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Abstract

Long-range electrostatic effects are fundamental for describing chemical reactivity in the
condensed phase. Here, we present the methodology of an efficient quantum mechani-
cal/molecular mechanical (QM/MM) model in periodic boundary conditions (PBC) compati-
ble with QM/MM boundaries at chemical bonds. The method combines electrostatic potential
fitted (ESPF) charge operators and electrostatic potentials derived from the smooth particle-
mesh Ewald (PME) sum approach. The total energy and its analytic first derivatives with
respect to QM, MM and lattice vectors allow QM/MM molecular dynamics (MD) in the most
common thermodynamic ensembles. We demonstrate the robustness of the method by per-
forming a QM/MM MD equilibration of methanol in water. We simulate the cis/trans isomer-
ization free energy profiles in water of proline amino acid and a proline-containing oligopeptide,
showing a correct description of the reaction barrier. Our PBC-compatible QM/MM model
can efficiently be used to study chemical reactivity in condensed phase and enzymatic catalysis.

1 Introduction

Quantum mechanical/molecular mechanical
(QM/MM) embedding methods have become
a popular method for a cost-effective atom-
istic description of the reactivity of biomacro-
molecules.1 Embedding of all-electron QM
methods extends the limitations of classical
molecular mechanics force fields (FF), allowing
the study of complex reactivity in large systems
(for which a full QM description is prohibitive)
without the need for new parameterization of
each non-standard residue.2

An accurate QM/MM model requires a
proper representation of the electrostatic in-
teraction between the QM and MM subsys-
tems.3–5 Depending on the property under
study, a finite-sized QM/MM model in the gas
phase is sufficient for describing the short-range

electrostatic influence on the QM electronic
density. However, for computing free energy
variations, pair distribution functions, diffu-
sion coefficients, etc. a representation based
on periodic boundary conditions (PBC) is nec-
essary. The first PBC-based QM/MM models
have been addressed with the introduction of a
distance cutoff in the interaction of the original
cell with its replicas,6,7 despite this has been
shown to lead to an incomplete description of
the long-range electrostatic interactions.8–15 Al-
ternative methods for improving the long-range
description beyond the cutoff scheme comprises
switching and smoothing functions,16–24 charge
projection schemes,25 Fast Multipole Methods
(FMM),26–28 Ewald sum29 and related lattice
summation methods that reduce the O(N2)
scaling like particle-particle particle-mesh
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(P3M),27,30,31 particle mesh Ewald (PME),32,33

and others.34–36 Additional strategies involve
hybrid techniques,13,37–40 which combine ex-
plicit modeling of the short-range environment
with continuum solvation methods.41,42

The Ewald sums method is one of the most
popular methods for handling long-range in-
teractions.29 The total electrostatics converges
faster when the interaction is split into the fast
(slowly) converging short (long)–range terms
computed in the real (reciprocal) space. One of
the first Ewald formulations of PBC-adapted
QM/MM was proposed by York and cowork-
ers, which relies on semi-empirical methods
to describe the QM region.43 In their model,
the quantum density in the replicas is rep-
resented using Mulliken point charges, and
the electrostatic interaction employs the Ewald
pair potential. Most of the time, subsequent
PBC-ready QM/MM approaches are varia-
tions of this first model, and can be classified
according to the level of theory used to de-
scribe the QM region (i.e., semi-empirical43–49

or ab initio 50–59), the partial charges used
to represent the QM density in the replicas
(Mulliken,43–48,55 electrostatic potential fitted
(ESP),49 charges from electrostatic potentials
using a grid-based method (CHelGP),53,54,57

and others58,59) and the Ewald algorithm
used to compute the long-range interactions
(i.e., standard Ewald,44,51,52,58 Ewald pair-
potential,43,49,53–55 or PME45–48,56,59,60). While
analytical gradients are largely available for
almost all the semi-empirical based methods,
they are scarce for ab initio models. To the best
of our knowledge, only five ab initio QM/MM
PBC methods report the expressions for the
analytical gradient.51,55–58

In a recent paper,60 we have proposed a
new, simple, yet efficient electrostatic embed-
ding PBC-adapted QM/MM model that com-
bines the efficiency of smooth Particle Mesh
Ewald (sPME)33 (state-of-the-art algorithm for
the computation of long-range electrostatic in-
teractions) and of the advantages of Electro-
static Potential Fitted (ESPF) charge opera-
tors61,62 to approximately represent the QM
density in replicas. Here, we summarize the
energy expressions and derive analytic expres-

sions for the energy gradients with respect to
the coordinates of the QM, MM atoms, and lat-
tice parameters, necessary to perform molecu-
lar dynamics simulations at the QM/MM level
in microcanonical, canonical, and isothermal-
isobaric ensembles. We show the expressions
in the case of covalently bonded QM-MM re-
gions. The validity of our approach, as well as
its efficiency, are demonstrated by performing
QM/MM MD for methanol in water, and pro-
line aminoacid and oligopeptide in water.

2 Methodology

In a general QM/MM model, the full molecular
system is carefully divided into small and large
subsystems. The smallest is usually described
with a quantum mechanical (QM) approach,
comprising two charge densities: the nuclear
one approximated with NQM point charges ZA,
and the electronic one represented in an atomic
basis set as a density matrix P. The largest
subsystem is modeled at the MM level, using
FF built upon connected point masses andNMM

point permanent multipoles (for the sake of sim-
plicity, only charges are considered hereafter).
In the following, we make use of the A (resp.
i) index for looping over the QM (resp. MM)
centers. The addition of the QM and MM sub-
systems as well as their interactions results in
a QM/MM hybrid model. In the PBC-adapted
QM/MM approach described in the following
sections, we use a point charge representation
of the quantum density in the replica cells.60

This description can be considered valid when
these QM-derived charges are sufficiently far
away from the QM density and screened by the
rest of the MM charges.53,54,57

2.1 Electrostatic potential fitted
method

Here, we employ the electrostatic potential fit-
ted (ESPF) method to describe the electrostatic
interaction between the QM and MM subsys-
tems. For completeness, we recall the main
equations defining the ESPF charge operator,62

and the energy in the QM/MM PBC frame-
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work.60 We then show the expression for the
analytic gradients of the total QM/MM energy.
The ESPF charge operator matrix elements (in
a given basis set) are obtained as solutions of
the following set of linear equations,

NQM∑
A

Q′
A,µν

|rk − rA|
= Vk,µν , (1)

where the electrostatic integrals on a
grid point k are defined as Vk,µν =∫
d3r χ∗

µ(r)|r− rk|−1χν(r), in which the posi-
tions rk are the point coordinates of a Lebedev
atom-centered grid defined around the molecule
(excluding the van der Waals spheres around
atoms), and χµ are the atomic basis func-
tions.61,62 A correction is added to the charge
operator matrix elements to ensure the con-
servation of the total charge and the charge
derivatives of the QM subsystem,62

QA,µν = Q′
A,µν −

1

NQM

NQM∑
B

(
Q′

B,µν − Sµν

)
,

(2)

in which Sµν =
∫
d3r χ∗

µ(r)χν(r) denotes an
overlap integral and NQM is the number of QM
centers. These corrected operators are used to
construct the interaction Hamiltonian (vide in-
fra) and the ESPF partial charges centered on
the QM nuclei as

qA = ZA − Tr[PQA] , (3)

where ZA is the nuclear charge andP is the den-
sity matrix. It is easy to verify that

∑NQM

A qA
is the total charge of the QM fragment and the
sum of partial charge derivatives vanishes.62

2.2 Energy

The total energy of the total QM/MM system
takes the usual form,

E = EQM + EMM + Eint , (4)

in which EQM is the energy part from the gas
phase Fock operator, EMM encompass the MM
FF energy and vdW interactions between the

QM and MM subsystems as well, while Eint con-
tains all the electrostatic interaction terms be-
tween the two subsystems. The definition of the
interaction energy in the case of PBC-adapted
QM/MM employing ESPF charges was defined
elsewhere.60 The PBC-adapted electrostatic in-
teraction energy between the QM and MM sub-
systems can be written in simple terms from
electrostatic potentials as

Eint =

NQM∑
A

qA

(
ΦMM

A +
1

2
ΦQM

A

)
. (5)

The ESPF charges qA interact with two external
potentials: ΦMM originating from all the per-
manent MM point charges and ΦQM originating
from the ESPF point charges located in the im-
ages of the original cell (replica cells). Deriving
Eint with respect to the density matrix results
in a compact form of the interaction Hamilto-
nian,

hESPF
µν = −

NQM∑
A

QA,µν

(
ΦMM

A + ΦQM
A

)
, (6)

to be added in the gas phase Fock operator
of the QM subsystem. Using standard Ewald
sums, the QM and MM electrostatic potentials
have the following expressions. The MM poten-
tial is

ΦMM
A =

∑
n=0

NMM∑
i=1

qi
|rAin|

erfc (β |rAin|) (7)

+
1

πV

∑
m ̸=0

e
−π2m2

β2

m2
Re

[
e−2πim·rASMM(m)

]
,

in which V is the volume of the cell, β is
the Ewald range-separation parameters, NMM

is the total number of atoms in the MM re-
gion, rAin = |rA − ri + nL| is the distance be-
tween QM atom A in the original cell and any
MM atom i, and SMM(m) is the structure fac-
tor (vide infra). The sum n runs over all the
original and replica cells, while the sum m runs
over the reciprocal space vectors.
The QM potential has a similar expression
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which is

ΦQM
A =

∑
n̸=0

NQM∑
B=1

qB
|rABn|

erfc (β |rABn|)

+
1

πV

∑
m ̸=0

e
−π2m2

β2

m2
Re

[
e−2πim·rASQM(m)

]
− 2β√

π
qA −

NQM∑′

B=1

qB
|rAB0|

erf (β |rAB0|) .

(8)

The last two terms in Eq. 8 arise to correct re-
spectively for the spurious self-interaction and
the double-counting of long-range QM-QM in-
teractions in the original cell.60 In the previous
equations, the structure factors SQM and SMM

are given by

SQM(m) =

NQM∑
A

qAe
2πimrA

SMM(m) =

NMM∑
i

qie
2πimri . (9)

In practice, the long-range part of the MM
and QM potentials (i.e., the second term in Eqs.
7 and 8) is computed using the sPME algorithm
proposed by Pedersen and coworkers.33 To do
so, the QM atomic charges are projected on
the sPME grid together with the MM atomic
charges and used to construct the total long-
range potential, Φlong

A which corresponds to the
sum of the long-range QM and MM contribu-
tions to the potential. The correction arising
from the long-range QM-QM interactions in the
original cell (i.e., the last term in Eq. 8) is then
added a posteriori as a correction term. Fol-
lowing this approach, it is possible to apply the
original sPME algorithm without introducing
any modification.

2.3 Analytic energy gradient

The derivative of the total QM/MM energy
(Eq. 4) with respect to any parameter x is given
by dxE = dxEQM + dxEMM + dxEint. Here-
after, we use the shorthand notation for deriva-
tives as a superscript, which represents a partial

derivative (∂xE = ∂E/∂x) or a total derivative
(dxE = dE/dx). Both derivatives are expressed
as Ex if there is no need to specify the type
of derivative. The expression for the dxEQM,
that is, the gas phase QM energy, depends on
the methodology used, but for most common
electronic structure methods, there exist ana-
lytic formulas for computing it.63 Similarly, the
dxEMM contains classical terms with simple an-
alytic formulas for the computation of gradi-
ents. Therefore, here we focus on the derivative
of the QM/MM interaction energy. In the fol-
lowing, firstly, we discuss the derivatives of the
ESPF atomic charges, a quantity that is im-
portant for all further development. Then, we
detail the computation of the interaction energy
partial derivatives with respect to QM and MM
centers. In the last part, we describe also the
partial derivatives with respect to the lattice
parameters, necessary to compute for example
the pressure.64

The derivation of the interaction energy with
respect to a generic atom (i.e., QM or MM) is
reported in detail in SI Section 1. If we consider
a QM atom B, the derivative can be written as

ExB
int =−

NQM∑
A

qxB
A

(
ΦMM

A + ΦQM
A

)
+

NQM∑
A

qA

(
ΦMM,xB

A +
1

2
Φ

QM,(xB)
A

)
. (10)

where the first term contains the derivative of
the ESPF charges and the QM and MM Ewald
potentials defined in Eqs. 7 and 8. The second
term requires, instead, the derivatives of the
Ewald potentials with respect to a QM atom
coordinate. In the following, we give explicit ex-
pressions for constructing the derivative of the
total energy.

2.3.1 Atomic charge derivatives

Here, we focus on the construction of the first
term of Eq. 10. As the ESPF charges are po-
larizable, it is possible to write derivatives with
respect to a QM coordinate xB,

65 that are de-
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noted as

qxB
A = −Tr [PQxB

A ]− Tr [PxBQA] . (11)

A common trick when computing the deriva-
tive of the total energy of the system for self-
consistent field densities, is that the energy
derivative corresponding to the second term of
Eq. 11 together with all other terms propor-
tional to the density matrix derivatives in the
Fock operator can be substituted for a term
containing the derivative of the atomic over-
lap matrix (−Tr [WSxB ]),66 where W is the so-
called energy-weighted density matrix and SxB

is the geometrical derivative of the overlap ma-
trix. Therefore, hereafter we consider only the
derivative of the ESPF charges at fixed density,

qxB
A = −Tr [PQxB

A ] , (12)

where QxB
A,µν is the ESPF charge operator

derivative which only depends on the coordi-
nates of the QM atoms.
In practice, Eq. 12 is constructed by tracing

the density matrix with the operator derivatives
expressed as

QxB
A = (T†T)−1T† [VxB −TxBQA] , (13)

where T is the electrostatic kernel whose ele-
ments are Tk,A = |rk − rA|−1, and (T†T)−1T†

is the pseudoinverse of T.62

It follows that, by construction, the deriva-
tives of the ESPF charge operator with respect
to the coordinates of MM atoms are always
zero. In the rest of the paper, the notation for
the superscript derivatives indicates a deriva-
tive at fixed density matrix, while the notation
for the superscript derivatives in round brack-
ets indicates a derivative at fixed QM charges
(q

(xB)
A = 0 for any A and B).

2.3.2 External potential derivatives

Here, we focus on the construction of the sec-
ond term of Eq. 10, when the derivatives con-
cern the coordinates of a QM and MM center,
requiring the derivative of the QM and MM ex-
ternal potentials.
The general expression of the QM potential

on QM atom center A derivative with respect
to the coordinate of QM atom B is given by

Φ
QM,(xB)
A = −

NQM∑′

B=1

qB dxB

(
1

|rAB0|

)
(14)

+
∑
n=0

NQM∑′

B=1

qB dxB

[
erfc (β |rABn|)

|rABn|

]

+
1

πV

∑
m ̸=0

e
−π2m2

β2

m2
d(xB)

{
Re[e−2πim·rASQM(m)]

}
.

Similar expressions for the MM potential
derivative, as well as developed expressions for
both derivatives, can be found in SI Sections
2.1 and 2.2.
The derivatives of QM potentials with respect

to MM displacements are zero since the poten-
tial only depends on QM coordinates. There-
fore, the first derivative with respect to an MM
atom coordinate xi reduces to

Exi
int =

NQM∑
A

qAΦ
MM,xi

A , (15)

where the derivative of the MM potential on
center A with respect to an MM atom i, is given
by,

ΦMM,xi

A =
∑
n=0

NMM∑
i=1

qi d
xi

[
erfc (β |rAin|)

|rAin|

]
(16)

+
1

πV

∑
m ̸=0

e
−π2m2

β2

m2
dxi

{
Re

[
e−2πim·rASMM(m)

]}
.

The fully developed expression can be found in
SI Section 2.1.
From a practical point of view, the derivatives

of the long-range part of the potentials (i.e., the
last term in Eqs. 14 and 16) are computed us-
ing the sPME algorithm, by following the same
procedure described for the potential in Section
2.2. Also in this case it is not necessary to mod-
ify the original sPME algorithm.
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2.3.3 Lattice vector derivatives

The coordinate transformation r = hu trans-
forms fractional (u) into Cartesian coordinates
(r) through the cell tensor h, which is defined
by its transpose as

hT =

 a b · cos(γ) c · cos(β)
0 b · sin(γ) −c · sin(β) · cos(α∗)
0 0 c · sin(β) · sin(α∗)

 ,

(17)

where a, b and c are the lattice vector lengths,
α, β and γ the lattice angles. The superscript ∗

denotes the reciprocal lattice angles, which are
related to the real lattice angles through the
relation,

cos(α∗) =
cos(β) cos(γ)− cos(α)

sin(β) sin(γ)
. (18)

The total derivatives of the QM/MM energy
(Eq. 4) with respect to a lattice parameter a is
given by daE = daEQM + daEMM + daEint. The
total derivative concerning lattice parameters
can be written as the

daE = ∂aE +
N∑
p

(∂pE) · (∂ahup) . (19)

The first term vanishes for interactions ac-
counted for only in the original cell, namely,
the EQM and classical bonded terms in EMM.
The second term depends on the derivative of
the total energy with respect to the QM or MM
coordinates, as already defined in the previous
sections, and the derivatives of the atom Carte-
sian coordinates, with trivial expressions (see
Section 4.3 of SI).
The partial derivative of the QM/MM inter-

action energy can be written as,

∂aEint =

NQM∑
A=1

qA

(
ΦMM,a

A +
1

2
ΦQM,a

A

)
(20)

The only term within ΦQM
A that has non-zero

derivatives with respect to the lattice parame-
ters is the long-range potential in the recipro-
cal space (second term in Eq. 8), containing an

explicit dependence on the volume of the simu-
lation cell. Considering a cubic box, the deriva-
tives with respect to cell length are written as

ΦQM,a
A = − 3a2

πV 2

∑
m ̸=0

e
−π2m2

β2

m2
Re

[
e−2πim·rASQM(m)

]
(21)

while the derivatives with respect to cell angles
are equal to zero, as the volume in the cubic
cell is expressed as V = a3. A more general
expression could be found in Section 4 of the
SI.

2.4 Bonded QM-MM boundaries

Covalent bonds between the QM and MM re-
gions create an unsaturated QM atom that fic-
titiously overpolarizes the QM density. Many
methods exist to solve this problem.67–85 The
link atom (LA) remains the simplest and most
widely used approach,86–88 in which a QM aux-
iliary atom is placed between the QM and
MM frontier atoms. According to Morokuma’s
scheme,89 a LA is placed onto each QM and
MM frontier (f),

rf = rf,QM + gf (rf,MM − rf,QM) , (22)

in which rf , rf,QM and rf,MM are respectively
the positions of the LA, QM, and MM fron-
tier atoms. Therefore, the index f labels both
the LA and the corresponding QM–MM frontier
bond. The factor gf has a fixed value depending
only on the nature of the QM and MM frontier
atoms. For example, in a frontier bond between
two carbon atoms, the LA is usually taken as
a hydrogen atom, and gf is taken as the ratio
between the standard covalent bond lengths of
a C−H and a C−C bonds.
Since LAs have basis functions centered on

their nuclei, the QM electron density can ex-
tend onto them. Accordingly, each LA holds a
partial atomic charge that saturates the valency
of the corresponding frontier QM atom. There-
fore, LAs enter in the definition of the QM/MM
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interaction energy

Eint =

NQM∑
A

qA

(
ΦMM

A +
1

2
ΦCQ

A

)

+

NLA∑
f

qf

(
ΦMM

f +
1

2
ΦCQ

f

)
, (23)

in which NLA is the number of LAs and CQ =
QM + LA. The atomic partial charges qA =
ZA − QA (qf = Zf − Qf ) are computed as the
difference between the nuclear charge and the
net electronic population. The construction of
the interaction energy requires the CQ poten-
tial, which is essentially the same potential as
defined in Eq. 8 with the addition of the inter-
action of QM atoms with frontier atoms (see
Section 3 of SI).
In Morokuma’s original proposal,89 the LA

contributions to the total energy gradient with
respect to nuclear coordinates are projected
back to the frontier atoms to retrieve the correct
dimensionality of the potential energy surface,

dE

drf,QM

=
∂E

∂rf,QM

+ (1− gf )
∂E

∂rf
dE

drf,MM

=
∂E

∂rf,MM

+ gf
∂E

∂rf
. (24)

This requires thus the derivative of the link
atom energy expression (Eq. 23). Explicit ex-
pressions for these derivatives are similar to
those in Eqs. 16 and 14 and can be found in
the SI.
A non-neutral cell might be formed when

cutting a frontier between QM and MM, i.e.,
QCQ + QMM = Qtot ̸= 0, where QCQ =∑NQM

A qA+
∑NLA

f qf and QMM =
∑MM

i qi. This
is because the QM subsystem is enforced to
have an integer charge, whereas the MM sub-
system does not. To guarantee the correct
system’s total charge, we apply an a posteri-
ori extra-correction to the QM atomic charges
qA = q′A + qcorr, where

qcorr =
Qtot −QCQ −QMM

NCQ

=
Qcorr

NCQ

, (25)

We use these charges in the definition of energy

and derivative. The energy (Eq. 10) is then
given by

Eint = E
′

int +Qcorr

(
ΦMM

av + ΦCQ
av +

1

2
Φcorr

av

)
,

(26)

where the average potentials ΦCQ
av , ΦMM

av and
Φcorr

av , generated respectively by the replicas of
QM and LA charges, by MM charges, and by
the charge correction, can be defined as

ΦMM
av =

1

NCQ

NCQ∑
α=1

Φα
MM , (27)

ΦQC
av =

1

NCQ

NCQ∑
α=1

Φα
CQ ,

Φcorr
av =

Qcorr

N2
CQ

NCQ∑
α,γ=1

ϕαγ .

In the previous equations, α and γ indicate any
QM or LA atoms, and ϕαγ is the Ewald pair
potential between two atoms, whose definition
can be found in Section 5 of SI.
Since the values Qtot, QCQ and QMM are fixed

parameters, any derivative of qA is equal to the
derivative of the uncorrected q′A. Therefore, the
charge-derivative term of Eq. 10 remains the
same, and so the corrected derivatives are

ExB
int = E

′,xB
int +Qcorr

(
ΦCQ,xB

av + Φcorr,xB
av

)
Exi

int = E
′,xi

int +QcorrΦ
MM,xi
av , (28)

in which the average potential derivatives are
given by

ΦMM,xi
av =

1

NCQ

NCQ∑
α=1

ΦMM,xi
α , (29)

ΦCQ,xB
av =

1

NCQ

NCQ∑
α=1

ΦCQ,(xB)
α +

NCQ∑
γ=1

qxB
γ ϕαγ

 ,

Φcorr,xB
av = Qcorr

1

N2
CQ

NCQ∑
α,γ=1

ϕxB
αγ .
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3 Computational details

The described electrostatic embedding PBC-
adapted QM/MM analytic gradients have been
implemented for restricted, unrestricted, and
restricted open-shell single-determinant self-
consistent fields (SCF) (i.e., Hartree-Fock, HF,
or density-functional theory, DFT) in a devel-
opment version of GAMESS-US (2021R) in-
terfaced with Tinker 8.10.1. The implemen-
tation of the energy is detailed in Ref. 60. In
summary, the QM part of the external poten-
tial depends on the QM density via the partial
QM charges of the replicas (see Eq. 8). This
implies that, at every SCF step, a new external
potential is generated and included in the one-
electron Hamiltonian until convergence. The
long-range part of the potential is computed
using the standard sPME algorithm as imple-
mented inTinker,33 from which we extract the
external potential at the position of the QM
(and, if required, LA) centers. Upon conver-
gence of the QM density, the final set of QM
charges is extracted and the final classical elec-
trostatic and the rest of MM interactions are
added, leading to the full energy of the system
(Eq. 4).
Ewald sPME was used to compute electro-

statics in all the systems studied below. The
range separation value β was chosen in each sys-
tem so that the contributions to the real-space
potential arising from charges outside the cho-
sen cutoff radius are less than a threshold value
of 10−8 kcal·mol−1. The 5th-order B-splines
and tinfoil boundary conditions were used for
each studied system. In all the QM/MM calcu-
lations an SCF convergence threshold of 10−6

Hartree has been used. In each MD simula-
tion, an additional correction of the velocities
has been applied at each integration step to en-
force the translational and rotational invariance
of the center of mass of the system. Free en-
ergy profiles have been reconstructed from um-
brella sampling (US),90 data by applying the
weighted histogram analysis method (WHAM)
algorithm,91 using the code provided by Gross-
field.92 The image structures of proline and
proline-containing peptide systems have been
generated using the UCSF ChimeraX molecular

visualization tool.93 Additional details about
the protocols employed for the QM/MM MD
equilibration and for the US calculations can
be found in Section 6 of SI.

4 Results and discussion

4.1 QM/MM molecular dynam-
ics

For validating our implementation, we per-
formed geometry optimization, and the NVE,
NVT, and NPT MD at the QM/MM level for
a test system of methanol in water, (see Fig.
1). The chosen level of theory was HF/6-
31G*//CHARMM22.94,95 These are all the nec-
essary steps to prepare a system for production,
from relaxation to equilibration in main ther-
modynamical ensembles. In the following, we
discuss the results independently for each equi-
libration step.

4.1.1 Geometry optimization

The QM/MM energy minimization using micro
iterations was performed until the maximum
gradient was lower than 10−4 Hartree·bohr−1

and the root mean square (RMS) of the gra-
dients on the QM atoms was lower than 0.5 ·
10−5 Hartree·bohr−1. The microiteration ap-
proach implies that, at every QM geometry op-
timization step (done by GAMESS-US using
a quadratically convergent algorithm), the MM
environment is minimized at frozen QM coordi-
nates (performed in the Tinker software).96 In
the final optimized structure, the O-H distance
is 0.96 Å, the C-O distance is 1.41 Å, and the
average C-H distance is 1.08 Å. At the same
time, the C-O-H angle has a value of 109.35◦

while the H-C-H angles have an average value
of 108.76 ± 0.35◦.

4.1.2 NVT and NPT molecular dynam-
ics

In Fig. 1 (b) and (c) we reported, respec-
tively, the results of subsequent NVT and NPT
QM/MMMD equilibrations. The NVT dynam-
ics have been propagated for 250 ps starting
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Figure 1: Convergence of the QM/MM equilibration steps performed for the methanol model in
water, for (a) QM/MM energy minimization, (b) QM/MM MD in NVT ensemble, (c) QM/MM
MD in NPT ensemble. Panel (d) reports the results of QM/MM MD in the NVE ensemble with an
inset that shows in more detail the first 5 ps On the left axis, the energy is depicted, shown in the
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from the system equilibrated at MM level. The
system was thermostated at 298 K and we get
an average value of the temperature of 297.20
± 7.77 K. Using the geometry and the veloc-
ities of the last NVT step, the trajectory has
been propagated further in the NPT ensemble
for another 250 ps, with a target pressure of
1 atm. The average value of pressure was -
67.98 ± 596.84 atm (almost indistinguishable
from the requested value due to the large stan-
dard deviation) and the average value of density
was 1.00 ± 2.22 · 10−16 g · cm−3. The average
distances over the 250 ps NVT and NPT tra-
jectory, with snapshots sampled every 100 fs,
have values similar to those observed in the op-
timized structure. In particular, the distances
are 1.41 ± 0.04 Å for the C-O, 0.96 ± 0.03 Å for
the O-H, and 1.09 ± 0.03 Å for the C-H. Simi-
larly, the average values for the angles along the
NVT and NPT trajectory are close to those of
the optimized structure. In more detail, the av-
erage angles registered during the NVT dynam-
ics are 109.47 ± 4.05◦ for the C-O-H angle, and
108.46 ± 5.37◦ for the H-C-H angles, while the
values for the same angles along the NPT tra-
jectory are 109.43 ± 3.97◦ and 108.46 ± 4.55◦

respectively.

4.1.3 NVE molecular dynamics

A common test usually made to evaluate the
quality of an MD implementation consists of
testing the energy conservation during a simu-
lation in the microcanonical ensemble (NVE).97

We assess the capability of our PBC-adapted
QM/MM MD method to conserve the total
energy we propagated a trajectory for 100 ps
starting from optimized geometry and a set of
random velocities extracted from a Maxwell-
Boltzman distribution at 298 K. On such a
time scale, it would be possible to disentan-
gle the effects of systematic errors (i.e., con-
stant errors that are added at each time step
and are due to the finite precision used during
calculations), causing a linear energy drift in
time, from errors from other sources that have
a non-linear behavior and can be predominant
at shorter time scales.98 In Fig. 1 (d) we re-
ported the variation in the total energy as a

function of time as ∆E(t) = E(t) − E(0) as
well as the total energy running average com-
puted as ⟨E(t)⟩ = (

∑t
i=0Ei − E0)/(t + 1). A

first inspection of such data shows that the total
energy presents a mostly linear, upward drift.
The drift rate, obtained from the slope of a
linear fitting of the total energy, is 5.46 ·10−3

kcal·mol−1·ps−1 (8.70 ·10−6 hartree ·ps−1) re-
sults in a total of 5.95 kcal·mol−1 gained by the
system during the simulation, which accounts
for the 7.94·10−4 % compared to the average
total energy of the system that is -75551.28
± 0.17 kcal·mol−1. Although very stringent
conservation thresholds are usually required in
pure MM implementations,97 looser thresholds
are generally considered acceptable for ab initio
QM/MM approaches.99

Similar results have been obtained for a water
box of 20 Å side in which one water molecule is
described at the QM level. In this case, we ob-
serve a drift rate of 1.49 · 10−3 kcal·mol−1·ps−1

with a total energy variation of 1.81 · 10−1

kcal·mol−1, which consist in the 3.52 · 10−4 %
of the average total energy of the system of -
51151.38 ± 0.05 kcal·mol−1, thus further con-
firming the capability of our method to conserve
the energy with an acceptable level of accuracy
(see Fig. 2 of SI for more details).
Finally, in the inset of Fig. 1 (d), we zoom

in on the first 5 ps of the NVE trajectory.
By fitting a linear function to these data, a
drift rate of -3.65 · 10−4 kcal·mol−1·ps−1 is ob-
tained. This underestimation of effective linear
drift observed on a longer time scale can be ex-
plained by the presence of other sources of er-
ror, with non-linear behavior, that on such a
short time scale are predominant (e.g., random
errors, which have diffusive behavior). These
findings suggest that the attempts to predict
the trend of the linear component of the drift
from short simulations can be inaccurate if the
effects arising from the non-linear components
are not ruled out.

4.2 Peptidyl-prolyl bond isomer-
ization free energy profile

Proline peptide bond isomerizations are of fun-
damental importance in the folding of pro-
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teins and usually constitute the rate-limiting
step,100,101 catalyzed by peptidyl-prolyl cis-
trans isomerases (PPIases) enzymes.102,103

There exist numerous experimental and compu-
tational studies conducted on the isomerization
of proline-containing peptides, providing a per-
fect benchmark of our QM/MM MD method-
ology.104–110 Therefore, we applied it to the
cis-trans isomerization of peptidyl-prolyl bond
first on an analog model system, which is Ace-
Pro-NHMe, and then on the succinyl-Ala-Ala-
Pro-Phe-p-nitroanilide (AAPF) peptide which
is a common substrate for studies of the cat-
alytical activity of cyclophilin enzyme.106,110

4.2.1 Proline isomerization in water

In Fig. 2(a), we reproduced the structure of the
simulated system, where we treated quantum-
mechanically the proline molecule, capped us-
ing acetyl and N-methyl amide fragments, while
the solvent is described classically using the
TIP3P model.111

In Fig. 2(b), we report the free energy profiles
of proline associated with the isomerization of
the peptidyl bond as computed at the HF/3-
21G,112 (depicted in red) and B3LYP/6-31G*
(depicted in dark red) levels of theory. For the
sake of comparison, we reported also the profiles
computed at the MM level of theory, using stan-
dard Amber99sb parameters,113,114 (depicted in
light blue) and a modified set of Amber99sb pa-
rameters (depicted in blue).115 In particular, in
the modified set, the heights of the barrier asso-
ciated with the peptidyl bond torsion have been
adjusted in order to reproduce the experimen-
tal data. For comparison purposes, the zero has
been arbitrarily set to the free energy value of
the trans isomer.
Compared with the experimental data,104 the

HF profile recovers correctly both the relative
energies of the cis and trans isomers as well as
the torsional angle and energy of the transition
state. On the one hand, the trans-to-cis bar-
rier is slightly underestimated, with a ∆∆G‡

of 0.32 kcal·mol−1. On the other hand, the
trans/cis free energy difference (∆∆G = 1.93
kcal·mol−1) is higher than the experimentally
reported value. The lower accuracy with re-

spect to the results obtained at the MM level,
using the modified set of parameters, can be ra-
tionalized by considering the low level of theory
employed for the QM/MM calculations.
The profile computed using DFT, instead,

recovers the relative energies of the cis and
trans isomers correctly but largely underesti-
mates the height of the barrier. This behavior
can be explained by the tendency of DFT, due
to self-interaction error, to overstabilize delo-
calized densities that usually characterize the
distorted geometries of transition state struc-
tures.116,117

4.2.2 AAPF peptide isomerization in
water

In Fig. 3(a), we reproduced the structure of the
simulated system. The succinyl-Ala-Ala-Pro-
Phe-p-nitroanilide (AAPF) peptide has been
partitioned into two fragments, the first one,
which encompasses the proline and one of the
alanine residue, is described at the HF/3-21G
level of theory (shown in balls and sticks in the
figure), while the second one, which contains
all the other residues and the cappings, is de-
scribed at the MM level using Amber99sb and
GAFF parameters (shown in lines in the fig-
ure).118 The aforementioned partitioning intro-
duces two frontiers between the QM and MM
regions that were handled with two link atoms
(shown in magenta in the figure). The solvent
is described classically using the TIP3P model.
In Fig. 3(b), we report the free energy profile

of the isomerization of the peptidyl bond in the
AAPF peptide. In the same figure is reported
for comparison, the profile for the same reac-
tion, computed at the MM level of theory using
the modified set of Amber99sb parameters (de-
picted in blue).115 Again, for the sake of com-
parison, the zero has been defined to correspond
to the free energy value of the trans isomer.
As visible from the figure, we could not com-

pute the free energy profile at the QM/MM
level in the interval between 0 and 70 degrees.
In such cases, we observed an overpolarization
of the quantum density around the frontier re-
gion, which is a well-known limitation of the
link-atom approach applied to the backbone of
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b)

c)

a)

Figure 2: (a) Structure of the QM/MM
PBC model of proline model system in a
water box, with a highlight of the QM re-
gion on the right. (b) Isomerization free
energy profile for proline, showing the pro-
file obtained using the new QM/MM PBC-
adapted model described in this article at
HF/3-21G//Amber99sb (labeled HF/MM in
red) and at B3LYP/6-31G*//Amber99sb (la-
beled B3LYP/MM in dark red), as well as the
profiles generated using Amber99sb modified
(in blue) and unmodified parameters (in light
blue). (c) The table shows experimental and
computed activation energy as well as the dif-
ference in free energy between the cis and trans
isomers.

peptides.119 Consequently, as the experimental
data reported in the literature,120 refer to the
cis-to-trans isomerization, a direct comparison
with the experiment is currently not possible,
as we could not assess the relative free energy
of the cis isomer. However, from the compari-

son with the profile computed at the MM level,
which in turn is in good agreement with the ex-
periments, it is possible to see that the ab ini-
tio calculations correctly reproduce the predic-
tion on the position and height of the trans-to-
cis barrier obtained with modified parameters
(∆∆G‡ = 0.17±0.08 kcal·mol−1), thus suggest-
ing that the QM/MM model is appropriate to
predict the isomerization behavior.
A further element in support of such claims

comes from the comparison with the results ob-
tained at QM/MM for the proline case. Moving
from the simple model system to the peptide,
we predict an increment of the ∆G‡ of 0.7±0.06
kcal·mol−1, which is coherent with the steric en-
cumbrance generated by the larger substituents
in the peptide compared to the lighter cappings
in the proline model.

b)

a)

Figure 3: (a) Structure of the QM/MM PBC
model of AAPF peptide system in a water box,
with a highlight of the peptide on the right.
The QM region is shown using balls and sticks
representation while the link atoms are shown
in magenta. (b) Isomerization free energy pro-
file for the AAPF peptide, showing the profile
obtained using the new QM/MM PBC-adapted
model described in this article (in red) as well
as the profiles generated using Amber99sb mod-
ified parameters (in blue).
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5 Conclusions

We have derived the analytic energy gradi-
ents of periodic boundary condition compati-
ble ab initio electrostatic embedding QM/MM
method, that combines the strengths and effi-
ciency of electrostatic potential fitted charges
and particle-mesh Ewald potentials. We show
the expressions for derivatives with respect to
all system parameters, namely, the QM and
MM atoms and the lattice parameters, allow-
ing molecular dynamics at the QM/MM level
in the microcanonical, canonical, and isobaric-
isothermal thermodynamic ensembles. In ad-
dition, we report the expressions for covalently
bonded QM-MM frontiers using the link atom
approach.
We implemented the PBC QM/MM analytic

gradients and validated them through several
MD equilibrations for different test systems.
Overall, we show that the NVE dynamics con-
serve the total energy even when using 1 fem-
tosecond timesteps, despite a small drift of the
total energy on longer timescales. In addition,
we extracted free energy profiles for the iso-
merization of proline amino acid and proline
peptide in water. We show that our QM/MM
method leads to accurate isomerization barriers
compared to experimental data, without ma-
nipulating the forcefield parameters.
Despite our implementation being efficient at

computing the QM/MM interaction for large
systems, the computation of free energy profiles
is limited by the computational cost of the QM
method, since it requires an extended phase-
space sampling through MD at the nanosecond
timescale. Accelerated sampling techniques
and highly parallelized QM and MM codes will
be required to apply this method for routine
computations of free energy profiles.
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Hodošček, M.; Brooks, B. R. Op-
timization of quantum mechanical
molecular mechanical partitioning
schemes: Gaussian delocalization of
molecular mechanical charges and the
double link atom method. J. Chem.
Phys. 2002, 117, 10534–10547.

(71) Di Labio, G. A.; Hurley, M. M.; Chris-
tiansen, P. A. Simple one-electron quan-
tum capping potentials for use in hybrid
QM/MM studies of biological molecules.
J. Chem. Phys. 2002, 116, 9578–9584.
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(116) Brémond, E.; Savarese, M.; Rega, N.;
Ciofini, I.; Adamo, C. Free Energy Pro-
files of Proton Transfer Reactions: Den-
sity Functional Benchmark from Biased
Ab Initio Dynamics. J. Chem. Theory
Comput. 2022, 18, 1501–1511.

(117) Shukla, P. B.; Mishra, P.; Baruah, T.;
Zope, R. R.; Jackson, K. A.; John-
son, J. K. How Do Self-Interaction Er-
rors Associated with Stretched Bonds Af-
fect Barrier Height Predictions? J. Phys.
Chem. A 2023, 127, 1750–1759.

(118) Wang, J.; Wolf, R. M.; Caldwell, J. W.;
Kollman, P. A.; Case, D. A. Development
and testing of a general AMBER force
field. J. Comp. Chem. 2004, 25, 1157–
1174.

(119) Zlobin, A.; Belyaeva, J.; Golovin, A.
Challenges in Protein QM/MM Simula-
tions with Intra-Backbone Link Atoms.
J. Chem. Inf. Model. 2023, 63, 546–560.

(120) Harrison, R. K.; Stein, R. L. Mechanistic
studies of enzymic and nonenzymic pro-
lyl cis-trans isomerization. J. Am. Chem.
Soc. 1992, 114, 3464–3471.

20



TOC Graphic

Electrostatic potential fitted charges

QM/MM in 

periodic boundary conditions
Free energy profiles

21


