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1 IR and RAMAN spectra

The simulated IR and Raman spectra at TPSSh/LANL2DZ level.
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Figure S1: IR (top) and RAMAN (bottom) stick spectra at TPSSh/LANL2DZ level. The
ligand modes included in the model Hamiltonian are marked in red for IR and blue for
Raman spectra.



2 Radiation external field

The analytical shape of the chirped and non-chirped laser and their respective Fourier trans-

form.
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Figure S2: Time-evolution of the electric-field (top) and the corresponding discrete Fourier
transform (bottom) using the non-chirped (blue) and chirped (red) analytical expression.
The parameters employed have been those used in the model: E0=0.079 a.u., σ=5.0 fs,
T0=1.56 fs, T1=1.49 fs, T2=1.63 fs and p3=20 fs.



3 Gaussian-shaped electric field

Effect of the different analytical electric fields, i.e. chirped and non-chirped lasers.
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Figure S3: Time-evolution diabatic population. Ground state in orange, 1MLCT in blue,
3MLCT in green, 3T1 in black, 3T2 in red, and 5T2 in pink. The left column graphs include
the population on the singlet ground state and the right excludes this state. In the first row,
the analytical expression for the electric field is the non-chirped cosine and in the second
row, the laser electric field is chirped.



4 Effect of vibrational excitations

Evolution of the diabatic population for quantum dynamics initialized in the vibrationally

excited states.
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Figure S4: Time-evolution diabatic population from the vibrationally excited state vrc=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S5: Time-evolution diabatic population from the vibrationally excited state v14=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S6: Time-evolution diabatic population from the vibrationally excited state v15=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S7: Time-evolution diabatic population from the vibrationally excited state v139=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S8: Time-evolution diabatic population from the vibrationally excited state v140=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S9: Time-evolution diabatic population from the vibrationally excited state v141=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S10: Time-evolution diabatic population from the vibrationally excited state v142=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S11: Time-evolution diabatic population from the vibrationally excited state v143=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S12: Time-evolution diabatic population from the vibrationally excited state v144=1
(solid lines) and from the vibrationally ground state (transparent line).
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Figure S13: Time-evolution diabatic population from the vibrationally excited state v=1 for
all the high-frequency modes (solid lines) and from the vibrationally ground state (transpar-
ent line).
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Figure S14: Time-evolution diabatic population from the vibrationally excited state v=1 for
all the modes (solid lines) and from the vibrationally ground state (transparent line).



5 Optimal control laser

Figure S15: Fourier transform of the optimised laser.


