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Abstract 18 
Single molecule localization microscopy (SMLM) has revolutionized the understanding of 19 
cellular organization by reconstructing informative images with quantifiable spatial 20 
distributions of molecules far beyond the optical diffraction limit. Much effort has been devoted 21 
to optimizing localization accuracy. Among them, assessing the quality of SMLM data in real-22 
time, rather than after lengthy post-acquisition analysis, represent a computational challenge.  23 
Here, we overcome this difficulty by implementing an innovative mathematical approach to 24 
drastically reduce the computational analysis of particle localization. We have therefore 25 
designed the Quality Control Map (QCM) workflow to process data at a much higher rate than 26 
that limited by the frequency required by current cameras. Moreover, QCM requires no 27 
parameters other than the PSF radius characteristic of the optical system and only a GPU card 28 
to reach its computational speed. Thus, QCM is robust and adaptable to any type of input data. 29 
Finally, the QCM off-line mode can be used to evaluate synthetic or previously acquired data, 30 
and as a tool for teaching the basic concepts of the SMLM approach. 31 
 32 
Teaser 33 
QCM, a parameter-free algorithm, calculates indicators for instant feedback on single-34 
molecule localization precision experiments  35 
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INTRODUCTION 36 
In system biology, the combination of “omic” approaches can benefit significantly from Smart 37 
Microscopy (SM) to bridge the gap between cellular events and organism-level phenomena, 38 
enabling the unravelling of complex biological networks (1). By providing key spatio-temporal 39 
observables, photonic microscopy has become the cornerstone of scientific research in biology, 40 
to which SM is giving it a new technological breath (2). Innovative SM approach combines 41 
cutting-edge hardware, sophisticated software and powerful algorithms to facilitate the use of 42 
increasingly complex microscope modalities. As anticipated, SM offers the possibility of 43 
combine imaging procedures thanks to automated data acquisition in a single experiment, in a 44 
simplified and reproducible way. As the amount of information increases, approaches based on 45 
real-time analysis or machine learning algorithms enable acquisition parameters to be adjusted 46 
on the fly (3) and/or large quantities of data to be processed to identify patterns, anomalies and 47 
subtle changes, ultimately enabling autonomous decision-making or rapid and accurate 48 
diagnosis (4). Thus, next-generation microscopes are poised to assist humans in automating the 49 
acquisition and analysis of data in regions of interest driven by specific events. To this purpose, 50 
it is necessary to provide real-time feedback to adjust parameters, optimize imaging conditions 51 
and dynamically explore samples. 52 
This requirement is particularly relevant to photonic microscopy approaches based on single-53 
molecule localization microscopy (SMLM), which has revolutionized the understanding of 54 
cellular organization by reconstructing informative images at the nanoscale (5-8). SMLM 55 
observations can inherently produce well-resolved images from which biologically relevant 56 
information can be determined such as the nanostructure and stoichiometry of macromolecular 57 
complexes (9), provided that the SMLM data production process is properly mastered to resolve 58 
a given biological question (10, 11). In this respect, many efforts have been made to optimize 59 
not only the sample preparation (unbiased fixation, labeling procedures, etc.) (12-16), but also 60 
the acquisition modalities  (laser power, camera integration time, stabilized optical systems etc.) 61 
(17-20) or the design of dedicated quantitative analytical methods (21-23). 62 
The overall process of generating SMLM data, which includes image acquisition, handling and 63 
analysis, is time-consuming, and results are highly dependent on the quality of the data acquired 64 
to achieve a given localization accuracy and to avoid misleading interpretations. Therefore, a 65 
computational challenge is to estimate this localization accuracy before rather than after data 66 
acquisition to save time and avoid losing valuable samples (Fig. 1a). Still, most of software 67 
packages ensure robust quantitative a posteriori analysis (see for review (24, 25)), assuming 68 
that the data have been recorded appropriately for reconstructing super-resolution images, given 69 
that no further adjustment or correction of the acquisition parameters can be made like NanoJ-70 
SQUIRREL (26) or SuperStructure (27). For instance, the former provides a quantitative 71 
assessment of SMLM results by generating a quantitative evaluation of super-resolution images 72 
to help experimenters optimize imaging parameters; this approach is based on comparing 73 
diffraction-limited images and super-resolution equivalents. 74 
Consequently, analytical tools for assessing the quality and robustness of SMLM data at any 75 
time such as those enabling a priori quantitative control of data, are therefore in high demand 76 
from a broad community of cell biologists (Fig. 1a). The aim is to carry out analyses in real 77 
time in order to adjust the acquisition parameters for optimal data recording. This approach 78 
should make it possible to avoid time-consuming and unnecessary data acquisition, when a 79 
posteriori analysis will reveal only poor-quality and misleading data. Some strategies have 80 
implemented new computational strategies to speed up image acquisition or processing (28, 81 
29). Computer architecture design is another means of achieving high computing performance  82 
(26, 28, 30-33). For instance, QC-STORM (30), a GPU-based software package, performs real-83 
time image processing and generates a list of particle localization, but lacks precise 84 
quantification, relies only on indicators on the full dataset and provides only histograms. 85 
Another method computes the Fourier Ring Correlation measurement in real-time (34). 86 
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Alternatively, hardware developments have been implemented to compute multi-emitter fitting 87 
in real-time (32). 88 
Considering that the expected localization accuracy is directly dependent on two parameters -  89 
the signal-to-noise ratio (SNR) and the particle density per frame (Dframe) - we have 90 
implemented the Quality-Control Maps (QCM), a parameter-free algorithm that represents a 91 
major advance in the SMLM field and extends the SPT and SMLM algorithms previously 92 
developed (35, 36). Here, by implement an original mathematical approach, we were been able 93 
to harness the computing power of conventional computers to carry out the analysis of 94 
2048 × 2048 pixels images at a rate of over 100 frames/second, which is sufficient for real-time 95 
analysis. 96 
The special feature of QCM is that it displays in real-time quantitative maps and histograms of 97 
local (zoomed-in areas) and global (full frame) of a set of indicators to assess the quality of 98 
SMLM data in an easily understandable way thanks to its color coding. These include the PSF 99 
size in xy, and xyz positions, signal-to-noise ratio (SNR), background, intensity, and precision 100 
of localization. It should be noted that another major advance of QCM relies on the SNR (in 101 
dB) as the most relevant contrast parameter for summarizing expected achievable precision; 102 
indeed, the root mean square of the localization precision when expressed by SNR depends 103 
weakly on noise model or density/frame (see in Mailfert et al. (35) the Materials and Methods 104 
section and Fig. S1).  105 
Thus, the workflow of the Quality-Control Maps (QCM) software has been designed to conduct 106 
real-time analysis of data, providing users with key observables in the decision-making process. 107 
If the results do not meet predetermined criteria such as a given accuracy of molecular 108 
localization, users can intervene on the setup, ensuring optimal acquisitions in line with the 109 
FAIR principles (37). Used prior to acquisition (Fig. 1b, left panel), QCM primarily saves time, 110 
improves data relevance and reduces data storage requirements. In addition, the use of QCM 111 
for post-acquisition data analysis provides a standardized tool for educational purposes or for 112 
peer review of data (Fig. 1b, right panel). 113 
 114 
RESULTS 115 
The QCM heuristic 116 
The QCM algorithm is divided into two main modules, Ultra-Fast Unsupervised Localization 117 
(UFUL) and Quality Control (QC) (Fig. 2). The first one is based on an innovative 118 
mathematical approach designed to drastically reduce the computational steps involved in 119 
particle localization analysis. As a result, UFUL performs the particle detection/localization 120 
steps at a much faster rate than the frame rate acquisition by standard cameras used in SMLM. 121 
The second module then uses the UFUL results to estimate the relevant SMLM indicators in 122 
real-time, and displays their histogram distributions and map representations. 123 
Classically, single particles localization involves a detection step and then an estimation at high 124 
resolution (i.e. sub-pixel) of the particle position in the (i, j) plane and the size of the point 125 
spread function (PSF) on the i and j axes (36). To solve this problem, the regular procedure is 126 
based on a maximum likelihood estimator (MLE) or a minimum mean square error (MMSE) 127 
estimator. The main objective is to avoid using estimators on a region of interest (ROI) devoid 128 
of particles. 129 
Within this framework, we have previously provided mathematical developments optimizing 130 
the detection step by implementing a generalized likelihood ratio test (GLRT) at known 131 
background (35), which means that the mean 𝑚𝑚 and variance 𝜎𝜎2of the background are known. 132 
This test is an effective unsupervised detection tool whose threshold is set by the probability of 133 
false alarm (𝑃𝑃𝑃𝑃𝑃𝑃) (38-40); it is primarily designed as a detector in a ROI with a working 134 
window of dimension 𝜔𝜔, for the absence (H0 hypothesis) or presence (H1 hypothesis) of a 135 
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particle. The GLRT can also be conceived as an estimator since, under the H1 hypothesis 136 
assumption, it builds the intensity image using an estimator in the sense of the MMSE estimator, 137 
which is close to the Cramer-Rao Bounds (CRB). As such, the GLRT performs an adaptive 138 
filter to carry out the estimation of the intensity as previously described (see for instance the 139 
Supplementary Note 2 in (35)). However, its application as initially conceived cannot handle 140 
the real-time data flow of SMLM acquisitions. 141 
To overcome this difficulty, we have rewritten the mathematical operations of the GLRT 142 
detector at known background to considerably accelerate the computational steps, without 143 
impacting its robustness (see Materials and Methods, for details). Practically, this implies to 144 
evaluate first the mean 𝑚𝑚�  and variance 𝜎𝜎�2 of the background as in (35). Then, the GLRT assess 145 
the presence of a signal at each pixel and when a signal is detected, the estimator searches the 146 
sub-pixel positions of the PSF. UFUL computes 𝛼𝛼�𝑚𝑚�  as the expression of the intensity 𝛼𝛼� minus 147 
the image background 𝑚𝑚� . Three separable convolutions are processed for each pixel to estimate 148 
the background, its variance, and the signal intensity 𝛼𝛼�, respectively. It is then possible to 149 
estimate the sub-pixel position of each detected particle and the size of its PSF. To do this, the 150 
PSF is modeled by a Gaussian function from which UFUL uses a logarithm of the intensity 𝛼𝛼� 151 
to derive literal expressions for estimating for each particle, its PSF radii 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 and sub-pixel 152 
coordinates 𝑖𝑖0, 𝑗𝑗0 on axes i and j, respectively. 153 
We test the UFUL performances to ascertain that the analyses coincide with the MMSE 154 
estimation, with respect to the variances in positions. This was done on realistic synthetic data, 155 
i.e. on data close to the levels of noise, signal, PSF size, etc. that are typically the ones observed 156 
on experimental SMLM. We report that UFUL overlap those of an MMSE estimator; both being 157 
close on the CRB. For a PFA of 10-6, the detection probability 𝑃𝑃𝑃𝑃 ≈ 100% for any 𝑆𝑆𝑆𝑆𝑆𝑆 >158 
20 𝑑𝑑𝑑𝑑 (Supplementary Text, Fig. S1 and S2). 159 

Moreover, UFUL provides the estimation of 𝑟𝑟0 on both 𝑖𝑖 and 𝑗𝑗 axes with the estimator 𝑟̂𝑟0 =160 
(𝑟̂𝑟𝑖𝑖 + 𝑟̂𝑟𝑗𝑗) 2⁄  regardless of the PSF size and the working window. Consequently, when image 161 
acquisitions are performed with an astigmatic lens (41), the axial PSF of a particle is distorted 162 
in i and j axes of the focal plane as a function of the particle’s position on the optical axis, 163 
enabling it to be localized in 3D (Supplementary Text, Fig. S3). Under these conditions, the 164 
size of the working window 𝜔𝜔 for the GLRT detector set at 8 × 8, 10 × 10, 12 × 12, 14 × 14, or 165 
16 × 16 pixels, depends on 𝑟𝑟0, the size of the PSF.  166 
UFUL computation rate performance 167 
We evaluated the UFUL performances on synthetic datasets generated at a given density of 168 
particle per frame and for different image sizes (Fig. 3). The analyses were obtained on a 169 
computer with the option of processing data with CPU (central processing unit) or GPU 170 
(graphical processing units) processors (see Material & Methods for the specifications). 171 
The performances are expressed in number of frames analyzed per second (Fig. 3a). The 172 
computation times correspond to the analysis of 16-bit raw images stored in the PC RAM, from 173 
which the detection/estimation process returns a list of particles with position, size of 2D or 3D 174 
PSF astigmatism, intensity, SNR, noise level, and position errors in the PC RAM. This time 175 
mainly results from the one used by the GLRT detector and therefore, for Dframe values ranging 176 
from 0 to 0.2 part/µm²/frame, the number of particles has hardly any impact on the performance 177 
of detection/estimations steps (Fig. 3a). 178 
The UFUL module incorporates a computing segment specifically designed to optimize 179 
computation time to achieve a data flow of over 5 GB/s, enabling it to perform data analysis at 180 
a rate well above the acquisition performance of a standard SMLM camera, i.e., ≈ 100 fps for 181 
2048 × 2048-pixel images. Indeed, with GPU, the analysis rate for particle detection and 182 
position estimation reaches over 10,000 fps for 256 × 256-pixel images and up to ≈ 800 fps for 183 
2048 × 2048-pixel images (Fig. 3a). Furthermore, GPU computing increases the number of 184 
particles analyzed per second by a factor up to 10 compared to CPU computing on large images 185 
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(Fig. 3b). For the GPU, images of size equal to or greater than 512 × 512 pixels present a similar 186 
number of particles analyzed per second, unlike the CPU where the cache miss is significant.  187 
Overall, the GPU speeds up analysis considerably, with a more noticeable difference on large 188 
images compared to the CPU. It should be noted, however, that while the UFUL computation 189 
rate with a GPU is well above the frame rate of SMLM camera, performance with a CPU 190 
remains above this threshold for image up to 1024 × 1024-pixels (Fig. 3a). As a result, the 191 
second module of QCM can process the output of UFUL results and display the relevant quality 192 
control indicators in real time. 193 
QC module and the QCM interface 194 
The QC module relies on UFUL results for the image background, particle positions, intensity 195 
and PSF size. It evaluates in real-time the key quality control indicators - Dframe, SNR and 196 
precision of localization parameters – and displays using histograms and maps. Thus, we set up 197 
a graphical interface for easy, real-time evaluation of QCM analysis results (Fig. 4 and 198 
Supplementary Video 1). In the opening panel, QCM requires no parameterization other than 199 
the following physical parameters (Fig. 4a): 200 

- The characteristic PSF radius (r0) of the optical system, a physical characteristic 201 
inherent in the optical system for a given excitation wavelength and numerical aperture 202 
of the objective. This value must be expressed in pixels. As part of internal quality 203 
control, QCM displays the r0 histogram evaluated during data acquisition. 204 

- The binning and exposure time parameters of the camera. 205 

QCM displays in real-time the histograms of the PSF radius (r0), Dframe, SNR and precision 206 
parameters. Analyses are visualized on the last 50, 500 or full stack of images; it is also relevant 207 
for specific applications to estimate these indicators on a zoomed region of interest (Fig. 4b and 208 
Supplementary Video 2). Moreover, when a biological question requires achieving a given 209 
SMLM precision (e.g., dimensionality or count of macromolecular complexes, inter-distances 210 
between macromolecular structures, etc.), QCM offers the option of displaying the density-211 
SNR space diagram in real-time allowing standardized evaluation of experimental data. Other 212 
options allow to display the images captured by the camera, the SMLM image reconstructed at 213 
the time being, or those of quality control indicators (background, Dframe, SNR, and precision 214 
parameters) (Fig. 4c). 215 
Assessment of the robustness of QCM analyses 216 
To assess the robustness of quality control indicators calculated by QCM, we collect stacks of 217 
2,000 images of DNA origami nanorulers as nanoscopic benchmark structures (42). The SMLM 218 
DNA-PAINT imaging technique is used to assess the metrological traceability of nanorulers 219 
with marks 80 nm apart. The data acquired at different laser powers and camera integration 220 
times were analyzed in real-time by QCM. Each initial acquisition is short, around one minute 221 
per condition, but long enough to display informative SNR and Dframe histograms for deciding 222 
whether or not to continue data acquisition. QCM results were compared with those obtained 223 
on the same dataset using UNLOC and GATTAnalysis as post-acquisition analysis tools 224 
(Fig. 5). As illustrated, the images reconstructed by UNLOC provides a qualitative estimate of 225 
the nanorulers while GATTAnalysis evaluation is based on three parameters, the pass ratio, i.e. 226 
the percentage of good spots, the mark-to-mark distance in nm and the fraction of nanorulers at 227 
a precision threshold better than 20 nm. For example, under acquisition at a laser power of 228 
37 mW and a camera integration time of 36 ms, the histograms of Dframe and SNR provided by 229 
QCM peak at 1.3 particles/µm²/frame and 22.4 dB, respectively. Under such conditions, we 230 
cannot expect to ensure robust SMLM resolution, as assessed by post-acquisition analyses, 231 
where only 12% of nanorulers achieve accuracy better than 20 nm. A go/no-go decision based 232 
on the SNR and Dframe histogram distribution provided by QCM analyses on a small number of 233 
frames is in good agreement with the results of post-acquisition analyses provided by the 234 
UNLOC or GATTAnalysis algorithms. Therefore, QCM enables instant adjustment of camera 235 
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integration time and/or laser power to find the optimal acquisition parameters for achieving the 236 
highest possible localization accuracy on the samples, before starting the SMLM data 237 
acquisition.  238 
QCM-optimized SMLM acquisition on biological samples 239 
Next, we test QCM for imaging biological samples using different SMLM methods, to 240 
investigate the robustness of the displayed key parameters, SNR and Dframe histograms, before 241 
starting data recording. To do this, we compared the QCM results obtained on the first stack of 242 
2,000 images with those obtained by post-analysis with UNLOC on the whole recorded dataset 243 
(up to 50,000 frames). 244 

Cellular expression of β-tubulin and the nuclear pore protein Nup133 was imaged by dSTORM 245 
SMLM (Fig. 6). After chemical fixation, cells were incubated with primary antibodies before 246 
staining detection with fluorescently-labelled secondary antibodies. Samples were imaged in 247 
freshly prepared dSTORM buffer, and laser power and camera integration time were adjusted 248 
to image β-tubulin in COS-7 cells and Nup133 in HeLa cells respectively. Since QCM quality 249 
control on given imaging conditions prior to acquisition can be based on a few hundred frames, 250 
it is fast enough to avoid distorting the recording of a whole dataset due to lengthy adjustment 251 
procedures (e.g., due to photobleaching or dSTORM buffer deterioration) (Supplementary 252 
Video 3). For example, the initial QCM analyses of β-tubulin imaging in COS-7 cells were 253 
carried out on just 2,000 frames displaying informative and robust SNR and Dframe histograms 254 
(Fig. 6a). Besides, the QCM analyses can be operated for the entire duration of the data 255 
recording, so that the mean values of indicators are tracked over time, enabling their stability 256 
or inconsistency to be assessed, for instance in the event of focal plane loss (Fig.4b). Finally, 257 
QCM and UNLOC analyses carried out on the same number of frames show that 35% and 49% 258 
of detected signals have an estimated precision greater than or equal to 20 nm for β-tubulin and 259 
Nup 133, respectively (Fig. 6b). 260 
As discussed in the Supplementary Text and Fig. S4, the detection/estimation achieved by 261 
UFUL is primarily designed for image analysis under low density condtions, i.e. Dframe less than 262 
≈ 0.2 part./µm²/frame. To overcome this limitation, a density evaluation calibration has been 263 
integrated so that the algorithm returns realistic density values. But the fine analysis of raw data 264 
in most cases requires post-acquistion analysis with a dedicated algorithm based on heuristic 265 
for reliable particle localization at variable local density. Nevertheless, the analysis obtained 266 
with QCM give a very good estimate of those obtained with a dedicated algorithm such as 267 
UNLOC (Fig. 6b). 268 
Among other SMLM methods, DNA-PAINT, based on the transient association of a 269 
fluorescently-labeled probe with a target molecule, has become particularly popular due to the 270 
ability to adjust experimental conditions to the expression level of the proteins of interest being 271 
visualized. The signal detection is mediated by pairing a docking oligonucleotide coupled to a 272 
target probe that recognize a protein of interest with an imager, i.e., a fluorescently labelled 273 
complementary oligonucleotide freely diffusing in the buffer (43). This method relies on the 274 
concentration of imager to control the density of transient docker/imager hybridization per 275 
frame enabling a stochastic detection of the protein of interest by recoding fluorescence signals.  276 
For two-color DNA-PAINT experiments (Fig. 7), we used an automated workflow system to 277 
deliver sequentially into a channel slide, the respective imagers to detect in HeLa cells the 278 
mitochondrial 20 kDa outer membrane protein TOM20 and the major building block of 279 
microtubules α-tubulin (see Materials and Methods). For acquisitions at appropriate Dframe, the 280 
imager concentrations were pre-adjusted using QCM over just 500 frames, i.e. an acquisition 281 
time of 18 s, as shown in Fig. 7b to define the conditions required for TOM20 protein imaging. 282 
QCM analyses were performed at three successive imager concentrations on the same sample 283 
preparation. At 1.5 nM, the precision of localization was significantly impaired. At 0.3 nM, the 284 
QCM returns significant intracellular variability in Dframe and SNR values, with poorly resolved 285 
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area as illustrated in the insert. At a 10-fold lower imager concentration, i.e. 30 pM, QCM 286 
returns adequate precision of TOM20 localization for any intracellular area. The relevance of 287 
the QCM analyses obtained on a few hundred images is demonstrated by the comparison with 288 
the reconstructed images obtained with UNLOC on complete datasets. We thus detected the 289 
distribution of TOM20 and α-tubulin in HeLa cells. Consequently, the efficiency of QCM 290 
makes it possible to adjust experimental conditions in real time for optimal DNA-PAINT-based 291 
multicolor sequential localization of multiple cellular components such as TOM20 and α-292 
tubulin, as illustrated by the integrated-Gaussian reconstructed images from the post-processed 293 
UNLOC analyses (Fig. 7b). Thus, QCM is a key asset for unlocking the power of the multicolor 294 
DNA-PAINT SMLM approaches.  295 
 296 
DISCUSSION 297 
In line with FAIR principles (37), the emergence of smart microscopes where tools such as 298 
QCM enable quantitative data analysis provide effective feedback for real-time readjustment of 299 
key parameters (44). Overall, the interactive QCM capability encourages adaptive 300 
experimentation and reduces trial and error cycles, especially with biological samples to which 301 
access is limited. 302 
As compared over currently available software solutions (30, 32-34, 45-47), QCM is parameter-303 
free software package, requiring no parameters other than those characterizing the optical 304 
system; non-expert users can therefore easily operate it. Overall, QCM features an optimized 305 
software interface and display with easy-to-evaluate color-coded maps and histograms 306 
generated in real-time. This instantaneous quantitative information enables parameters to be 307 
adjusted, imaging conditions to be optimized and sub-regions of interest in the sample to be 308 
explored dynamically. Assessing such quality control of raw SMLM data at the earliest steps 309 
of acquisition enables an acceptance or rejection decision to be made on the basis of just a few 310 
hundred images, and thus optimizes the amount of data to be acquired, stored and analyzed for 311 
proper quantification of relevant observables. 312 
It should be noted that the overall computation rate currently achievable here in real-time is 313 
mainly ensured by the UFUL module, which is based on a one-Gaussian fitting hypothesis, i.e., 314 
for low Dframe value, ideally below 1.0 particles/µm²/frame. It is therefore advisable to perform 315 
post-processing analyses of the recorded SMLM data, and to use dedicated algorithms to 316 
quantify any effective non-uniformly distributed molecules (21, 23). In this framework, we 317 
previously implemented UNLOC, a parameter-free algorithm approaching the Cramér-Rao 318 
bound for particles at high-density per frame and without any prior knowledge of their intensity 319 
(35). 320 
We would like to underline that the QCM off-line mode offers invaluable possibilities to be 321 
used with post-acquisition SMLM data. We further stress that this mode is perfectly suited to 322 
carrying out standardized studies with no a priori assumptions on reusable SMLM raw metadata 323 
or during the review process of publications including SMLM data. QCM is also of general 324 
interest for teaching basic SMLM concepts to a wide audience. Overall, QCM can be seamlessly 325 
integrated into the workflows of homemade or commercial systems and cloud-based data 326 
analysis frameworks. 327 
At present, we have succeeded in analyzing 2048 × 2048 pixels images at a rate of over 100 328 
frames/second, a rate fast enough to explore dynamic processes in living samples. However, if 329 
it is possible to record data at a faster acquisition rate - for example, by focusing on a small ROI 330 
- we might face an intrinsic limitation of the SMLM technique due to the fact that the number 331 
of photons collected will be limiting at some point. Alternatives such as the promising event-332 
based vision sensor-based imaging method (48) for in vivo imaging pave the way for a very 333 
promising paradigm shift in cell biology by giving access to a new quantitative set of relevant 334 
observables. 335 
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 336 
MATERIALS and METHODS 337 

Ultra-Fast Unsupervised Localization (UFUL) 338 

This section describes the mathematical basis of the Ultra-Fast Localization (UFUL) 339 
conception. 340 

Computational optimization of the GLRT detection 341 

The detection step is based on previously mathematical developments (35, 36). In summary, 342 
when a particle is present, the PSF is modeled by a Gaussian 𝑔𝑔𝑝𝑝={𝑖𝑖,𝑗𝑗}(𝑖𝑖0, 𝑗𝑗0, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗) centered in 343 
(𝑖𝑖0, 𝑗𝑗0) ∈ ℝ2 and of dimension 𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑗𝑗 : 344 

𝑔𝑔𝑝𝑝(𝑖𝑖0, 𝑗𝑗0, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗) =
1

�𝜋𝜋𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗
exp�−

(𝑖𝑖 − 𝑖𝑖0)2

2 𝑟𝑟𝑖𝑖2
−

(𝑗𝑗 − 𝑗𝑗0)2

2 𝑟𝑟𝑗𝑗2
� Eq. 1 

where the constant of normalization is such that ∬𝑔𝑔2 = 1. 345 

The detection theory cannot estimate at the same time the value of the parameters (𝑖𝑖0, 𝑗𝑗0, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗) 346 
and the presence or absence of a particle (49). For the GLRT detector, the PSF is in the center 347 
of the window and 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑗𝑗 = 𝑟𝑟 is known. Thus, the GLRT assesses the presence of a signal at 348 
each pixel such that (𝑖𝑖0, 𝑗𝑗0) = (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛)|𝑛𝑛∈ℕ. When a signal is detected, the estimator searches in 349 
(𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛) the sub-pixel positions (𝑖𝑖0, 𝑗𝑗0) of the PSF. For a PSF in a window, it is easier to write 350 
(𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛) = (0,0) for simplification purposes. 351 

For a GLRT at known background (35), the mean 𝑚𝑚 and variance 𝜎𝜎2 of the background are 352 
known. This detector is based on the two 𝐻𝐻0 and 𝐻𝐻1 hypotheses, both perturbed by independent 353 
identically distributed additive Gaussian noise. For 𝐻𝐻0 in the working window 𝜔𝜔, the signals at 354 
pixel 𝑝𝑝 = {𝑖𝑖, 𝑗𝑗} are the sum of background 𝑚𝑚 and noise 𝑛𝑛𝑝𝑝 of variance 𝜎𝜎2: 355 

𝐻𝐻0:    𝑥𝑥𝑝𝑝 = 𝑚𝑚 + 𝑛𝑛𝑝𝑝 Eq. 2 

The H1 hypothesis has a Gaussian centered in the window that is modeled by: 356 

𝐻𝐻1:    𝑥𝑥𝑝𝑝 = 𝛼𝛼 𝑔𝑔𝑝𝑝(0,0, 𝑟𝑟, 𝑟𝑟) + 𝑚𝑚 + 𝑛𝑛𝑝𝑝 Eq. 3 

where 𝛼𝛼 is the particle intensity. 357 

Let 𝐿𝐿0 be log-likelihood of the 𝐻𝐻0 hypothesis: 358 

𝐿𝐿0 = −
𝑁𝑁
2

log(2𝜋𝜋𝜎𝜎2) − 1
2𝜎𝜎2

��𝑥𝑥𝑝𝑝 − 𝑚𝑚�2

𝑝𝑝∈𝜔𝜔

 Eq. 4 

where 𝑁𝑁 is the size of the window 𝜔𝜔.  359 

Let 𝐿𝐿1 be the generalized log-likelihood of 𝐻𝐻1 hypothesis: 360 

𝐿𝐿1 = −
𝑁𝑁
2

log(2𝜋𝜋𝜎𝜎2) − 1
2𝜎𝜎2

��𝑥𝑥𝑝𝑝 − 𝛼𝛼 𝑔𝑔𝑝𝑝(0,0, 𝑟𝑟, 𝑟𝑟) −𝑚𝑚�2

𝑝𝑝∈𝜔𝜔

 Eq. 5 

The estimated intensity is given by: 361 

𝛼𝛼� =
∑ 𝑔𝑔𝑝𝑝�𝑥𝑥𝑝𝑝 − 𝑚𝑚�𝑝𝑝∈𝜔𝜔

∑ 𝑔𝑔𝑝𝑝2𝑝𝑝∈𝜔𝜔
  Eq. 6 

Thus, for a test based on the detection theory (49), the 𝐻𝐻0 hypothesis is rejected with a 362 
probability of false alarm 𝑃𝑃𝑃𝑃𝑃𝑃 ∈ ]0,1] if: 363 
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2(𝐿𝐿1 − 𝐿𝐿0) > Inv 𝜒𝜒2(1 − 𝑃𝑃𝑃𝑃𝑃𝑃, 1) Eq. 7 

with Inv 𝜒𝜒2(1 − 𝑃𝑃𝑃𝑃𝑃𝑃, 1) the inverse law of 2χ  with one degree of freedom. Thus, this test 364 
discriminates that, for a given 𝑃𝑃𝑃𝑃𝑃𝑃, the window contains either noise alone or a particle of 365 
𝑆𝑆𝑆𝑆𝑆𝑆 >  20 𝑑𝑑𝑑𝑑, with a detection probability 𝑃𝑃𝑃𝑃 ≈ 100% (49). 366 
Here, we rewrite the GLRT expression to significantly optimize the computation time but 367 
without simplifying the robustness of the mathematical model. 368 

Let 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 = Inv 𝜒𝜒2(1 − 𝑃𝑃𝑃𝑃𝑃𝑃, 1) be the detection threshold, we can write the GLRT for a given 369 
pixel as: 370 

2(𝐿𝐿1 − 𝐿𝐿0) > 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 Eq. 8 

 371 

2 ��− 1
2𝜎𝜎2

� �𝑥̅𝑥 − 𝛼𝛼� 𝑔𝑔𝑝𝑝(0,0, 𝑟𝑟, 𝑟𝑟)�
2

𝑝𝑝∈𝜔𝜔

� − �− 1
2𝜎𝜎2

�(𝑥̅𝑥)2
𝑝𝑝∈𝜔𝜔

�� > 𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 Eq. 9 

with 𝑥̅𝑥 =  𝑥𝑥𝑝𝑝 − 𝑚𝑚. 372 

Thus,  373 

𝛼𝛼�2

𝜎𝜎2
>

𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃
∑ 𝑔𝑔𝑝𝑝2𝑝𝑝∈𝜔𝜔

 Eq. 10 

This requires first estimating the background mean 𝑚𝑚�  and variance 𝜎𝜎�2 as previously described 374 
(see in (35) the note S6 in Supporting Material,). In practice, they are estimated once every 50 375 
frames. 376 
This test can therefore be performed for all pixels of a given frame. Computing the left term of 377 
Eq. 10 simply as a convolution (Eq. 6) provides the corresponding image of the 𝛼𝛼� and GLRT 378 
values of the pixels. When the test is true in the region of interest (ROI), it corresponds to a 379 
particle defined as a single pixel or as a set of pixels for bright ones, from which a list of detected 380 
particles with an integer pixel value is established. 381 

Estimation of the particle localization 382 

Once the particles are detected, the objective is to determine their subpixel localization, i.e., at 383 
which the signal intensity 𝛼𝛼� is maximum. Two computational methods are classically 384 
implemented: 385 

• The ones based on an algorithm that performs oversampling of the 𝛼𝛼� image are 386 
computationally expensive and cannot estimate the 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 radii of the PSF; 387 

• The others based on iterative fitting computation to estimate 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 , 𝑖𝑖0, 𝑗𝑗0 are also time 388 
consuming. 389 

Here, we demonstrate that a third alternative is possible to determine the position of the particles 390 
and their radius with sub-pixel accuracy while guaranteeing an ultra-fast computational speed, 391 
meaning at a speed higher than that of image acquisition. 392 

The PSF is modeled by a Gaussian and the algorithm is using the logarithm of 𝛼𝛼� to obtain a 393 
quadratic expression. This enables a literal expression from which to derive the estimation of 394 
𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗 , 𝑖𝑖0, 𝑗𝑗0, corresponding to the PSF sizes and sub-pixel coordinates of each particle, 395 
respectively. 396 

As such, the current expression of 𝛼𝛼� needs to be rewritten to provide a fast and efficient estimate 397 
of these parameters. By replacing 𝑚𝑚 by its estimated value 𝑚𝑚� , we obtain: 398 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.23.604731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.23.604731
http://creativecommons.org/licenses/by-nc/4.0/


Page 10 of 24 
 

𝛼𝛼�𝑚𝑚� = ��𝑥𝑥𝑝𝑝 −𝑚𝑚��𝑔𝑔𝑝𝑝(0,0, 𝑟𝑟, 𝑟𝑟)
𝑝𝑝∈𝜔𝜔

 Eq. 11 

However, 𝛼𝛼�𝑚𝑚�  does not correspond to the minimal mean square error (MMSE) estimator that is 399 
expected from the solution given by 𝛼𝛼�. It is still possible to obtain a variance that coincides 400 
with that of the MMSE on the coordinates. When the H1 hypothesis is true (Eq. 3), we rewrite 401 
𝛼𝛼�𝑚𝑚�  as: 402 

𝛼𝛼�𝑚𝑚� = 𝛼𝛼� 𝑔𝑔𝑝𝑝�𝑖𝑖0, 𝑗𝑗0, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗� 𝑔𝑔𝑝𝑝(0,0, 𝑟𝑟, 𝑟𝑟) 
𝑝𝑝∈𝜔𝜔

+ �𝑔𝑔𝑝𝑝(𝑛𝑛𝑝𝑝 + (𝑚𝑚−𝑚𝑚�))
𝑝𝑝∈𝜔𝜔

 Eq. 12 

The second term ∑ 𝑔𝑔𝑝𝑝(𝑛𝑛𝑝𝑝 + (𝑚𝑚 −𝑚𝑚�))𝑝𝑝∈𝜔𝜔  is a noise processed by a matched filter, but (𝑚𝑚−403 
𝑚𝑚�), the noise term on the estimate of 𝑚𝑚, implied that 𝛼𝛼�𝑚𝑚�  is a good approximation of a MMSE 404 
filter. 405 

Ultra-fast estimation of PSF dimensions and particle sub-pixel positions 406 

We first detail the expression for estimating the intensity 𝛼𝛼�𝑚𝑚�  and the PSF sizes with logarithms. 407 
The characteristic PSF sizes are 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗  and 𝑖𝑖0, 𝑗𝑗0 are the sub-pixel positions of the particle. 408 
Moreover, PSF images modeled by Gaussians, filtered by a Gaussian kernel generate 409 
Gaussians. Thus, the intensity estimate is equal to: 410 

𝛼𝛼�𝑚𝑚� = 𝛼𝛼� 𝑔𝑔𝑝𝑝�𝑖𝑖0, 𝑗𝑗0, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗� 𝑔𝑔𝑝𝑝(0,0, 𝑟𝑟, 𝑟𝑟) 
𝑝𝑝∈𝜔𝜔

= 𝛼𝛼 𝑘𝑘𝑞𝑞�𝑖𝑖0, 𝑗𝑗0, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗� Eq. 13 

with 𝑘𝑘𝑞𝑞=(𝑖𝑖,𝑗𝑗)(𝑖𝑖0, 𝑗𝑗0, 𝑟𝑟𝑖𝑖 , 𝑟𝑟𝑗𝑗) =
2𝑟𝑟�𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗

�𝑟𝑟𝑖𝑖
2+𝑟𝑟2�𝑟𝑟𝑗𝑗

2+𝑟𝑟2
  exp �− (𝑖𝑖−𝑖𝑖0)2

2�𝑟𝑟𝑖𝑖
2+𝑟𝑟2�

� exp�− (𝑗𝑗−𝑗𝑗0)2

2�𝑟𝑟𝑗𝑗
2+𝑟𝑟2�

�. 411 

The discrete second derivative on the i-axis of the logarithm of 𝛼𝛼�𝑚𝑚�  calculated at the positions 412 
(𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛) ∈ ℕ2 of the detected particles is: 413 

log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 + 1, 𝑗𝑗𝑛𝑛) − 2 log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛) + log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 − 1, 𝑗𝑗𝑛𝑛) = −
1

𝑟𝑟𝑖𝑖2 + 𝑟𝑟2
 Eq. 14 

Thus, the estimator of the PSF sizes is: 414 

𝑟̂𝑟𝑖𝑖2 = −
1

log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 + 1, 𝑗𝑗𝑛𝑛) − 2 log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛) + log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 − 1, 𝑗𝑗𝑛𝑛) − 𝑟𝑟2 Eq. 15 

Furthermore, the discrete first derivative on the i-axis of the logarithm of 𝛼𝛼�𝑚𝑚�  : 415 
1
2

(log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 + 1, 𝑗𝑗𝑛𝑛) − log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 − 1, 𝑗𝑗𝑛𝑛)) =
𝑖𝑖0 − 𝑖𝑖𝑛𝑛
𝑟̂𝑟𝑖𝑖2 + 𝑟𝑟2

 Eq. 16 

Then the estimator of 𝑖𝑖0 is: 416 

𝚤𝚤0̂ = 𝑖𝑖𝑛𝑛 +
1
2

(log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 + 1, 𝑗𝑗𝑛𝑛) − log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 − 1, 𝑗𝑗𝑛𝑛))(𝑟̂𝑟𝑖𝑖2 + 𝑟𝑟2) Eq. 17 

Similarly, for the j-axis, the estimators are: 417 

𝑟̂𝑟𝑗𝑗2 = −
1

log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛 + 1) − 2 log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛) + log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛 − 1) − 𝑟𝑟2 Eq. 18 

and 418 

𝚥𝚥0̂ = 𝑗𝑗𝑛𝑛 +
1
2

(log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛 + 1) − log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛 − 1))�𝑟̂𝑟𝑗𝑗2 + 𝑟𝑟2� Eq. 19 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 23, 2024. ; https://doi.org/10.1101/2024.07.23.604731doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.23.604731
http://creativecommons.org/licenses/by-nc/4.0/


Page 11 of 24 
 

Thus, by computing only five logarithms of the image 𝛼𝛼�𝑚𝑚� , i.e., log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛), log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 +419 
1, 𝑗𝑗𝑛𝑛), log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛 − 1, 𝑗𝑗𝑛𝑛), log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛 + 1) and log𝛼𝛼�𝑚𝑚� (𝑖𝑖𝑛𝑛, 𝑗𝑗𝑛𝑛 − 1), we can estimates all the 420 
parameters �𝚤𝚤0̂, 𝚥𝚥0̂, 𝑟̂𝑟𝑖𝑖 , 𝑟̂𝑟𝑗𝑗� for the size and sub-pixel localization of a particle. 421 

Then, in addition to calculate 𝛼𝛼�𝑚𝑚��𝚤𝚤0̂, 𝚥𝚥0̂, 𝑟̂𝑟𝑖𝑖 , 𝑟̂𝑟𝑗𝑗� and the mean square error (MSE) to determine 422 
the SNR and variance of the error of the positions, it is necessary to calculate at the sub-pixel 423 
position, 𝛼𝛼�𝑚𝑚�  as well as the MSE on the error on these corresponding positions. 424 
 425 
Evaluation of the algorithm performances 426 
All evaluations to compare the mathematical models or validates the algorithms were performed 427 
as shown on simulated images generated at a given SNR, PSF size, particle density/frame or 428 
image sizes. The codes used to generate these datasets are available on request from the authors. 429 
For the evaluation of the CPU/GPU UFUL computation rate performances, the analyses were 430 
obtained with the following computer configuration: DELL Precision 7740 laptop; Central 431 
Processing Unit (CPU): E-2286M, 64 GB RAM; Graphics Processing Unit (GPU): NVIDIA 432 
Quadro RTX4000M. For CPU computations, the code is compiled in C for Matlab (MEX), 433 
using Advanced Vector Extensions (AVX) for 8-float 32-bit (single) operations to handle 434 
parallel computations. For GPU computations, the code is compiled with CUDA for Matlab 435 
(MEX-CUDA). The computation times correspond to the analysis of 16-bit RAW images stored 436 
in the PC RAM, from which the detection/estimation process provides the list of particles 437 
(position, size of 2D or 3D PSF astigmatism, measured intensity, SNR, noise level, position 438 
error) in the PC RAM. 439 
Simulations used to demonstrate the real-time performances of QCM will be available under 440 
an approved open source license at the time of journal publication. 441 
 442 
Software and code 443 
QCM is a multi-thread application developed on C/CUDA code on a LINUX platform (LINUX 444 
Ubuntu 20.04.2 LTS). It requires a CUDA toolkit for NVIDIA GPU. Two modes are available: 445 
a virtual mode for post-acquisition data evaluation that only requires a Graphic Programmable 446 
Unit (GPU) and an acquisition mode requiring in addition a PCO Edge 4.2 CLHS sCMOS 447 
camera. The data acquisition has been prioritized to offer the maximum frame rate of the camera 448 
(i.e., ≈ 100 frames per second). All other processes are running in parallel on specific and 449 
dedicated threads. 450 
A QCM package is freely available online (see Supplementary Materials) for academic and 451 
nonprofit users. It includes a user guide, a set of experimental and synthetic data, and videos 452 
illustrating the visualization and quantification of observations. 453 
 454 
Data acquisition and analysis 455 
All acquisitions were made using total internal reflection fluorescence (TIRF) illumination on 456 
a custom-built system based on an inverted microscope (Nikon, TE2000-U) as previously 457 
described (35) with a CFI Apo TIRF 100× NA 1.49 oil immersion objective (Nikon), a 458 
Argon/Krypton multiline laser (Innova 70C-Spectrum, Coherent Inc.), an axial drift correction 459 
by the autofocus module, except that the images are acquired with a PCO Edge 4.2 Camera link 460 
High Speed (CLHS) scientific Complementary Metal-Oxide-Semiconductor (sCMOS) camera 461 
on a LINUX platform. The microscope was controlled with a homemade Labview v.2021 462 
(National Instruments) code, while the present homemade QCM code was used to acquire the 463 
data. 464 
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During acquisitions, data are evaluated in real-time with QCM to set appropriate acquisition 465 
conditions. Post-acquisition data analyses were performed with UNLOC (35) in high density 466 
mode with a high spatial frequency variation of background, a reconnection process with one 467 
Off-state lifetime frame and an integrated Gaussian rendering process after drift correction by 468 
correlation and without data filtering. 469 
The raw experimental data illustrating the QCM performances are available on request from 470 
the authors. 471 
 472 
Reagents and sample preparations for experimental data 473 
Quantitative experiments were performed with DNA-origami with GATTA-PAINT HiRes 80R 474 
nanorulers and the results evaluated using GATTAnalysis v1.5 software (GATTAquant). 475 
COS-7 cells (ATCC CRL 1651TM) and HeLa cells (ATCC CCL-2TM) were grown in DMEM 476 
(Gibco) supplemented with 10% bovine fetal serum, 10 mM HEPES, 2 mM L-glutamine, 1 mM 477 
sodium pyruvate (Gibco), and 1% penicillin/streptomycin (Gibco).  478 
For the dSTORM experiments, cells were plated on coverslips N° 1.5 of 18 mm diameter 479 
(Marienfeld GmbH, #0117580) and incubated at 37°C, 10% CO2 for 48 h before staining 480 
procedures. Cells were washed twice with pre-warmed (37°C) phosphate-buffered saline (PBS) 481 
before being fixed with 4% PFA into PBS for 15 min at room temperature (RT) than washed 482 
with PBS and treated with 50 mM NaBH4 for 10 min to reduce background fluorescence and 483 
finally washed with PBS. Fixed cells were permeabilized with 0.3% TritonTMX-100 in PBS, for 484 
30 min, then washed 3 times in PBS, and saturated with 3% bovine serum albumin (BSA) in 485 
PBS, for 45 min to reduce unspecific labeling. Nuclear pore complex protein Nup133 or β-486 
tubulin were labeled overnight at 4°C with rabbit anti-Nup133 antibody (Abcam, #ab155990) 487 
and mouse anti-human β-tubulin mAb (Sigma-Aldrich, #05-661-I), respectively. Cells were 488 
then washed 5 times with 1% BSA in PBS before being incubated 30 min at room temperature 489 
with Alexa Fluor 647 AffiniPure™ Goat Anti-Rabbit IgG (H+L) (Jackson ImmunoResearch 490 
Europe Ltd., #111-605-003) for Nup133 labeling and Alexa Fluor™ 647-conjugated F(ab')2-491 
goat anti-mouse IgG (H+L) (ThermoFisher Scientific, #A-21237) for β-tubulin. After 5 washes 492 
with 1% BSA in PBS, cells were fixed again with 2% PFA, PBS for 5 min. Finally, after 3 493 
washes in PBS, samples were mounted in depression slide with freshly prepared dSTORM 494 
buffer (50mM Tris, 50 mM NaCl a pH 8.0 supplemented with 50 mM cysteamine). Sealed 495 
samples with Twinsil® Speed 22 (Picodent, #1300 1002) were ready to be imaged. 496 
For the two-color DNA-PAINT experiments, the HelaCells_Tubulin_Tom20 smart samples 497 
(Abbelight, France) were prepared in µ-slide VI 0.5 (IBIDI GmbH, #80607) using the 498 
microfluidic system Smart Flow (Abbelight, France) and the Smart Staining Kit instruction 499 
(Abbelight, France). Next, instructions for the DNA-PAINT kit (Massive Photonics GmbH, 500 
#MASSIVE-sdAB-FAST 1-PLEX) with anti-mouse and anti-rabbit nanobodies were applied 501 
to recognize the mouse anti-α-tubulin mAb (Sigma-Aldrich, #T6188) and rabbit recombinant 502 
anti-TOM20 mAb (abcam, #ab232589) antibodies, respectively. The α-tubulin and 503 
mitochondria were detected in a unique imaging buffer with a mix of imager 1 (Cy3b) at a final 504 
concentration of 0.5 nM, and imager 2 (ATTO 655) at the specified concentration, respectively. 505 
Sequential acquisition was performed with a stack of 50,000 frames recorded at 514 nm 506 
(200 mW) using a 525/50 filter for α-tubulin and a stack of 20,000 images was recorded at 647 507 
nm (155 mW) using a 710/75 filter for TOM20.  508 
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FIGURES and LEGENDS 682 

 683 
Fig. 1. A need for comprehensive quality control tools for SMLM acquisitions. (a) Smart 684 
microscopy guidelines aim to integrate quality control tools from the earliest steps of the SMLM 685 
acquisition process up to post-process analysis. (b) The density-SNR space diagram (middle 686 
panel) summarizes the expected localization accuracy as a function of the two key indicators, 687 
SNR and Dframe. The black dashed line marks the limit for achieving an overall particle 688 
localization accuracy of e.g. 15 nm (35). The on-line mode of QCM processes these key 689 
indicators in real-time, providing the instant feedback needed to optimize acquisition 690 
parameters prior to data recording (left panel). In addition, the use of the off-line mode in post-691 
acquisition data analysis provides a tool for standardized data review or for teaching SMLM 692 
methods (right panel). 693 
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 694 
Fig. 2. QCM workflow. The QCM algorithm extends from the initial setting of microscope 695 
parameters to the decision whether or not to record SMLM data. It combines (1) the Ultra-Fast 696 
Unsupervised Localization (UFUL) algorithm to perform the particle detection/localization 697 
steps at a rate of ≈ 800 fps for 2048 × 2048-pixel images, i.e. at a speed higher than that of 698 
image acquisition by current SMLM cameras, with (2) the Quality Control (QC) module for 699 
real-time estimation of indicators: Dframe, SNR, and localization accuracy. Acquisition 700 
parameters that pass quality control criteria are used to start recording data. 701 
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 702 
Fig. 3. Comparison of CPU and GPU UFUL computation rates as a function of Dframe and 703 
image sizes on realistic simulated data. (a) Number of frames analyzed per second (fps) based 704 
on given Dframe values for images ranging from 128 × 128 to 2048 × 2048 pixels. (b) UFUL 705 
analysis rate expressed as number of particles detected and estimated position per second as a 706 
function of Dframe for different image sizes. 707 
  708 
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 709 
Fig. 4. General description of the QCM graphical interface. dSTORM imaging of β-tubulin 710 
in COS-7. (a) Main functions from left to right: camera setup: binning and exposure time; QCM 711 
setup: setting the PSF size of the microscope; Visualization & indicators: histogram or map 712 
visualization options (see below (b) and (c)), selection of the QCM calculated parameters; Save: 713 
file and data acquisition saving options, and messages & warnings. (b) Real-time histograms 714 
of the PSF size 𝑟𝑟0 (pixels), Dframe (particles/µm²/frame), SNR (dB), precision (nm), and the 715 
number of particles detected per image can be displayed for the last 50, 500, or cumulative full 716 
field of view (FoV) frames or the last 500 frames on a zoomed ROI. Indicator values are also 717 
traced over time to assess their stability. (c) Real-time QCM windows – Camera: shows in real-718 
time the full FoV or zoomed area of a frame recorded by the camera; SMLM image: compilation 719 
of detected particle localizations; Background: background intensity; Dframe: color-coded Dframe 720 
values; SNR: color-coded SNR values; Precision: color-coded of the root mean square particle 721 
precision estimated from the combination of Dframe and SNR indicators. Scale bar: 20 µm and 722 
insert 5 µm on a side. For more details on the QCM display, see the user manual. 723 
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 724 
Fig. 5. Validation of the robustness of QCM analyses. Image stacks of 2,000 frames of DNA 725 
origami 80 nm nanorulers were acquired at different camera integration times and laser powers. 726 
Data analyzed by QCM (SNR and Dframe histograms) were compared with the color-coded 727 
spider plots quantified by GATTAnalysis software and the UNLOC results (scale bars: 160 nm) 728 
with data at a precision threshold better than 20 nm. The real-time go/no-go decisions based on 729 
QCM analyses are in good agreement with the post-acquisition analyses. 730 
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  731 
Fig. 6. QCM-optimized dSTORM acquisitions. dSTORM imaging of β-tubulin and Nup133 732 
labelling in COS-7 and HeLa cells, respectively. (a) QCM histograms and maps were computed 733 
from the first 2,000 frames. (b) Post-acquisition analysis of the recorded raw data sets. The 734 
density-SNR space diagrams displayed by QCM for β-tubulin and Nup133, reveal that 36% 735 
and 49% of detected particles have a localization precision better than 20 nm, respectively. 736 
UNLOC show the integrated Gaussian reconstructed images for particles with precision better 737 
than 20 nm. Scale bars: 20 µm (inserts: 5 µm on a side) and 5 µm (insert: 1.5 µm on a side) for 738 
β-tubulin and Nup133, respectively. 739 

 740 
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 741 
Fig. 7. QCM-optimized acquisitions of two-color DNA-PAINT data. (a) Detection of 742 
TOM20 in HeLa cells by DNA-PAINT imaging on 500 frames. Real-time QCM analyses at 743 
different imager concentrations anticipates incorrect and inappropriate acquisitions based on 744 
poor Dframe, SNR, and precision indicator values at imager concentrations above 30 pM. Post-745 
acquisition analyses validate the quality control observations, as evidenced by the shape of the 746 
mitochondrial network in the reconstructed images by UNLOC. Scale bars: 10 µm (in the 747 
inserts: 1 µm). (b) Reconstructed images from post-processed α-tubulin and TOM20 data with 748 
UNLOC. The concentrations of imagers for two-color DNA-PAINT acquisition with sequential 749 
fluid exchange were pre-adjusted with QCM. Scale bars: 20 µm (in the insert: 2 µm).  750 
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SUPPLEMENTARY MATERIALS 751 
 752 
Supplementary Materials for this manuscript include the following: 753 

- A supplementary text for validation of the UFUL module and information on QCM 754 
software with figures S1 to S5. 755 

- Movies S1 to S4 756 
 757 
Captions for movies S1 to S4 758 

Movie S1 – QCM user interface 759 
QCM requires only the setting three physical parameters (camera binning, exposure time and 760 
PSF size 𝑟𝑟0). QCM in real-time quality control indicators in the form of histograms (SMLM 761 
reconstruction, Dframe, SNR, Precision, and estimated PSF size 𝑟𝑟0) and corresponding maps. 762 

Movie S2 - QCM performances on synthetic data 763 
QCM analysis is perfomed at 100 fps on 6,000 synthetic 2048 × 2048 pixel images with spatial 764 
densities ranging from 0.005 to 1.5 part/µm²/frame (see Suppl. Fig. 5). Histograms and maps 765 
of key indicators are updated instantly when the zoomed window is dragged to another areas of 766 
the image. 767 

Movie S3 - Adjustment of acquisition settings based on real-time QCM analyses 768 
Real-time QCM analysis of dSTORM acquisition parameters for β-tubulin imaging in COS-7 769 
cells. Histograms and maps of key indicators are updated instantly when the zoomed window 770 
is dragged within the image. This allows a close inspection of different ROIs to adjust 771 
acquisition parameters in a few hundred images before starting acquisition. 772 

Movie S4 - QCM user interface for multi-color SMLM acquisition 773 
For multi-color SMLM acquistion, the QCM procedure is illustrated on a 256 × 256 pixel 774 
synthetic image dataset. Simulated objects of immunoglobulin-like shape are encoded in three 775 
particle types, which are sequentialy simulated with parameters specified as follow: 776 

- chanel #1, 5 000 frames with PSF size 𝑟𝑟0 = 1.25 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 20 ms exposure time, 𝐷𝐷frame =777 
0.3 part/µm2/frame, SNR = 27 dB and a corresponding precision of 17 nm for red 778 
fluorescent particles; 779 

- chanel #2, 10 000 frames with 𝑟𝑟0 = 1.15 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 10 ms exposure time, 𝐷𝐷frame =780 
0.1 part/µm2/frame, SNR = 30 dB and a corresponding precision of 13 nm for green 781 
fluorescent particles; 782 

- chanel #3, 2 000 frames with 𝑟𝑟0 = 1.45 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 15 ms exposure time, 𝐷𝐷frame =783 
0.2 part/µm2/frame, SNR = 32 dB and a corresponding precision of 11 nm for bleu 784 
fluorescent particles. 785 
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