
HAL Id: hal-04708861
https://amu.hal.science/hal-04708861v1

Submitted on 25 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graphical conditions for existence, unicity and
multiplicity of non-trivial regular models

Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman, François Fages

To cite this version:
Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman, François Fages. Graphical conditions for exis-
tence, unicity and multiplicity of non-trivial regular models. ICLP 2024 - 40th International Confer-
ence on Logic Programming, Oct 2024, Dallas, United States. �10.1017/xxxxx�. �hal-04708861�

https://amu.hal.science/hal-04708861v1
https://hal.archives-ouvertes.fr

TPLP : Page 1–8. © The Author(s), 2021. Published by Cambridge University Press 2021

doi:10.1017/xxxxx

1

Graphical conditions for existence, unicity and
multiplicity of non-trivial regular models

VAN-GIANG TRINH
LIRICA team, LIS, Aix-Marseille University, Marseille, France

BELAID BENHAMOU
LIRICA team, LIS, Aix-Marseille University, Marseille, France

SYLVAIN SOLIMAN
Inria Saclay, EP Lifeware, Palaiseau, France

FRANCOIS FAGES
Inria Saclay, EP Lifeware, Palaiseau, France

submitted xx xx xxxx; revised xx xx xxxx; accepted xx xx xxxx

Abstract

The regular models of a logic program are a particular type of partial (3-valued) models which
correspond to stable partial models with minimal undefinedness. In this paper, we explore graph-
ical conditions on the dependence graph of a normal logic program to analyze the existence,
unicity and multiplicity of non-trivial regular models for the program. We show three main
results: 1) a necessary condition for the existence of non-trivial regular models, 2) a sufficient
condition for the unicity of regular models, and 3) two upper bounds for the number of regular
models based on positive feedback vertex sets. The first two conditions generalize the existing
results obtained by You and Yuan (1994) for well-founded stratification logic programs. The
third result is new to the best of our knowledge. Key to our proofs is a connection that we
establish between logic programs and Boolean network theory.

KEYWORDS: logic program, stable model, regular model, graphical condition, Boolean network

1 Introduction

Relating graphical representations of a logic program and its model-theoretic semantics

is an interesting research direction in theory that also has many useful applications in

practice (Fages 1994; Costantini 2006; Linke 2001). Historically, the first studies of this

direction focused on the existence of a unique stable model in classes of logic programs

with special graphical properties on (positive) dependence graphs, including positive pro-

grams (Gelfond and Lifschitz 1988), acyclic programs (Apt and Bezem 1991), and locally

stratified programs (Gelfond and Lifschitz 1988). In 1994, Fages proved an important

result showing that the set of stable models and the set of 2-valued models of the Clark’s

completion of a tight logic program are the same (Fages 1994). Being finer-represented

but more computationally expensive than dependence graphs, several other graphical

representations (e.g., cycle and extended dependence graphs, rule graphs, block graphs)

2 Cambridge Author

were introduced and several improved results were obtained (Costantini 2006; Costan-

tini and Provetti 2011; Dimopoulos and Torres 1996; Linke 2001). There are some recent

studies on dependence graphs (Fandinno and Lifschitz 2023; Trinh and Benhamou 2024),

but they still focus only on stable models. In contrast, very few studies were made about

regular models despite of their prominent importance (Janhunen et al. 2006). The work

of Eiter et al. (1997) showed the unicity of regular and stable models in locally strati-

fied logic programs. The work of You and Yuan (1994) showed two sufficient graphical

conditions, one for the coincidence between stable and regular models, and another one

for the unicity of regular models. However, these two conditions were only proved in the

case of well-founded stratification programs, and the question if they are still valid for

generic logic programs is still open to date.

The stable partial semantics is the 3-valued generalization of the (2-valued) stable

model semantics (Przymusinski 1990). The regular model semantics not only inherits the

advantages of the stable partial model semantics but also imposes two notable principles

in non-monotonic reasoning: minimal undefinedness and justifiability (which is closely

related to the concept of labeling-based justification in Doyle’s truth maintenance sys-

tem (Doyle 1979)), making it become one of the well-known semantics in logic program-

ming (You and Yuan 1994; Janhunen et al. 2006). Furthermore, regular models in logic

programs were proved to correspond to preferred extensions in Dung’s frameworks (Wu

et al. 2009), which are a central focus in abstract argumentation (Baroni et al. 2011).

Recently, we have proposed a new semantics for normal logic programs, called the

trap space semantics, which establishes formal links between the model-theoretic and

dynamical semantics of logic programs (Trinh et al. 2024b). It is built on two newly

proposed concepts: stable and supported trap spaces, which are inspired by the concepts

of trap (or its duality, siphon) in Petri net theory and trap space in Boolean network

theory (Murata 1989; Klarner et al. 2015; Trinh et al. 2023; 2024a). We relate the new

semantics to other widely-known semantics, in particular showing that subset-minimal

stable trap spaces of a logic program coincide with its regular models. This result can

open potential applications to graphical analysis for the number of regular models.

Motivated by the above elements, in this paper, we explore graphical conditions on the

dependence graph of a normal logic program to analyze the existence of non-trivial (i.e.,

not 2-valued) regular models and the unicity and multiplicity of regular models for the

program. More specifically, we show three main results: 1) the existence of negative cycles

is a necessary condition for the existence of non-trivial regular models, 2) the absence

of positive cycles is a sufficient condition for the unicity of regular models, and 3) 3|U
+|

(resp. 2|U
+|) is an upper bound (resp. a finer upper bound) for the number of regular

models in generic (resp. tight) logic programs where U+ is a positive feedback vertex set

of the dependence graph. The first two conditions generalize the existing results obtained

by You and Yuan (1994) for well-founded stratification logic programs. The third result

is new to the best of our knowledge. Key to our proofs is a connection that we establish

between logic programs and Boolean network theory based on the trap space semantics.

Boolean Networks (BNs) are a simple and efficient mathematical formalism that has

been widely applied to many areas from science to engineering (Schwab et al. 2020).

Originated in the early work of Thomas and d’Ari (1990), studying relationships between

the dynamics of a BN and its influence graph has a rich history of research (Richard

2019). To date, this research direction is still growing with many prominent and deep

Regular models and cycles in logic programs 3

results (Richard 2019; Schwab et al. 2020). Hence, the established connection can bring

a plenty of existing results in BNs to studying logic programs as well as provide a unified

framework for exploring and proving more new theoretical results in logic programs.

The rest of this paper is organized as follows. In the next section, we recall prelimi-

naries on normal logic programs, regular models, BNs, and related concepts. Section 3

presents the connection that we establish between logic programs and BNs. In Section 4,

we present the main results on relationships between regular models and graphical con-

ditions. Finally, Section 5 concludes the paper with some perspectives for future work.

2 Preliminaries

We assume that the reader is familiar with logic programs and the stable model seman-

tics (Gelfond and Lifschitz 1988). Unless specifically stated, a logic program (or a program

for short) means a ground normal logic program. In addition, B = {true, false} = {1, 0} is

the Boolean domain and all Boolean operators used in this paper include ∧ (conjunction),

∨ (disjunction), ¬ (negation), ← (implication), and ↔ (bi-implication).

2.1 Normal logic programs

A logic program P is a finite set of rules of the form p ← p1, . . . , pm,∼pm+1, . . . ,∼pk
where p and pi are variable-free atoms (k ≥ m ≥ 0), ∼ denotes the negation as failure

and can be equivalent to ¬ in a Boolean formula. We use atom(P) to denote the set of all

atoms of P . For any rule r of this form, h(r) = p is the head of r, b+(r) = {p1, . . . , pm} is

called the positive body of r, b−(r) = {pm+1, . . . , pk} is called the negative body of r, and

bf(r) = p1 ∧ · · · ∧ pm ∧¬pm+1 ∧ · · · ∧ ¬pk is the body formula of r. If b+(r) = b−(r) = ∅,
then r is called a fact. If b−(r) = ∅,∀r ∈ P , then P is called a positive program. If

b+(r) = ∅,∀r ∈ P , then P is called a quasi-interpretation program.

We shall use the fixpoint semantics of logic programs (Dung and Kanchana-

sut 1989) to prove many new results in the next sections. To be self-contained,

we briefly recall the definition of the least fixpoint of a logic program P as fol-

lows. Let r be the rule p ← ∼p1, . . . ,∼pk, q1, . . . , qj and let ri be rules qi ←
∼q1i , . . . ,∼q

li
i where 1 ≤ i ≤ j and li ≥ 0. Then σr({r1, . . . , rj}) is the following rule

p ← ∼p1, . . . ,∼pk,∼q11 , . . . ,∼q
l1
1 , . . . ,∼q1j , . . . ,∼q

lj
j . σP is the transformation on quasi-

interpretation programs: σP (Q) = {σr({r1, . . . , rj})|r ∈ P, ri ∈ Q, 1 ≤ i ≤ j}. Let

lfpi = σi
P (∅) = σP (σP (. . . σP (∅))), then lfp(P) =

⋃
i≥1 lfpi is the least fixpoint of P .

lfp(P) is finite and also a quasi-interpretation program (Dung and Kanchanasut 1989).

2.1.1 Stable and supported partial models

A 3-valued interpretation I of a logic program P is a total function I : atom(P)→ {t, f,u}
that assigns one of the truth values true (t), false (f) or unknown (u), to each atom of P .

If I(a) 6= u,∀a ∈ atom(P), then I is an Herbrand (2-valued) interpretation of P . Usually,

a 2-valued interpretation is written as the set of atoms that are true in this interpretation.

A 3-valued interpretation I characterizes the set of 2-valued interpretations denoted by

γ(I) as γ(I) = {J |J ∈ 2atom(P),∀a ∈ atom(P), I(a) 6= u ⇒ J(a) = I(a)}. For example,

if I = {p = t, q = f, r = u}, then γ(I) = {{p}, {p, r}}.

4 Cambridge Author

We consider two orders on 3-valued interpretations. The truth order ≤t is given by

f <t u <t t. Then, I1 ≤t I2 iff I1(a) ≤t I2(a),∀a ∈ atom(P). The subset order ≤s is

given by f <s u and t <s u. Then, I1 ≤s I2 iff I1(a) ≤s I2(a),∀a ∈ atom(P). In addition,

I1 ≤s I2 iff γ(I1) ⊆ γ(I2), i.e., ≤s is identical to the subset partial order.

Let f be a propositional formula on atom(P). Then the valuation of f under a 3-valued

interpretation I (denoted by I(f)) is defined recursively as follows:

I(f) =

I(a) if f = a, a ∈ atom(P)

¬I(f1) if f = ¬f1
min≤t(I(f1), I(f2)) if f = f1 ∧ f2
max≤t

(I(f1), I(f2)) if f = f1 ∨ f2

where ¬t = f,¬f = t,¬u = u, and min≤t
(resp. max≤t

) is the function to get the mini-

mum (resp. maximum) value of two values w.r.t. the order ≤t. We say 3-valued interpreta-

tion I is a 3-valued model of a logic program P iff for each rule r ∈ P , I(bf(r)) ≤t I(h(r)).

Definition 1

Let I be a 3-valued interpretation of P . We build the reduct P I as follows.

• Remove any rule a← a1, . . . , am,∼b1, . . . ,∼bk ∈ P if I(bi) = t for some 1 ≤ i ≤ k.

• Afterwards, remove any occurrence of ∼bi from P such that I(bi) = f.

• Then, replace any occurrence of ∼bi left by a special atom u (u 6∈ atom(P)).

P I is positive and has a unique ≤t-least 3-valued model. See Przymusinski (1990) for

the method for computing this ≤t-least 3-valued model. Then I is a stable partial model

of P iff I is equal to the ≤t-least 3-valued model of P I . A stable partial model I is a

regular model if it is ≤s-minimal. A regular model is non-trivial if it is not 2-valued.

The Clark’s completion of P (denoted by cf(P)) consists of the following sentences:

for each p ∈ atom(P), let r1, . . . , rk be all the rules of P having the same head p,

then p ↔ bf(r1) ∨ · · · ∨ bf(rk) is in cf(P). If there is no rule whose head is p, then the

equivalence is p↔ f. Let rhs(a) denote the right hand side of atom a in cf(P). A 3-valued

interpretation I is a 3-valued model of cf(P) iff for every a ∈ atom(P), I(a) = I(rhs(a)).

We define a supported partial model of P as a 3-valued model of cf(P). Note that 2-valued

stable (resp. supported) partial models are stable (resp. supported) models.

2.1.2 Dependence and transition graphs

The Dependence Graph (DG) of a logic program P (denoted by dg(P)) is a signed

directed graph (V,E) on the set of signs {⊕,	} where V = atom(P) and (uv,⊕) ∈ E
(resp. (uv,) ∈ E) iff there is a rule r ∈ P such that v = h(r) and u ∈ b+(r) (resp.

u ∈ b−(r)). An arc (uv,⊕) is positive, whereas an arc (uv,) is negative. A cycle of

dg(P) is positive (resp. negative) if it contains an even (resp. odd) number of negative

arcs. A positive (resp. negative) feedback vertex set is a set of vertices that intersect all

positive (resp. negative) cycles of dg(P). The positive DG of P (denoted by dg+(P)) is

a sub-graph of dg(P) that has the same set of vertices but contains only positive arcs. P

is locally stratified if every cycle of dg(P) contains no negative arc (Gelfond and Lifschitz

1988). P is tight if dg+(P) has no cycle (Fages 1994). P is well-founded stratification

if there is a topological order on the set of Strongly Connected Components (SCCs) of

Regular models and cycles in logic programs 5

dg(P) and for every SCC B, there exists SCC A ≤ B and for any SCC C, if C ≤ A

then there are only positive arcs from atoms in C to atoms in A (You and Yuan 1994).

Herein, A ≤ B iff there is a path from some atom in A to some atom in B.

The immediate consequence operator (or the TP operator) is defined as a mapping

TP : 2atom(P) → 2atom(P) such that TP (I)(a) = I(rhs(a)) where I is a 2-valued interpre-

tation. If I is a 2-valued interpretation, then P I is exactly the reduct defined in (Gelfond

and Lifschitz 1988) and the unique≤t-least model of P I is 2-valued. The Gelfond-Lifschitz

operator (or the FP operator) is defined as a mapping FP : 2atom(P) → 2atom(P) such that

FP (I) is the unique ≤t-least model of P I (Gelfond and Lifschitz 1988). The stable (resp.

supported) transition graph of P is a directed graph (denoted by tgst(P) (resp. tgsp(P)))

on the set of all possible 2-valued interpretations of P such that (I, J) is an arc of tgst(P)

(resp. tgsp(P)) iff J = FP (I) (resp. J = TP (I)). A trap domain of a directed graph is a

set of vertices having no out-going arcs.

2.1.3 Stable and supported trap spaces

In Trinh et al. (2024b), we introduce a new semantics for normal logic programs, called

the trap space semantics. This semantics shall be used in this work as the bridge between

logic programs and Boolean networks. To be self-contained, we briefly recall the definition

and essential properties of this semantics.

A set S of 2-valued interpretations of a logic program P is called a stable trap set (resp.

supported trap set) of P if {FP (I)|I ∈ S} ⊆ S (resp. {TP (I)|I ∈ S} ⊆ S). A 3-valued

interpretation I of a logic program P is called a stable trap space (resp. supported trap

space) of P if γ(I) is a stable (resp. supported) trap set of P . By definition, a stable

(resp. supported) trap set of P is a trap domain of tgst(P) (resp. tgsp(P)). Hence, we

can deduce that a 3-valued interpretation I is a stable (resp. supported) trap space of P

if γ(I) is a trap domain of tgst(P) (resp. tgsp(P)). We also show in Trinh et al. (2024b)

that I is a supported trap space of P iff I is 3-valued model of
←−
cf (P) w.r.t. to the order ≤s

where
←−
cf (P) is the← part of the Clark’s completion of P , and a stable (resp. supported)

partial model of P is also a stable (resp. supported) trap space of P .

Example 1

Consider logic program P1 (taken from Inoue and Sakama (2012)) where P1 = {p ←
∼q; q ← ∼p; r ← q}. Herein, we use ’;’ to separate program rules. Figures 1 (a), (b),

and (c) show the dependence graph, the stable transition graph, and the supported

transition graph of P1, respectively. P1 is tight, but not locally stratified or well-founded

stratification. P1 has five stable (also supported) trap spaces: I1 = {p = t, q = f, r = u},
I2 = {p = f, q = t, r = u}, I3 = {p = u, q = u, r = u}, I4 = {p = t, q = f, r = f}, and

I5 = {p = f, q = t, r = t}. Among them, only I3, I4, and I5 are stable (also supported)

partial models of P1. P1 has two regular models (I4 and I5). The least fixpoint of P1 is

lfp(P1) = {p← ∼q; q ← ∼p; r ← ∼p}.

2.2 Boolean networks

A Boolean Network (BN) f is a set of Boolean functions on a set of Boolean variables

denoted by varf . Each variable v is associated with a Boolean function fv : B|varf | → B.

6 Cambridge Author

p

q

r

		

⊕

(a)

{p, r}

{p}

{q}

{q, r}

∅ {p, q, r} {r}

{p, q}

(b)

{p, r}

{p}

{q}

{q, r}

∅ {p, q, r} {r}

{p, q}

(c)

Fig. 1: (a) dg(P1), (b) tgst(P1), and (c) tgsp(P1).

fv is called constant if it is always either 0 or 1 regardless of its arguments. A state s of

f is a mapping s : varf 7→ B that assigns either 0 (inactive) or 1 (active) to each variable.

We can write sv instead of s(v) for short.

Let x be a state of f . We use x[v ← a] to denote the state y so that yv = a and

yu = xu,∀u ∈ varf , u 6= v where a ∈ B. The Influence Graph (IG) of f (denoted by

ig(f)) is a signed directed graph (V,E) on the set of signs {⊕,	} where V = varf ,

(uv,⊕) ∈ E (i.e., u positively affects the value of fv) iff there is a state x such that

fv(x[u← 0]) < fv(x[u← 1]), and (uv,) ∈ E (i.e., u negatively affects the value of fv)

iff there is a state x such that fv(x[u← 0]) > fv(x[u← 1]).

At each time step t, variable v can update its state to s′(v) = fv(s), where s (resp. s′)

is the state of f at time t (resp. t+ 1). An update scheme of a BN refers to how variables

update their states over (discrete) time (Schwab et al. 2020). Various update schemes

exist, but the primary types are synchronous, where all variables update simultaneously,

and fully asynchronous, where a single variable is non-deterministically chosen for up-

dating. By adhering to the update scheme, the BN transitions from one state to another,

which may or may not be the same. This transition is referred to as the state transition.

Then the dynamics of the BN is captured by a directed graph referred to as the State

Transition Graph (STG). We use sstg(f) (resp. astg(f)) to denote the synchronous (resp.

asynchronous) STG of f .

A non-empty set of states is a trap set if it has no out-going arcs on the STG of

f . An attractor is a subset-minimal trap set. An attractor of size 1 (resp. at least 2)

is called a fixed point (resp. cyclic attractor). A sub-space m of a BN is a mapping

m : varf 7→ B ∪ {?}. A sub-space m is equivalent to the set of all states s such that

s(v) = m(v),∀v ∈ varf ,m(v) 6= ?. With abuse of notation, we use m and its equivalent

set of states interchangeably. For example, m = {v1 = ?, v2 = 1, v3 = 1} = {011, 111}
(for simplicity, we write states as a sequence of values). If a sub-space is also a trap set,

it is a trap space. Unlike trap sets and attractors, trap spaces of a BN are independent

of the update scheme (Klarner et al. 2015). Then a trap space m is minimal iff there is

no other trap space m′ such that m′ ⊂ m. It is easy to derive that a minimal trap space

contains at least one attractor of the BN regardless of the update scheme.

Example 2

Consider BN f1 with fp = ¬q, fq = ¬p, fr = q. Figures 2 (a), (b), and (c) show the

influence graph, the synchronous STG, and the asynchronous STG of f1. Attractor states

are highlighted with boxes. sstg(f1) has two fixed points and one cyclic attractor, whereas

Regular models and cycles in logic programs 7

astg(f1) has only two fixed points. f1 has five trap spaces:m1 = 10?,m2 = 01?,m3 = ???,

m4 = 100, and m5 = 011. Among them, m4 and m5 are minimal.

p

q

r

		

⊕

(a)

101

100

010

011

000 111 001

110

(b)

101

100

010

011

000 111 001

110

(c)

Fig. 2: (a) ig(f1), (b) sstg(f1), and (c) astg(f1).

3 Logic programs and Boolean networks

We define a BN encoding for logic programs in Definition 2. Then, we show two relation-

ships between a logic program and its encoded BN (see Theorems 1 and 3).

Definition 2

Let P be a logic program. We define a BN f encoding P as follows: varf = atom(P),

fv =
∨

r∈P,v=h(r) bf(r),∀v ∈ varf . Conventionally, if there is no rule r ∈ P such that

h(r) = v, then fv = 0. By considering 1 (resp. 0) as t (resp. f), and ? as u, sub-spaces

(resp. states) of f are identical to 3-valued (resp. 2-valued) interpretations of P .

Theorem 1

Let P be a logic program and f be its encoded BN. Then ig(f) ⊆ dg(P).

Proof

By construction, ig(f) and dg(P) have the same set of vertices. Let in+
f (v) (resp. in+

P (v))

denote the set of vertices u such that (uv,⊕) is an arc of ig(f) (resp. dg(P)). We define

in−f (v) (resp. in−P (v)) similarly. We show that in+
f (v) ⊆ in+

P (v) and in−f (v) ⊆ in−P (v) for

every v ∈ atom(P) (*). Consider atom u. The case that both u and ∼u appear in rules

whose heads are v is trivial. For the case that only u appears in rules whose heads are

v, u is essential in fv by construction, and it positively affects the value of fv, leading

to u ∈ in+
f (v) and u 6∈ in−f (v). This implies that (*) still holds. The case that only ∼u

appears in rules whose heads are v is similar. By (*), we can conclude that ig(f) ⊆ dg(P),

i.e., ig(f) is a sub-graph of dg(P). In addition, if P is a quasi-interpretation program,

then ig(f) = dg(P).

Lemma 2 (derived from Theorem 4.5 of Inoue and Sakama (2012))

Let P be a logic program and f be its encoded BN. Then tgsp(P) = sstg(f).

8 Cambridge Author

Theorem 3

Let P be a logic program and f be its encoded BN. Then supported trap spaces of P

coincide with trap spaces of f .

Proof

By Lemma 2, tgsp(P) = sstg(f). Note that trap spaces of f are the same under both the

synchronous and asynchronous update schemes (Klarner et al. 2015). Hence, trap spaces

of f coincide with trap spaces of sstg(f). Since tgsp(P) = sstg(f), supported trap spaces

of P coincide with trap spaces of f .

For illustration, BN f1 of Example 2 is the encoded BN of logic program P1 of Ex-

ample 1. tgsp(P1) is identical to sstg(f1), and the five supported trap spaces of P1 are

identical to the five trap spaces of f1. In addition, P1 is tight and ig(f1) = dg(P1).

4 Graphical analysis results

In this section, we present our new results on graphical conditions for several properties

of regular models in logic programs by exploiting the connection established in Section 3.

4.1 Preparations

For convenience, we first recall several existing results in both logic programs and Boolean

networks that shall used later.

Theorem 4 (Inoue and Sakama (2012))

Let P be a quasi-interpretation program. Then tgst(P) = tgsp(P), i.e., the stable and

supported transition graphs of P are the same.

Theorem 5 (Inoue and Sakama (2012))

Let P be a logic program and lfp(P) denote its least fixpoint. Then P and lfp(P) have

the same stable transition graph.

Theorem 6 (Theorem 6 of Trinh and Benhamou (2024))

Let P be a logic program and lfp(P) denote its least fixpoint. If P is locally stratified,

then dg(lfp(P)) has no cycle.

Lemma 7

Let P be a logic program and lfp(P) denote its least fixpoint. If dg(P) is has no negative

cycle, then dg(lfp(P)) has no negative cycle.

Proof

It directly follows from Lemma 5.3 of Fages (1994).

Proposition 8 (Trinh et al. (2024b))

Let P be a logic program. Let T (P) denote the set of all supported trap spaces of P . Let

C(P) denote the set of all 3-valued models of cf(P) (i.e., the Clark’s completion of P).

For every supported trap space I ∈ T (P), there is a model I ′ ∈ C(P) such that I ′ ≤s I.

Regular models and cycles in logic programs 9

Sketch of proof

Let Ij be an arbitrary supported trap space in T (P). We construct a 3-valued interpre-

tation Ij+1 as follows: ∀a ∈ atom(P), Ij+1(a) = Ij(rhs(a)). We prove that Ij+1 is also

a supported trap space of P . For every supported trap space I in T (P), we start with

Ij = I and repeat the above process by increasing j by 1, and finally reach the case that

Ij+1 = Ij because γ(I) is finite. By construction, Ij(a) = Ij(rhs(a)),∀a ∈ atom(P), and

Ij ≤s I. Hence, by setting I ′ = Ij , there is a model I ′ ∈ C(P) such that I ′ ≤s I.

Theorem 9 (Trinh et al. (2024b))

Let P be a logic program. Then a 3-valued interpretation I is a regular model of P iff I

is a ≤s-minimal stable trap space of P .

Sketch of proof

Let lfp(P) be the least fixpoint of P . By Proposition 8, we can deduce that ≤s-minimal

supported trap spaces of lfp(P) coincide with ≤s-minimal supported (also stable) partial

models spaces of lfp(P). P and lfp(P) have the same set of stable partial models (Ar-

avindan and Dung 1995). By Theorem 5, P and lfp(P) have the same stable transition

graph, thus they have the same set of stable trap spaces. Since stable trap spaces of

lfp(P) coincide with its supported trap spaces, we can conclude the theorem.

Theorem 10 (Theorem 1 of Richard (2019))

Let f be a BN. If ig(f) has no cycle, astg(f) has a unique attractor that is also the

unique fixed point of f .

Theorem 11 (Theorem 12 of Richard (2019))

Let f be a BN. If ig(f) has no negative cycle, then astg(f) has no cyclic attractor.

4.2 Unicity of regular and stable models

To illustrate better applications of the connection between logic programs and Boolean

networks, we start with providing a probably simpler proof for a well-known result on

the unicity of regular and stable models in locally stratified logic programs.

Theorem 12 (Eiter et al. (1997))

If P is a locally stratified logic program, then P has a unique regular model that is also

the unique stable model of P .

New proof

Let lfp(P) denote the least fixpoint of P . Let f be the encoded BN of lfp(P). By Theo-

rem 6, dg(lfp(P)) has no cycle. Since ig(f) is a sub-graph of dg(lfp(P)) by Theorem 1, it

also has no cycle. By Theorem 10, astg(f) has a unique attractor that is also the unique

fixed point of f . P and lfp(P) have the same set of regular (also stable) models (Aravin-

dan and Dung 1995). By Theorem 9, regular models of lfp(P) are ≤s-minimal stable trap

spaces of lfp(P). Since lfp(P) is a quasi-interpretation program, its stable trap spaces co-

incide with its supported trap spaces. Supported trap spaces of lfp(P) coincide with trap

spaces of f by Theorem 3. Hence, regular models of P coincide with ≤s-minimal trap

spaces of f . Since the number of ≤s-minimal trap spaces of f are a lower bound of the

10 Cambridge Author

number of attractors of astg(f) and f has at least one ≤s-minimal trap space (Klarner

et al. 2015), f has a unique ≤s-minimal trap space that is also the unique fixed point of

f . Hence, P has a unique regular model that is also the unique stable model of P .

4.3 Existence of non-trivial regular models

Theorem 13 (Theorem 5.3(i) of You and Yuan (1994))

Let P be a well-founded stratification program. If dg(P) has no negative cycle, then all

the regular models of P are 2-valued.

Theorem 13 provides a sufficient (resp. necessary) condition on the dependence graph

for the non-existence (resp. existence) of non-trivial regular models, but it is only limited

to well-founded stratification programs. Note that the set of all well-founded stratification

programs is only a small piece of the set of all possible programs (You and Yuan 1994).

Moreover, the proof of this result is quite complicated, and to the best of our knowledge,

the question if it is valid for generic logic programs (i.e., programs with no graphical

constraints) is still open to date. We answer this question in Theorem 14.

Theorem 14

Let P be a generic logic program. If dg(P) has no negative cycle, then all the regular

models of P are 2-valued.

Proof

Let lfp(P) be the least fixpoint of P . By Lemma 7, dg(lfp(P)) has no negative cycle. Let

f be the encoded BN of lfp(P). Since ig(f) is a sub-graph of dg(lfp(P)) by Theorem 1,

ig(f) also has no negative cycle. By Theorem 11, astg(f) (i.e., the asynchronous transition

graph of f) has no cyclic attractor. This implies that all attractors of astg(f) are fixed

points (*). Assume that f has a ≤s-minimal trap space (say m) that is not a fixed point.

Since every ≤s-minimal trap space of f contains at least one attractor of astg(f) (Klarner

et al. 2015), there is an attractor (say A) of astg(f) such that A ⊆ γ(m). By (*), A is a

fixed point, leading to A <s m. This is a contradiction because m is ≤s-minimal. Hence,

all ≤s-minimal trap spaces of f are fixed points.

By Theorem 3, trap spaces of f coincide with supported trap spaces of lfp(P). lfp(P)

is a quasi-interpretation program, thus tgst(lfp(P)) = tgsp(lfp(P)). It follows that its

supported trap spaces are also its stable trap spaces. Hence, ≤s-minimal trap spaces of f

are ≤s-minimal stable trap spaces of lfp(P). This implies that all ≤s-minimal stable trap

spaces of lfp(P) are 2-valued. By Theorem 9, all regular models of lfp(P) are 2-valued.

P and lfp(P) have the same set of regular models (Aravindan and Dung 1995). Hence,

all regular models of P are 2-valued.

Theorem 14 implies that the undefinedness is only needed if there is a negative cycle

in the DG, i.e., the regular model and stable model semantics are the same under the

absence of negative cycles. In addition, we can get from Theorem 14 a straightforward

corollary: if the DG of a logic program has no negative cycle, then it has at least one

stable model. The reason is because a logic program always has at least one regular model.

This corollary is exactly the generalization of Theorem 5.7 of You and Yuan (1994) for

well-founded stratification programs.

Regular models and cycles in logic programs 11

4.4 Unicity of regular models

The work of You and Yuan (1994) shows a sufficient condition for the unicity of regular

models for well-founded stratification programs.

Theorem 15 (Theorem 5.3(ii) of You and Yuan (1994))

Let P be a well-founded stratification program. If dg(P) has no positive cycle, P has a

unique regular model.

Hereafter, we would like to show that Theorem 15 is also true for generic logic programs.

Note however that the technique of using least fixpoint applied for negative cycles seems

difficult to use for positive cycles because there is some program whose dependence graph

has no positive cycle but the dependence graph of its least fixpoint can have positive cycle

(e.g., P = {a← c; b← c; c← ∼a,∼b}). We here use another approach.

Theorem 16 (Theorem 3.4 of Paulevé and Richard (2011))

Let f be a BN. If ig(f) has no positive cycle, then astg(f) has a unique attractor.

Theorem 17 (Lemma 16 of Dietz et al. (2014))

Supported partial models of a tight logic program coincide with its stable partial models.

Lemma 18

Let P be a logic program and f be its encoded BN. If P is tight, then regular models of

P coincide with ≤s-minimal trap spaces of f .

Proof

Since P is tight, stable partial models of P coincide with supported partial models of

P (i.e., 3-valued models of cf(P)) by Theorem 17. Then regular models of P coincide

with ≤s-minimal supported partial models of P . We have that trap spaces of f coincide

with supported trap spaces of P by Theorem 3. By Proposition 8, ≤s-minimal supported

partial models of P coincide with ≤s-minimal supported trap spaces of P . Hence, regular

models of P coincide with ≤s-minimal trap spaces of f .

Theorem 19

Let P be a logic program. If dg(P) has no positive cycle, then P has a unique regular

model.

Proof

Since dg(P) has no positive cycle, dg+(P) (i.e., the positive dependence graph of P) has

no cycle, i.e., P is tight. Let f be the encoded BN of P . By Lemma 18, regular models

of P coincide with ≤s-minimal trap spaces of f . Since ig(f) is a sub-graph of dg(P), it

also has no positive cycle. By Theorem 16, astg(f) has a unique attractor. Since every

≤s-minimal trap space of f contains at least one attractor of astg(f) and f has at least

one ≤s-minimal trap space (Klarner et al. 2015), f has a unique ≤s-minimal trap space.

Hence, we can conclude that P has a unique regular model.

Since a stable model is also a regular model, Theorem 19 implies that if dg(P) has no

positive cycle, then P has at most one stable model. In addition, P may have no stable

model because the unique regular model may be not 2-valued. This result seems to be

12 Cambridge Author

already known in the folklore of logic programming, but to the best of our knowledge,

there is no existing formal proof for it except the one that we have directly proved recently

in Trinh and Benhamou (2024).

4.5 Upper bound for number of regular models

To the best of our knowledge, there is no existing work connecting between regular models

of a logic program and (positive/negative) feedback vertex sets of its dependence graph.

In Trinh and Benhamou (2024), we have shown that 2|U
+| is an upper bound for the

number of stable models where U+ is a positive feedback vertex set of the dependence

graph. Since stable models are 2-valued regular models, we can naturally generalize this

result for the case of regular models, i.e., 3|U
+| is an upper bound for the number of

regular models. The underlying intuition for the base of 3 is that in a regular model, an

atom can be t, f, or u.

Theorem 20

Let P be a logic program. Let U+ be a positive feedback vertex set of dg(P). Then the

number of regular models of P is at most 3|U
+|.

Sketch of proof

Since the full proof is long, we only show the sketch of proof due to the space limitation.

By Theorem 9, regular models of P coincide with ≤s-minimal stable trap spaces of P .

For any mapping Î : U+ → {t, f,u}, we build a new logic program P̂ from P as follows.

First, remove from P all the rules whose heads belong to U+. Second, remove all the

rules whose body formulas are false under the values of the atoms in U+ and otherwise

remove all the appearances of the atoms that are in U+ and not assigned to u in Î.

Third, for any atom a ∈ U+ such that Î(a) = u, add the rule a← ∼a. We can see that

the part of tgst(P) induced by Î is isomorphic to tgst(P̂). Hence, ≤s-minimal stable trap

spaces of P induced by Î one-to-one correspond to those of P̂ . U+ intersects all positive

cycles of dg(P). Every atom a ∈ U+ such that Î(a) 6= u is removed from dg(P). In the

case that a ∈ U+ and Î(a) = u, all the arcs ending at a are removed and an negative arc

(aa,) is added. It follows that dg(P̂) has no positive cycle. By Theorem 19, P̂ has a

unique ≤s-minimal stable trap space. There are 3|U
+| possible mappings Î, thus we can

conclude the theorem.

Theorem 21 (Theorem 3.5 of Paulevé and Richard (2011))

Let f be a BN. Let U+ be a positive feedback vertex set of ig(f). Then the number of

attractors of astg(f) is at most 2|U
+|.

We observed that the bound of 3|U
+| is too rough for many example programs in the

literature. Then inspired by Theorem 21 for an upper bound for the number of attractors

of an asynchronous BN, we obtain an interesting result for tight logic programs.

Theorem 22

Let P be a tight logic program. Let U+ be a positive feedback vertex set of dg(P). Then

the number of regular models of P is at most 2|U
+|.

Proof

Regular models and cycles in logic programs 13

Let f be the encoded BN of P . By Lemma 18, regular models of P coincide with ≤s-

minimal trap spaces of f . By definition, U+ intersects all positive cycles of dg(P). Since

ig(f) is a sub-graph of dg(P), every positive cycle of ig(f) is also a positive cycle of

dg(P). Hence, U+ is also a positive feedback vertex set of ig(f). By Theorem 21, the

number of attractors of astg(f) is at most 2|U
+|. Since the number of ≤s-minimal trap

spaces of f is a lower bound of the number of attractors of astg(f) (Klarner et al. 2015),

the number of regular models of P is at most 2|U
+|.

Note however that the question if 2|U
+| is also an upper bound for the number of

regular models in any logic program remains open.

5 Conclusion and future work

In this work, we show three main results relating graphical conditions of a normal logic

program and its regular models: 1) the existence of negative cycles is a necessary condition

for the existence of non-trivial regular models, 2) the absence of positive cycles is a

sufficient condition for the unicity of regular models, and 3) an upper bound (resp. a finer

upper bound) for the number of regular models in generic (resp. tight) logic programs

based on positive feedback vertex sets. The first two conditions generalize the existing

results obtained by You and Yuan (1994) for well-founded stratification logic programs.

The third result is new to the best of our knowledge. Key to our proofs is a connection

that we establish between logic programs and Boolean network theory, bridged by the

trap space semantics of logic programs. Furthermore, the established connection can

provide a unified framework for exploring and proving more new graphical conditions for

models in logic programs via exploiting a plenty of existing results in Boolean networks.

As for future work, we would like to explore more new results on relating the depen-

dence graph and models of a logic program. The results presented in this paper use only

information on either positive cycles or negative cycles. It is then natural to think that

by using both kinds of cycles simultaneously, we can obtain improved results. In addi-

tion, we also conjecture that the upper bound for tight logic program is also valid for

generic logic programs. However, it seems quite difficult to prove this conjecture. Finally,

it would be important to find efficient methods for computing regular models.

Acknowledgments

This work was supported by Institut Carnot STAR, Marseille, France.

References

Apt, K. R. and Bezem, M. 1991. Acyclic programs. New Gener. Comput., 9, 335–363.

Aravindan, C. and Dung, P. M. 1995. On the correctness of unfold/fold transformation of
normal and extended logic programs. J. Log. Program., 24, 3, 201–217.

Baroni, P., Caminada, M., and Giacomin, M. 2011. An introduction to argumentation se-
mantics. Knowl. Eng. Rev., 26, 4, 365–410.

Costantini, S. 2006. On the existence of stable models of non-stratified logic programs. Theory
Pract. Log. Program., 6, 1-2, 169–212.

14 Cambridge Author

Costantini, S. and Provetti, A. Conflict, consistency and truth-dependencies in graph rep-
resentations of answer set logic programs. In Second International Workshop on Graph Struc-
tures for Knowledge Representation and Reasoning 2011, pp. 68–90. Springer.

Dietz, E., Hölldobler, S., and Wernhard, C. 2014. Modeling the suppression task under
weak completion and well-founded semantics. J. Appl. Non Class. Logics, 24, 1-2, 61–85.

Dimopoulos, Y. and Torres, A. 1996. Graph theoretical structures in logic programs and
default theories. Theor. Comput. Sci., 170, 1-2, 209–244.

Doyle, J. 1979. A truth maintenance system. Artif. Intell., 12, 3, 231–272.

Dung, P. M. and Kanchanasut, K. A fixpoint approach to declarative semantics of logic
programs. In Proc. of NACLP 1989, pp. 604–625. MIT Press.

Eiter, T., Leone, N., and Saccà, D. 1997. On the partial semantics for disjunctive deductive
databases. Ann. Math. Artif. Intell., 19, 1-2, 59–96.

Fages, F. 1994. Consistency of Clark’s completion and existence of stable models. Methods Log.
Comput. Sci., 1, 1, 51–60.

Fandinno, J. and Lifschitz, V. 2023. Positive dependency graphs revisited. Theory Pract.
Log. Program., 23, 5, 1128–1137.

Gelfond, M. and Lifschitz, V. The stable model semantics for logic programming. In Proc.
of ICLP 1988, pp. 1070–1080. MIT Press.

Inoue, K. and Sakama, C. Oscillating behavior of logic programs. In Correct Reasoning -
Essays on Logic-Based AI in Honour of Vladimir Lifschitz 2012, pp. 345–362. Springer.

Janhunen, T., Niemelä, I., Seipel, D., Simons, P., and You, J. 2006. Unfolding partiality
and disjunctions in stable model semantics. ACM Trans. Comput. Log., 7, 1, 1–37.

Klarner, H., Bockmayr, A., and Siebert, H. 2015. Computing maximal and minimal trap
spaces of Boolean networks. Nat. Comput., 14, 4, 535–544.

Linke, T. Graph theoretical characterization and computation of answer sets. In Proc. of IJCAI
2001, pp. 641–648. Morgan Kaufmann.

Murata, T. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE, 77, 4, 541–580.

Paulevé, L. and Richard, A. Static analysis of Boolean networks based on interaction graphs:
A survey. In Proc. of SASB 2011, pp. 93–104. Elsevier.

Przymusinski, T. C. 1990. The well-founded semantics coincides with the three-valued stable
semantics. Fundam. Inform., 13, 4, 445–463.

Richard, A. 2019. Positive and negative cycles in Boolean networks. J. Theor. Biol., 463, 67–76.

Schwab, J. D., Kühlwein, S. D., Ikonomi, N., Kühl, M., and Kestler, H. A. 2020. Con-
cepts in Boolean network modeling: What do they all mean? Comput. Struct. Biotechnol. J.,
18, 571–582.

Thomas, R. and d’Ari, R. 1990. Biological feedback. CRC press.

Trinh, V., Benhamou, B., and Paulevé, L. 2024a. mpbn: a simple tool for efficient edition
and analysis of elementary properties of Boolean networks. CoRR, abs/2403.06255a.

Trinh, V.-G. and Benhamou, B. 2024. Static analysis of logic programs via Boolean networks.
Submitted paper.

Trinh, V.-G., Benhamou, B., and Soliman, S. 2023. Trap spaces of Boolean networks are
conflict-free siphons of their Petri net encoding. Theor. Comput. Sci., 971, 114073.

Trinh, V.-G., Benhamou, B., Soliman, S., and Fages, F. 2024b. On trap space semantics
of logic programs. Submitted paper.

Wu, Y., Caminada, M., and Gabbay, D. M. 2009. Complete extensions in argumentation
coincide with 3-valued stable models in logic programming. Stud Logica, 93, 2-3, 383–403.

You, J. and Yuan, L. 1994. A three-valued semantics for deductive databases and logic pro-
grams. J. Comput. Syst. Sci., 49, 2, 334–361.

