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Marc Vérin1,7

Neuroscience research has shown that specific brain patterns can relate to creativity during multiple
tasks but also at rest. Nevertheless, the electrophysiological correlates of a highly creative brain
remain largely unexplored. This study aims to uncover resting-state networks related to creative
behavior using high-density electroencephalography (HD-EEG) and to test whether the strength of
functional connectivity within these networks could predict individual creativity in novel subjects. We
acquired resting state HD-EEG data from 90 healthy participants who completed a creative behavior
inventory. We then employed connectome-based predictive modeling; a machine-learning technique
that predicts behavioralmeasures frombrain connectivity features. Using a support vector regression,
our results reveal functional connectivity patterns related to high and low creativity, in the gamma
frequency band (30-45 Hz). In leave-one-out cross-validation, the combined model of high and low
networks predicts individual creativity with very good accuracy (r = 0.36, p = 0.00045). Furthermore,
the model’s predictive power is established through external validation on an independent dataset
(N = 41), showing a statistically significant correlation between observed and predicted creativity
scores (r = 0.35, p = 0.02). These findings reveal large-scale networks that could predict creative
behavior at rest, providing a crucial foundation for developing HD-EEG-network-based markers of
creativity.

Creativity plays a fundamental role in shaping our cultural and technolo-
gical landscape. It has consistently been the driving force behind artistic,
inventive, and scientific endeavors, fueling innovation and pushing the
boundaries of humanprogress. As theworld becomes increasingly complex,
the demand for creativity continues to grow, not only in the ability of
innovation and problem-solving but also as a dynamic response to the ever-
evolving nature of human existence. This multifaceted significance of
creativity has led to extensive research in various disciplines, attracting
particularly the interest of the neuroscience community1. However, the
cognitive mechanisms underlying creative abilities are not yet fully
understood.

Over the past years, emerging evidence showed that complex brain
functions like creativity are generated by large-scale networks of highly
specialized and spatially segregated brain regions2 i.e., functional con-
nectivity. Motivated by the enormous progress that has been made in
developing neuroimaging tools, we have witnessed substantial advance-
ments in functional connectivity analysis on creativity. Functional

connectivity quantifies the temporal dependencies between regions and
networks, enabling us to investigate the network organization of the human
brain3.

Traditionally, functional connectivity studies primarily focused on
group-wise differences in clinical and healthy populations and decoding
functional connectivity patterns associated with specific cognitive states. In
this context, inter-individual variability was often viewed as a potential
source of noise. However, recent research has demonstrated that functional
connectivity patterns can be unique to individuals and exhibit a relatively
stable nature across different cognitive states, be it during task performance
or rest4–7. These patterns have been successful in predicting individual traits,
cognitive behavior, and clinical features, resulting in the rise of a new
dimension of personalized neuroscience focused on behavioral
prediction8–16.

Connectome-based predictive modeling (CPM)10 leverages the most
relevant features of functional connectivity to predict behavioral out-
comes. Bymapping the brain’s intricate connections and integrating them
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with data on individual behaviors, it offers a window into the neural basis
of highly complex phenomena. This emphasized the importance of
considering individuality and variability in the study of brain networks
related to the complex processes of creativity. Consequently, task-based
and resting-state functional connectivity (RSFC) measured by functional
magnetic resonance imaging (fMRI), within and between brain networks,
were mapped to predict individual differences in creative abilities9,10,17–21.
These researchers considered the advantage of a whole-brain functional
connectivity approach over localization-based or between-group
approaches to provide a functional view of how brain networks relate to
individual creative ability. Moreover, predictive modeling approaches
were built with integrated cross-validation, which is a powerfulmethod to
estimate a brain-behavior relationship22. Crucially, it facilitates testing the
strength of the relationship in novel observation via both internal and
external validation, permitting to establish the generalizability of the
findings to independent datasets.

Based on that, whole-brain networks associated with creative abilities
have been uncovered to support a growing body of creativity research that
highlights the importance of functional interactions within and between
multiple brain networks, including the executive control network, the sal-
ience network (SN), and the default mode network (DMN)17,23. However,
these studies have generally classified creativity based on creative task per-
formance (e.g., divergent thinking) rather than individual differences in
real-life creative behavior. Divergent thinking measures creative potential,
which refers to an individual’s inherent ability for creativity. Creative
behavior on the other hand, also referred to as real-life creativity, is the
tangible outcome of applying one’s creative potential in the real world,
which reflects the individual differences in cognitive ability but also envir-
onmental factors and personality 24.

In the current paper, we aim to show how computational network
neuroscience can be used to couple cognitive and neural analysis on a
behavioral level. A recent study has applied connectome predictive mod-
eling to explore real-life creativity by studying the neural basis of semantic
memory organization related to creative behavior25. Using functional con-
nectivitymeasured fromacquired fMRIdatawhile participants underwent a
semantic relatedness judgment task, the team identified patterns of task-
based functional connectivity that predicted creativity-related semantic
memory network properties.

While all these studies have focused on modeling specific task-related
functional connectivity measured by fMRI, the present study explores the
EEG resting-state (RS-EEG) network determinants of real-life creative
behavior.

The recognized success of functional connectivity researchhas inspired
a growing interest in analyzing brain functional networks using EEG, as a
practical, easy-to-use, and relatively low-cost neuroimaging technique. In
contrast to fMRI, EEG reflects a directmeasure of neural activity and allows
the computation of brain oscillationswithin specific frequencybands. These
oscillations may reflect important properties of network interactions at
local and large-scales26. When combined with source reconstruction
approaches27, EEG can be implemented to study functional interactions
among cortical regions. Several studies have used EEG to investigate func-
tional patterns associated with creativity, during creative thinking28–31 or at
rest32. However, very few studies have coupled EEG with machine learning
methods like CPM to explore how individual creativity influences func-
tional connectivity.

Using HD-EEG in our research would offer an important extension
to the literature on functional connectivity basis of creativity in extending
CPM methods to EEG and the research of real-life creativity. We hope
that integrating the HD-EEGmore into these types of analyses would not
only provide insights into the generalizability, sensitivity, and reprodu-
cibility of brain findings but also encourage exploiting the exceptionally
high temporal resolution of this tool (millisecond compared to second in
fMRI) and integrating more dynamic features in connectome analyses in
future studies.

Therefore, in the present research, we applied the CPM approach10 to
examine how whole-brain RS-EEG functional connectivity patterns could
predict individual creative behavior and we hypothesized the presence of a
stable resting-state neurophysiological marker of real-life creative behavior.
Furthermore, we conducted an external validation analysis to establish the
generalizability of the resulting neural model to an independent EEG
dataset.

Results
Predictive networks of creativity
HD-EEG data was acquired from healthy adult participants during an eyes-
closed resting state. All participants completed a creativity questionnaire
(Inventory of CreativeActivities andAchievementsQuestionnaire -ICAA-);
which is a broad-based assessment of individual differences in real-life
creativity. The inventory provided a creative activity score (C act), a creative
achievement score (C ach), and a general creative behavior score (C total). In
this study, we aimed to discover the existence of EEG networks that can
predict the general ICAA creativity scores. Thus, whole-brain functional
networks were constructed for each participant by computing the source-
space functional connectivity among 68 brain regions of interest, in five
frequency bands (delta, theta, alpha, beta, and gamma). A correlation
between all functional connections and creativity scores, followed by a sta-
tistical threshold (p < 0.01), was used to identify which functional edges are
significantly related to creativity in each frequency band. To determine
which of these networks have a predictive potential, we used the
connectome-based predictive modeling approach (CPM)10, where leave-
one-out cross-validation (LOOCV) was performed to build and test
network-based predictive models (i.e., internal validation). The analysis
detected no relevant predictive networks of creativity in the delta, theta,
alpha, or beta bands (Supplementary Table 1).

In the gamma band, it revealed a “high-creativity network” consisting
of 8 edges positively correlated with ICAA scores, and a “low-creativity
network” consisting of 26 edges negatively correlated with ICAA scores
(total possible edges of 2278). These predictive networks were consistent
among 90% of all LOOCV folds. The high-creativity network exhibited
dense functional connections among 6 regions: the right middle temporal
gyrus (associatedwith semantic andworkingmemory), 3 regionswithin the
DMN (lingual gyrus, rostral anterior cingulate cortex, and the isthmus of
cingulate gyrus), 2within the visual associationnetwork (the lateral occipital
cortex, the lingual gyrus is involved in the visual association network as
well), and1within the somatomotornetwork (the left paracentral lobe). The
low-creativitynetwork showeddiffuse connections among20 regions across
the whole brain. 6 were within the DMN, 4 were within the sensorimotor
network (SMN), 2 within the frontoparietal network, 2 within the ventral
attention network, 1 within the visual network (VN), and 5 temporal
structures (Fig. 1).

Internal validation: prediction of creativity from RS-EEG data
As internal validation, we followed a LOOCVanalysis. This step aims to test
the predictive performance of the brain connectivity-based models that
reflect the strength of functional connectivity within the high and the low
creativity networks, respectively. In the leave-one-out loop, 90 rounds (i.e.,
number of participants) of cross-validation were performed, during which,
one different participant was left out from building the model each time,
then used to test the model performance. This caused slight differences in
networks in each round, as well as themodel and its performance. Thus, the
final evaluation of the model was the average performance across the
90 folds.

We evaluated the predictive power of the model by assessing the sta-
tistical significance of the relationship between the observed and themodel-
predicted creativity scores. Results showed that high or low-creativity
models alone could not robustly predict creativity. But interestingly, the
combination of both networks could reliably predict real-life creativity
(r = 0.36, p = 0.00045,MAE = 0.1,R-squared = 0.12) (Fig. 2). Additionally, a
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non-parametric permutation test of ICAA scores (5000 times) was added to
ensure that the obtained correlation is significantly better than expected by
chance. The permutation test results confirmed the significance of the
combined network (p = 0.02). This internal validation demonstrates that
individual differences in real-life creativity could be predicted from the
strength of RS functional connectivity within the combination of both high
and low-creativity networks.

External validation: prediction of creativity using novel RS-
EEG data
Furthermore, to strengthen the generalizability of our predictive model, we
conducted an external validation analysis using a second independent RS-
EEG dataset.

High and low-creativity network strength values were thus computed
for each subject in the new dataset. Then we used the trainedmodel derived
from the internal validation procedure to predict their creativity scores.
Results revealed a significant predictive performance of themodel (r = 0.35,
p = 0.02, MAE = 0.2, R-squared = 0.12) (Fig. 3).

This external validation generalized the combined creativitymodel to a
novel and distinct sample, indicating that participants with higher ICAA
scores showed stronger functional connectivity within the high-creativity
network and lower functional connectivity within the low-creativity
network.

Control analysis
Our study’s primary objective was to develop a predictivemodel for general
creative behavior using the total ICAA score as themain outcomemeasure.
However, we conducted a thorough control analysis using C act and C ach
separately, in order to discern whether the model is predominantly influ-
enced by one or the other. Analyses revealed that the model’s performance
was driven by the achievement score more than the activity score (Table 1).

Cross-validation - LOOCV vs. k-fold
Cross-validation stands as a primary advantage of the CPM methodology,
where it evaluates the predictive performance of the connectome models.
Generally, this step can be achieved using two main approaches of cross-
validation, (1) a k-fold cross-validation in which the data are split into k

different subsets or folds, and (2) leave-one-out cross-validation (LOOCV),
which was selected and initially performed in our analysis. LOOCV is the
simplest form and the most popular choice, employed consistently in
creativity research. However, many researchers discussed the merit of the
k-fold method as well, considering that it gives less variable estimates of the
prediction error than those from LOOCV33. In pursuit of methodological
validation, we implemented the k-fold cross-validation technique, using 5
and 10 folds, to thoroughly assess the consistency and reliability of our
models. Results did not yield the same statistical significance as the findings
derived from LOOCV processing (Table 2).

Dynamic functional connectivity
In the pursuit of leveraging the high temporal resolution of HD-EEG and
testing its further capabilities in connectivity analyses, we employed a
dynamic approach within the same frequency of the static predictive
modeling described above (the gamma frequency band). The approach
consisted of quantifying the variance of the dynamic connectivity matrices
for each subject over time (seemethods). Then,we applied theCPMmethod
on the resultant variance matrix to investigate the presence of dynamic-
dependent predictive features of creativity. Results revealed no significant
predictive model of either the creative activity, the creative achievement, or
the general creative behavior in the gamma frequency band.

Nevertheless, our dynamic analysis revealed a predictive model of
creative achievement based on a high-creativity network in the delta fre-
quency band. The high-creativity network exhibited dense functional
connections among 17 regions: the right middle temporal gyrus (associated
with semantic and working memory) and 3 other temporal structures (the
right fusiformgyrus, the left temporal pole, and the Left transverse temporal
gyrus), 4 regions within the DMN (lingual gyrus, the left caudal anterior
cingulate cortex, the right Para hippocampal gyrus, and the right isthmus of
cingulate gyrus), 1 within the SN (the right pars opercularis), 3 prefrontal
structures (the left frontal pole, the left lateral orbitofrontal cortex, and the
right lateral orbitofrontal), 3 within the somatomotor network (the right
postcentral gyrus, the left paracentral lobe, the left postcentral gyrus, and the
left precentral gyrus), 1 within the visual association network (the lingual
gyrus), and 1within the dorsal attention network (the right superior parietal
lobule) (Fig. 4).

Fig. 1 | Depictions of high and low creativity net-
works. aCircle plots and (b) glass brains of high and
low creativity networks. Colors within the circle
plots correspond to brain lobes. b (1): the right
middle temporal gyrus, (2): the lingual gyrus, (3): the
left paracentral lobe, (4): the isthmus of the cingulate
gyrus, (5): the rostral anterior cingulate cortex, (6):
the lateral occipital cortex.
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In a LOOCV, the network predicted C ach with an r = 0.33 and a
p-value of 0.001 (Fig. 5). Additionally, the permutation test resulted in a p
value of 0.04. Likewise, in an external validation process using the second
independent dataset, themodel predicts C ach scores in novel subjects, with
an r = 0.38 and a p value of = 0.01 (Fig. 6). These findings highlight the
complementarity of dynamic properties in the functional architecture of the
creative brain.

Confounder analysis
To explore potential confounding variation, we correlated each available co-
variable (age, gender, education)with the creativity score.Results showedno
significant relationwithneither age (p = 0.06), gender (p = 0.7), or education
(p = 0.36). Consequently, no cofounder effect was detected and thus con-
sidered as a variable in the predictive model.

Discussion
Using HD-EEG and a machine learning technique, we established a
connectome-based model capable of predicting individual real-life crea-
tivity.Themodel is basedon resting-state networks associatedwithhigh and
low creativity, respectively. Critically, the model demonstrated its general-
izability by successfully predicting creativity scores across an independent
EEG dataset. These results indicate that creativity may be captured not only
by task-induced variation of functional connectivity17,25 but also by stable
trait-level variation of intrinsic functional connectivity at rest. Several
researchers have examined RSFC and have revealed consistent RSFC large-
scale networks in the human brain e.g., DMN, VN, SMN, cognitive control
network3,34,35, and SN36. Recent findings suggested that creativity can be
associated with the strength of FC among specific patterns of interactions
between brain regions of those resting-state networks19. Our results align
with these findings and increase evidence that real-life creative behavior can
be predicted from an individual’s resting EEG connectivity profile.

The high-creativity network exhibits functional connections among
components of the DMN, which is involved in constructing dynamic
mental simulations based on the past, the future, and imagination37. Con-
sistent with our findings, DMN was largely associated with creativity. The
DMN activity has been positively correlatedwith higher creativity at rest, as
divergent thinking ability 38 andverbal creativity 39.Moreover,DMNregions
are often involved in task-induced creativity such as visual creativity40,
creative story generation41, and insightful problem-solving42. In addition to
the default mode, the high creativity network included themiddle temporal
gyrus tightly associated with semantic memory and processing43 and core
regions of the visual association network. Visual association is necessary to
identify objects and interpret the same object across different specific
contexts44. Evidence showed that visual association is closely associatedwith
memory performance45–48. Recent work suggested an important role for

Table 1 | Control analysis of the predictive model using
creativity scores separately

Int. Val Ext. Val

Combined net Combined net

C act p = 0.003, r = 0.30 p = 0.1

C ach p = 0.0005, r = 0.35 p = 0.01, r = 0.39

C total p = 0.00045, r = 0.36 p = 0.02, r = 0.35

Correlation coefficient (r) and p value (p) of the relationship between observed and predicted
creativity scores in the internal validation (Int. Val) (N = 90 healthy participants), and the external
validation (Ext. Val) (N = 41 healthy participants). Validation processes were done for the combined
network (net) first using thegeneral creativity score (C total), then using the creative activity (C act) or
the creative achievement (C ach) scores separately.

Table 2 | Cross-validation: LOOCV vs. k-fold

P Values of The Internal Validation

Network LOOCV 5 Folds 10 Folds

Positive 0.06 0.12 0.2

Negative 0.01 0.09 0.2

Combined 0.00045 0.09 0.3

The differences in p values resulting from applying Leave-one-out cross-validation (LOOCV) or
K-folds (5 and 10 Folds) methods in the internal validation process, in the gamma frequency band.
N = 90 healthy participants.

Fig. 3 | The external validation of the CPM model. The relationship between
observed and predicted creativity scores in the external validation of theCPMmodel,
showing Pearson’s correlation coefficient (r), the p value (p), the R-squared (R2), and
the Mean Absolute Error (MAE). N = 41 healthy participants, independent sample.

Fig. 2 | The internal validation of the CPM model. The relationship between
observed and predicted creativity scores in the leave-one-out cross-validation of the
CPM model, showing Pearson’s correlation coefficient (r), the p value (p), the R-
squared (R2), and the Mean Absolute Error (MAE). N = 90 healthy participants.
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visual associationareas in associativememory49—the ability to bind together
previously unrelated information —underlies the formation of episodic
memories50. The engagement ofDMN, semantic, and associative ability is in
line with associative theories of creativity. Particularly, the episodicmemory
theory; the constructive episodic simulation hypothesis51. The theory pos-
tulates that memory and imagination, together, implicate flexible recom-
bination of episodic memories such as places, people, objects, and details of
events. This could be very interesting since, in part, creativity is supported by
our abilities to recall memories and envision the future, especially at rest.
Thisflexiblenatureof episodic processes seems tobeparticularly involved in
creativity,which requires connecting bothmemory and imagination innew,
original, and meaningful ways. This builds on other works that have indi-
cated that episodic memory is closely related to creativity52,53, and the pre-
dictivemodel of functional connectivity relating real-life creativebehavior to
semantic memory 25. While this latter study focused specifically on the
semantic basis of creative cognition and its relationship with task-based
connectivity patterns, our study took a broader approach by considering the
overall RSFC and incorporating an external validation process. However,
despite the methodological differences, both results converge on the
importance of associative abilities in predicting real-life creativity. Fur-
thermore, the identification of the default DMN, somatomotor, and visual
associative areas within the high creativity network in both studies impli-
cated significantly these networks in supporting real-life creative behavior.
This highlights the role of semanticmemory and associative brain regions in
creative behavior and underscores the significance of associative abilities
within our predictive networks. This alignment between the two models
suggests a robust association between associative processing and creative
behavior.

The low-creativity network, on the other hand, exhibits diffuse func-
tional connections among several resting state networks, especially DMN
and SMNs, in addition to temporal structures. Although DMN regions are
associated with high creative ability, default activity was also linked with
prepotent response tendencies54 and strong semantic associations55. Addi-
tionally, sensorimotor regions were found to support procedural previously
learned information56. This could suggest that low creativity may be char-
acterized by increased interactions among regions that support memory,
and automatic common associations and representations that are in turn,
not effectively regulated by high-creativity brain regions.

In our results, neither high creativity nor low creativity networks alone
could predict robustly individual creativity. But interestingly, together, they
construct an effective predictive model. Specifically, higher activation of the
high creativity network coupled with lower activation of the low creativity
network correlates with higher levels of creativity in individuals. This sug-
gests that individuals who predominantly engage the brain regions

associated with semantic memory and associative abilities (high creativity
network)while simultaneouslyminimizing activation of regions involved in
other cognitive processes (low creativity network) tend to exhibit greater
creative behavior.

Furthermore, the low-creativity network involves the prefrontal cortex,
whereas the high-creativity network does not. Given the observed inverse
relationship between the activation levels of the high and low creativity
networks at rest, this could propose that while activating the high creativity
network is crucial for facilitating creative behavior through semantic
memory and associative processing, excessive activation of the low creativity
network, which includes regions like the prefrontal cortex typically asso-
ciatedwith cognitive control and regulation,mayhinder the creative process
at rest. Therefore, creative behavior may necessitate a delicate balance
between engaging the high creativity network to foster creative performance
and attenuating the activation of the low creativity network to prevent over-
regulation or inhibition of creative processes. This hypothesis underscores
the intricate interplay between different neural networks in creative cog-
nition at rest and highlights the importance of optimal activation levels
across these networks formaximizing creativity.However, further empirical
research is needed to fully elucidate themechanismsunderlying this balance
and its implications for creative performance.

Our statistical analysis showed that only the gamma frequency band
highlighted a robust internal and external predictive network of high creative
behavior, and no other significant outcomes were found in other EEG fre-
quency bands (Refer to Supplementary Fig. 1 for power spectral density
information).These observationsmaybe explainedby the fact that among all
frequencies, the gamma band (30–100Hz) in EEG ismost closely associated
with high-order cognitive function57. It was shown to reflect multiple cog-
nitive processes such as attention, language, binding, and object
representation58. Interestingly, rapid oscillatory activity in the gamma band
has been identified as a fundamentalmechanism for effectively encoding and
retrieving episodicmemories59,60. Furthermore, it was suggested that gamma
band activity is involved in creative thinking61, and plays a critical role in
creative insights, as was demonstrated by a study where EEG recordings
revealed a burst of gamma activity beginning shortly prior to insightful
solutions for verbal problems42. However, when examining neural
mechanisms underlying creativity using EEG, the gamma band wasn’t the
only frequency band that highlighted creative ability. Alpha band activity on
the other hand was reported to correlate with divergent thinking ability62–65.
While there is a general assumptionof the involvement of alpha bandactivity
in creative thinking processes, inconsistent results have been reported for
alpha and beta bands. This inconsistency can be attributed to the hetero-
geneity of employedmethods andparticipant samples aswell as the relatively
limited number of studies investigating EEG correlates of creativity.

Fig. 4 |Depictions of high creativity network of dynamic connectivity analysis. aCircle plot and (b) glass brain of the high creativity network. Colors within the circle plots
correspond to brain lobes. The network was consistent across 99% of iterations within the cross-validation loop.
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From another point of view, there is an assumption that high fre-
quencies like the gamma band are associated with local information pro-
cessing (segregation)while low frequencies (theta, alpha) are associatedwith
global information processing (integration). However, connectivity-based
studieshave linkedhighgamma frequencywith long-range connections and
network integration associated with cognition and behavior at resting state.
This apparent contradiction may be related to the difference in the meth-
odological approaches and between the localization versus connectivity-
based analyses.

Moreover, numerous functional connectivity studies have examined
the statistical associations (i.e., correlations) between creativity and brain
connectivity. Someof these studies havemisinterpreted these associations as
predictions. Yet, significant correlationwithin a sample does not necessarily
indicate predictive ability66. Thus, the advantage of this work lies in its use of
cross-validation to rigorously assess the presence of a resting state FC-
creativity relationship. By evaluating the predictive power of creativity
networks, this approach provides a robust test of this relationship. Gen-
erally, there are two approaches of cross-validation, (1) a k-fold cross-
validation inwhich the data are split into k different subsets or folds, and (2)
leave one out cross-validation (LOOCV). LOOCV is consistently employed
in the predictive modeling of creativity and thus was performed in our
analysis. However, many researchers discussed the merit of the k-fold
method, considering that it gives less variable estimates of the prediction
error than those from LOOCV33. Therefore, as amethodological validation,
we implemented the K-fold cross-validation technique to thoroughly assess
the consistency and reliability of our models and test K-fold performance.
Results showed no consistency between the two methods and significantly
better performance of LOOCV in our data. Nevertheless, the robustness of
our LOOCV-derivedmodel was largely due to the complementary external
validation that allowed our experimental design to be particularly powerful
and our model to be generalized to an independent dataset.

Another consideration in this study is that we used a self-reported
questionnaire—the ICAA questionnaire—to assess participants’ creativity.
The questionnaire provides scales for the frequency of engagement in
everyday creative activity and the level of creative achievement across the

most common eight creative domains. It offers a broad assessment and a
quick gathering of a large amount of information on participants’ real-life
creative behavior across multiple domains and levels. We ensured that
participants completed the questionnaire in private with the assurance of
confidentiality and anonymity to promote more truthful and accurate
responses. Nonetheless, like all self-reported data collection, they are subject
to limitations of honesty and reliability, given that people tend to be con-
sciously or unconsciously biasedwhen they report on their ownexperiences.
However, the reliability andvalidity of the ICAAscoreshave been supported
by a rigorous formal test analysis conducted on a large sample size of 1556
individuals67.

In the end, it is crucial to acknowledge that studying creativity poses a
major challenge due to its multifaceted and complex nature, which man-
ifests in various forms and engages multiple brain regions. Unlike other
aspects of cognition that have been attributed to localized brain activity,
creativity is a network phenomenon that involves complex neural interplay
betweenmultiple brain regions across thewhole brain. Considerable further
research isneeded touncover thediversemanifestations of creativity and the
distinct roles of different networks in the creative brain. Network-based
approaches, such as connectome-based modeling, provide promising tools
to address these questions. However, it is important that future researchers
continue to further explore network dynamics underlying creative pro-
cesses. As our dynamic functional connectome results illustrated, employ-
ing the CPMmethod on HD-EEG data could offer deeper insights into the
dynamic network properties associated with creativity. The association
between EEG functional connectivity and creativity seems to vary
depending on the frequency and approach employed. Therefore, it merits
comprehensive exploration across diverse paradigms and contextual
frameworks.

Methods
Participants
Two independent datasets have been used for the study. Dataset 1
was collected as part of the current study.A total of 98healthyparticipants
were recruited at theUniversityHospital Centre of Rennes from local and

Fig. 6 | The external validation of the dynamic connectivity model. The rela-
tionship between observed and predicted creativity scores in the external validation
of the CPMmodel, showing Pearson’s correlation coefficient (r), the p value (p), the
R-squared (R2), and the Mean Absolute Error (MAE). N = 41 healthy participants,
independent sample.

Fig. 5 | The internal validation of the dynamic connectivity model. The rela-
tionship between observed and predicted creativity scores in the leave-one-out
cross-validation of theCPMmodel, showingPearson’s correlation coefficient (r), the
p value (p), the R-squared (R2), and theMean Absolute Error (MAE).N = 90 healthy
participants.
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surrounding communities (60 female, mean age = 39.6 y ± SD = 12.7).
Flyers for a call for voluntary participation were digitally and locally
distributed, on Twitter, LinkedIn, and Facebook groups, and in uni-
versities, art and dance schools, cultural centers, libraries, etc… Partici-
pants from various creative domains such as art, dance, music, and
sciences were selected to ensure a diverse population. All participants
were French native speakers, aged between 18 and 68 years, and with
normal or corrected vision. They reported no situation or history of
cognitive disability, neurological disorders, or medication that can affect
the central nervous system. All ethical regulations relevant to human
research participants were followed. The study was approved by the
ethical committee of the University Hospital Centre of Rennes (agree-
ment n°20–171) and each participant providedwritten informed consent.

Dataset 2 was part of a different study at the University of Marseille in
France. It consists of 52 healthy participants (28 female, mean age = 45.8
y ± SD = 17.3). The same inclusion criteria were applied. The study was
approved by the “Comité de Protection des Personnes Sud Méditerranée”
(agreement n°10–40) and each participant provided written informed
consent prior to acquisition.

Behavioral assessment
Creativity was assessed by the verified French version of the “Inventory of
Creative Activities and Achievements” questionnaire (ICAA): a broad-
based assessment of individual differences in real-life creativity67. The
questionnaire provides independent scales for the frequency of engagement
in everyday creative activity and the level of creative achievement across 8
creative domains (i.e., literature, music, arts and crafts, creative cooking,
sport, visual arts, performing arts, and science and engineering). For each
participant, two scores were calculated: the creative activity score (Cact)
based on the frequency of engagement in everyday creative activity, and the
creative achievement score (Cach) based on the level of publicly acknowl-
edged creative achievement. In this study, we used the total creativity score
by summing Cact and Cach to obtain one behavioral score for each parti-
cipant (C total). The total score can range between 1 (for least creative) and
472 (for most creative).

It is pertinent to highlight that Dataset 2, sourced from Aix-Marseille
University, exhibited some variations in the calculation of Cact and Cach
scores compared to the standard methodology outlined in the reference
inventory. Despite applying different scales, the differentiation between
responses was maintained, thus preserving the graduating trend of the
evaluation process. Our analysis revealed consistent patterns, wherein
similar subjects consistently exhibited loweror higher scores throughout the
evaluation. Nevertheless, in order to enhance the consistency and reliability
of our analyses, we implemented normalization adjustments before con-
ducting the analyses to address the differences within the shared dataset.
This normalization process involved scaling the scores to a uniform range
between 0 and 1. Thiswas achieved throughdivision by themaximumvalue
observed within the score’s dataset.

EEG data acquisition
EEG recordingswere collected during a resting state.During the acquisition
session, participants were seated comfortably in a dimly lit room and asked
to rest and relax for 5 to 6minwhile closing their eyes without falling asleep.
In Dataset 1, the EEG was acquired with the high-density 256-channel
HydroCel Geodesic Sensor Net (Electrical Geodesics Inc., Eugene, OR,
United States) at a sampling rate of 1000 Hz.We referenced all electrodes to
Cz, and impedances remained below 50 kΩ. In Dataset 2, EEG recordings
were collected using a 64-channel Biosemi ActiveTwo system at a sampling
rate of 2048Hz.

It is noteworthy that the inventory of creativitywas completed either in
several days in advance of the EEG recording session, for participants who
had been previously contacted, or after the session for those who had not
completed it beforehand. To mitigate potential confounding factors, we
deliberately avoided scheduling respondents to complete the inventory
before the recording session on the same day. This precautionary measure

was implemented to minimize the likelihood of any influence stemming
from the administration of the questionnaire on the resting state recording.

EEG data preprocessing
We applied a semi-automated preprocessing protocol for both datasets.
First, for each participant, 5–6min signal was segmented into non-
overlapping 40-s epochs. The epochs of Dataset 2 were resampled at
1000 Hz to equalize the sampling frequency. Then, we used an automatic
protocol on AUTOMAGIC®; an open-sourceMATLAB-based toolbox for
EEG preprocessing68. The protocol consisted of three main steps: (i) bad
channel identification, (ii) artifact correction including a pass filter between
1 and 45Hz and EOG regression, and (iii) interpolation of detected bad
channels using neighboring electrodes within a 4–5 cm radius. Further-
more, to ensure good signal quality, each epoch was visually inspected, and
additional bad channel detection and interpolation were performed as
required. After interpolating, we applied a 15% threshold, meaning the
exclusion of every epoch that needed more than 15% of electrodes to be
interpolated. Finally, we selected three artifact-free epochs of 40 s in length
for each participant. Due to their poor signal quality, 8 participants were
excluded from the first dataset and 11 from the second. Bad quality was
determined based on quantified criteria; either an excessive amount of
needed interpolation and/or high muscle artifact.

Brain network construction
Functional brain networks were estimated using the “EEG source con-
nectivity” method2, combined with a sliding window approach69. The
method includes two main steps: (i) solving the EEG inverse problem to
estimate the cortical sources to reconstruct their temporal dynamics and (ii)
measuring the functional connectivity between the reconstructed scout time
series. In order to solve the inverse problem, the weighted minimum norm
estimate (wMNE) algorithm70 was used to estimate regional time series
between predefined regions of interest (ROIs). To define ROIs, we used the
Desikan Killiany atlas, which parcellates the cortical surface into 68 ROIs71.
The functional connectivity between the 68 regional time series was then
obtained using the phase-locking value metric (PLV). The combination of
(wMNE/PLV) proved its efficiency in identifying the cortical brain net-
works from scalp EEG recordings at rest72 and during cognitive activity73,74.
Specifically, we filtered the reconstructed regional time series in different
frequency bands (delta: 1–4Hz; theta: 4–8Hz; alpha: 8–13Hz; beta:
13–30Hz and gamma: 30–45Hz) and we applied the sliding window
method in which PLV was calculated over its data points. Then PLV was
averaged across sliding windows. As a result, we obtained dynamic PLVs
and one static PLV in each frequency band, for each participant.

Connectome-based predictive modeling
We employed CPM10 on the first dataset to construct predictive networks
that can be used to estimate individual real-life creativity (C total) from
resting-state EEG functional connectivity. CPM is a recently developed
method for identifying and modeling functional brain connections related
to a behavior of interest; real-life creativity in our case. The connectome
network is thenused topredict thebehavior of novel participantswhosedata
were not used inmodel creation. Themethodwas previously employed and
described in several studies that showed its results in predicting cognitive
variables such as attention9 and fluid intelligence4. As well as to predict
network alteration in several brain disorders such as sleep disorders75 and
anxiety76.

A more comprehensive description of CPM is provided in the
reference10. Hereafter, an overview of the processing pipeline including both
training and testing procedures (Fig. 7).

First, prepare the model inputs. Two inputs were prepared: (i) the
vector of behavioral values represented by creativity scores (C total) for each
participant and (ii) the standardized weight values of each edge in the
functional connectivitymatrix of eachparticipant. For edge standardization,
as used in multiple previous studies, a Z-transformation was performed on
each edge by calculating the difference between its weight and the mean
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weight divided by the standard deviation across the subjects in the training
set77,78. The same parameters acquired during the training procedure (mean
and standard deviation) were used to standardize the connectivity edges of
the testing set.

Second, identify the predictive edges.Using Pearson’s correlation, each
edge (i.e., standardized weight value) in the connectivity matrix was cor-
related with creativity scores, while applying a threshold (P < 0.01) in order
to retain themost significant positively andnegatively correlated edges. This
step resulted in two reconstructed networks: a high-creativity network (i.e.,
edges correlated positively with C total scores) and a low-creativity network
(i.e., edges correlated negatively with C total scores).

Third, build the predictive model. The edge strengths were computed
in both positive and negative tails of correlation. By combining both crea-
tivitynetworks,we calculated the summed index.This latterwasobtainedby
summing standardized weight values of all connections of the positive tail
and subtracting those of the negative tail. Then, a support vector regression
(SVR) model was employed to respectively relate behavioral and con-
nectivity strength values of the training set. SVR aims tofind the hyperplane
thatmaximizes themargin between predicted and actual score values. It can
handle high dimensional data advantageously and provides a non-linear
model that can effectively capture complex relationships in human brain
data79,80. Here, we used the radial basis function as a non-linear kernel.

Fourth, test the predictive model. The trained model was used to
predict the creativity scores of the testing participants. Leave-one-out cross-
validation (LOOCV) was applied. This strategy consists of removing one
subject from the data as a novel observation and using N-1 subjects to build
the predictive model, then using the novel subject to test its prediction
performance. This step is repeated 90 times (i.e., the number of participants)
with a different subject left out in each iteration. The resulting performance
presents the average performance across all iterations.

In addition to LOOCV, we used an alternative cross-validation
approach—k-fold as a dual methodological validation. This methodology
involves partitioning the dataset into k equal-sized folds, with each fold
serving alternately as the evaluation set while the remaining k-1 folds are
used for training the model. This process is iterated k times, ensuring that
each fold is used once as the evaluation set. By averaging the performance
metrics obtained across the k iterations, the predictive model’s overall
performance is evaluated. Based on the size of our dataset, we applied both 5
and 10 folds in our analysis.

Finally, assess the predictive model. To assess the predictive power of
the established model, we evaluated the relationship between the observed
behavior score and the predicted behavior score using several metrics:
Pearson’s correlation (r), parametric p value (p), mean absolute error
(MAE), and the coefficient of determination (R-squared).

Fig. 7 | A full pipeline of the employed CPM method, as described in the “con-
nectome-based predictive modeling” method section. 1 We employed CPM on
the first dataset consisting of 90 healthy participants (N) to construct predictive
networks that can be used to estimate individual creative behavior scores (evaluated
through the Inventory of Creative Activities and Achievements or ICAA) from
resting-state EEG functional connectivity. 2 the standardized weight values of edges
in the functional connectivity matrix of each participant were calculated (for 68
RegionsOf Interest orROIs), where a Z-transformationwas performed on each edge
by calculating the difference between its weight and the mean weight divided by the
standard deviation across the subjects. 3 Standardized weight values and creative
behavior scores were correlated for network selection. We retained the most sig-
nificant edges (p < 0.01) and grouped them into positive or negative tails. 4 Based on
the selected networks, a single-subject summary index (∑) was computed for each

participant (S) by summing the weight values of positive tail edges and subtracting
the weight values of negative tail edges. 5 Then, a support vector regression (SVR)
model was fitted to relate single-subject summary index and creativity scores. 6 The
robustness of the model was assessed via an internal validation, where a Leave-one-
out cross-validation (LOOCV) was applied. This strategy consists of removing one
subject from the data as a novel observation, using N-1 subjects to build the pre-
dictive model, and then using the novel subject to test its prediction performance.
This step is repeated N times with a different subject left out in each iteration (N
times Loop). The resulting performance presents the average performance across all
iterations. To assess the model’s predictive power, we evaluated the relationship
between the observed and the predicted creativity scores using several metrics:
Pearson’s correlation (r), parametric p-value, mean absolute error (MAE), and the
coefficient of determination (R2).
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Additionally, to assess the statistical significance of the prediction
results for creativity networks,we performed anon-parametric permutation
test by randomly shuffling the creativity scores of all participants 5,000
times. In each permutation, we randomly assigned one individual’s score to
another individual’s connectivity data, repeated the LOOCV or k-fold
procedure, and calculated the correlation measure averaged across folds.
The 5000 correlation coefficients generated a null distribution of R values.
Then, the non-parametric p value was calculated as the number of per-
mutations where the prediction correlation is greater or equal to the true
prediction correlation divided by the total number of permutations.

External validation
Due to the slight differences in the resulting predictive networks in each
iterationwithin the leave-one-out loop in the internal validation process, we
defined the “final” generalized positive and negative predictive edges as
those thatwere persistent in at least 90%of generatedmodels. These positive
and negative predictive networks derived from this internal validation
(dataset 1)were then applied to a second independent dataset (dataset 2) for
external validation. Incorporating an independent dataset is highly advised
to establish the generalizability of the CPM model81,82.

First, edge z-transformation was applied using the same standardiza-
tion parameters from Dataset 1. Then, FC strength was computed within
high and low-creativity networks, and the trained SVRmodels were applied
to predict the creativity score for each participant in the new sample. Here,
the same assessment metrics were used to evaluate the predictive model’s
performance (R, p value, MAE, and R-squared).

Dynamic functional connectome
We applied the CPM method to investigate the presence of dynamic-
dependent predictive features of creativity. The CPM framework expects
punctual inputs, rendering the incorporation of dynamic functional con-
nectivity matrices into CPM unviable. However, alternative approaches
have been sought, by computing proxy metrics for dynamic functional
connectivity and integrating them as the model input. One approach
revolves around the computation of variance (σ2) along the concatenated
dynamic functional connectivity time courses. This, in turn, quantified the
temporal variability of edge strength, further enriching the CPM
framework83. We calculated the variance of all edges (among Desikan-
Killiany ROIs) for each subject, andwe employed the same procedure of the
CPM as for the static approach.

Confounder analysis
To explore potential confounding variation, we correlated each co-variable
with the creativity score (i.e., the dependent variable) using Pearson’s cor-
relation for age and education, and Point-Biserial Correlation for gender.
Education level was measured based on the official French education sys-
tem, from0 (without any diploma) to 5 (diplomaof level BAC+ 5 ormore).

Statistics and reproducibility
Statisticswere performedusingMATLAB (R2023b) software. The statistical
analyses conducted on the data, as well as the sample sizes in each figure,
were described in the respective captions. The resulting predictive models
were internally and externally validated using two independent datasets of
90 and 41 healthy participants, respectively.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data generated during the current study (dataset 1) and relative addi-
tional details are available from the corresponding author upon reasonable
request. Dataset 2 was shared by theUniversity ofMarseille in France and is
available on request from co-author Véronique Paban. The source data

behind predictive models’ validation illustrated in the Figures can be found
in the supplementary information (Supplementary Data 1–4).

Code availability
A MATLAB script (MATLAB version 6.5 or above) named
“behavioralprediction.m”10 is available online at (https://www.nitrc.org/
projects/bioimagesuite/). The code assumes that the input to the CPM
protocol is a set of M-by-M connectivity matrices and a set of behavioral
variables. The visualization tool used for making circle and glass brain plots
shown in the Figures is available at (https://bioimagesuiteweb.github.io/
webapp/).
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