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A B S T R A C T

In this paper, we are interested in the effect of a trophically transmitted parasite on the structure
and dynamics of a resident predator–prey community. The parasite, apart from increasing the
mortality rates of its hosts, can also change their physiology or their behaviour, which is known
as trait-mediated indirect interaction. We assume that parasite transmission, which entails rapid
physiological or behavioural change, is a fast process with respect to the community dynamics,
including prey and predator growths and predation. This existence of different time scales
allows us to provide analytical results to understand some conditions under which the parasite
change the dynamics of the predator–prey community. Thus, we are able to find conditions
under which indirect trait-mediated interactions induced by the parasite lead to a coexistence
between predators and prey that would not occur in its absence. We also provide conditions,
evolutionary deleterious, that ensure the extinction of a predator–prey community that would
be viable without parasite intervention. Finally, we show situations in which the action of the
parasite destabilizes the predator–prey system without eliminating it, producing oscillations,
the mechanism of which is analysed.

. Introduction

There is an increasing evidence that parasites play a crucial role in structuring biological communities [1] and ecosystems [2].
hey can sometimes account for a significant portion of total biomass in natural ecosystems [3].

The general purpose of community studies is to analyse the effects of species interactions on populations densities. The effects
hat individuals of two species can have on each other can be direct, as it is the case of predation or interference competition. At
he same level of importance are the indirect interactions where the effect of one species on another is achieved through a third
ne. Parasites are a source of indirect interactions in a community. By killing their hosts, they cause so-called density-mediated
ndirect interactions, while by changing the physiology or behaviour of their hosts, they cause what are known as trait-mediated
nteractions [4,5].

Obviously, the life span of parasites must be long enough to complete their life cycle. This means that the life strategy of parasites
ften involves moving from a host to another. The movement between hosts is often achieved by trophic transmission [6], leading
o the class of trophically transmitted parasites. The needs of parasites go sometimes against host interests and might even be fatal
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for the host. The response of parasites to solve this conflict of interests is host manipulation, i.e. the ability to alter the adequate
feature (behaviour, appearance) of their host so as to increase their own fitness [7]. Host manipulation occurs in a large variety of
hosts and parasites, and it can take many different forms [8].

Host manipulation by parasites has important consequences in community and ecosystem dynamics [9]. Manipulative parasites
an strengthen the trophic links involved in their transmission. Numerous trophically transmitted parasites induce phenotypic
hanges in their hosts to produce an increase of the predation vulnerability of intermediate hosts to definitive hosts. This
henomenon is called enhancement and enhancer-parasites represent a large proportion of the parasites in food webs [2,3]. In contrast

to empirical evidence for the abundance of enhancer-parasites in natural systems, some modelling works [10] foresee that extensive
enhancement would destabilize predator–prey dynamics and, therefore, lead to parasite extinction. A proposed framework to save
this apparent contradiction is the switcher-paradigm [11]. The host-manipulating parasite successively induces reduced predation,
decrease of prey vulnerability, followed by predation enhancement with parasite maturation, what can lead to higher parasite
persistence [12].

In this work we want to participate in the preceding discussion by introducing in a simple model of a trophically transmitted
parasite a new feature not considered previously. The phenotypic changes induced by parasites in their hosts occur, as any trait-
mediated effect, on a shorter timescale than population-density mediated effects [5]. Thus, we represent our model by a fast-slow
system of ordinary differential equations. We identify the phenotypic change with the fact of being infected by the parasite. Then,
we distinguish two time scales in our model and consider parasite transmissions acting at the fast one. The direct predator–prey
interactions and the density-mediated indirect interactions between parasites and their hosts are assumed to occur at the slow time
scale.

We consider a predator–prey community, with the prey being the intermediate host of the parasite and the predator the definitive
host. Assuming the parasite is a microparasite, we can include it in the model in the simplest possible way, which consists of
distinguishing between individual infected or uninfected in each species. A model with a similar structure is treated in Hadeler and
Freedman [13], that is considered one of the seminal works, together with Anderson and May [14], of the field called mathematical
eco-epidemiology. An abundant literature on it can be found in Venturino [15]. The model proposed in Hadeler and Freedman [13] is
studied analytically, obtaining conditions on the viability of the parasite–predator–prey system. It is shown, for instance, that, in the
case where the predator–prey community is not viable in the absence of the parasite, parasitism could lead to predator persistence
whenever a certain transmission threshold is exceeded. A more recent and influential reference on the subject of manipulative
trophic transmitted parasite is Fenton and Rands [10]. It includes a suite of models with a similar structure to that of Hadeler
and Freedman [13]. An equilibria stability analysis leads the authors to conclude that host manipulation keeps predator–prey
community persistence though can greatly alter its quantitative dynamics, being its impact largely dependent on the predator
functional response. With the same structure in Rogawa et al. [16] it is presented a model justifying that host manipulation can
stabilize community dynamics, particularly when the manipulation is more intense. It treats separately the manipulation of the
intermediate and the definitive hosts. In Iritani and Sato [11],de Vries and van Langevelde [12] they proposed models with two
infected prey stages, in the first one parasites inducing predation suppression and in the second one enhancement. In both of them
the switching strategy is presented as stabilizing and favouring community persistence. A general conclusion of all these references is
that host manipulation is a consequence of self-organized behaviour of the parasite populations leading to a permanent coexistence
with its hosts, what plays a major role in community stability.

This paper aims to present an original eco-epidemiological model that is complex enough to produce different types of
manipulative effects but still simple enough to keep tractable. This allows us to understand the relative role of each parameter
in different situations. Namely, the model is able to reproduce the positive impact of a parasite on a non viable community. It also
contains the negative effect of a parasite killing a predator that would persist in the absence of the parasite. Finally the model can
produce fluctuations induced by the presence of parasite, which are based on a complex mechanism involving all the protagonists in
the community sequentially. The relative simplicity of our model allowed us to get analytical results that could show this mechanism.

In the next section, we describe the model and the assumptions on which it is based. The Section 3 introduces the reduction
method and the reduced model with the assumptions required for the reduction method. This section also provides the dynamics of
the reduced model. When the reduction is valid, these results also provide the dynamics of the complete model. But we will show
that depending on the parameter values, there are situations where the reduction method is not always valid. The Section 4 explains
and illustrates the effect of the parasite on the predator–prey community and provides the explanations for each effect. The last
section discusses the results and concludes the paper.

2. The model

We consider a simple trophically transmitted parasite model. Fig. 1 is a scheme describing the model structure, the parameters
and their description are provided in Tables 1 and 2 provides the processes and flows. The parasite uses the prey species as an
intermediate host to transmit to the definitive host that is the predator species. We assume that the parasite is a microparasite and
so we introduce it in the model by distinguishing between uninfected and infected individuals in both host species. We thus have
four state variables: 𝑁𝑈 and 𝑁𝐼 are the densities of uninfected and infected prey and 𝑃𝑈 and 𝑃𝐼 the densities of uninfected and
infected predators.

In the absence of the parasite the predator–prey interaction is described by a classical Lotka–Volterra model with logistic growth
of the prey and linear functional response. The prey intrinsic growth rate is 𝑟 > 0 and its density-dependent regulation is reflected
2

in the carrying capacity 𝐾 > 0. Parameter 𝑎 > 0 in the predation term is a rate per predator, and 𝑒 > 0 is the predator conversion
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Table 1
Description of the model parameters.

Parameter Description

Ecological parameters
𝑟 Intrinsic growth rate of the prey population
𝐾 Carrying capacity of the prey population
𝑎 Attack rate
𝑒 Efficiency conversion
𝑚 Predator per capita mortality rate
Epidemiological parameters
𝛽 Contact rate for prey infection
𝜆 Contact rate for predator infection
𝜙 Infected prey fertility reduction rate
𝜑 Infected predator fertility reduction rate
𝛼 Prey vulnerability enhancement rate
𝜇 Infected prey mortality induced by the parasite
𝜈 Infected predator mortality induced by the parasite
General
𝜀 Time scale parameter

Fig. 1. Scheme of the model (2). Blue arrows represent trophic flows, red arrows represent epidemiological interactions (dashed lines) and flow (solid lines) and
black arrows illustrate the death flow. Green lines correspond to reproduction and intraspecific competition death, the processes included in the logistic growth
model. The blue flow 𝐺𝑃𝐼

leaving the 𝑁𝐼 compartment and reaching the 𝑃𝑈 compartment means that energy got from infected prey is converted in predator
eproduction and only uninfected predators are produced. 𝐺𝑃𝑈

measures reproduction of predators that only met uninfected prey. The detailed description of
lows is provided in Table 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

fficiency of consumed prey. The per-capita predator mortality rate is 𝑚 > 0. If we call 𝑁 and 𝑃 the densities of prey and predators,
espectively, the model without parasite becomes

𝑁 ′ = 𝑟𝑁
(

1 − 𝑁
𝐾

)

− 𝑎𝑁𝑃

𝑃 ′ = 𝑒𝑎𝑁𝑃 − 𝑚𝑃
(1)

It entails a stabilization towards the coexistence equilibrium

𝑁∗ = 𝑚
𝑒𝑎

, 𝑃 ∗ = 𝑟
𝑎

(

1 − 𝑚
𝑒𝑎𝐾

)

,

rovided that 𝑁∗ < 𝐾. In the opposite case, 𝑁∗ ≥ 𝐾, predators get extinct and prey tend to their carrying capacity 𝐾 [17].
The manipulation of the parasite can act both on the prey, the intermediate host species, and on the predator, the definitive

ost species [16]. We consider three possible effects on the infected prey: reduction of fertility that can reach castration, increase of
ulnerability to predation, and increase of mortality. On the other hand, the parasite effect on the infected predators are decrease
f fertility, and increase of mortality.

We assume that there is no vertical transmission of the parasites, i.e., all prey and predator newborns are uninfected. The
3

arasite passes into the environment from infected predators. It is then picked up by the prey that so become infected. In turn,
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Table 2
Description of flows represented in Fig. 1.

Flow Description Value

𝑅𝑈 Reproduction of uninfected prey individuals 𝜀𝑟𝑁𝑈
𝑅𝐼 Reproduction of infected prey individuals 𝜀𝑟𝜙𝑁𝐼

𝐶𝑈 Competition induced death of uninfected prey 𝜀𝑟𝑁𝑈
𝑁𝑈+𝑁𝐼

𝐾
𝐶𝐼 Competition induced death of infected prey 𝜀𝑟𝑁𝐼

𝑁𝑈+𝑁𝐼

𝐾
𝑈𝑁𝑈

Uptake of uninfected prey by predators 𝜀𝑎𝑁𝑈 (𝑃𝑈 + 𝑃𝐼 )
𝐺𝑃𝑈

Predator reproduction associated
to predation of uninfected prey 𝜀𝑒𝑎𝑁𝑈 (𝑃𝑈 + 𝜑𝑃𝐼 )

𝑈𝑁𝐼
Uptake of infected prey by predators 𝜀(𝑎 + 𝛼)𝑁𝐼 (𝑃𝑈 + 𝑃𝐼 )

𝐺𝑃𝐼
Predator reproduction associated
to predation of infected prey 𝜀𝑒(𝑎 + 𝛼)𝑁𝐼 (𝑃𝑈 + 𝜑𝑃𝐼 )

𝐼𝑁 Prey infection 𝛽𝑁𝑈𝑃𝐼
𝐼𝑃 Predator infection 𝜆(𝑎 + 𝛼)𝑃𝑈𝑁𝐼
𝑀𝑃𝑈

Uninfected predator mortality 𝜀𝑚𝑃𝑈
𝑀𝑁𝐼

Infected prey mortality due to parasite 𝜀𝜇𝑁𝐼
𝑀𝑃𝐼

Infected predator mortality 𝜀(𝑚 + 𝜈)𝑃𝐼

predators become infected by feeding on infected prey. We consider that all predators participate equally in supplying parasites
to the environment and that all prey have access to it. This leads us to propose a transmission rate from the parasite to the prey
proportional, with transmission coefficient 𝛽 > 0, to the product 𝑁𝑈𝑃𝐼 . It is contacts between infected prey and uninfected predators
that lead to trophic transmission of the parasite. We then assume that the transmission rate of the parasite from the prey to the
predator is proportional, with a coefficient 𝜆 > 0, to the predation term corresponding to these two sub-populations. It is clear that
greater consumption of prey entails an increased risk of transmission.

The fact that the demographic and ecological process is supposed to be slow compared to the transmission of the parasite is
described by means of parameter 𝜀 ≪ 1. The full model in terms of the time scale associated to the transmission process reads as
follows:

𝑁 ′
𝑈 = −𝛽𝑁𝑈𝑃𝐼 + 𝜀

(

𝑟
(

𝑁𝑈 + 𝜙𝑁𝐼
)

− 𝑟𝑁𝑈
𝑁𝑈 +𝑁𝐼

𝐾
− 𝑎𝑁𝑈 (𝑃𝑈 + 𝑃𝐼 )

)

𝑁 ′
𝐼 = 𝛽𝑁𝑈𝑃𝐼 + 𝜀

(

−𝑟𝑁𝐼
𝑁𝑈 +𝑁𝐼

𝐾
− (𝑎 + 𝛼)𝑁𝐼 (𝑃𝑈 + 𝑃𝐼 ) − 𝜇𝑁𝐼

)

𝑃 ′
𝑈 = −𝜆(𝑎 + 𝛼)𝑁𝐼𝑃𝑈 + 𝜀

(

𝑒
(

𝑎𝑁𝑈 + (𝑎 + 𝛼)𝑁𝐼
)

(𝑃𝑈 + 𝜑𝑃𝐼 ) − 𝑚𝑃𝑈
)

𝑃 ′
𝐼 = 𝜆(𝑎 + 𝛼)𝑁𝐼𝑃𝑈 + 𝜀

(

−(𝑚 + 𝜈)𝑃𝐼
)

(2)

In the fast part of the system, the parasite transmission, we assume that recovery does not exist. The model with recovery will
be treated elsewhere.

Concerning the slow part of the system, the trophic relationship, we use the parameters above described (𝑟, 𝐾, 𝑎, 𝑒, and 𝑚), and
the parameters associated to parasite influence.

All prey participate in reproduction, although infected ones may see their fertility rate decreased by a factor 𝜙 ∈ [0, 1] due to
the effects of the parasite. The fact that parasite leads to infected prey castration can be assumed by setting 𝜙 = 0. Both infected
and uninfected prey participate at the same level in competition for resources and, therefore, have the same density-dependent
regulation.

All predators, infected and uninfected, participate equally in the predation process. The increase of vulnerability to predation
due to parasite is defined by parameter 𝛼 > −𝑎. When 𝛼 = 0, infected prey are as likely to be preyed upon as uninfected prey;
when 𝛼 > 0, predators are more likely to capture infected prey; and, when 𝛼 ∈ (−𝑎, 0) the predator preference is for uninfected
prey. Parameter 𝜇 ≥ 0 represents the additional parasite-induced host mortality of infected prey. Similarly, for infected predators,
𝜑 ∈ [0, 1] is the factor describing the decrease of fertility, 𝜑 = 0 stands for their castration, and 𝜈 ≥ 0 is the added parasite-induced
mortality.

3. Model reduction

The reduction method is based on the Geometrical Singular Perturbation Theory (GSPT) initiated by Fenichel [18,19].
Appendix A.1 provides the mathematical details. Roughly, the method consists in transforming the differential system (2) into a
slow–fast form (3) (see below for details). Then we study the fast part of the slow–fast system by setting 𝜀 = 0. If the resulting
subsystem has a hyperbolic stable equilibrium, we then replace the fast variables (here 𝑁𝑈 and 𝑃𝑈 ) by their fast equilibrium value,
which usually depends on the slow variables (here 𝑁 and 𝑃 ) in the slow part. These two steps are detailed below. Let us note here
that the requirement for applying the method is that the fast equilibrium is hyperbolic stable. This can be analysed through the
Jacobian matrix of the fast subsystem (see below). The eigenvalues of this matrix usually depend on the slow variables. When the
values of the slow variables move, the previous requirement can be true at the beginning and become false after some time. In
4

this case, the reduction method is only valid during a fixed period and other arguments are needed to complete the study when
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the required conditions are lost. The mathematical method can be extended to such situation [20–22] and it has been applied in
ecological models [23].

In this section, we build a reduced model with two state variables, the total prey density 𝑁(𝑡) = 𝑁𝑈 (𝑡) + 𝑁𝐼 (𝑡) and the total
redator density 𝑃 (𝑡) = 𝑃𝑈 (𝑡) +𝑃𝐼 (𝑡), such that the solutions of the reduced model are 𝜀-approximations of the 𝑁 and 𝑃 solutions of
he initial model (2). In order to proceed with the reduction, we first write model (2) into the so-called slow–fast form, by making
he following change of coordinates (𝑁𝑈 , 𝑁𝐼 , 𝑃𝑈 , 𝑃𝐼 ) ↦ (𝑁𝑈 , 𝑃𝑈 , 𝑁, 𝑃 ), obtaining:

𝑁 ′
𝑈 = −𝛽𝑁𝑈 (𝑃 − 𝑃𝑈 ) + 𝜀

(

𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) − 𝑟𝑁𝑈
𝑁
𝐾

− 𝑎𝑁𝑈𝑃
)

𝑃 ′
𝑈 = −𝜆(𝑎 + 𝛼)(𝑁 −𝑁𝑈 )𝑃𝑈 + 𝜀

(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈
)(

𝜑𝑃 + (1 − 𝜑)𝑃𝑈
)

− 𝑚𝑃𝑈
)

𝑁 ′ = 𝜀
(

𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) − 𝑟𝑁 𝑁
𝐾

− ((𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈 )𝑃 − 𝜇(𝑁 −𝑁𝑈 )
)

𝑃 ′ = 𝜀
(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈
)(

𝜑𝑃 + (1 − 𝜑)𝑃𝑈
)

− (𝑚 + 𝜈)𝑃 + 𝜈𝑃𝑈
)

(3)

.1. Fast system

The fast system associated to system (3) is obtained by setting 𝜀 = 0. Considering 𝑁 and 𝑃 as nonnegative parameters, we analyse
he next two-dimensional system on the domain of interest  ∶= [0, 𝑁] × [0, 𝑃 ]

𝑁 ′
𝑈 = −𝛽𝑁𝑈 (𝑃 − 𝑃𝑈 )

𝑃 ′
𝑈 = −𝜆(𝑎 + 𝛼)(𝑁 −𝑁𝑈 )𝑃𝑈

(4)

t possesses the parasite-free fast equilibrium

𝐸∗ = (𝑁,𝑃 ),

nd the all infected fast equilibrium

𝐸∗
0 = (0, 0) . (5)

 is positively invariant for system (4).
The Jacobian matrix associated to system (4) is

𝐽 (𝑁𝑈 , 𝑃𝑈 ) =
(

−𝛽(𝑃 − 𝑃𝑈 ) 𝛽𝑁𝑈
𝜆(𝑎 + 𝛼)𝑃𝑈 −𝜆(𝑎 + 𝛼)(𝑁 −𝑁𝑈 )

)

he trace is negative on  − {𝐸∗} so the Bendixon criterium implies that there is no closed orbit inside.
𝐸∗ is a saddle and its stable manifold has an empty intersection with  − {𝐸∗

0}. On the other hand, we have

𝐽 (0, 0) =
(

−𝛽𝑃 0
0 −𝜆(𝑎 + 𝛼)𝑁

)

(6)

o that 𝐸∗
0 is locally asymptotically stable provided 𝑁 ≠ 0 and 𝑃 ≠ 0. The Poincaré-Bendixon theorem yields that all solutions in

− {𝐸∗} tend to 𝐸∗
0 . Hence global asymptotic stability follows as well.

.2. Reduced system

If we substitute the fast equilibrium 𝐸∗
0 (5) into the equations for the slow variables 𝑁 and 𝑃 in system (3) and change to the

low time scale, keeping the same notation for the derivative, we obtain the reduced system

𝑁 ′ = 𝑟𝜙𝑁 − 𝑟
𝐾
𝑁2 − (𝑎 + 𝛼)𝑁𝑃 − 𝜇𝑁

𝑃 ′ = 𝑒𝜑(𝑎 + 𝛼)𝑁𝑃 − (𝑚 + 𝜈)𝑃
(7)

To analyse model (7) we distinguish two cases: 𝑟𝜙 − 𝜇 ≤ 0 and 𝑟𝜙 − 𝜇 > 0.

1. In the absence of predators, parasites prevent prey from growing, 𝑟𝜙 − 𝜇 ≤ 0:
In this case we have for any initial condition, 𝑁(0) = 𝑁0 > 0 and 𝑃 (0) = 𝑃0 > 0, that

𝑁 ′(𝑡) ≤ − 𝑟
𝐾
𝑁2(𝑡),

which straightforwardly yields

𝑁(𝑡) ≤
𝑁0𝐾

𝐾 + 𝑟𝑁0𝑡
⟶
𝑡→∞

0.

Now, for any positive value 𝑑 < 𝑚 + 𝜈 we can find 𝑡𝑑 > 0 such that for 𝑡 ≥ 𝑡𝑑

𝑁(𝑡) ≤ 𝑚 + 𝜈 − 𝑑 ,
5

𝑒𝜑(𝑎 + 𝛼)
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what implies that

𝑃 ′(𝑡) ≤ −𝑑𝑃 (𝑡)

and, therefore, that also 𝑃 (𝑡) tends to 0. So the trivial equilibrium is globally asymptotically stable.
2. In the absence of predators, parasites do let prey grow, 𝑟𝜙 − 𝜇 > 0:

In this case model (7) can be written in the form of model (1):

𝑁 ′ = 𝑟1𝑁
(

1 − 𝑁
𝐾1

)

− 𝑎1𝑁𝑃

𝑃 ′ = 𝑒1𝑎1𝑁𝑃 − 𝑚1𝑃
(8)

where 𝑟1 = 𝑟𝜙 − 𝜇, 𝐾1 =
𝑟𝜙 − 𝜇

𝑟
𝐾, 𝑎1 = 𝑎 + 𝛼, 𝑒1 = 𝑒𝜑 and 𝑚1 = 𝑚 + 𝜈.

Calling 𝑁∗
1 = 𝑚1∕(𝑒1𝑎1), that stands for the prey density balancing predator growth, we can distinguish the two different

asymptotic behaviours that can exhibit model (8):

(a) If 𝑁∗
1 ≥ 𝐾1 there is no positive equilibrium and solutions tend to the free predator equilibrium ∗

𝑈 =
(

𝐾1, 0
)

.
(b) If 𝑁∗

1 < 𝐾1, the positive solutions of model (8) tend to the coexistence equilibrium

∗ =
(

𝑁∗
1 , 𝑃

∗
1
)

=
(

𝑚1
𝑒1𝑎1

,
𝑟1
𝑎1

(

1 −
𝑁∗

1
𝐾1

))

. (9)

3.3. Link between the reduced model (7) and the complete model (2)

In case 2(b) Fenichel’s theorem does apply and, therefore, the asymptotic behaviour of the solutions of the initial model (2)
an be obtained with the help of the fast equilibria (5) and the asymptotic behaviour of the reduced model (8). The approximate
ehaviour consists in individuals in both hosts populations becoming rapidly infected and their total densities tending to ∗. Fig. 2

illustrates that both models exhibit similar densities of the total populations in this case, and the reduced model is obtained with
only infected individuals in both populations.

On the other hand, in cases 1 and 2(a) we note that both, 𝑁 and 𝑃 , or just one, 𝑃 , slow variables tend to 0 so that at least one
of the eigenvalues of the Jacobian matrix (6) tends to vanish and thus Fenichel’s theorem does not apply for an infinite time. As
mentioned at the beginning of this section, the analysis of model (2) cannot be done with the help of the reduced model (7) after
a certain time.

In case 2(a), two sub-cases can be considered: either 𝐾 < 𝑁∗
1 or 𝐾 > 𝑁∗

1 . In the former subcase, the predator goes to extinction
nd consequently the parasite as well, which allows the prey to reach the carrying capacity with only uninfected individuals. The
ext section provides the proof. In the latter subcase, fluctuations may take place. This is also discussed in Section 4.

In case 1, we can show that fluctuations can take place according to the parameter values. This is discussed in Section 4 and the
athematical proof is provided in Appendix A.1.

We saw previously that several cases occur according to the parameter values. Since we are interested in the impact of the
arasite on the predator–prey system, we now translate the above conditions on parameters that distinguish the different cases in
onditions on parameters describing parasite effects. For instance, case 1 corresponds to the condition 𝑟𝜙 − 𝜇 < 0. This condition
xplicitly shows that it is satisfied either if the extra mortality induced by the parasite on the prey is large enough (𝜇 > 𝑟𝜙) or if
he reduction of the prey fertility is strong enough (𝜙 <

𝜇
𝑟

). In cases 2 (a and b), the reversed inequality holds. Furthermore, case

(b) corresponds to the condition 𝑁∗
1 < 𝐾1 that can be rewritten as 𝛼 > −𝑎 +

(𝑚 + 𝜈)𝑟
𝑒𝜑𝐾(𝑟𝜙 − 𝜇)

for instance. This last condition can
be interpreted as a large impact of the parasite on the prey catchability, it corresponds to strong enhancement. The case 2(a) is
subdivided in two subcases. Either 𝐾1 < 𝑁∗

1 < 𝐾, which is equivalent to −𝑎+ 𝑚 + 𝜈
𝑒𝜑𝐾

< 𝛼 < −𝑎+
(𝑚 + 𝜈)𝑟

𝑒𝜑𝐾(𝑟𝜙 − 𝜇)
or 𝐾1 < 𝐾 < 𝑁∗

1 which

is equivalent to 𝛼 < −𝑎+ 𝑚 + 𝜈
𝑒𝜑𝐾

. The former subcase corresponds to an intermediate value of 𝛼 (intermediate enhancement) and the
atter subcase corresponds to a small value of 𝛼, either small enhancement if 𝛼 > 0 of even preference for uninfected prey if 𝛼 < 0.

. Effects of the parasite on the predator–prey community

In this section we present results on the asymptotic behaviour of the solutions of the model (2) that cover all the previous cases
nd subcases. They correspond to four exclusive conditions on the parameters. For each of them, we interpret the results under the
pidemiological point of view, that is, we expose the effect of parasite on the system. We show that the presence of the parasite
ay change the fate of the predator–prey community, which could be different if the parasite was absent. Let us just remind that

n absence of parasite, our model (2) is equivalent to model (1). Consequently, in absence of parasite, either the model reaches a
ositive equilibrium if 𝐾 > 𝑚

𝑒𝑎
or it reaches an equilibrium without predator if 𝐾 < 𝑚

𝑒𝑎
.

Several models have been described in the previous section. We have two equivalent versions of the complete model, the initial
model (2) and its mathematically equivalent slow–fast form (3), needed to apply Fenichel’s theorem. We shall refer in the paper to
model (2) as the complete model. Furthermore, Fenichel’s theory allowed us to get a reduced approximation of the complete model
with model (7). When 𝑟 = 𝑟𝜙 − 𝜇 > 0, this model has a mathematically equivalent form with model (8). We introduced this new
6
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Fig. 2. This figure illustrates the approximation of the abundances of the total populations 𝑁𝑈 +𝑁𝐼 and 𝑃𝑈 +𝑃𝐼 with the complete model (2) by the abundances
of the total populations 𝑁 and 𝑃 simulated with the reduced model (8). Here, the parameter values are 𝜀 = 0.01, 𝛽 = 8, 𝑎 = 0.1, 𝑒 = 0.2, 𝐾 = 3, 𝑚 = 0.3, 𝑟 = 1,
𝛼 = 2, 𝜆 = 5, 𝜇 = 0.1, 𝜈 = 0.3, 𝜑 = 1, and 𝜙 = 0.9. The initial conditions are 𝑁𝑈 (0) = 0.1, 𝑁𝐼 (0) = 0.1, 𝑃𝑈 (0) = 0.5 and 𝑃𝐼 (0) = 0.5 for the complete model and
(0) = 0.2 and 𝑃 (0) = 1 for the reduced model.

ersion because it has a very common form and it is well-known. Thus each time it is meaningful, that is when 𝑟1 > 0, we refer to
odel (8) as the reduced model.

The section is organized as follows. In the first subsection, we deal with the case 1 described in the previous section, that is
1 = 𝑟𝜙 − 𝜇 < 0, the parasite prevents the prey from growing and we show that it can lead to fluctuations. The other subsections
ssume that 𝑟1 > 0 and a decreasing impact of the parasite on the prey catchability (𝛼) from Section 4.2 where 𝛼 > −𝑎 + (𝑚+𝜈)𝑟

𝑒𝜑𝐾(𝑟𝜙−𝜇)
(case 2.b of the previous section) to Section 4.4 where −𝑎 < 𝛼 < −𝑎 + 𝑚+𝜈

𝑒𝜑𝐾 . Section 4.3 corresponds to the intermediate situation
−𝑎 + 𝑚+𝜈

𝑒𝜑𝐾 < 𝛼 < −𝑎 + (𝑚+𝜈)𝑟
𝑒𝜑𝐾(𝑟𝜙−𝜇) . Thus Sections 4.3 and 4.4 deal with the two subcases 2.a of the previous section.

4.1. Parasite prevents prey from growing (𝑟𝜙 − 𝜇 < 0)

We consider here the situation where 𝑟1 = 𝑟𝜙 − 𝜇 < 0, or in other words in which the prey intrinsic growth rate 𝑟 reduced by
the fertility factor 𝜙 becomes less than the extra mortality rate 𝜇 induced by the parasite. At first glance, we may conclude that the
prey, having a negative growth rate, would go to extinction, leading then the specialist predator to extinction as well. However,
when the predator density is low, the parasite cannot spread in the prey population, thus the effect of parasites decreases. What
would thus be the dynamics in this case? Actually, as it is illustrated on Fig. 3, the model can exhibit either a stable equilibrium or
fluctuations. In both cases, the reduced model presented in the previous section cannot be used.

We prove in Appendix A.1 (Theorem 2) that fluctuations can take place, explain why and provide some sufficient conditions
for their existence. Note that the fluctuations are induced by the presence of the parasite because if all individuals were initially
uninfected, the model would reach an equilibrium. Roughly speaking, the mechanism of the fluctuations can be described as follows:
when the populations are infected, the prey collapses because its fertility is reduced and its mortality increased, which leads to the
reduction of predators and hinders the spread of the parasite; once the predator and infected prey densities are low, prey can grow,
causing predators to grow again and facilitating the spread of the parasite, starting a new cycle. From a mathematical point of view,
the proof of the existence of fluctuations is done by showing that there exists a sequence of times 𝑇𝑛 tending to infinity such that
f 𝑛 is even, the number of prey 𝑁(𝑇𝑛) is very low (of order of 𝜀) and that when 𝑛 is odd, 𝑁(𝑇𝑛) is 𝜀-close to 𝑚+𝜈

𝑒𝜑(𝑎+𝛼) . The existence
of this sequence is obtained by showing that the (𝑁,𝑃 ) components of solutions of the complete model (2) can be sequentially
approximated by solutions of the reduced model (7) and by solutions of the reduced model (22) alternatively. Model (22) is an
approximation of the complete model (2), also obtained from Fenichel’s theorem, but valid in the vicinity of {𝑃 = 0}, that is when
the predator density is rather low.

Furthermore, if the attack rate 𝑎 is small enough, it may imply that the reduced predator growth prevents fluctuations. Indeed,
ig. 3 shows that the parameter 𝑎 has an impact on the dynamics: when 𝑎 is small, the model reaches an equilibrium while when 𝑎

is large enough, oscillations appear and their amplitude is larger for larger 𝑎. Moreover, for a given 𝑎, an increase of the parameter
7
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Fig. 3. This figure illustrates the dynamics of total prey and predator populations for the complete model (2) in the case where 𝑟𝜙 − 𝜇 < 0. Two examples are
rovided, an equilibrium is reached in the first one (top panel) while fluctuations take place in the second one (bottom panel). Here, the parameter values are
= 0.01, 𝛽 = 0.2, 𝑒 = 0.2, 𝐾 = 3, 𝑚 = 0.01, 𝑟 = 1, 𝛼 = 0.7, 𝜆 = 1, 𝜇 = 0.1, 𝜈 = 0.1, 𝜑 = 1, and 𝜙 = 0.05. The top panel is obtained with 𝑎 = 0.8 while the bottom
anel is obtained with 𝑎 = 2.5. The initial conditions for both simulations are 𝑁𝑈 (0) = 0.1, 𝑁𝐼 (0) = 0.04, 𝑃𝑈 (0) = 0.42 and 𝑃𝐼 (0) = 0.05. Note that we added the
quilibrium value (black dashed lines on the top panel) of model (22) to illustrate that it provides a good approximation of the complete model (2) when is
as a stable equilibrium.

Fig. 4. This figure illustrates the effect of increasing the vulnerability to predation 𝛼 on the dynamics of model (2) in the case where 𝑟𝜙 − 𝜇 < 0. When 𝛼 is
mall (no or low manipulation), the population reaches an equilibrium, the asymptotic total prey population density, which is shown in the figure. Increasing 𝛼
eads to a destabilization of the equilibrium and the population tends to fluctuate between the two values represented in the figure. The parameter values are
= 0.01, 𝛽 = 0.2, 𝑎 = 1.2, 𝑒 = 0.2, 𝐾 = 2.8, 𝑚 = 0.01, 𝑟 = 1, 𝜙 = 0.05, 𝜆 = 1, 𝜇 = 0.1, 𝜈 = 0.1, 𝜑 = 1, and 𝛼 is varied in the range [0, 𝑎]. The initial conditions are
𝑈 (0) = 0.5, 𝑃𝑈 (0) = 1, 𝑁𝐼 (0) = 0.5 and 𝑃𝐼 (0) = 1.
8
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Fig. 5. This figure illustrates the effect of the infected prey fertility reduction parameter 𝜙 on the dynamics of the model (2) in the case where 𝑟𝜙 − 𝜇 < 0.
hen 𝜙 is very small (strong fertility reduction), the prey population density tends to oscillate between the two values represented in the figure. Increasing 𝜙

eads to stabilization on the equilibrium shown in the figure. The parameter values are 𝜀 = 0.01, 𝛽 = 0.2, 𝑎 = 1.2, 𝑒 = 0.2, 𝐾 = 2.8, 𝑚 = 0.01, 𝑟 = 1, 𝛼 = 0.7, 𝜆 = 1,
= 0.1, 𝜈 = 0.1, 𝜑 = 1, and 𝜙 is varied in the range [0.01, 0.1]. The initial conditions are 𝑁𝑈 (0) = 0.5, 𝑃𝑈 (0) = 1, 𝑁𝐼 (0) = 0.5 and 𝑃𝐼 (0) = 1.

leads to an increase of the fluctuation amplitude. More precisely, increasing the value of parameter 𝛼 can either destabilize an
quilibrium for small 𝑎 (see Fig. 4) or just increase the amplitude of oscillations for large 𝑎.

In this subsection, the presence of the parasite leads to a negative prey growth rate 𝑟𝜙 − 𝜇 but if the prey density becomes low
nough, the predator decreases and this reduces the impact of the parasite. Thus the dynamics of the full model is clearly a balance
etween positive interactions (impact of prey on predators) and negative indirect feedback of the parasite which needs predators to
urvive. If one of the processes become too intense, fluctuations take place: it can be the manipulation of the prey by the parasite
parameter 𝛼), the reduction of the prey fertility (parameter 𝜙), see Fig. 5, just to give two examples.

.2. Parasite has a strong impact on the prey catchability (𝑟𝜙 − 𝜇 > 0, large 𝛼)

We assume here that 𝑟1 = 𝑟𝜙 − 𝜇 > 0 and that 𝛼 > −𝑎 + (𝑚+𝜈)𝑟
𝑒𝜑𝐾(𝑟𝜙−𝜇) , which is equivalent to 𝐾1 > 𝑁∗

1 , the case 2.b of the
revious section. Let us remind that under these conditions, the reduction method assumptions are satisfied, as soon a 𝜀 is small
nough, which is assumed here. If we also assume that 𝑒𝑎𝐾 − 𝑚 < 0 (which is compatible with the conditions on the parameters
ssumed previously in this subsection), the complete model (2) exhibits a bistability. Depending on the initial conditions, either the
rajectory goes to the equilibrium (𝐾, 0, 0, 0) or the trajectory reaches a stable equilibrium where both 𝑁 and 𝑃 are strictly positive
nd provided in formula (9). Let us remind that the equilibrium (𝐾, 0, 0, 0) corresponds to a situation where the predator is absent
nd all the prey are uninfected. However, the other equilibrium corresponds to a situation with prey and predator populations
oexisting. Furthermore, the set {(𝑁𝑈 , 𝑁𝐼 , 𝑃𝑈 , 𝑃𝐼 ), 𝑁𝑈 = 𝑁 > 0, 𝑁𝐼 = 0, 𝑃𝑈 = 𝑃 , 𝑃𝐼 = 0} is included in the stable manifold of the
quilibrium (𝐾, 0, 0, 0). Accordingly, if there is no parasite in the system at 𝑡 = 0, then the predator population will go to extinction
nd the prey population reaches its carrying capacity. However, if the numbers of infected prey and infected predators are not
oo small initially, then a positive equilibrium with prey and predators is reached. The notable issue is that, under the previous
onditions, we could have extinction of the predator without parasite while the predator reaches a positive equilibrium when the
arasite is present. Fig. 6 illustrates this phenomenon. This means that the persistence of the trophic community is the consequence
f the pathogen interaction.

The results explained just above are rather straightforward now if we use model (3), the slow–fast version of the complete model
2). The equilibrium with no predator and no parasite, with these coordinates, is (𝐾, 0, 𝐾, 0). We first show that this equilibrium
s locally hyperbolic stable with a small basin of attraction, that is the size of the basin of attraction is of order of 𝜀. model (3)
dmits (𝐾, 0, 𝐾, 0) as a locally asymptotically stable equilibrium because, the Jacobian matrix of system (3) at this equilibrium has
he following eigenvalues:

𝛾1 = −𝜀(𝑚 − 𝑒𝑎𝐾), 𝛾2 = −𝜀𝑟, 𝛾3 = −𝜀(𝑟 + 𝜇), 𝛾4 = −𝜀(𝑚 + 𝜈),

hich are all strictly negative since we assumed that 𝑒𝑎𝐾 − 𝑚 < 0. However, as it can be seen on the previous expressions, the
igenvalues are of order of 𝜀 and this means that the basin of attraction of this equilibrium can be very small.
9
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Fig. 6. This figure illustrates that in model (2) the parasite can favour predator–prey coexistence in the case where 𝑟𝜙 − 𝜇 > 0 and large 𝛼. If parasites are
nitially present (continuous curves), predators can invade, whereas the opposite happens in the absence of parasites (dashed curves). Here, the parameter values
re 𝜀 = 0.01, 𝛽 = 8, 𝑎 = 0.1, 𝑒 = 0.2, 𝐾 = 3, 𝑚 = 0.3, 𝑟 = 1, 𝛼 = 2, 𝜆 = 5, 𝜇 = 0.1, 𝜈 = 0.3, 𝜑 = 1, and 𝜙 = 0.9. The initial conditions are 𝑁𝑈 (0) = 0.2, 𝑁𝐼 (0) = 0,
𝑈 (0) = 1 and 𝑃𝐼 (0) = 0 for the simulation without parasite and 𝑁𝑈 (0) = 0.1, 𝑁𝐼 (0) = 0.1, 𝑃𝑈 (0) = 0.5 and 𝑃𝐼 (0) = 0.5 for the simulation with parasite.

Moreover, let us consider an initial condition with no parasite. Since 𝑁𝐼 = 0 and 𝑃𝐼 = 0 are invariant conditions under the
low of (2), it follows that this model can be reduced to model (1). And as we reminded in the first section, if 𝑒𝑎𝐾 − 𝑚 < 0, the
redator gets extinct. Thus each trajectory with an initial condition of the form (𝑁, 0, 𝑁, 𝑃 ) in model (3) is in the basin of attraction
f (𝐾, 0, 𝐾, 0).

Let us now consider an initial condition with 0 < 𝑁 < 𝐾 and 𝑃 > 0. As explained in Section 3, the complete model can thus
e reduced and the reduced model governing the total population densities 𝑁 and 𝑃 has a globally asymptotically stable positive
quilibrium (9). Accordingly, the complete model has a stable equilibrium that can be reached by certain initial conditions and
here the prey and predator populations coexist.

This illustrates the fact that a large enough enhancement (parameter 𝛼) transforms a non viable predator–prey community into
permanent coexisting one. Parasite may play a key role in community stability [16].

.3. Parasite has an intermediate impact on prey catchability (intermediate values of 𝛼)

Here we focus on the case where 𝑟𝜙 − 𝜇 > 0 and 𝛼 has an intermediate value:

− 𝑎 + 𝑚 + 𝜈
𝑒𝜑𝐾

< 𝛼 < −𝑎 +
(𝑚 + 𝜈)𝑟

𝑒𝜑𝐾(𝑟𝜙 − 𝜇)
(10)

The second inequality in (10) is equivalent to 𝐾1 < 𝑁∗
1 , which means that with the reduced model (8), the predator population

would go to extinction. However, as we discussed in Section 2, in this case the reduced model is not a good approximation of the full
model (2) because, since the predator density goes to zero, it leaves the domain where the Fenichel’s theorem applies. We provide
the mathematical treatment of this case in Appendix A.2. Roughly, the dynamics can be understood as follows. First, because the
infection is a fast process, the number of infected prey and predator will increase and then the reduced model (8) provides a good
approximation of the full model during a given time length. This corresponds to a decrease of the predator population (both infected
and uninfected subpopulations). After some time, the approximation fails and since the predator is low, we can reduce the full model
to a 3-dimensional system (see Appendix A.2 for more details). This reduced model can have several types of equilibrium according
to the value of the carrying capacity 𝐾 : one with predator extinction and another one with coexistence of prey and predators,
the latter at a low density. More precisely, if the carrying capacity is lower than 𝐾𝑐 = 𝑚 + 𝜈

𝑒𝜑𝑎
, the predator goes to extinction, the

parasite disappears and the uninfected prey population reaches the carrying capacity 𝐾. If the carrying capacity is larger than 𝐾𝑐 , the
predators can be maintained, but at a very low density, which leads the prey almost uninfected and close to the carrying capacity.
We show in Appendix A.2 that the threshold for the carrying capacity that distinguished the two previous dynamics is 𝐾𝑐 =

𝑚 + 𝜈
𝑒𝜑𝑎

and this threshold belongs to the range of values of 𝐾 compatible with the parameter conditions of this subsection. The appendix
also contains simulations that illustrate the two configurations highlighted in this subsection.
10
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4.4. The parasite has a low impact on prey catchability (low value of 𝛼)

We now assume that 𝑟𝜙 − 𝜇 > 0 and

− 𝑎 < 𝛼 < −𝑎 + 𝑚 + 𝜈
𝑒𝜑𝐾

(11)

Condition (11) is equivalent to 𝐾 < 𝑁∗
1 , which also involves that 𝐾1 < 𝑁∗

1 since 𝐾1 < 𝐾 always holds. We also assume here that
𝑒𝑎𝐾 − 𝑚 > 0 thus if there is no parasite initially, as we already said and shown in Section 2, the prey and predator populations
coexist at equilibrium (like in model (1) which is equivalent to our complete model when the parasite is absent). We now see in
this subsection that in presence of the parasite, the predator is excluded.

The proof of the predator exclusion in model (2) is still based on the Fenichel’s theorem, but it requires something more than
the mere information obtained from the reduced model (7). We work on model (3), equivalent to model (2). For a set of initial
conditions (𝑁𝑈 (0), 𝑃𝑈 (0), 𝑁(0), 𝑃 (0)) of model (3), one can apply Fenichel theory for 𝜀 small enough (Appendix A.1.1 provides a
tatement of the theorem) and, then, the solutions of model (8) are used to approximate 𝑁(𝑡) and 𝑃 (𝑡) in model (3), as long as 𝑃 (𝑡)
eeps large enough. Under the conditions (11), 𝑃 decreases to 0 in model (8) and, thus, after some time, the approximation fails.
hen it fails, 𝑃 (and so also 𝑃𝑈 ) is of order of 𝜀 and we can, therefore, normalize the variables 𝑃 and 𝑃𝑈 in model (3) as follows:

𝑃 = 𝜀𝑃 and 𝑃𝑈 = 𝜀𝑃𝑈 (12)

nd so model (3) takes the following form:

𝑁 ′
𝑈 = 𝜀

(

−𝛽𝑁𝑈 (𝑃 − 𝑃𝑈 ) + 𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) −
𝑟
𝐾𝑁𝑈𝑁

)

+ 𝑂(𝜀2)

𝑃 ′
𝑈 = −𝜆(𝑎 + 𝛼)(𝑁 −𝑁𝑈 )𝑃𝑈 + 𝜀

(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈
)(

𝜑𝑃 − (1 − 𝜑)𝑃𝑈
)

− 𝑚𝑃𝑈
)

𝑁 ′ = 𝜀
(

𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) −
𝑟
𝐾𝑁2 − 𝜇(𝑁 −𝑁𝑈 )

)

+ 𝑂(𝜀2)

𝑃 ′ = 𝜀
(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈
)(

𝜑𝑃 − (1 − 𝜑)𝑃𝑈
)

− (𝑚 + 𝜈)𝑃 + 𝜈𝑃𝑈
)

(13)

This is again a slow–fast system, which is equivalent to model (3) (and (2)) as long as the trajectory remains in the region of the
phase space where condition (12) is valid. One then applies the Fenichel’s theory as done in Section 3. First, we set 𝜀 = 0, which
tells us that 𝑃𝑈 rapidly reaches a value close to 0, and then we replace 𝑃𝑈 by 𝑂(𝜀) in the slow equations. We make a change of time
for using a slow time scale, and keeping the same notations for the time derivative, the model (13) reduces to:

𝑁 ′
𝑈 = −𝛽𝑁𝑈𝑃 + 𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) −

𝑟
𝐾𝑁𝑈𝑁 + 𝑂(𝜀)

𝑁 ′ = 𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) −
𝑟
𝐾𝑁2 − 𝜇(𝑁 −𝑁𝑈 ) + 𝑂(𝜀)

𝑃 ′ = 𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈
)

𝜑𝑃 − (𝑚 + 𝜈)𝑃

(14)

ote that 𝑁 ≤ 𝐾 is a positively invariant region, thus one can assume without loss of generality that 𝑁𝑈 (𝑡) ≤ 𝑁(𝑡) ≤ 𝐾, which
llows us to conclude that:

𝑃 ′ ≤ (𝑒𝜑(𝑎 + 𝛼)𝐾 − (𝑚 + 𝜈))𝑃 = 𝑒𝜑(𝑎 + 𝛼)(𝐾 −𝑁∗
1 )𝑃

his inequality, together with (11), allows us to prove that 𝑃 tends to 0 at least exponentially fast. Thus, after some time, 𝑃 is 𝜀
lose to 0. Taking this into account and changing the variable 𝑁𝑈 by 𝑁𝐼 = 𝑁 −𝑁𝑈 , the other two equations of (14) can be written
s follows

𝑁 ′
𝐼 = −(𝑟𝑁𝐾 + 𝜇)𝑁𝐼 + 𝑂(𝜀)

𝑁 ′ = 𝑟
(

𝑁 − (1 − 𝜙)𝑁𝐼
)

− 𝑟
𝐾𝑁2 − 𝜇𝑁𝐼 + 𝑂(𝜀)

(15)

The first equation in (15) shows that 𝑁𝐼 (𝑡) also tends at least exponentially fast to 0. Note that in this case, we cannot use directly
the model (15) as an approximation of the complete model (3) but a new renormalization adding 𝑁𝐼 = 𝜀𝑁̄𝐼 would lead to a similar
dynamics. Thus, we can show that 𝑃 and 𝑁𝐼 tends to 0 and this leads the variable 𝑁 to follow the equation:

𝑁 ′ = 𝑟𝑁(1 − 𝑁
𝐾

)

and we can conclude that 𝑁(𝑡) and 𝑁𝑈 (𝑡) tend to 𝐾.
To summarize, if the parasite is initially absent then the populations of prey and predators coexist at equilibrium, whereas, if

the parasite is initially introduced into the system, the predators become extinct and, therefore, the parasites too. This is illustrated
in Fig. 7.

5. Conclusions

In this paper, we present an original model to study the effects of a manipulative trophically transmitted parasite on a predator–
prey community. The model has been built trying, on the one hand, to include enough complexity and, on the other hand, to
preserve to a large extent mathematical tractability. The complexity allows us to represent in some detail the impact of the parasite
11

on the predator–prey community. Mathematical tractability entails understanding the processes involved and their results. We show
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Fig. 7. This figure illustrates the extinction of the predator population induced by the parasite in model (2) in the case where 𝑟𝜙 − 𝜇 > 0 and low 𝛼. Indeed,
when there is no parasite in the initial condition, the predator and the prey densities reach a positive equilibrium value (dashed curves). However, in presence
of parasite, the predator goes extinct (continuous curves). The parameter values are 𝜀 = 0.01, 𝛽 = 0.2, 𝑎 = 1.5, 𝑒 = 0.2, 𝐾 = 2, 𝑚 = 0.01, 𝑟 = 2, 𝜙 = 0.1, 𝜆 = 1,

= 0.1, 𝜈 = 0.1, 𝜑 = 0.1, and 𝛼 = 0.7. The initial conditions are 𝑁𝑈 (0) = 0.5, 𝑁𝐼 (0) = 0, 𝑃𝑈 (0) = 0.5 and 𝑃𝐼 (0) = 0 for the simulation without parasite and
𝑈 (0) = 0.4, 𝑁𝐼 (0) = 0.1, 𝑃𝑈 (0) = 0.4 and 𝑃𝐼 (0) = 0.1 for the simulation with parasite.

hat the model can reproduce patterns observed in real cases, see references in Section 9.4 of Hughes et al. [8]. One of them is the
ermanence of the predator–prey community induced by the parasite, that is, the coexistence of the community in the presence
f the parasite for values of the parameters that would imply the extinction of the predator in its absence. We also show that the
arasite can generate population densities fluctuations in circumstances that without the parasite would lead to a stable equilibrium
ituation.

We provide analytical conditions under which we can conclude the fate of the population densities. Our analytical results are
llustrated and completed by numerical simulations. The mathematical analysis of the model requires methods of reduction to
implify the study. These methods are based on the fact that changes between the infection states (uninfected versus infected)
re much faster than the ecological processes (growth, predation, and mortality). Roughly speaking, a first step consists in using
quasi-steady state assumption and the Fenichel’s theorem to reduce the dimension of the model. In case where the assumptions

f the theorem are only valid during a transient time, we complete the study by considering different possible reduction models
henever possible.

Five parameters of our model allow us to represent different aspects of the manipulation of prey or predators by the parasite (see
able 1). We obtain results that help us to better understanding the effect of these parameters on the dynamics of the predator–prey
ystem.

An important result is obtained when 𝑟𝜙 − 𝜇 > 0 (the parasite allows the prey to grow in the absence of the predator). In this
ase, increasing the parameter 𝛼 has a stabilizing effect, which can even lead to predator–prey coexistence in the form of stable
quilibrium in circumstances that, without the parasite, would drive the predator to extinction, as it is explained in Section 4.2.
arasites that follow this strategy are called enhancer-parasites [11]. The results of the presented model (2) suggest, according
o empirical evidence [24], that enhanced vulnerability leads to a stable coexistence equilibrium. This contrasts with the results
btained from other models [10] which, instead, predict a destabilization of the system.

On the other hand, a different result, when 𝑟𝜙−𝜇 < 0 (the parasite prevents the prey from growing in the absence of the predator),
hows that the parasite can lead to populations fluctuations, which is obtained when the prey vulnerability 𝛼 is increased, as it is
llustrated in Fig. 4.

In the absence of the parasite, the asymptotic behaviour of model (2) consists only of stable equilibria. Depending on the
cological parameters values, the system would tend to maintain only the prey population (poor environment) or to the prey-
redator coexistence (rich environment). We show that increasing the prey mortality induced by the parasite 𝜇 or decreasing the
nfected prey fertility 𝜙 may lead the predator–prey community to fluctuate, see Fig. 5 for an illustration of the effect of 𝜙 reduction.
hese results are detailed in Section 4.1.

We provide a mechanism based on the mathematical arguments of the appendix, that is summarized as follows. Suppose the
arasite has a strong impact on both fertility and mortality of infected prey, to the point that infected prey have a low or even
12

egative growth rate. As parasite transmission is rapid compared to population dynamics, this reduction in growth rate can be
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considered to affect all prey. Also assume that when the prey growth rate is positive, the carrying capacity of the prey in the
presence of the parasite is so small that the predator cannot survive in a constant environment. In this case, the predator will
start to collapse, and then the parasite is no longer able to infect the prey. Prey then slowly will increase with mostly uninfected
individuals. Since there is still a positive, albeit small, number of predators in the system, and the number of prey has increased
sufficiently, the predators begin to grow again. This increases the transmission of the parasite, which again leads to the spread of
the infection among the prey. This is the point at which the rapid development of the parasite is repeated, which is followed by the
infection of almost all the prey, its collapse, then the near extinction of the predators and the parasite, and so on. This is a heuristic
explanation of the proof given in the appendix, which allows us to understand under which conditions this will occur.

In the same way, we can conclude with our study that decreasing the infected predators fertility 𝜑 leads to an increase of 𝑁∗
1 ,

hich can result in predator extinction, as detailed in Section 4.4. Increasing the infected predator extra-mortality induced by the
arasite 𝜈 has the same effect.

Results of this paper have been obtained from the model (2) which is obviously based on specific assumptions. Our results
re not sensitive on some of them, for instance we simulated the model with a Holling Type II functional response instead of the
inear one and could see that, for the range of parameters we used, the qualitative results were unchanged. It is therefore a future
ork to extend them on a structurally different model based on Holling-Tanner formulation. This would allow to consider predator

eproduction in a very different way to validate the present results in a more general context. Another extension that we aim to
eal with concerns the existence of a recovery state.

cknowledgements

Authors are supported by Ministerio de Ciencia e Innovación (Spain) (MCIN/AEI/10.13039/501100011033), Project PID2020-
14814GB-I00.

The work of E. Venturino was partially supported by the local research project ‘‘Metodi numerici per l’approssimazione e le
cienze della vita’’ of the Dipartimento di Matematica ‘‘Giuseppe Peano’’, of the Università di Torino.

ppendix

.1. Appendix 1: Case where 𝑟𝜙 − 𝜇 < 0

This appendix is dedicated to the mathematical analysis of the complete model (2) when 𝑟𝜙 − 𝜇 < 0, and we mainly show the
existence of a periodic solution and we provide conditions under which the complete model (2) exhibits fluctuations. We remind
first that this model is equivalent to model (3), which reads:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑁𝑈
𝑑𝜏

= −𝛽𝑁𝑈 (𝑃 − 𝑃𝑈 ) + 𝜀

(

𝑟(1 − 𝜙)𝑁𝑈 + 𝑟𝜙𝑁 − 𝑟
𝐾𝑁𝑈𝑁 − 𝑎𝑁𝑈𝑃

)

𝑑𝑃𝑈
𝑑𝜏

= −𝜆(𝑎 + 𝛼)(𝑁 −𝑁𝑈 )𝑃𝑈 + 𝜀

(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈

)(

(1 − 𝜑)𝑃𝑈 + 𝜑𝑃
)

− 𝑚𝑃𝑈

)

𝑑𝑁
𝑑𝜏

= 𝜀

(

𝑟(1 − 𝜙)𝑁𝑈 + 𝑟𝜙𝑁 − 𝑟𝑁
2

𝐾 − 𝑎𝑁𝑃 − 𝛼(𝑁 −𝑁𝑈 )𝑃 − 𝜇(𝑁 −𝑁𝑈 )

)

𝑑𝑃
𝑑𝜏

= 𝜀

(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈

)(

(1 − 𝜑)𝑃𝑈 + 𝜑𝑃
)

− (𝑚 + 𝜈)𝑃 + 𝜈𝑃𝑈

)

(16)

here (𝑁𝑈 , 𝑃𝑈 , 𝑁, 𝑃 ) ∈  with  the phase space defined as:

 = {(𝑁𝑈 , 𝑃𝑈 , 𝑁, 𝑃 )∕𝑁 ≥ 0, 𝑃 ≥ 0, 0 ≤ 𝑁𝑈 ≤ 𝑁, 0 ≤ 𝑃𝑈 ≤ 𝑃 }

This part is devoted to the study of the dynamics of the trophically transmitted parasite model when the model reduced to the slow
manifold leads to (𝑁,𝑃 ) = (0, 0) as a stable equilibrium. Since, in this case, the real parts of the Jacobian matrix of the fast system
tend to 0, the trajectory enters a region of the phase space where the Fenichel’s theory does not apply. We then provide elements to
understand the dynamical behaviour of the system and prove that fluctuations occur in the complete system. But in order to clarify
our approach, we first remind Fenichel’s theorem and this gives us the arguments and notations to explain what is going on when
the assumptions are not satisfied.

A.1.1. Statement of Fenichel’s theorem
We assume that in the previous model, 𝜀 is a small positive parameter. We add the equation 𝑑𝜀

𝑑𝜏
= 0. For all 𝑁 ≥ 0 and all 𝑃 ≥ 0,

(0, 0, 𝑁, 𝑃 , 0) is an equilibrium. The jacobian matrix of the system at this equilibrium is:

𝐽 (𝑁,𝑃 ) =

⎛

⎜

⎜

⎜

⎜

⎜

−𝛽𝑃 0 0 0 ∗
0 −𝜆(𝑎 + 𝛼)𝑁 0 0 ∗
0 0 0 0 ∗
0 0 0 0 ∗

⎞

⎟

⎟

⎟

⎟

⎟

(17)
13

⎝
0 0 0 0 0

⎠
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This matrix admits three vanishing eigenvalues and 2 negative eigenvalues −𝛽𝑃 and −𝜆(𝑎+𝛼)𝑁 , which are strictly negative as long
as 𝑁 > 0 and 𝑃 > 0. We can apply the following theorem due to Fenichel [18,19]:

heorem 1 (Fenichel, 1979).With the above notation, for every compact set  ⊂ (R+∗)2, and for every positive integer 𝑘 ∈ N, there exists
a strictly positive real number 𝜀0 and a 𝑘 map denoted by 𝛹 , defined from  × [0, 𝜀0] to R2 such that:

• (𝛹 (𝑁,𝑃 , 0), 𝑁, 𝑃 , 0) is an equilibrium for all (𝑁,𝑃 ) ∈ ;
• the graph of 𝛹 is an invariant manifold  under the flow of the differential system;
• this graph is tangent to the centre space 𝐸𝐶 (𝑁,𝑃 ) of 𝐽 (𝑁,𝑃 ) at each equilibrium point (𝛹 (𝑁,𝑃 , 0), 𝑁, 𝑃 , 0).

Let 𝜀 ∈ [0, 𝜀0] as in the previous theorem and let denote by 𝜀 the graph of the map 𝛹 restricted to  × {𝜀}. Since the non
vanishing eigenvalues have strictly negative real parts for all (𝑁,𝑃 ) ∈ , the manifold 𝑀𝜀 is attracting for model (16), that is all
trajectories starting from an initial condition (𝑁𝑈 (0), 𝑃𝑈 (0), 𝑁(0), 𝑃 (0)) such that (𝑁(0), 𝑃 (0)) ∈  jumps to 𝑀𝜀 and remains close to
this manifold as long as the required conditions of Theorem 1 are satisfied.

Remark. note that if 𝑁 or 𝑃 is close to 0, one or both negative eigenvalues is also close to 0.

In order to apply this theorem, we first consider the case 𝜀 = 0, which gives the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑁𝑈
𝑑𝜏

= −𝛽𝑁𝑈 (𝑃 − 𝑃𝑈 )

𝑑𝑃𝑈
𝑑𝜏

= −𝜆(𝑎 + 𝛼)(𝑁 −𝑁𝑈 )𝑃𝑈

𝑑𝑁
𝑑𝜏

= 0

𝑑𝑃
𝑑𝜏

= 0

𝑑𝜀
𝑑𝜏

= 0

(18)

called the fast system. Clearly, (𝑁𝑈 , 𝑃𝑈 ) tends to (0, 0), or in other words, the function 𝛹 of the previous theorem satisfies
𝛹 (𝑁,𝑃 , 0) = (0, 0). Let us consider a compact set  in the positive domain of the (𝑁,𝑃 ) variables. There is a positive number
0 such that for all 𝜀 < 𝜀0, there exists an invariant manifold 𝜀 on which the model (16) can be written as the following slow
ystem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑁
𝑑𝑡

= 𝑟1𝑁(1 − 𝑁
𝐾1

) − (𝑎 + 𝛼)𝑁𝑃 + 𝑂(𝜀)

𝑑𝑃
𝑑𝑡

= 𝑒(𝑎 + 𝛼)𝜑𝑁𝑃 − (𝑚 + 𝜈)𝑃 + 𝑂(𝜀)

(19)

where 𝑡 = 𝜀𝜏, 𝑟1 = 𝑟𝜙 − 𝜇 and 𝐾1 = 𝐾
𝑟1
𝑟

.

Assumption (𝐴1).we assume here that 𝑟1 < 0.

It follows from assumption (𝐴1) that 𝑑𝑁
𝑑𝑡

< 0 and thus 𝑁(𝑡) tends to 𝑂(𝜀) as 𝑡 goes to infinity. Consequently, 𝑃 (𝑡) shall also go
o 𝑂(𝜀). These results follow from the reduced slow system. But as we said above, when 𝑁 or 𝑃 become too small, the reduction

Fenichel’s theorem does not apply anymore.

A.1.2. Fluctuations: result and proof
We show now that fluctuations take place under some conditions that are provided in the proof. We first introduce a notation

that allows to give a clear statement of the result. We denote by 𝜌, the following combination of parameters:

𝜌 =
𝑟𝛼2(𝑚 + 𝜈)

(

𝑟(𝑚 + 𝜈) + (𝜇 − 𝑟𝜙)𝑒𝜑𝐾(𝑎 + 𝛼)
)

(

(𝑟(1 − 𝜙) + 𝜇)𝐾𝑒𝜑(𝑎 + 𝛼)2 + (𝑟𝜙 − 𝜇)𝛼𝐾𝑒𝜑(𝑎 + 𝛼) − 2𝑟𝛼(𝑚 + 𝜈)
)2

(20)

ssumption (𝐴2).We assume that the combination of parameters in formula (20) is very small: 𝜌 = 𝑂(𝜀), while 𝛼 = 𝑂(1). Note that
e provide in the remark at the end of the proof several ways to satisfy this assumption.

heorem 2. We assume (𝐴1) and (𝐴2) for model (16). For all 𝜉𝑁 > 0 arbitrarily small, there exists 𝜀 > 0 such that for all 𝜀 in [0; 𝜀0],
14

here exists a compact set in the phase space such that for all solutions with an initial conditions in this compact set, there exists a sequence
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Fig. 8. This figure illustrates the relation between the amplitude of the fluctuations of the prey abundance and the value of the parameter 𝜌. The simulations
are done with model (2) and the parameter values are 𝜀 = 0.01, 𝛽 = 0.2, 𝑒 = 0.2, 𝑚 = 0.01, 𝑟 = 1, 𝑎𝑙𝑝ℎ𝑎 = 0.7 𝜆 = 1, 𝜇 = 0.1, 𝜈 = 0.1, 𝜑 = 1, 𝜙 = 0.05, with initial
conditions (𝑁𝑈 (0), 𝑁𝐼 (0), 𝑃𝑈 (0), 𝑃𝐼 (0)) = (0.1, 0.04, 0.42, 0.05). Two sets of simulations are done. The first one (blue crosses) is obtained by varying 𝑎 from 0.8 to
2.5 (note that increasing 𝑎 leads to decrease 𝜌 here). The second one (red symbols) is obtained by varying 𝐾 from 2 to 6 (note again that an increase of 𝐾
orresponds here to a decrease of 𝜌. It turns out as explained in the text that the lower the parameter 𝜌, the larger the fluctuation amplitude. (For interpretation
f the references to colour in this figure legend, the reader is referred to the web version of this article.)

𝑇𝑛}𝑛∈N with 𝑇𝑛 → +∞ when 𝑛 goes to infinity, 𝑁(𝑇𝑛) = 𝑂(𝜉𝑁 ) if 𝑛 is even and 𝑁(𝑇𝑛) = 𝑁∗
1 + 𝑂(𝜀) where 𝑁∗

1 = 𝑚 + 𝜈
𝑒𝜑(𝑎 + 𝛼)

for all odd 𝑛.
This means that the prey population fluctuates with an amplitude of order 𝑁∗

1 (which does not decrease to 0 when 𝜀 goes to 0).

The technical condition 𝜌 = 𝑂(𝜀) is a sufficient condition in our theorem. We illustrate this on Fig. 8, where several combinations
of parameters giving different values of 𝜌 are used to simulate the model (2). For low values of 𝜌, the model exhibit fluctuations
and the amplitude of these fluctuations decreases when 𝜌 is increased.

To prove the theorem, we first need the two following lemmas.

Lemma 3. Let 𝜉 > 0 a real number. There exists a compact set  ⊂ {(𝑁,𝑃 )∕𝑁 ≥ 0, 𝑃 ≥ 0} such that all trajectories of model (19) starting
in  leave  by the set {𝑁 = 𝜉} if 𝜀 is small enough.

Proof. Let 𝑃𝑀 be a large real number. We define 𝑀1 (see Fig. 9) as the intersection between the trajectory of model (19) starting
from 𝑀0 = (𝐾, 𝑃𝑀 ) and the line {𝑁 = 𝜉}, and let 𝛤01 the trajectory between 𝑀0 and 𝑀1: this trajectory exists since 𝑁(𝑡) tends to
0. Let us now remind that 𝑁∗

1 = 𝑚+𝜈
𝑒𝜑(𝑎+𝛼) and that the straight line 𝑁 = 𝑁∗

1 divides the half plane in two region, 𝑃 is increasing
when 𝑁 > 𝑁∗

1 and decreasing when 𝑁 < 𝑁∗
1 . We then consider the point 𝑀2 at the intersection between the trajectory of model

(19) starting from 𝑀3 = (𝑁∗
1 , 𝜉) and the line {𝑁 = 𝜉}. We denote by 𝛤32 the trajectory between 𝑀2 and 𝑀3 (note that we can

chose 𝑃𝑀 large enough such that the trajectory 𝛤01 is above the trajectory 𝛤32 in the 2D phase space {(𝑁,𝑃 )∕𝑁 ≥ 0, 𝑃 ≥ 0}).
We finally define the point 𝑀4 = (𝐾, 𝜉). The set bounded by 𝛤01, the line [𝑀1,𝑀2], the trajectory 𝛤32, the line [𝑀3,𝑀4] and the
line [𝑀4,𝑀0] is a compact set denoted . It is straightforward to check that all trajectories starting in  leave this set by the line
[𝑀1,𝑀2] ⊂ {𝑁 = 𝜉}. □

Lemma 4. Let 𝜉 be a positive real such that 𝜉 < 𝑁∗
1 and 𝜀 small enough. All trajectories of model (16) starting outside regions

𝑁 = {(𝑁𝑈 , 𝑃𝑈 , 𝑁, 𝑃 );𝑁 ≤ 𝜉} and 𝑃 = {(𝑁𝑈 , 𝑃𝑈 , 𝑁, 𝑃 );𝑃 ≤ 𝜉} but in the vicinity of an invariant manifold of Fenichel’s theorem
will enter 𝑁 and then leave it through 𝑃 .

Proof. According to Lemma 3, the trajectory enters the region 𝑁 . Once in this region, from the last equation of model (16), one
gets:

𝑑𝑃
𝑑𝑡

≤ 𝑒(𝑎 + 𝛼)𝑁𝜑𝑃 − (𝑚 + 𝜈)𝑃

≤ 𝑒((𝑎 + 𝛼)𝜉𝜑 − (𝑚 + 𝜈))𝑃
15
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Fig. 9. Scheme illustrating the set in the (𝑁,𝑃 ) plane from which all trajectories of model (19) leave at the boundary {𝑁 = 𝜉𝑁}, as set in the proof of Lemma 3.

and it follows that 𝑃 (𝑡) ≤ 𝑃0 exp((𝑒(𝑎 + 𝛼)𝜉𝜑 − (𝑚 + 𝜈))𝑡) which tends to 0, thus the trajectory will enter the region 𝑃 . □

We can now prove the theorem.

Proof. Let us consider a trajectory of model (16) which is initially neither in region 𝑁 nor in region 𝑃 . For 𝜀 small enough
and according to Fenichel’s theorem, after a short transient time, this trajectory is close to an invariant 2-dimensional manifold on
which the dynamics is described by model (19). Lemmas 3 and 4 allow us to conclude that there is a time 𝑇0 > 0 such that the
trajectory enters 𝑁 at time 𝑇0, thus 𝑁(𝑇0) = 𝜉. Moreover, the trajectory will later enter region 𝑃 .

In order to follow the trajectory after it enters region 𝑃 with 𝜉 a small number, we make the following rescaling. We set
𝑃𝑈 = 𝜀2𝑃𝑈 and 𝑃𝐼 = 𝜀𝑃𝐼 in model (2), which leads to the following model:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑁𝑈
𝑑𝜏

= −𝜀𝛽𝑁𝑈𝑃𝐼 + 𝜀
(

𝑟(𝑁𝑈 + 𝜙𝑁𝐼 ) − 𝑟𝑁𝑈
𝑁𝑈+𝑁𝐼

𝐾

)

+ 𝑂(𝜀2)

𝑑𝑁𝐼
𝑑𝜏

= 𝜀𝛽𝑁𝑈𝑃𝐼 − 𝜀
(

𝑟𝑁𝐼
𝑁𝑈 +𝑁𝐼

𝐾
+ 𝜇𝑁𝐼

)

+ 𝑂(𝜀2)

𝑑𝑃𝑈
𝑑𝜏

= −𝜆(𝑎 + 𝛼)𝑁𝐼𝑃𝑈 + 𝑒
(

𝑎𝑁𝑈 + (𝑎 + 𝛼)𝑁𝐼

)

𝜑𝑃𝐼 + 𝑂(𝜀)

𝑑𝑃𝐼
𝑑𝜏

= 𝜀𝜆(𝑎 + 𝛼)𝑁𝐼𝑃𝑈 − 𝜀(𝑚 + 𝜈)𝑃𝐼

(21)

model (21) is a slow–fast system to which we can apply Theorem 1. From this, we can show that 𝑃𝑈 shall reach a so-called ’’fast’’
equilibrium which depends on 𝑁𝑈 , 𝑁𝐼 and 𝑃𝐼 . Moreover, as long as 𝑁𝐼 is not too small (of order of 𝜀), the long-term dynamics (or
so called slow dynamics) is governed by:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝑁𝑈
𝑑𝑡

= −𝛽𝑁𝑈𝑃𝐼 + 𝑟(𝑁𝑈 + 𝜙𝑁𝐼 ) −
𝑟
𝐾𝑁𝑈 (𝑁𝑈 +𝑁𝐼 ) + 𝑂(𝜀)

𝑑𝑁𝐼
𝑑𝑡

= 𝛽𝑁𝑈𝑃𝐼 − 𝑟𝑁𝐼
𝐾 (𝑁𝑈 +𝑁𝐼 ) − 𝜇𝑁𝐼 + 𝑂(𝜀)

𝑑𝑃𝐼
𝑑𝑡

= 𝑒(𝑎𝑁𝑈 + (𝑎 + 𝛼)𝑁𝐼 )𝜑𝑃𝐼 − (𝑚 + 𝜈)𝑃𝐼 + 𝑂(𝜀)

(22)

We now study this model by neglecting the terms of order of 𝜀. There are 2 equilibria with 𝑃𝐼 ≠ 0. Indeed, vanishing the 𝑃𝐼 equation
and assuming that 𝑃𝐼 ≠ 0, we obtain:

𝑁𝐼 = 𝑚 + 𝜈
𝑒𝜑(𝑎 + 𝛼)

− 𝑎
𝑎 + 𝛼

𝑁𝑈 = 𝑁∗
1 − 𝑎

𝑎 + 𝛼
𝑁𝑈 (23)

In order to find the number of uninfected prey, we add the two first equations in model (22) and replace 𝑁𝐼 by the previous
expression, we thus obtain a second degree equation:

2

16

𝑐2𝑁𝑈 + 𝑐1𝑁𝑈 + 𝑐0 = 0



Nonlinear Analysis: Real World Applications 79 (2024) 104123J.-C. Poggiale et al.

N

L

W
a

S

m
o

T
l

T

where

𝑐2 = 𝑟
𝐾

( 𝛼
𝑎 + 𝛼

)2

𝑐1 = 2𝑟
𝐾

𝛼
𝑎 + 𝛼

𝑁∗
1 − 𝑟 − (𝜇 − 𝑟𝜙) 𝑎

𝑎 + 𝛼
𝑐0 = (𝜇 − 𝑟𝜙)𝑁∗

1 + 𝑟
𝐾
(𝑁∗

1 )
2

ote that we are assuming that the parameters satisfy that

• 𝑐1 < 0;
• 𝑐2 > 0;
• under assumption (𝐴1), 𝑐0 > 0.

et us define 𝛥 as:

𝛥 = 𝑐21 − 4𝑐0𝑐2 = 𝑐21 (1 − 4
𝑐0𝑐2
𝑐21

) (24)

It is a straightforward calculation to show that:

𝛥 = 𝑐21 (1 − 4𝜌)

where 𝜌 is defined as:

𝜌 =
𝑟𝛼2(𝑚 + 𝜈)

(

𝑟(𝑚 + 𝜈) + (𝜇 − 𝑟𝜙)𝑒𝜑𝐾(𝑎 + 𝛼)
)

(

(𝑟(1 − 𝜙) + 𝜇)𝐾𝑒𝜑(𝑎 + 𝛼)2 + (𝑟𝜙 − 𝜇)𝛼𝐾𝑒𝜑(𝑎 + 𝛼) − 2𝑟𝛼(𝑚 + 𝜈)
)2

e consider a parameter combination such that 𝜌 = 𝑂(𝜀) (assumption (𝐴2)), thus we can write 𝜌 as 𝜌 = 𝜀𝜌̄. According to these
ssumption and notation, 𝛥 = 𝑐21 (1 − 4𝜀𝜌̄), thus 𝛥 > 0 and the solutions of Eq. (24) are real numbers defined as:

𝑁+
𝑈 =

−𝑐1 +
√

𝛥
2𝑐2

> 0

𝑁−
𝑈 =

−𝑐1 −
√

𝛥
2𝑐2

> 0

Vanishing the equation of 𝑁𝑈 allows us to calculate the equilibria values for 𝑃 and this shows that two positive equilibria exists.
ince 𝑐1 < 0, one can write

√

𝛥 as:
√

𝛥 = −𝑐1 + 𝑂(𝜀) (25)

which implies that we can write 𝑁−
𝑈 = 𝜀𝑁̄−

𝑈 and 𝑁+
𝑈 = − 𝑐1

𝑐2
. For each of these values of 𝑁𝑈 , we can associate an equilibrium of

odel (22). We show in Lemma 5 that the equilibrium associated to 𝑁+
𝑈 is not possible in the positive domain. Thus there exists

nly one positive equilibrium for model (22). The density of infected predators associated to this equilibrium is given by:

𝑃−
𝐼 = 𝑟

𝛽

(

1 + 𝜙
𝑁∗

1
𝑁−

𝑈
+ 𝜙 𝑎

𝑎 + 𝛼
− 1

𝐾
(𝑁∗

1 + 𝛼
𝑎 + 𝛼

𝑁−
𝑈 )

)

(26)

With the assumptions of the theorem, it follows that 𝑃−
𝐼 = 𝑂(1∕𝜀) and thus 𝑃−

𝐼 = 𝑂(1). More precisely, 𝑃−
𝐼 can be as large as we

want provided 𝜌 is small enough. And since 𝑃− ≥ 𝑃−
𝐼 , 𝑃 can be larger than the number 𝜉 chosen in Lemma 4 for instance. Thus

there exists a time 𝑇 > 𝑇 ′
0 such that 𝑃 (𝑇 ) = 𝜉. Since for 𝑡 ∈]𝑇0; 𝑇 ′

0 [ the trajectory is in 𝑃 , 𝑃 is thus increasing at time 𝑇 ′
0 while it

was decreasing at time 𝑇0. There is thus a time 𝑇1 ∈]𝑇0; 𝑇 ′
0 [ such that 𝑑𝑃

𝑑𝑡
= 0 with 𝑃 ≠ 0. This occurs in 𝑃 for 𝑁(𝑇1) = 𝑁∗

1 +𝑂(𝜀).
hus we have 𝑁(𝑇0) = 𝑂(𝜉𝑃 ) and 𝑁(𝑇1) = 𝑁∗

1 + 𝑂(𝜀). When 𝑃𝐼 is large enough, the approximation of model (16) by (22) is no
onger valid. It means that the trajectory of model (16) is entering  at time 𝑇 ′

0 , thus the same reasoning can be applied recursively
to show Theorem 2.

It remains to prove that the equilibrium (𝑁−
𝑈 , 𝑁

−
𝐼 , 𝑃

−
𝐼 ) is stable when 𝑁 − 𝑈− = 𝑂(𝜀) for model (22). In order to do this, we

consider the Jacobian matrix of the corresponding differential system at the equilibrium:

𝐽𝐸𝑞 = 𝜀

⎛

⎜

⎜

⎜

⎜

⎝

−𝛽𝑃−
𝐼 + 𝑟 − 𝑟

𝐾 (2𝑁−
𝑈 +𝑁−

𝐼 ) 𝑟𝜙 − 𝑟
𝑁−

𝑈
𝐾 −𝛽𝑁−

𝑈

𝛽𝑃−
𝐼 − 𝑟

𝑁−
𝐼
𝐾 −𝑟

𝑁−
𝑢 +2𝑁−

𝐼
𝐾 − 𝜇 𝛽𝑁−

𝑈

𝑒𝑎𝜑𝑃−
𝐼 𝑒(𝑎 + 𝛼)𝜑𝑃−

𝐼 0

⎞

⎟

⎟

⎟

⎟

⎠

he eigenvalues of this matrix are the solutions of the following characteristic equation:

𝛾3 + 𝑎1𝛾
2 + 𝑎2𝛾 + 𝑎3 = 0

with

𝑎1 = 𝑟𝜙
𝑁−

𝐼
− + 3𝑟

𝑁−
𝐼
− − 𝑟

𝑁−
𝑈 +𝑁−

𝐼 + 𝑂(𝜀) > 0
17

𝑁𝑈 𝑁𝑈 𝐾
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c

w

b
g

𝑎2 = (𝛽𝑃−
𝐼 + 𝑟 − 𝑟

𝑁−
𝐼

𝐾
)2𝑟

𝑁−
𝐼

𝐾
− 𝑟𝜙(𝛽𝑃−

𝐼 − 𝑟
𝑁−

𝐼
𝐾

) + 𝑂(𝜀)

𝑎3 =

(

𝛽𝑒(𝑎 + 𝛼)𝜑𝑟(1 +
𝑁−

𝐼
𝐾

)𝑃−
𝐼 + (𝜇 − 𝑟𝜙)𝛽𝑒𝑎𝜑𝑃−

𝐼 + 2𝛽𝑒𝑎𝜑 𝑟
𝐾
𝑁−

𝐼 𝑃
−
𝐼

)

𝑁−
𝑈 + (𝜀2)

The equilibrium is locally asymptotically stable if (Routh - Hurwitz criterion) one has:

𝑎1 > 0

𝑎3 > 0

𝑎1𝑎2 > 𝑎3

Since 𝑁−
𝑈 = 𝑂(𝜀), it is straightforward to see that 𝑎1, 𝑎2 and 𝑎3 are all strictly positive and since 𝑎3 = 𝑂(𝜀), one gets that 𝑎1𝑎2 > 𝑎3.

Thus the equilibrium is stable. □

Remark. actually, we built an continuous map from  to  which thus has a fixed point from Brouwer’s theorem, and this fixed
point corresponds to a periodic solution of model (16). Thus the model admits a periodic solution.

Remark. the relation 𝜌 = 𝑂(𝜀) can be reached by many ways. Among them, we mention 𝐾 = 𝑂(1∕𝜀) or 𝑎 = 𝑂(1∕𝜀1∕3) for instance.

Lemma 5. The equilibrium (𝑁+
𝑈 , 𝑁

+
𝐼 , 𝑃

+
𝐼 ) when 𝜌 = 0(𝜀) in the proof of Theorem 2 is not in the positive domain.

Proof. In order to prove this result, we first show that 𝑁+
𝑈 + 𝑁+

𝐼 > 𝐾. Indeed, we have 𝑁+
𝑈 = − 𝑐1

𝑐2
+ 𝑂(𝜀) and a straightforward

omputation leads to:

𝑁+
𝑈 +𝑁+

𝐼 = 𝑎 + 𝛼
𝑎

(1 + (
𝜇
𝑟
− 𝜙) 𝑎

𝑎 + 𝛼
)𝐾 > 𝐾 (27)

The region of the phase space {(𝑁𝑈 , 𝑁𝐼 , 𝑃𝐼 ), 0 ≤ 𝑁𝑈 , 0 ≤ 𝑁𝐼 , 0 ≤ 𝑃𝐼 , 𝐾 < 𝑁𝑈 + 𝑁𝐼} cannot contain any equilibrium because the
derivative of 𝑁𝑈 +𝑁𝐼 is strictly negative in this region for model (22). Thus if the derivative of this expression is vanishing, it needs
that 𝑃𝐼 < 0. This completes the proof. □

A.2. Appendix 2: Case where 𝑟𝜙 − 𝜇 > 0, 𝐾1 < 𝑁∗
1 < 𝐾

In this case, for adequate initial conditions, the complete model (3) can be approximated by the reduced model (8) for a finite
length of time. Indeed, as said in the main text, since we assume that 𝐾1 < 𝑁∗

1 , the predator population goes to extinction in the
reduced model, and since the state variable 𝑃 (𝑡) is decreasing to 0, the assumptions required for the Fenichel’s theorem are not
satisfied after a given time 𝑇0. More precisely, let us consider a compact set  ⊂ {(𝑁,𝑃 )∕𝑁 > 0, 𝑃 > 0}, there exists 𝜀0 > 0 such
that for all 𝜀 < 𝜀0, the theorem applies as long as the slow state vector (𝑁(𝑡), 𝑃 (𝑡)) remains in . Since 𝑃 (𝑡) goes to 0 with the slow
system, there is a time 𝑇0 at which the slow trajectory leaves the compact set . After this time, it is required to consider the full
system but since we know that 𝑃 (𝑡) is close to 0 (and then that 𝑃𝑢 is small as well), we have to consider the full system in a region
of the phase space where the following change of variables is meaningful:

𝑃 = 𝜀𝑃 𝑃𝑈 = 𝜀𝑃𝑈 (28)

With this change of variables, the full model reads:

𝑁 ′
𝑈 = −𝜀𝛽𝑁𝑈 (𝑃 − 𝑃𝑈 ) + 𝜀𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) − 𝜀𝑟𝑁𝑈

𝑁
𝐾

+ 𝑂(𝜀2)

𝑃 ′
𝑈 = −𝜆(𝑎 + 𝛼)(𝑁 −𝑁𝑈 )𝑃𝑈 + 𝜀

(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈
)(

𝜑𝑃 + (1 − 𝜑)𝑃𝑈
)

− 𝑚𝑃𝑈
)

𝑁 ′ = 𝜀
(

𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) − 𝑟𝑁 𝑁
𝐾

− 𝜇(𝑁 −𝑁𝑈 )
)

+ 𝑂(𝜀2)

𝑃 ′ = 𝜀
(

𝑒
(

(𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈
)(

𝜑𝑃 + (1 − 𝜑)𝑃𝑈
)

− (𝑚 + 𝜈)𝑃 + 𝜈𝑃𝑈
)

(29)

here the time derivative is done with respect to the fast time 𝜏.
Again, under conditions required by the Fenichel’s theorem, this model can be reduced to a 3-dimensional system where 𝑃𝑈 can

e replaced by 0 because in the previous model, the fast part contains only the 𝑃𝑈 equation and this equation has only 𝑃𝑈 = 0 as a
lobally hyperbolic stable equilibrium. This equilibrium is hyperbolic stable as long as 𝑁 and 𝑁𝑈 are not too close.

The reduced model reads:

𝑁 ′
𝑈 = −𝛽𝑁𝑈𝑃 + 𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) − 𝑟𝑁𝑈

𝑁
𝐾

+ 𝑂(𝜀)

𝑁 ′ = 𝑟(𝜙𝑁 + (1 − 𝜙)𝑁𝑈 ) − 𝑟𝑁 𝑁
𝐾

− 𝜇(𝑁 −𝑁𝑈 ) + 𝑂(𝜀)

′ ( )

(30)
18

𝑃 = 𝑒𝜑 (𝑎 + 𝛼)𝑁 − 𝛼𝑁𝑈 𝑃 − (𝑚 + 𝜈)𝑃 + 𝑂(𝜀)
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Fig. 10. This figure compares the complete and the reduced models when the equilibrium 𝐸1 of model (30) is stable. The grey curve corresponds to the complete
model (2) while the black one is got with the reduced model (30). As it can be seen, the curves of the complete and reduced models are very close. Parameter
values are 𝛽 = 0.2, 𝑎 = 2.5, 𝑒 = 0.2, 𝐾 = 2, 𝑚 = 0.01, 𝑟 = 2, 𝜙 = 0.1, 𝜆 = 1, 𝜇 = 0.1, 𝜈 = 0.1, 𝜑 = 0.1, 𝛼 = 0.7 and 𝜀 = 0.01.

here the time derivative is now with respect to the slow time 𝑡. We study this model neglecting the terms 𝑂(𝜀) in each equation.
In order to describe the equilibria in a simple way, let us introduce some notations. We set:

𝛿 = 𝛼
𝑎 + 𝛼

𝐵 = 𝑟1 +
𝑟 − 𝑟1
𝛿

and 𝛥 = 𝐵2 − 4 𝑟
𝐾

𝑟 − 𝑟1
𝛿

𝑁∗
1 (31)

model (30) may admit 3 equilibria:

𝐸1 =
⎛

⎜

⎜

⎝

𝐾
𝐾
0

⎞

⎟

⎟

⎠

𝐸2 =
⎛

⎜

⎜

⎝

𝑁+
𝑈

𝑁+

𝑃+

⎞

⎟

⎟

⎠

𝐸3 =
⎛

⎜

⎜

⎝

𝑁−
𝑈

𝑁−

𝑃−

⎞

⎟

⎟

⎠

(32)

here

𝑁+ = 𝐾
𝐵 +

√

𝛥
2𝑟

, 𝑁+
𝑈 =

𝑁+ −𝑁∗
1

𝛿
𝑃+ = 𝑟

𝛽

(

𝜙𝑁+

𝑁+
𝑈

+ (1 − 𝜙) − 𝑁+

𝐾

)

(33)

and similarly

𝑁− = 𝐾
𝐵 −

√

𝛥
2𝑟

, 𝑁−
𝑈 =

𝑁− −𝑁∗
1

𝛿
𝑃− = 𝑟

𝛽

(

𝜙𝑁−

𝑁−
𝑈

+ (1 − 𝜙) − 𝑁−

𝐾

)

(34)

Lemma 6. The equilibrium 𝐸1 is locally stable for model (30) if and only if 𝐾 < 𝑚 + 𝜈
𝑒𝜑𝑎

. Moreover, under the same conditions, (𝐾, 0, 𝐾, 0)
s a stable equilibrium for model (3).

roof (Sketch of Proof). The local stability of 𝐸1 easily follows from the Jacobian matrix study. However, in this case, since 𝑁𝑈
nd 𝑁 are getting closer, the trajectory will leave the domain of application of the reduction theorem (30). Since this occurs when

and 𝑁𝑈 are close, we consider the full model still setting 𝑃 = 𝜀𝑃 and 𝑃𝑈 = 𝜀𝑃𝑈 , but also adding 𝑁𝑢 = 𝑁 − 𝜀𝑁̄𝐼 . Doing this
change of variables leads again to conclude that 𝑃 (𝑡) and 𝑃𝑈 (𝑡) tend to 0 and then 𝑁(𝑡) and 𝑁𝑈 (𝑡) tend to 𝐾. Thus the equilibrium
1 remains a local attractor for the state (𝑁𝑈 , 𝑁, 𝑃 ) for the complete model and 𝑃𝑈 also goes to zero. □

In this case, the epidemic is excluded from the system and it is illustrated on Fig. 10.
We now state the lemma for the existence of positive equilibria.

emma 7. Let us assume that 𝑟, 𝜙 and 𝜇 are such that 𝑟1 = 𝑟𝜙−𝜇 be strictly positive. There exists a range of values of 𝑚, 𝜈, 𝑒 and 𝜑 such
19

hat the two following inequalities are simultaneously satisfied:
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𝜑

F

Fig. 11. This figure compares the complete and the reduced models when the equilibrium 𝐸3 of model (30) is stable. The grey curve corresponds to the complete
model (2) while the black one is got with the reduced model (30). As it can be seen, the curves of the complete and reduced models are very close. Moreover,
the dashed lines represent the equilibrium 𝐸2 coordinates. Parameter values are 𝛽 = 0.2, 𝑎 = 2.5, 𝑒 = 0.2, 𝐾 = 2.5, 𝑚 = 0.01, 𝑟 = 2, 𝜙 = 0.1, 𝜆 = 1, 𝜇 = 0.1, 𝜈 = 0.1,
= 0.1, 𝛼 = 0.7 and 𝜀 = 0.01. In this case, we have 𝐾 > 𝑚 + 𝜈

𝑒𝜑𝑎
.

• 𝐾1 < 𝑁∗
1

• 𝛥 > 0

urthermore, under these conditions, the model (30) admits 2 positive equilibria 𝐸2 and 𝐸3 provided previously.

Proof. The first item can be written as follows:
𝑚 + 𝜈
𝑒𝜑

>
𝑟1
𝑟
𝐾(𝑎 + 𝛼) (35)

Moreover, the second item is equivalent to 𝐵2 > 4 𝑟
𝐾

𝑟 − 𝑟1
𝛿

𝑁∗
1 . This inequality can be written as follows:

𝑚 + 𝜈
𝑒𝜑

< 𝛼𝐾
4𝑟(𝑟 − 𝑟1)

(

𝑟1 +
𝑟 − 𝑟1
𝛿

)2
(36)

Thus in order to get both items together, the next inequality is necessary and sufficient:
𝑟1
𝑟
𝐾(𝑎 + 𝛼) < 𝛼𝐾

4𝑟(𝑟 − 𝑟1)

(

𝑟1 +
𝑟 − 𝑟1
𝛿

)2
(37)

Some simple calculus allows to show that this last inequality is equivalent to:
(

(𝛿 + 1)𝑟1 + 𝑟
)2 > 0 (38)

which is obviously true. Consequently, all combinations of parameters 𝑚, 𝜈, 𝑒 and 𝜑 satisfying the following constraint fulfil the
items of the lemma.

𝑟1
𝑟
𝐾(𝑎 + 𝛼) < 𝑚 + 𝜈

𝑒𝜑
< 𝛼𝐾

4𝑟(𝑟 − 𝑟1)

(

𝑟1 +
𝑟 − 𝑟1
𝛿

)2
(39)

Under the conditions provided by these items, 𝑁− and 𝑁+ are well defined and are both positive, because from the definition of 𝛥
it is clear that 𝐵 >

√

𝛥 > 0 and thus 0 < 𝑁− < 𝑁+. The inequality 𝑁∗
1 > 𝐾1 is equivalent to 𝑁− > 𝑁∗

1 and thus in this case we also
have 𝑁+ > 𝑁∗

1 which ensures that 𝑁+
𝑈 and 𝑁−

𝑈 are positive. Finally, regarding 𝑃−, we have:

𝑃− = 𝑟
𝛽

(

𝜙(𝑁
−

𝑁−
𝑈

− 1) + 1 − 𝑁−

𝐾

)

(40)

Since 𝐾 > 𝑁− > 𝑁−
𝑈 , the right hand side of the previous equality is obviously positive. We also show that 𝑃+ > 0 in a very similar

way.
20
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As a consequence, model (30) admits 𝐸2 and 𝐸3 as positive equilibria. □

In the latter case, we illustrate on Fig. 11 that the reduced model (30) and the full model (3) are very close and that the system
reaches the equilibrium 𝐸2 (dashed line).
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