trees.  412 

Overall, our work provides solid evidence that factors such as climate and plant 413 

traits can overshadow the influence of factors such as grazing pressure on the capacity 414 

of plants to create fertile islands across global drylands. Our findings indicate that 415 

fertile islands will prevail in more arid environments regardless of grazing pressure 416 

and the composition of herbivores. In these environments, fertile islands sustain 417 

healthy and functional soils, moderate adverse environmental conditions, and 418 

provides refugia for plants and animals. Our results dispel the long-term assumption 419 

that increasing grazing pressure, either recent or longer term, or differences in 420 

herbivore type, can explain the magnitude of fertile island effects in drylands. Plant 421 

size, with taller and wider shrubs and grasses, supported stronger island effects. Stable 422 

and functional soils were also linked to species-rich sites with taller plants. The 423 

overwhelming importance of aridity and plant traits suggests that fertile islands may 424 

represent an autogenic response to drying and warming climates. These 425 

biogeochemical hotspots are likely to be more important as Earth’s climate becomes 426 

hotter and drier. 427 

 428 

Methods 429 

Study area  430 

We surveyed 288 plots at 88 sites in 25 countries on all continents except Antarctica 431 

(Algeria, Argentina, Australia, Botswana, Brazil, Canada, Chile, China, Ecuador, 432 

Hungary, Iran, Israel, Kazakhstan, Kenya, Mexico, Mongolia, Namibia, Niger, 433 

Palestine, Peru, Portugal, South Africa, Spain, Tunisia, and United States of America, 434 

Fig. 1). We used the sites described in ref. 12, but excluded 10 sites that did not have 435 
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sufficient trait data (see below). Site selection aimed to capture as much as possible of 436 

the wide variety of abiotic (climate, soil type, slope) and biotic (vegetation type, cover 437 

and species richness) features characterizing dryland ecosystems (e.g., grasslands, 438 

shrublands, savannas, open woodlands) found in drylands worldwide 12,44. Elevation 439 

varied between 12 m and 2214 m a.s.l, and slope from 0º to 31.6º. The surveyed sites 440 

encompassed a wide variety of the representative vegetation physiognomies, 441 

including grasslands, shrublands, savannas and open woodlands (Fig. 1) found in 442 

drylands. Sites were surveyed between January 2016 and September 2019 12,44.  443 

Establishing and defining local grazing gradients 444 

At each of the 88 sites, multiple 45 m x 45 m plots were sampled across a gradient in 445 

grazing pressure that was determined by local experts and compared with dung 446 

counts, livestock tracks, and livestock density data when available. Plots were 447 

selected from grazing gradients (distance to water measured using GIS) or specific 448 

paddocks that represented ungrazed, low, medium, or high levels of known grazing 449 

pressure. Thirty-five percent of sites had an ungrazed plot (e.g., an exclosure). All 450 

plots were established in areas representative of the vegetation and soil types found, 451 

so the impacts of grazing pressure could be assessed at each site without confounding 452 

factors associated with differences in climate, soil type or vegetation. 453 

Field surveyors, who were all intimately associated with the long-term grazing 454 

history of these sites, characterised their plots using this four-scale heuristic category 455 

(ungrazed, low, moderate, high). Grazing pressure gradients were confirmed by 456 

measuring the mass of herbivore dung in situ 6. Dung production is known to be 457 

closely linked to animal activity, time spent grazing, and therefore grazing pressure 458 
45,46, though more studies are needed in arid systems to validate these relationships. 459 

To measure dung, we collected the dung of different herbivores from within two 25 460 

m2 (where herbivores were large bodied, e.g., cattle, horses, large ungulates) or 1 m2 461 

(when herbivores were smaller bodied e.g., goats, sheep, rabbit, guanaco) quadrats 44. 462 

Dung was oven dried and expressed as a mass per area. Where herbivores produced 463 

pellets, dung was counted from different herbivores, a subsample collected, and 464 

following oven drying, used to calculate the relationship between counts and oven-dry 465 

dung mass (Text S1 in Supplementary Information).  466 

The mass of dung from each plot was then used to develop a continuous measure 467 

of grazing pressure. Dung mass represents the signature of grazing over periods of 468 

one to five years, depending on the presence of detritivores and litter decomposing 469 

invertebrates such as termites and dung beetles 47. Dung decay rates will also likely 470 

vary across our sites due to differences in climatic conditions, the presence of exotic 471 

invertebrate decomposers, trampling and other factors 48. Although these differences 472 

could potentially alter the amount of dung detected within a plot, this would have 473 

minimal impact on our measure of recent grazing pressure given the standardisation 474 

process we applied to dung mass across plots within a site. 475 

For each plot, we standardised the value of the mass of dung of all herbivores 476 

within a plot by the maximum dung mass at that particular site (collection of plots). 477 
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Standardized values ranged from 0 to 1 (0.30 ± 0.01, mean ± SE) across the 88 sites. 478 

A value of 1 for a particular plot indicates that this plot had the greatest grazing 479 

pressure for that site and zero was ungrazed. This approach to standardising dung 480 

mass within sites ensures the equivalence of sites that might have markedly different 481 

levels of dung production, due to variation in site productivity, but have the same 482 

level of grazing pressure (e.g., moderate grazing pressure). The method has also been 483 

validated multiple times in grazing studies 49,50. Across our global study we recorded 484 

29 different herbivore types, of which five were livestock (cattle, goat, sheep, donkey, 485 

horse)12. 486 

Dung mass was a good proxy of grazing pressure using two approaches (see Text 487 

S1 in Supplementary Information). First, there was a significant positive relationship 488 

between dung mass and livestock density for a subset of sites in Iran, Australia, and 489 

Argentina for which we had data on dung mass and animal density 12. Second, we 490 

performed a cluster analysis 51 to identify the optimum number of dung-based 491 

clusters, based on dung mass, and found that this aligned well with the four heuristic 492 

levels of grazing pressure 12.  493 

Third, we linked the four heuristic measures of long-term (decadal to multi-494 

decadal) grazing pressure to the presence of livestock tracks; semi-permanent features 495 

created by livestock when they traverse the same path to and from water 52. The 496 

density and size of these tracks is a useful indicator of the history of livestock grazing 497 
53. We measured the width and depth of all livestock tracks crossing each of the 45 m 498 

transects to derive a total cross-sectional area of tracks for each plot and expressed 499 

this as the total track density and cross-sectional area per 100 m of transect (Fig. S8). 500 

In summary, these three comprehensive measures of grazing intensity by herbivores 501 

showed very similar trends, irrespective of whether we used dung mass as a measure 502 

of recent grazing pressure, or the expert heuristic site classification as a measure of 503 

long-term grazing pressure. This gives us a high degree of confidence that the 504 

gradients we observed are true gradients in grazing pressure. 505 

Vegetation and plant trait measurements 506 

Field surveys followed a standardised sampling protocol 44. Briefly, within each plot, 507 

we located four 45 m transects oriented downslope, spaced 10 m apart across the 508 

slope, for the vegetation surveys. Along each 45 m transect we assessed the cover of 509 

perennial plants, by species, within 25 contiguous 1.5 m by 1.5 m quadrats. Perennial 510 

plants were then recorded every 10 cm along this transect to obtain a measure of 511 

perennial plant cover. Total plot-level plant richness was calculated as the total 512 

number of unique perennial plant species found within at least one of the survey 513 

methods (transects or quadrats) employed. In each site, we measured the height and 514 

lateral spread of five randomly selected individuals of the dominant island plants. 515 

Lateral spread (canopy width), a proxy of plant area, was assessed by measuring plant 516 

diameter in two orthogonal directions through the plant centre. Fresh leaves were 517 

collected from the same plants to assess an additional four plant traits in the 518 

laboratory (leaf length, leaf area, and leaf carbon and nitrogen contents). These six 519 
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traits describe the size and leaf characteristic of the 162 perennial species in the 520 

vegetation patch that was dominated by trees, shrubs, or large perennial grasses, and 521 

which we assessed as potential fertile islands (see detailed measurements in Text S2 522 

in Supplementary Information). Twenty-three percent of plots supported two co-523 

dominant island species (i.e., two different tree, shrub, or grass species). For these 524 

plots, soil biogeochemical and plant trait data were weighted according to the mean 525 

cover of the co-dominant species within a plot. 526 

We compiled information on eight additional plant traits (i.e., plant canopy 527 

shape, whether foliage reached the ground surface, N-fixation, deciduousness, 528 

allelopathy, palatability, resprouting, root type) using information from online plant 529 

trait databases such as BROT 54, PLANTS 55, Woody Plants Database 530 

(http://woodyplants.cals.cornell.edu) and TRY 56. The eight categorical traits above 531 

were ranked numerically such that a larger value equated with greater function in 532 

terms of its own growth or its facilitatory effect on surrounding neighbours and 533 

conditions. This procedure is described in detail in Text S2 in Supplementary 534 

Information.  535 

Soil properties and sampling  536 

Soils were sampled during the dry season. In each plot, five sampling points were 537 

randomly located in open areas devoid of perennial vascular plants (< 5% plant cover, 538 

hereafter ‘open’ microsite), and another five placed beneath the canopy of five 539 

randomly selected individuals of the dominant island plant (Text S3 in Supplementary 540 

Information). A composite sample of five 145 cm3 soil cores (0-7.5 cm depth) was 541 

collected from beneath each plant or bare area, bulked, and homogenized in the field. 542 

Soil samples were air-dried for 1 month, sieved (< 2 mm) and stored for physico-543 

chemical analyses. The samples were then bulked to obtain one composite sample per 544 

plot for vegetated (island) and a separate composite sample for open areas. All 545 

analyses described here are for two composite samples per plot. We assessed soil pH 546 

(1:2.5 soil water suspension, sand content 57, and the values of 24 soil ecological 547 

attributes that are linked to three ecosystem functions (Table S1 in Supplementary 548 

Information).  549 

Assessment of ecosystem functions  550 

We calculated a relative interaction index (RII) and its 95% confidence interval 58 for 551 

the 24 ecological attributes as measures of the fertile island effect. A positive (or 552 

negative) value indicates a greater (or lesser) value of that attribute, respectively, in 553 

island soils. The RII is defined as the relative difference between attributes beneath 554 

the perennial plant islands and their open interspaces and was calculated as RII = (XI 555 

– XO) ∕ (XI + XO), where XI and XO represent the mean values of a given ecological 556 

attribute beneath a perennial plant patch (island) and in the open interspace, 557 

respectively. Values of the RII range from -1 to 1, with positive values indicating 558 

greater levels of a given attribute beneath the island and vice versa. Evidence of the 559 

fertile island effect (either positive or negative) is based on whether the 95% 560 
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confidence intervals (95% CIs), calculated using ‘Rmisc’ package in R 59 cross the 561 

zero line. 562 

We focussed on three proxies of function derived from the average RII of 563 

different combination of the 24 soil attributes: 1) organic matter decomposition, 564 

quantified using the activity of five soil extracellular enzymes related to the 565 

degradation of organic matter [β-glucosidase, phosphatase, cellobiosidase, β-N-566 

acetylglucosaminidase and xylase], and measurements of soil carbon (hereafter 567 

‘Decomposition’ (2) soil fertility, evaluated using multiple proxies of soil nutrient 568 

availability and carbon (contents of dissolved organic and total N, NH4
+, NO3

-, total 569 

P, Mn, K, Zn, Mg, Fe, Cu and soil C, hereafter ‘Fertility’), and 3) resource 570 

conservation (water regulation, using measures of soil water holding capacity, soil 571 

porosity, stability of macro-aggregates >250 µm and mean weight diameter of soil 572 

aggregates (hereafter ‘Conservation’). Detailed measurements on these 24 soil 573 

ecological attributes are described in Table S1 in Supplementary Information. 574 

Data compilation and statistical analysis  575 

Rainfall seasonality (coefficient of variation of 12 monthly rainfall totals) data were 576 

extracted from the WorldClim Version 2.0 (http://www.worldclim.org/) 60 database, 577 

which provides global climate data (0’30” × 0’30”) for the 1970-2000 period. Aridity 578 

was identified as precipitation/potential evapotranspiration and was derived from the 579 

Global Aridity Index and Potential Evapotranspiration Climate Database v2 aridity 580 

database (https://cgiarcsi.community/2019/01/24/global-aridity-index-and-potential-581 

evapotranspiration-climate-database-v2/) 61, which includes global aridity data (0’30” 582 

× 0’30”) for the 1970-2000 period. Soil texture is a major determinant of water 583 

holding capacity and pH is a major driver of plant and soil function in drylands 62. 584 

Sand content and pH data used in this study were obtained from samples taken from 585 

the open areas (to ensure that their effects on the ecosystem functions measured are as 586 

independent from those of organisms as possible). Relative woody cover was included 587 

to account for different levels of woody plants so that this would not bias any results. 588 

Standardized dung mass (dung mass in a plot/maximum dung mass within the site) 589 

was used as a measure of recent grazing pressure.  590 

Statistical analyses 591 

We fitted a Bayesian hierarchical linear mixed model to evaluate whether the fertile 592 

island effect differed (1) with increasing grazing pressure (continuous data: 593 

standardized dung mass), 2) with long-term grazing pressure (categorical data: 594 

ungrazed, low, moderate, high grazing), and 3) among herbivore types (categorical 595 

data: sites dominated by either livestock, native, or mixed groups of native and 596 

livestock). Our RII values were modelled with a Gaussian (normal) distribution, with 597 

all individual ecosystem attributes (n = 24) estimated simultaneously in a single 598 

model. Note that RII values are calculated at the plot level whereas grazing pressure is 599 

calculated at the site level. The standardised response variable (RII) was modelled 600 

hierarchically as a function of recent grazing pressure (standardised dung), long-term 601 

grazing pressure (high, medium, low, ungrazed), herbivore type (livestock, native, 602 
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mixed), aridity, island type (tree, shrub, grass), and functional category 603 

(Decomposition, Fertility, Conservation). The model fitted individual ecosystem 604 

functional attributes as groups (random intercepts) with varying slopes associated 605 

with each of the main covariates (grazing and aridity). The model also included 606 

interactions between ecosystem function category and grazing, island type, and aridity 607 

to account for potential differences in the effects of each covariate within each 608 

ecosystem function category. We included site as a random intercept, accounting for 609 

the non-independence of data gathered from the same site.  610 

We specified weakly informative normally distributed priors for the intercept and 611 

all regression coefficients (mean = 0 and scale = 2.5). Default priors were used for 612 

sigma (exponential, rate =1) and variance-covariance matrix of the varying intercepts 613 

and slope parameters (shape and scale of 1). Posterior simulations of model 614 

parameters were undertaken using the No-U-Turn Hamiltonian Monte Carlo sampler 615 

within Stan 63. Posterior distributions were estimated from four chains, each with 616 

1000 iterations, after discarding the preliminary 1000 iterations. The convergence of 617 

models was assessed using visual diagnostics (autocorrelation, trace plots, and 618 

posterior predictive checks) and inspection of effective sample sizes (min. 1000) and 619 

r hat values (<1.01). Models were fitted using the package ‘rstanarm’ 64 within R 59. A 620 

hierarchical model provides several benefits over simple averaging of standardised 621 

indicators or multiple separate models 65: (i) simultaneous modelling of multiple 622 

attributes improves precision and estimates of uncertainty for each ecosystem function 623 

category; (ii) non-independence of multiple attributes within sites is explicitly 624 

accounted for; (iii) enables simultaneous estimation of overall fertile island effect for 625 

each  ecosystem functional category and the individual soil attributes within these. 626 

Structural Equation Modelling (SEM 29) was employed to explore the direct and 627 

indirect impact of climate (aridity [ARID], rainfall seasonality [SEAS]), soil pH (pH), 628 

sand content (SAND), vegetation attributes (plot-level perennial plant cover [COV] 629 

and plant richness [RICH], plant height [HT], canopy width [WIDTH], shape 630 

[SHAPE], leaf length [LNGTH], leaf area [AREA], palatability [PALAT], 631 

resprouting [RESP], deciduousness [DECID], and allelopathy [ALLELO]), and 632 

grazing (standardised grazing pressure) on the fertile island effect (RII) after 633 

accounting for the effects of location (latitude, cosine longitude, sine longitude) 634 

across the globe. All explanatory variables were standardized (z-transformed) in the 635 

SEM analyses. The nine plant traits used in these analyses were selected from a 636 

potential pool of 15 potential traits using the significance of percentage increase in 637 

mean square error using Random Forest analyses (Fig. S3 in Supplementary 638 

Information).  With these analyses we aimed to determine which traits are the most 639 

influential in describing the relative difference between islands and their interspaces 640 

(as measured with the RII) for each of the three synthetic functions (Decomposition, 641 

Fertility, Conservation). Random Forest is a robust approach when working with 642 

continuous and categorical variables. The 15 traits considered, which relate to plant 643 

size and structure, leaf characteristics, and ability to respond to environmental stimuli 644 

(palatability, resprouting, deciduousness, allelopathy) potentially influence: 1) how 645 
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nutrients are mineralized and made available to plants (Decomposition), 2) contribute 646 

to soil nutrient (including carbon) pools (Fertility) and 3) how soil and water are 647 

conserved (Conservation). Random forest analyses were conducted with the 648 

rfPermute package 66. 649 

Structural equation modelling allowed us to test hypothesized relationships 650 

among predictors and the fertile island effect based on an a priori model that 651 

constructs pathways among model terms based on a priori knowledge (Fig. S5 in 652 

Supplementary Information). This model predicted that spatial location would affect 653 

all the predictors such as climate, plant attributes (including site-level vegetation 654 

attributes and plant traits), soil attributes and grazing. Climate would influence the 655 

fertile island effect through its influence on soil properties, grazing, and plant 656 

attributes. Grazing and soil properties would affect the fertile island effect directly, or 657 

indirectly, by altering plant attributes. We ran the SEM on the RII of the three 658 

functional categories (Decomposition, Fertility, Conservation, Fig. S4 in 659 

Supplementary Information). To obtain the values for these three average functions, 660 

we employed the concept of the multifunctionality index and averaged the values of 661 

the RII for all individual attributes that comprised each function. Models with low χ2 662 

and Root Mean Error of Approximation (RMSEA < 0.05), and high Goodness of Fit 663 

Index (GFI) and R2 were selected as the best fit model for our data. In addition, we 664 

calculated the standardised total effects of each explanatory variable to show its total 665 

effect. SEM analyses were performed using SPSS AMOS 22 (IBM, Chicago, IL, 666 

USA) software. 667 

 668 

Data Availability 669 

The data used for this study will be make public within the Figshare repository upon 670 

publication. https://doi.org/10.6084/m9.figshare.24873135.v1 671 
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 882 

 883 

Figure 1. Average function (mean relative interaction effect value across 24 soil 884 

attributes, see Methods) for the 288 plots at 88 sites across global drylands and 885 

examples of fertile islands at selected sites. The background map shows the 886 

distribution of aridity (1- [precipitation/potential evapotranspiration]) across global 887 

drylands.  888 
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 891 

 892 

Figure 2. The fertile island effect, as measured with the relative interaction effect 893 

(RII), beneath perennial dryland plants for the 24 soil attributes measured across three 894 

functions. Conserv = Conservation. Error bars are 95% CI and darker colours indicate 895 

significant positive effects. 896 
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 900 

Figure 3. Impacts of recent grazing and climate on the fertile island effect. (a) 901 

Relative interaction effect (RII) value surfaces for the three measures of ecosystem 902 

function (Decomposition, Fertility, Conservation) in relation to recent grazing 903 

pressure (standardized dung mass) and aridity, and mean (± 95% CI) predicted RII 904 

value for the three functions in relation to (b) long-term (historic) measure of 905 

herbivore grazing pressure (ungrazed, low, medium, high), and (c) herbivore type 906 

(livestock, native, mixed).  907 
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 908 

 909 

Figure 4. Structural equation modelling assessing the direct and indirect effects of 910 

climate (aridity [ARID], rainfall seasonality [SEAS]), soil (pH and sand [SAND] 911 

content), plants (perennial cover [COV], perennial plant richness [RICH]), plant 912 

height [HT], plant shape [SHAPE], leaf area [AREA], leaf length [LNGTH], canopy 913 

width [WIDTH], palatability [PALAT], deciduousness [DECID], resprouting ability 914 

[RESP], and allelopathy [ALLEL]), and grazing (standardized grazing pressure) on 915 

the fertile island effect for soil decomposition (Decomposition), soil fertility 916 

(Fertility) and soil and water conservation (Conservation), after accounting for the 917 

effects of location (latitude, cosine longitude, sine longitude). Standardised path 918 

coefficients, adjacent to the arrows, are analogous to partial correlation coefficients, 919 

and indicative of the effect size of the relationship. Pathways are significantly 920 

negative (red unbroken line), significant positive (blue unbroken line) or mixed 921 

significant negative and significant positive (black unbroken lines). Non-significant 922 

pathways are not shown in the models. Model fit: (a) organic matter decomposition: 923 

χ2 = 31.9, df = 26, P = 0.20, R2=0.17, root mean error of approximation (RMSEA) < 924 

0.001, Bollen-Stine = 0.40 (2000 bootstrap); (b) Fertility: χ2 = 31.9, df = 26, P = 0.20, 925 

R2=0.19, root mean error of approximation (RMSEA) < 0.001, Bollen-Stine = 0.40 926 

(2000 bootstrap); (c) Conservation: χ2 = 31.9, df = 26, P = 0.20, R2=0.10, root mean 927 

error of approximation (RMSEA) < 0.001, Bollen-Stine = 0.40 (2000 bootstraps). 928 

N=288 for all analyses. 929 


