
Supplementary Information

Internal Validation

	F. Bands	positive net	negative net	combined net
C act	alpha	p > 0.1	p > 0.1	p > 0.1
	beta	0.0043 (r-)	p > 0.1	p > 0.1
	delta	p > 0.1	p > 0.1	p > 0.1
	gamma	0.08	p > 0.1	0.003
	theta	0.08	p > 0.1	0.023
C ach	alpha	p > 0.1	p > 0.1	p > 0.1
	beta	p > 0.1	p > 0.1	0.07
	delta	p > 0.1	p > 0.1	p > 0.1
	gamma	0.05	0.02	0.0005
	theta	p > 0.1	0.005	0.018
C total	alpha	p > 0.1	p > 0.1	p > 0.1
	beta	p > 0.1	p > 0.1	0.07
	delta	p > 0.1	p > 0.1	p > 0.1
	gamma	0.06	0.01	0.0004
	theta	0.09	0.004	0.015

Supplementary Table 1. Presented in this table are the p-values of the internal validation processes (LOOCV) of the predictive model in all frequency bands (F. Bands). In bold are the significant ones and highlighted in grey are the ones that remain significant after a permutation test (p-value of permutation < 0.05). net = network. N= 90 participants.

Supplementary Figure 1. This figure represents the power spectral density, averaged over all HD-EEG channels, for all subjects (0.5 to 45 Hz). With some inter-subject variability, it illustrates that alpha has the highest power followed by delta. Beta and gamma bands have lower power compared to low frequencies. Note that phase synchronization between two signals can be independent from their powers (amplitude) and brain areas with low power (such as gamma) can be strongly synchronized, and vice-versa.