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Abstract—Carotid femoral pulse wave velocity (cf-PWYV) is
the gold standard measurement of arterial stiffness that has
been recognized as an effective biomarker of cardiovascular
disease (CVD) risk. Although reliable and accurate, the reference
method for measuring cf-PWYV is time-consuming and requires
the intervention of a qualified practitioner. Photoplethysmograpy
(PPG) is a non-invasive cost effective technology that contains a
multitude of information about the cardiovascular system. This
paper aims to explore the potential of estimating cf-PWYV through
PPG pulse wave analysis for large-scale CVD risk screening.
This includes a comparative analysis involving two machine
learning models and various sensor positions. A set of features
based on fiducial points extracted from in-silico PPG signals and
their derivatives is used as an input for XGBoost and Support
Vector Regression (SVR) models. These models are trained on
simulated sensor positions, evaluated across different noise levels,
and demonstrate comparable or superior performance compared
to previous studies. The proposed method is deployable on
a low-power embedded processor. Signals from the superficial
temporal artery position exhibit the best performance, achieving
an R? of 1.00 and a root-mean-square error (RMSE) of 0.13.
The PPG signal combined with the proposed method shows
promising potential for cf-PWV estimation particularly when
using superficial temporal artery signals. These results motivate
an in-vivo validation of the suggested method.

Index Terms—Photoplethysmography, Machine-Learning, Vas-
cular Age, Pulse wave velocity

I. INTRODUCTION

Cardiovascular disease (CVD) is one of the leading causes
of death worldwide. Many of the factors leading to this disease
are preventable [1]]. The implementation of an economical and
widely applicable early detection system holds the potential to
greatly improve risk stratification. Several methods have been

This work was supported by a CIFRE grant (number 2022/0097).

Mohamed Khalifa

Toulon, France
mohamed.khalifa@tecmoled.com

Philippe Tresson
Vascular Surgery Department
Marseille Public University Hospital
Marseille, France
philippe.tresson @ap-hm.fr

CEO
Tecmoled

Eric Moreau

Université de Toulon, Aix Marseille Univ

UMR CNRS 7020, LIS
Toulon, France
moreau @univ-tln.fr

developed to detect people at risk of CVD. One approach is to
establish multivariable risk algorithms like The Framingham
Heart Study [2] or QRISK [3] to estimate the probability
of CVD events. These approaches, although effective, often
require in-depth examinations such as blood tests. Another
approach is to measure identified biomarkers that are related
to vascular age to determine the risk of CVD.

Arterial stiffness tends to increase with age. While arterial
stiffness is primarily attributed to the natural aging process,
it can be influenced by various accelerating factors. Many
studies have established that an increase in arterial stiffness is
associated with an increase in the probability of CVD events
[4]] [5]. Consequently, the assessment of aortic arterial stiffness
using the gold standard method of carotid femoral pulse
wave velocity (cf-PWV) emerged as a significant indicator for
predicting CVD occurrences [6]]. However, measuring cf-PWV
requires a qualified practitioner typically employing applana-
tion tonometry or doppler flowmetry techniques, making it
difficult to apply on a large scale.

Photoplethysmography (PPG) is an affordable and widely
used optical method for detecting blood volume changes in
arteries. PPG signal contains valuable information about the
cardiovascular system and is a promising technology for the
prevention of CVD. PPG signals can be acquired using two
types of approaches: reflection or transmission. Regarded as
the reference method for pulse oximeters, the transmission
technique relies on the absorption of light by the tissues.
It is used for sensors that are placed on the finger or ear.
The reflection method captures light reflected back to the
sensor, as both the light source and receiver are situated on the
same surface. This method is much more versatile because the
sensor can be placed on various body parts such as the wrist,



finger, forehead, or temple.

Several attempts have been made to estimate arterial stiff-
ness through cf-PWV and PPG signals, utilizing either in-
vivo or in-silico data. For this specific task, no public in-
vivo dataset is currently available. Consequently, initial testing
and comparative analysis of methods can be performed using
in-silico data. In [[7] an in-vivo study was conducted using
temporal features on wrist PPG and its first and second deriva-
tives with additional demographic features on 310 subjects.
Good performances have been obtained with an XGBoost
regressor. Another in-vivo study was carried out in [§]] on
90 subjects using features on finger PPG and its first and
second derivatives and subject’s height with multiple linear
regression. The impact of adding parameters such as age and
blood pressure was also assessed. Acceptable performance
has been obtained with an improvement by considering the
addition of further parameters. PPG spectrograms were used
in [9] with an in-vivo dataset. Different sets of features were
obtained using semi-classical signal analysis, Law’s mask,
and statistical calculations. Several positions and models were
compared showing that spectogram derived features are suit-
able for estimating cf-PWV. In this study we have investigated
the feasibility of using a set of features extracted from the PPG
signal and its first and second derivatives to reliably estimate
cf-PWV on multiple sensing position. The main goal is to
develop a robust, reproducible and less complex method that
can be easily implemented in an embedded processor.

II. MATERIAL AND METHOD
A. Material

Since there is no in-vivo publicly available dataset, an in-
silico public dataset was used in this study [10]. This dataset
contains PPG signals that were obtained at different location
by 1D simulation of wave propagation in an arterial network.
Several subject profiles were simulated by varying the proper-
ties of the cardiovascular system. The dataset includes a total
number of 4374 virtual healthy subjects divided in six ages
groups from 25 years to 75 years old with a 10-year increment.

B. Method

1) Signal Enhancement: In-silico signals are noise-free. To
enhance the realism of the simulation, white noise is intention-
ally incorporated into the signal with a variable signal-to-noise
ratio (SNR). Four noise levels were considered: Noise-free,
SNR=65 dB, SNR=45 dB and SNR=30 dB. Then a 4th order
Butterworth lowpass filter is applied with a cutoff frequency
set at 7Hz to smooth the signal from high-frequency noise,
keeping only the useful frequency range between about 1Hz
and 3Hz.

2) Feature extraction: A comprehensive set of temporal
features is derived from the PPG signal along with its first
and second derivatives. These features based on fiducial points
were widely employed in previous researches, notably for
blood pressure estimation [11]. However, unlike other studies
such as [12], several features were removed from this specific
set. Specifically, only three fiducial points (a2, bo and co)

were used on the second derivative as opposed to the usual
six fiducial points. Table || provides a representation of the
features extracted from the PPG signal, its first derivative, and
second derivative. Additionally, Figure [T] displays a graphical
representation of these main features.
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Fig. 1. Pulse signal features of the PPG signal P and its first and second
derivatives (respectively P’ and P'’)

TABLE 1
FEATURES DESCRIPTION
Variables [Description
Pulse features
(ao, tagy) Systolic peak

tp Length of the pulse
SW, and DW,, |Systolic and diastolic pulse width at various heights (60%-
70%-80%-90%)

A1 /A Ratio of systolic pulse area to diastolic pulse area
First Derivative Features

(a1, taq) First peak

(b1, tp,) First onset

Oty = tp, — ta, |Distance between first peak and first onset
Second Derivative Features

(a2, tap)  |First peak
(b2, tp,) First onset
(c2, tey) First peak after tp,

Otp, = tp, — tay |Distance between first peak and first onset
Otcy, = tey — ty, |Distance between first onset and second onset

Feature combination

tp —tag Diastolic width
tag/tp Ratio of rising time to pulse length
(tp —tag)/tp |Ratio of Diastolic width to pulse length
ta, /tp Ratio of P’ first peak time to pulse length
Oty [tp Ratio of P’ first onset time by pulse length
ba/az Ratio of P’ first peak amplitude to P’/ first onset
amplitude
P(ty,)/P(tay) |Ratio of P at ty, to P at ta,
c2/az Ratio of P first peak amplitude to second onset
P(tc,)/P(tay) |Ratio of P at tc, to P at tq,
tas/tp Ratio of P’ first peak time to pulse length
Otpy [tp Ratio of P’ first onset time to pulse length
Stes [tp Ratio of P" second onset time to pulse length

3) Model training: The dataset is divided into a training
set and a validation set with a 80%/20% split respectively.



Training is performed using features extracted from noise-
free pulses. Three sensing body positions are tested: digital,
radial, and superficial temporal. Two models are trained for
each body position: Xtreme Gradient Boosting (XGBoost)
and Support Vector Machine Regressor (SVR) [I4].
Hyperparameter tuning is performed for each model using
Tree-structured Parzen Estimator (TPE) approach [15]]. Then,
these trained models undergo testing across multiple noise
levels. This approach reveals whether noise variations can have
an impact on the model performance or not.

4) Model deployment: Finally, a deployment is done on a
custom wearable forehead PPG sensor printed circuit board de-
veloped by Tecmoled company. Feature extraction and trained
model are embedded on a low-power cortex M33 proces-
sor running on Zephyr real-time operating system. Memory
footprint and execution time are monitored to benchmark
performance on a real device Figure 2] The system consists of
a battery and an electronic acquisition board. The processor
contains two cores: the first is the network core, managing the
Bluetooth Low Energy (BLE) communication stack, while the
second is the application core, handling user programs. The
sensor has a compact form factor with a width of 28mm, a
length of 53mm, and a thickness of 6mm.

Fig. 2. Custom forehead PPG sensor used for performance benchmarking

III. RESULTS

The deployment of the trained XGBoost model utilizing
the superficial temporal position necessitates 255 kilobytes of
flash memory and 16 kilobytes of RAM on an M33 cortex
CPU running with Zephyr real-time operating system. The
algorithm’s execution time for each PPG pulse is recorded
as 251 ms.

Table [[I] presents a comprehensive overview of the perfor-
mance across three examined positions (digital, radial, and
superficial temporal) under varying noise levels, accompa-
nied by model comparisons. The performance metrics used
are the correlation coefficient R2, the mean absolute error
(MAE) and the root mean square error (RMSE). In noise-
free conditions, optimal outcomes for the digital position are
achieved using the SVR model, attaining R2=0.99, MAE=0.14,

and RMSE=0.20. The radial position exhibits superior perfor-
mance with the XGBoost model with R2=0.99, MAE=0.15,
and RMSE=0.22. The superficial temporal position, likewise,
has optimal results with the XGBoost model with R?=1.00,
MAE=0.08, and RMSE=0.13. Notably, the SVR model on
the radial position records the least favorable performance,
presenting R?=0.97, MAE=0.26, and RMSE=0.37. Figure [
and [5] show regression and Bland-Altman plots for the super-
ficial temporal position utilizing the XGBoost model. With an
SNR of 65dB, minimal alterations are observed in the results,
R?2, MAE, and RMSE metrics remaining consistent across all
models and positions.

When increasing noise with an SNR of 45dB, performance
remains stable with a slight increase in RMSE compared to the
noise-free scenario. With a SNR of 30dB, performance begins
to deteriorate significantly for the SVR model. Particularly,
the most significant deterioration occurs in the radial position,
where the SVR model exhibits R?2 = 0.91, MAE=0.45, and
RMSE=0.63. The XGBoost model appears to sustain satisfac-
tory performance across all positions notwithstanding a slight
decline at a SNR of 30dB. The most favorable outcome is
observed in the superficial temporal position with R?=0.98,
MAE=0.18, and RMSE=0.31. The evolution of RMSE and R2
metrics over SNR is depicted in Figure [3

TABLE II
CF-PWYV ESTIMATION RESULTS FOR DIFFERENT SENSOR POSITIONS

Model

MAE

Position SNR (dB) | R2 RMSE
Noise-free
65.0
45.0
30.0
Noise-free
65.0
45.0
30.0
Noise-free
65.0
45.0
30.0
Noise-free
65.0
45.0
30.0
Noise-free
65.0
45.0
30.0
Noise-free
65.0
45.0
30.0

XGBoost

Digital

SVR

XGBoost

Radial

SVR

XGBoost

SupTemporal

SVR

IV. DISCUSSIONS

Comparing with previous work in the noise-free scenario
on the same dataset [9], similar results are obtained for
the digital position. For the radial positions, slightly better
results are obtained with the proposed method (RMSE=0.22
vs RMSE=0.25). The best result overall is achieved by our
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Fig. 3. Evolution of R? and RMSE over SNR for XGBoost and SVR model
for digital, radial and superficial temporal positions
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Fig. 4. XGBoost results on superficial temporal artery in the noise free case

proposed method on the superficial temporal position, outper-
forming the best result obtained on other positions (R?=1.00,
RMSE=0.13 vs R?=0.99 RMSE=0.19). However, previous
studies did not evaluate the performance of the superficial
temporal position so no conclusion can be drawn whether this
position is particularly suitable for cf-PWV estimation or if
the method that we suggest performs specifically better in this
configuration. Furthermore, the proposed method appears to be
simpler to implement in an embedded processor with limited
computing power. Compared to previous work using in-vivo
datasets, the proposed method does not rely on additional
patient data apart from the PPG signal, making it easier to
implement.
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0.25
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Fig. 5. Blan-Altman plot for the XGBoost model on superficial temporal
artery in the noise free case

Although using fiducial points is known to be noise-
sensitive because of timing shift that can be induced on
temporal features [16], the combination of the chosen feature
set with the XGBoost model yields relatively robust results
even with an increase in SNR. Notably, the SVR model
exhibits a more severe deterioration compared to XGBoost.

The best overall results were obtained on the superficial
temporal artery with the XGBoost model, which to our
knowledge had not been evaluated until now. The PPG signal
on this body position seems to contain the best information
for estimating cf-PWV. Furthermore, performance even with
noise remains very good, demonstrating the robustness of the
method on this body position.

The excellent results obtained in this study are encouraging
for further investigation of cf-PWYV estimation using the PPG
signal. However, an important limitation lies in the the use
of in-silico data which may differ from reality. The custom
PPG sensor that was used to benchmark performance could
be utilized in the future to collect real-world data.

The addition of white noise provides a more realistic
simulation of the measurement noise present in a real system.
However, this method does not address additional sources
of noise, such as motion, which can significantly influence
the shape of the PPG signal. In practical settings, integrating
a pulse selection algorithm becomes essential. Considering
that cf-PWV wvariation occurs on a timescale significantly
exceeding the measurement time, it is possible to be highly
selective about the pulses that are used. It may be necessary
to request the subject to remain still during data collection.
Sensor pressure can also play a role in the shape of PPG
pulses [17]. The implementation of these considerations will
be crucial for the success of the in-vivo study.

V. CONCLUSION

With the growing number of cardiovascular diseases in
the world, large-scale prevention and screening methods are
required for at-risk populations. cf-PWYV is the gold standard



for measuring arterial stiffness, which is strongly associated
with CVD mortality. We have investigated the possibility of
using temporal features on the PPG signal and its first and
second derivatives to estimate cf-PWV. The proposed method
shows very good results on simulated data. The simplicity
of the suggested method makes it easily implementable on
embedded processors, which could make CVD prevention
more accessible in clinical practice. Positioning the PPG
sensor on the superficial temporal artery seems very promising
for reliable estimation of cf-PWV even in the presence of
noise. An evaluation using in-vivo data collected with our
custom forehead PPG sensor will be necessary in the future
to determine the reproducibility of the obtained results in real
acquisition conditions.
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