Table S2. A list of the 24 studies that were excluded from the systematic review.

No.	Author	Title	DOI	Cause of exclusion
1	Kakiyama et al., 2013	Modulation of the fecal bile acid profile by gut microbiota in cirrhosis	https://doi.org/10.1016/j.jhep.2013.01.003	Cirrhosis not related to HBV infection
2	Zhao et al., 2018	Altered oral microbiota in chronic hepatitis B patients with different tongue coatings	http://dx.doi.org/10.3748/wjg.v24.i30.3448	Oral microbiota
3	Ling et al., 2015	Decreased Diversity of the Oral Microbiota of Patients with Hepatitis B Virus-Induced Chronic Liver Disease: A Pilot Project	https://doi.org/10.1038/srep17098	Oral microbiota
4	Jianfei et al., 2022	Effect of Tenofovir on gut microbiota and inflammatory factors in HBV-infected individuals	https://doi.org/10.21203/rs.3.rs-2036347/v1	Preprint
5	Chou et al., 2015	Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota	https://doi.org/10.1073/pnas.1424775112	A mouse model with the confounding factors
6	Han et al., 2021	Alterations in the Gut Microbiota and Hepatitis-B-Virus Infection in Southern Chinese Patients with Coexisting Non- Alcoholic Fatty Liver Disease and Type-2 Diabetes Mellitus	https://doi.org/10.3389/fmed.2021.805029	HBV with other co-exciting diseases
7	Liu et al., 2023	Apolipoprotein H induces sex-specific steatohepatitis and gut dysbiosis during chronic hepatitis B infection	https://doi.org/10.1016/j.isci.2023.106100	HBV with co-exciting diseases
8	Wang et al., 2022	Circadian Rhythms Coordinated With Gut Microbiota Partially Account for Individual Differences in Hepatitis B-Related Cirrhosis	https://doi.org/10.3389/fmed.2021.805029	Confounding factors
9	Zhao et al., 2021	Correlation between gut microbiota and liver biochemical indicators in patients with chronic hepatitis B	https://doi.org/10.13345/j.cjb.200279	Article in chinese

10	Liu et al., 2021	Effect of intestinal microbiota imbalance associated with chronic hepatitis B virus infection on the expression of microRNA-192 and GLP-1.	https://doi.org/10.3892/mmr.2021.12301	HBV with co-exciting diseases
11	Chen et al., 2018	Gut microbiome across stages of HBV infection	http://dx.doi.org/10.1136/gutjnl-2018- IDDFabstracts.18	Abstract: No full article is available
12	Xie et al., 2018	Faecal microbiota transplantation induced HBSAG decline in HBEAG negative chronic hepatitis B patients after long-term antiviral therapy	http://dx.doi.org/10.1136/gutjnl-2018- IDDFabstracts.233	Abstract: No full article is available
13	Wu et al., 2019	Fecal microbiota transplantation protects liver from HBV infection	http://dx.doi.org/10.1136/gutjnl-2019- IDDFAbstracts.96	Abstract: No full article is available
14	Bao et al., 2023	Landscapes of gut microbiome and bile acid signatures and their interaction in HBV-associated acute-on-chronic liver failure	https://doi.org/10.3389/fmicb.2023.1185993	Cross-sectional study, no healthy control subjects
15	Peng et al., 2022	Operable hepatitis B virus-related hepatocellular carcinoma: gut microbiota profile of patients at different ages	10.21037/atm-22-1572	Confounding factors
16	Li et al., 2001	Changes in intestinal microflora in patients with chronic severe hepatitis	Chinese medical journal, 114(8), 869–872.	Chronic hepatitis _no mention of HBV as a cause
17	Jiang et al., 2020	Study on the Characteristics of Gut Microbiota in Chronic Hepatitis B Patients With Damp Heat Syndrome and Liver Depression and Spleen Deficiency Syndrome	https://doi.org/10.21203/rs.3.rs-65426/v1	Preprint with co-exciting diseases
18	Tang et al., 2021	The diagnostic potential of gut microbiome for early hepatitis B virus-related hepatocellular carcinoma	DOI: 10.1097/MEG.00000000000001978	Abstract: No full article is available
19	Tamai et al., 2021	Rifaximin ameliorates intestinal inflammation in cirrhotic patients with hepatic encephalopathy	https://doi.org/10.1002/jgh3.12596	The cause of cirrhosis is not mentioned

20	Yukawa- Muto et al., 2022	Distinct responsiveness to rifaximin in patients with hepatic encephalopathy depends on functional gut microbial species	DOI: 10.1002/hep4.1954	The cause of cirrhosis is not mentioned
21	Bajaj et al., 2019	Long-term Outcomes of Fecal Microbiota Transplantation in Patients With Cirrhosis	https://doi.org/10.1053/j.gastro.2019.01.03	The cause of hepatic encephalopathy is not HBV-related.
22	Zeng et al., 2021	Low-dose rifaximin prevents complications and improves survival in patients with decompensated liver cirrhosis	https://doi.org/10.1007/s12072-020-10117- y	The cause of hepatic encephalopathy is not HBV-related
23	Bajaj et al., 2019	Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis	https://doi.org/10.1172/jci.insight.133410	The cause of cirrhosis is not mentioned to be HBV-related
24	Peng et al., 2022	Gut microbiome dysbiosis in patients with hepatitis B virus-related hepatocellular carcinoma after extended hepatectomy liver failure	doi: 10.21037/atm-22-1958	No healthy control group

HBV: Hepatitis B virus