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Sliding mode observation for a 1D wave equation with dynamic boundary
conditions.

Yacine Chitour 1, Abdelhakim Dahmani2, Moussa Labbadi3 and Christophe Roman3.

Abstract— This study focuses on employing sliding mode
observer for a wave equation subject to two dynamic boundary
conditions with anti-damping coefficients, a perturbation, and a
control at one of the boundaries. The exponential decay rate of
the tobserver’s trajectory is demonstrated using the multiplier
method. The well-posedness of the error-system is proven using
maximal monotone operator.

Index Terms— Wave equation; Well-posedness; Observation;
Sliding mode observer.

I. INTRODUCTION

The sliding mode control (SMC) was proposed by Utkin
[1], is widely recognized for its robust system performance,
encompassing insensitivity to parameter fluctuations and re-
jection of external disturbances, it can be applied for control
and observation [2]. Additionally, SMC can ensure finite-
time stability [3]. It is acknowledged that finite-time stability
is more significant than asymptotic stability in response to
certain particular control engineering requirements [2].

In recent years, the boundary control in Partial Differential
Equations (PDEs), along with distributed control concerning
its spatial distribution, has become widely used and it stands
out as a noteworthy approach, presenting an innovative
method to reduce implementation costs. The application of
the backstepping method is particularly valuable, see [4]. The
wave equation serves as an infinite-dimensional harmonic
oscillator, functioning as a linear system. Yet, to correctly
deal with uncertainties arising from external disturbances
infiltrating the system either from the interior or the boundary
of the spatial domain, a robust strategy becomes essential [5].

In the domain of distributed control, several successful ap-
plications of SMC to the truncated finite-dimensional models
have been demonstrated including [6], [7], [8]. For instance,
control of a parabolic PDE system [9], [10], control of a heat
equation [11], one-dimensional wave equation [12], [13],
and Schrödinger equation [14], etc. Relevant related works
will be discussed in the following part. In [15], the authors
discuss the tracking and control of heat and wave equations
using continuous sliding mode approaches. They employ
fractional power techniques to modify the signum function.
Sliding mode boundaries have been suggested for robust
tracking of a diffusion equation in [16]. In [17], exponential
stabilization of the wave equation is obtained with matched
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perturbation. In [18], a boundary control of a heat process
was proposed with unbounded matched perturbation via
second-order sliding-mode technique. Using sliding mode
control [19], the earthquake phenomenon is simplified in this
model through a cascade system consisting of a 1D wave
equation to represent fault slip and wave propagation, and a
1D diffusion equation to represent the actuator dynamics as
a diffusion process.

The main contribution of this paper is a sliding mode
observer designed to stabilize the observation-error of an
unstable wave equation together with matched disturbance
rejection. The distinctiveness of this work is the use of the
multiplier method to establish the exponential stability of the
entire system. Additionally, we show the finite-time decay
rate of a specific linear combination of state variables, based
on the fact that the closed-loop system is associated with a
maximal monotone operator and is therefore well-posed.

Notation

The set-valued function sign is defined on R,

sign(x) =

{
x
|x| if x ̸= 0,

[−1, 1] if x = 0.
(1)

We denote sign(·) as ⌈·⌋0.

II. PROBLEM STATEMENT

Let us consider the wave equation, ∀(t, x) ∈ R+ × (0, 1),




utt(t, x) = uxx(t, x)− qut(t, x), (2a)
m1utt(t, 1) = −ux(t, 1) + b1ut(t, 1) +Q(t) + w(t), (2b)
m0utt(t, 0) = ux(t, 0) + b0ut(t, 0), (2c)
u(0, ·) = u0, ut(0, ·) = u1. (2d)

The parameter q is a positive real number representing a
constant damping coefficient within the domain. Parameters
b0 and b1 indicate damping if negative and anti-damping if
positive, respectively. Parameters m1 and m0 denote the in-
ertia at the dynamic boundary, and Q(t) stands for the input,
while w(t) is a measurable function acting as a disturbance
and we assume that for a.e. t ≥ 0, |w(t)| ≤ w where w is
supposed to be known. Well-posedness has been established
in [20] and is associated with a maximal-monotone operator.
However, the well-posedness of the closed-loop system or the
observer dynamics must also be studied, which is addressed
subsequently for the proposed observer.
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The wave equation is associated with the following energy

2E(t) =

∫ 1

0

(ut(t, x)
2 + ux(t, x)

2)dx+m1ut(t, 1)
2

+m0ut(t, 0)
2. (3)

The derivative along strong solutions of the energy yields:

Ė(t) =−
∫ 1

0

qut(t, x)
2dx+ b1ut(t, 1)

2 + b0ut(t, 0)
2

+ ut(t, 1)(Q(t) + w(t)). (4)

The exponential decay of the energy when b0, b1 < 0 and
Q(t) = w(t) = 0 can be deduced from [20]. The case where
b0 is positive is interesting for many applications. In the case
where m1 = 0, various control laws are proposed to address
different output sets and objectives within this context. The
equation (2b)-(2c) is commonly referred to as a dynamic
(or Wentzell) boundary condition. The consideration of such
boundary conditions associated with the wave equation finds
several applications. Examples include crane regulation [21],
[22], [23], and [24]; controlling hanging cables immersed in
water [25]; piezoelectric control [26]; flexible structures [27].
Specifically, the present wave equation is directly associated
with drilling torsional vibrations [28], [29].

It is crucial to emphasize that the current model lacks
an associated sliding mode control, especially when the
wave equation is reformulated using Riemann invariants
as heterodirectional hyperbolic partial differential equations.
Ongoing research delves into the backstepping transforma-
tion for coupling partial differential equations with ordinary
differential equations, particularly within the realm of het-
erodirectional hyperbolic PDEs. Notably, the works by J.
Deutscher et. al. [30] and its extension [31] are particularly
comprehensive in this regard. Continuing in the same vein
of research, the works presented in [32], [33], and [34]
are of fairly general nature, although they are specifically
applied to the case of a hanging cable immersed in water.
The model (2) represents a specific instance within the
broader considerations of these works. However, disturbance
rejection for the case under considerations is new up to our
knowledge.

Our main focus here is to investigate the sliding mode
observer for the wave equation subject to disturbances. This
approach serves as a preliminary step towards the SMC of
the problem at hand. Since we aim to suggest control while
establishing well-posedness simultaneously, we address the
observation problem first and leave the control problem for
future publication due to the intricacies in computation as
anti-collocated control requires backstepping.

III. SLIDING MODE OBSERVER

Sophisticated control law may utilizes knowledge of the
distributed state, which is not practically available. Therefore,
we suggest designing an observer that leverages the knowl-
edge of the boundary velocities. Let us explore the observer

from [35] with a different boundary for the actuation, incor-
porating sliding control in a very specific manner.




ûtt(t, x) = ûxx(t, x)− qût(t, x), (5a)
m1ûtt(t, 1) + ûx(t, 1)−Q(t)− b1ût(t, 1)− l1ũt(t, 1)

∈ l2 ⌈ũt(t, 1)⌋0 , (5b)
m0ûtt(t, 0) = ûx(t, 0) + b0ût(t, 0) + l0ũt(t, 0). (5c)

the observation-error system is ũ = u − û. The observer
needs the knowledge of the input and the boundary velocities
ut(t, 1) and ut(t, 0).

The dynamics of the observation-error system ũ are




ũtt(t, x) = ũxx(t, x)− qũt(t, x), (6a)
m1ũtt(t, 1) + ũx(t, 1) + (l1 − b1)ũt(t, 1)− w(t)

∈ −l2 ⌈ũt(t, 1)⌋0 , (6b)
m0ũtt(t, 0) = ũx(t, 0)− (l0 − b0)ũt(t, 0). (6c)

The tuning parameters are l0, l1, and l2. Let us consider the
following Lyapunov functional

2Ẽ(t) =

∫ 1

0

[ũ2
t + ũ2

x]dx+m0ũt(t, 0)
2 +m1ũt(t, 1)

2. (7)

Using ˙̃E(t) to denote the derivative along the solution, it
holds

˙̃E(t) ≤−
∫ 1

0

qũ2
tdx− (l1 − b1)ũt(t, 1)

2 − (l0 − b0)ũt(t, 0)
2

− (l2 − w)|ũt(t, 1)|. (8)

We have the following two theorems as the main results
of this paper.

Theorem 1. Consider system (6) with l0 > b0, l1 > b1,
l2 > w. Then system (6) exhibits exponential decay rate in
the sense of the energy Ẽ(t) defined in (7), i.e., there exist
M̃ and ρ̃ positive constants such that for every weak solution
of (6), it holds for every t ≥ 0

Ẽ(t) ≤ M̃Ẽ(0)e−ρ̃t. (9)

Let us define the sliding surface

s(t) := ũt(1, t). (10)

Theorem 2. Consider strong solutions of system (6) with
l0 > b0, l1 > b1 and l2 > w. Then the sliding surface
s defined in (10) converges in finite-time, i.e., there exists
T0 > 0 depending on the initial conditions such that

s(t) = 0 for t ≥ T0. (11)

In other words, the sliding mode observer rejects the
perturbation of the error dynamics ũ.

Ensuring that the closed-loop system retains a unique
existing trajectory poses a challenge when incorporating non-
linear feedback in the PDEs setting. It is crucial to carefully
discuss the well-posedness of sliding mode observer design,
as errors can easily arise. Obtaining exponential stability of
non-existing solutions is unsatisfactory and therefore well-
posedness must be addressed diligently. This is the purpose
of the following lines.
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Let us express the wave partial differential equation as an
abstract problem in a multi-valued operator setting.

{
Ẋ(t) +AX(t) +BX(t) ∋ f(t), (12a)
X(0) = X0 ∈ D(A) ⊂ H. (12b)

where ∀z ∈ D(A),

Az :=




−z2
−z′′1 + qz2

−z3
1

m1
[(l1 − b1)z4 + z′1(1)]

1
m0

[(l0 − b0)z5 − z′1(0)]



, (13)

∀z ∈ H, Bz :=




0
0
0

l2
m1

⌈z4⌋0
0



, f(t) =




0
0
0

w(t)
m1

0



. (14)

in which

D(A) := {z ∈ V, z1(1) = z3, z2(1) = z4, z2(0) = z5},
(15)

V := H2×H1 × R3, H := H1 × L2 × R3,D(B) := H.
(16)

The space H is equipped with the following semi-norm

∥z∥2H :=

∫ 1

0

[z′1(x)
2 + z2(x)

2]dx+m1z
2
4 +m0z

2
5 . (17)

The kernel of this semi-norm is

S := {z ∈ H, z1
a.e.
= d, z3 = d, d ∈ R}. (18)

The reason we consider semi-norm is described in [36] and
[37]. We can now state our well-posedness result.

Theorem 3. The abstract evolution problem (12) is well-
posed, i.e., the operator −(A+B) is associated with a C0

semigroup e−(A+B)t on H, and it holds, for all T > 0,
• ∀X0 ∈ D(A), f ∈ W 1,1(0, T ; H),

X ∈ C0([0, T );D(A)), Ẋ ∈ L∞([0, T ); H) (19)

• ∀X0 ∈ H, f ∈ L1(0, T ; H), then X ∈ C0([0, T ); H).
Moreover e−(A+B)t is a contraction on the quotient space
H/S, and when f = 0, the trajectory

γ(X0) :=

T⋃

t⩾0

e−(A+B)tX0. (20)

is precompact in H/S for any X0. Moreover, it holds for the
strong solution that X is differentiable from the right with

d+

dt
X(t) = (−AX(t)−BX(t) + f(t))

o
. (21)

The term (AX)
o
:= inf{∥z∥; z ∈ AX} is the least norm

which exists due to A+B maximal monotone on H/S, see
[38]. The reason we consider z3 which is linked with ũ(t, 1)
is to be able to insure that ũt(1, t) ∈ L∞(0, T ;R).

IV. PROOF OF THEOREM 1

The proof of exponential stability is based on the multi-
plier method and the following result.

Theorem 4. ([39, Theorem 8.1, Page 103])
Let E : R+ → R+ be a non-increasing function and

assume ω > 0 such that

∀S ⩾ 0,

∫ ∞

S

E(t)dt ⩽
1

ω
E(S), (22)

then E has the following decay properties

E(t) ⩽ E(0)e1−ωt. (23)

Sharper outcomes can be derived from more refined find-
ings in [40] and [41], providing the basis for establishing
distinct decay rates. We introduce a preliminary lemma
before presenting the main proof.

Lemma 5. There exists a positive constant C > 0 such that
∫ T

S

∫ 1

0

ũ2
xdxdt ≤ CẼ(S). (24)

Proof. By a standard density argument, it is enough to estab-
lish the result for strong solutions only and we manipulate
such solutions below. We multiply (6a) by (ũ− ũ∗), where

ũ∗(t) := ũ(t, 1). (25)

and we integrate over [S, T ]× [0, 1]. After standard compu-
tations involving several integration by parts, one gets

∫ T

S

∫ 1

0

(ũ− ũ∗) (ũtt − ũxx + qũt) dxdt = 0. (26)

For the first term, we have
∫ T

S

∫ 1

0

(ũ− ũ∗)ũttdxdt =−
∫ T

S

∫ 1

0

ũ2
tdxdt

+

[∫ 1

0

(ũ− ũ∗)ũtdx

]T

S

. (27)

For the second term, integration by parts with respect to x
yields

−
∫ T

S

∫ 1

0

(ũ− ũ∗)ũxxdxdt =

∫ T

S

∫ 1

0

((ũ− ũ∗))xũxdxdt−
∫ T

S

[
(ũ− ũ∗)ũx

]1
0
dt

=

∫ T

S

∫ 1

0

ũ2
xdxdt−

∫ T

S

[
(ũ− ũ∗)ũx

]1
0
dt (28)

Moreover, for the third term in (26), using integration by
parts with respect to t gives
∫ T

S

∫ 1

0

(ũ− ũ∗)qũtdxdt =
1

2

∫ T

S

∫ 1

0

(
q(ũ− ũ∗))

2
)
t
dxdt

=
1

2

[∫ 1

0

q(ũ− ũ∗)
2dx

]T

S

. (29)
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It holds
∫ T

S

∫ 1

0

ũ2
xdxdt = T̃0 − T̃1 + T̃2 −

1

2
T̃3. (30)

where

T̃0 :=

∫ T

S

∫ 1

0

ũ2
tdxdt, T̃1 :=

∫ 1

0

[(ũ− ũ∗)ũt]
T
S dx, (31)

T̃2 :=

∫ T

S

[
(ũ− ũ∗)ũx

]1
0
dt, T̃3 :=

[∫ 1

0

q(ũ− ũ∗)
2dx

]T

S

.

We now estimate T̃0 to T̃3 defined in (31). It is direct that

T̃0 ⩽
2

q
E(S). (32)

To estimate T̃1, using the Young’s, Cauchy-Schwartz’s and
Poincaré’s inequalities, it holds

2T̃1 ≤
∫ 1

0

[
((ũ− ũ∗)

2 + ũ2
t )
]T
S
dx ≤ 4E(S). (33)

For T̃2, using from the definition of u∗ in (25) one observes
that
∫ T

S

[
(ũ− ũ∗)ũx

]1
0
dt =

∫ T

S

(ũ(t, 1)− ũ(t, 0))ũx(t, 0)dt.

From (6c), it holds

ũx(t, 0) = m0ũtt(0, t) + (l0 − b0)ũt(t, 0). (34)

Using integration by parts and Young’s inequalities it
exists c1, c2 > 0 such that for every ε > 0

T̃2 ⩽ c1(1 + ε)E(S) +
c2
2ε

∫ T

S

∫ 1

0

ũ2
xdxdt. (35)

To estimate T̃3, we use the Poincaré inequality
∫ 1

0

q(ũ− ũ∗)
2dx ≤q

∫ 1

0

ũ2
xdx ≤ qE(t). (36)

Then we conclude, using that the energy is decreasing that

T̃3 ≤ q
(
E(S) + E(T )

)
≤ 2qE(S). (37)

Gathering (33), (35), and (37) together with (30), and taking
ε big enough one concludes the proof of Lemma 5.

Proof of Theorem 1: From (8), one gets that it exists
c1 > 0 such that
∫ T

S

[

∫ 1

0

ũt(t, x)dx+m0ut(t, 1)
2 +m1ut(t, 0)

2]dt ⩽ c1E(S)

Therefore, by using Lemma 5 and applying Theorem 4, it
yields (9). ■

Proof of Theorem 2: A direct consequence of the
exponential decay of the energy, Theorem 1 yields

lim
t→∞

∫ 1

0

|ũt(t, x)|dx+ |ũt(t, 0)| = 0. (38)

Now, one can observe that

ũx(t, 1) =

∫ 1

0

(ũtt(t, x) + qũt(t, x))dx+m0ũtt(t, 0)

+ (l0 − b0)ũt(t, 0). (39)

First, rewriting (21) of Theorem 3 for the second and final
component on the Yosida approximation denoted Aλ, one
gets

∣∣∣∣
d+

dt

[
ũt,λ(·, t)
ũt,λ(0, t)

]∣∣∣∣ ≤ |AλX(t)| ≤ M

λ
e−ρt∥X0∥. (40)

Taking the limit when t → ∞ with λ → 0
and according to the Yosida approximation property, i.e.,
limλ→0(utt,λ(·, t), utt,λ(0, t)) = (utt(·, t), utt(0, t)), it
yields

lim
t→∞

|ũtt(t, 0)| = 0, lim
t→∞

|ũtt(t, ·)| a.e.= 0. (41)

Using (39), (41) and (38), one deduces that

lim
t→∞

ũx(t, 1) = 0. (42)

in order words, ∀ε > 0, ∃T0 > 0 such that, ∀t ≤ T0 it holds
|ũx(t, 0)| < ε. The finite-time convergence is established in
the following. From the definition of s(t) in (10), one gets
for a.e. t ≥ 0

s(t)ṡ(t) =s(t)(
1

m1
(−ũx(t, 1) + w(t)− (l1 − b1)ũt(t, 1)))

− l2
m1

|s(t)|.

Since l1 > b1, one deduces that

s(t)ṡ(t) ≤ −|s(t)|
m1

(
l2 − |w(t)| − |ũx(t, 1)|

)
. (43)

Now, using the fact that l2 > w ≥ |w(t)| for almost every
t ≥ 0, and ε < l2 − w̄, we can conclude that for t ≥ T1,
there exists α > 0 such that

s(t)ṡ(t) ≤ − α

m1
|s(t)|, (44)

resulting in the convergence of s(t) to zero in finite-time. ■

V. WELL-POSEDNESS

Let us define the following bilinear product

⟨z, w⟩ =
∫ 1

0

[z′1w
′
1 + z2w2]dx+m1z4w4 +m0z5w5.

(45)

A. Quotient space

Lemma 6. The quotient space H/S is a Hilbert space for
which ⟨·, ·⟩ defined in (45) is an inner product.

The first step is to quotient the space with the kernel of
the semi-norm in order to have normed space and to used
monotone operator result.

The proof of this lemma follows the same steps as in
[37] and is based on the following facts, as outlined in [42,
Theorem 1.41].
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Theorem 7. Let S be a closed subspace of a topological
vector space H. If H is a Banach space so is the quotient
space H/S.

Moreover, suppose ∥∥H is a seminorm (subadditive and
absolute homogeneous) on a vector space H. Then {z :
∥z∥H = 0} is a subspace of H.

Let Λ be a linear functional on a topological vector space.
Assume Λ(z) ̸= 0 for some z ∈ H. Then, the null space
Ker(Λ(·)) is closed.

Proof of Lemma 6: First one directly gets that ∥ · ∥H is
a seminorm on H, i.e.,

∥z + v∥H ⩽ ∥z∥H + ∥v∥H, ∥αz∥H = |α|∥z∥H. (46)

Second one gets that S = Ker(∥z∥H) = Ker(⟨·, ·⟩). More-
over, by employing Theorem 7, one can conclude that S is
a subspace of H.

Third, let’s consider the following families of functionals:

Λ1s =

∫ s

0

z′1(x), dx, Λ2s =

∫ s

0

z2(x), dx. (47)

Both are indexed by s ∈ (0, 1]. Additionally, consider the
three following functionals:

Λ3(z) = z4, Λ4(z) = z5. (48)

It is direct that all Λi are linear. Note that by construction
the intersection of the null spaces is

⋂

i = 1, 2
s ∈ (0, 1]

Ker(Λi[s](·))
⋂

i=3,4

Ker(Λi(·)) = S. (49)

Therefore, by using Theorem 7 and the property that any
intersection (finite or infinite) of closed sets is closed, one
concludes that S is closed.

Fourth, using that S is a closed subspace of H and
Theorem 7 it yields that H/S is a Banach space.

Finally, proving that (45) is a scalar product on H/S (this
is direct) one concludes the proof. ■

B. Monotonicity of operator A and B on H/S.

Definition 1 ([43]). Let A be a nonlinear operator in H .
Considering ω ∈ R, A + ωI is monotone if the following
equivalent condition holds

⟨z − v, Az −Av⟩ ⩾ −ω∥z − v∥H. (50)

Lemma 8. The operator A and the operator B are monotone
in H/S equipped with norm (17).

Proof. Let us denote z̄ = z − v. This will allow us to use a
compact notation for all linear parts of the operator.

⟨z − v, Az −Av⟩ =
∫ 1

0

[z̄′1z̄2 + z̄2(−z̄′′1 + qz̄2)]dx

+ z̄4((l1 − b1)z̄4 + z̄′1(1))

+ z̄5((l0 − b0)z̄5 − z̄′1(0)). (51)

One gets, using the fact that z, w ∈ D(A)

⟨z − v, Az −Av⟩ =
∫ 1

0

qz̄22dx+ (l1 − b1)z̄2(1)
2

+ (l0 − b0)z̄2(0)
2 ⩾ 0. (52)

For the operator B one gets

⟨z − v, Bz −Bv⟩ =l2(z4 − v4)(⌈z4⌋0 − ⌈v4⌋0) ⩾ 0. (53)

C. Maximality of A and B on H/S.

We have the following result.

Lemma 9. The operators A and B defined in (13)-(14) are
maximal monotone.

The maximalilty of operator A is deduced from [20]. The
proof for B is inspired from [44] on Page 251.

Proof. A multi-valued monotone operator B is maximal
monotone on H, if it exists λ > 0 such that

R(B + λI) = H. (54)

For λ = 1, and for (z, y) ∈ D(B)×H/S, consider Bz+ z ∋
y. Then

z1 ∋ y1, z2 ∋ y2, z3 ∋ y3, λz5 ∋ m0y5, (55)

l2 ⌈z4⌋0 + z4 ∋ m1y4. (56)

Then it exists a unique solution of (56).

z4 =





(m1y4))(|m1y4| − l2)

|m1y4|
, if |m1y4| > l2,

0, if |m1y4| ⩽ l2.
(57)

We conclude that the operator B is maximal monotone on
H/S.

D. Well-posedness of the abstract problem.

There are several conditions under which the sum of two
maximal monotone operators forms a maximal monotone
operator.

Theorem 10 (Theorem 1.5 in [44] ). Let H be a reflexive
Banach space, and let A and B be maximal monotone subset
of H ×H∗. If it holds

(intD(A)) ∩ D(B) ̸= ∅, (58)

then A+B is maximal monotone.

In the present case as D(B) = H so (intD(B)) = H and
the operator A+B est maximal monotone.

Now for the regularity of the solution, we consider the
following result.

Theorem 11 (Theorem 21 and following Remark in [38]).
Let us consider H being a Hilbert space, A a maximal
monotone operator, and f ∈ W 1,1(0, T ; H), then for all
X0 ∈ D(A), there exists a unique X(t) : R+ → H such
that ∀t ≥ 0

• X(t) ∈ D(A).
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1Fig. 1: Boundary and integrated velocities when l2 = 0

0 2 4 6 8 10 12 14
time t

0

20
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• d+

dt X(t) ∈ L∞(0, T ; H) .
• d

dtX(t) +AX(t) ∋ f and X(0) = X0.
• X is differentiable from the right ∀t ∈ [0, T ) and

d+

dt X(t)+(AX(t)− f(t))
o
= 0. Moreover, |d+

dt X(t)| ≤
|d+

dt X(0)|+
∫ t

0
| dfds (s)|ds.

• the mapping (X0, f) 7→ X can be extended by con-
tinuity from D(A) × L1(0, T ; H) into C(0, T ;D(A)).
Moreover, in the case where f = 0, the mapping X0 7→
X(t) defines a nonlinear contraction C0-semigroup.

Proof of Theorem 3: Using Lemma 6, Lemma 8,
Lemma 9 and Theorem 10 the operator A + B defined in
(13)-(14) is maximal monotone on H/S. We can then use
Theorem 11 on the abstract problem (12) which is therefore
associated with a maximal monotone operator on H/S. To
obtain the result concerning the strong solution in H we
can either do as in [20] or using the fact that X1(t) =∫ t

0
X2(s)ds+X1(0). The weak solutions are determined by

density using the fact that A is linear maximal monotone and
therefore D(A) = H. The precompactness of the trajectory
is deduced from Theorem 3 in [45], using the fact that the
operator A+I is maximal monotone on H/S, or equivalently
m-accretive, and that 0 ∈ R(A). Applying Theorem 11, one
obtains (21). This concludes the proof of Theorem 3. ■

VI. NUMERICAL SIMULATIONS

We conduct numerical simulations on the error-system (6)
with the following parameters: q = 0.01, l1 − b1 = 0.02,
l0 − b0 = 0.02, m1 = 10, m0 = 1. Consider the disturbance
w(t) = 40 sin(sin(2t)). The discrete scheme employed is a
standard finite difference scheme with 40 space steps, and
a time step of 0.001. No specific precautions are taken for
the sign function. We aim to investigate the observation-error
system (6) for l2 = 0 and l2 = 45. The results of both cases
are plotted respectively in figures 1, 2, 3 and in figures 4, 5, 6,

0 2 4 6 8 10 12 14

0

10

20

ũx(0, t)

ũx(1, t)

1Fig. 3: Boundary torque/force l2 = 0

Fig. 4: Distributed position ũ(t, ·) when l2 = 45

0 2 4 6 8 10 12 14
time t

0

5

10
ũt(0, t)

ũt(1, t)
∫ 1

0

(ũt(x, t))dx

1Fig. 5: Boundary and integrated velocities when l2 = 45

7. These results illustrate the sliding manifold convergence
in finite-time when l2 > w̄. Moreover, all objectives are
achieved, unlike when l2 = 0, as shown in figures 1, 2, 3.

VII. CONCLUSIONS

This paper introduces a sliding mode observer strategy
tailored for a wave equation with dynamic boundary con-
ditions together with a perturbation for one of them. The
well-posedness of the observer-error system is given for the
strong and the weak solutions and disturbance rejection is
established. Subsequent research will concentrate on devising
a sliding mode control using backstepping, and an observer
relying solely on collocated velocity measurements. We also
aim at performing robustness assessments.
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