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We report the generation of broadband frequency combs in fiber Fabry-Perot resonators in the
normal dispersion regime enabled by the excitation of switching waves. We theoretically charac-
terise the process by means of a transverse linear stability analysis of the Lugiato-Lefever equation,
enabling precise prediction of the switching waves’ frequencies. Experimentally, we employed a
pulsed-pump fiber Fabry-Perot resonator operating in the normal dispersion regime, integrated into
an all-fiber experimental setup. The synchronisation mismatch and the influence of dispersion is
thoroughly discussed, unveiling the potential to generate a frequency comb spanning over 15 THz
bandwidth, specifically leveraging a flattened low dispersion cavity.

I. INTRODUCTION

Nonlinear Kerr resonators have significantly advanced
the generation of broadband optical frequency combs
(OFCs) [1–3] thriving in various applications including
spectroscopy [4], optical coherent tomography [5], low
noise radio frequency (RF) generation [6], distance rang-
ing [7] and high-speed optical telecommunication [8].
In this context, microresonators received intense inter-
est owing to their potential for seamless integration into
chip-scale integrated photonic circuits, high-quality fac-
tors, as well as high nonlinear performances [1–3, 9].
Recently, fiber Fabry-Perot (FFP) resonators [10–13]
emerged as a promising alternative combining advan-
tages of microresonator and fiber ring cavities [14, 15].
They namely exhibit a high-quality factor, compact de-
sign, OFC with line-to-line spacing in the GHz range,
simplified light coupling via FC/PC connectors (Ferrule
Connector/Physical Contact), and ease of implementa-
tion within fiber systems, which is still a limitation faced
by microresonators. Most of Kerr comb generation are
based on cavity solitons generation in anomalous group
velocity dispersion (GVD) resonators, resulting in a sta-
ble soliton recirculating in the resonator and a broad
homogeneous OFC at the cavity output [14, 16]. How-
ever, normal GVD resonators are increasingly utilized for
OFCs generation, in particular because of their high con-
version efficiency between the pump and the generated
comb lines [8, 17–20]. As the upper branch of a normally
dispersive cavity does not exhibit modulation instabil-
ity, various excitation techniques had to be identified
to trigger OFCs in this regime, notably through mode-
crossing effect [17, 18], Brillouin effect [21], dual-pumping
[22], coupled-cavity [18, 19, 23], modulated pump [20] or
pulsed pumping scheme [24–28]. All these tecnhiques rely
on the generation of switching waves (SWs) [24, 26, 29–
31], connecting the high and low stable states of bistable
Kerr cavities. Switching waves may lock to each other,
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resulting in the generation of dark solitons [8, 17, 32, 33].
In the spectral domain, SWs manifest as a broadening
characterized by two shoulders around the pump, result-
ing in a relatively flat OFC. While the study of SWs dates
back to the 1980s [29, 34, 35], there is a renewed inter-
est [8, 20, 24], driven by the recent technical advances in
compact systems.
In this work, we report the generation of broad-

band Kerr frequency combs enabled by SWs in normal
GVD FFP resonators through a pulsed pumping scheme.
Leveraging an advanced all-fiber experimental setup, we
can reliably produce highly stable SW-based OFCs. We
delve into the dynamics of SWs generation, as a func-
tion of cavity detuning, synchronization mismatch, be-
tween the pulsed pump repetition rate and the cavity
roundtrip time, and cavity dispersion. We present a the-
ory to predict the SWs frequencies, which considers SWs
as exact solutions of the Lugiato-Lefever equation [36].
This approach is conceptually different from the previ-
ous studies, which interpret SWs spectral shoulders as
dispersive waves (DWs) emitted from a front [19, 24–27].
This new method is particularly relevant when synchro-
nization mismatch occurs, as each front of the pulse can
be treated independently, thus, show that SWs do not
stay on same power level for each front in this case. The
experimental results shows very good agreement with nu-
merical simulations and theoretical predictions.

II. THEORY

SWs are sharp fronts, propagating at a well-defined
constant speed, which link the upper and lower states
of a bistable regime. In this sense they are reminiscent
of classical shock waves arising in fluid dynamics. The
dispersion of the system tends to regularise sharp fronts
with fast oscillation at specific frequencies, and in this
sense they may be interpreted as dispersive shock waves
[37]. Higher order dispersion (HOD) may induce SWs to
shed resonant radiation (also called dispersive wave) [38].
It is important to remark that SWs are exact solutions
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FIG. 1. Theoretical illustrations of switching waves dynam-
ics, for L= 16.18 cm, F = 600, γ = 10.8 W−1km−1,
δ = 0.032 rad, and Pin = 0.5 W. (a) SW solution at its
Maxwell point. The lower state exhibit oscillation with a fre-
quency fSW . (b) Steady states of the system, calculated from
Eq. (4); the power range for which SWs are present is delim-
ited by the green dotted lines and the green arrow. (c) SWs
inverse velocity as a function of lower and upper state power,
determined numerically. (d) SWs inverse velocity as a func-
tion of the input power. The orange dotted lines link the
figures together showing that SWs generated at the MP. (e)
Representation of the real part (green) and imaginary part
(orange) of the Eq. (8), with its roots (blue dots).

of LLE, and the presence of HOD is necessary to induce
DW emission [39, 40]. The oscillating front of a switch-
ing wave is part of the (nonlinear) solution itself, which
exists even in absence of perturbations. However, several
studies support the confusing idea that the oscillating
fronts can be interpreted as SW-enabled DWs [19, 24–
27]. While this explanation has shown good alignment
between experiments and theory, its description through
DWs remains somewhat inadequate. Therefore, we pro-
pose an alternative approach by conducting a transverse
stability analysis [31] to better describe this phenomenon.

The starting point is the generalised Lugiato-Lefever
equation (LLE) [36] in dimensional units, including ar-
bitrary high order dispersion and synchronization mis-

match:

i2L
∂A

∂z
+ Ld(i∂t)A+ γL|A|2A = [δ − iα]A+ iθEin(t),

(1)

d(i∂t) =
∑
n≥1

βn

n!
(i∂t)

n, (2)

D(ω) =
∑
n≥1

βn

n!
ωn; (3)

where A is the field envelope, Ein(t) is the input field, L
is the cavity length, θ is the transmissivity of the mirror,
δ is the cavity detuning, γ is the nonlinear coefficient,
α accounts for the total cavity losses, directly linked to
the finesse F : α = π/F (valid for F ≫ 1), βn (n ≥ 2)
account for the group velocity dispersion (GVD for n=2)
and HOD, z is the longitudinal coordinate, and t is the
time defined in a reference frame that travels at the group
velocity of light in the fiber. The parameter β1 = −∆T

L
accounts for the synchronization mismatch, where ∆T
stands for the difference between the pump repetition
rate and the ideal cavity round-trip time (the inverse of
the FSR) [29, 41]. In the pulsed pumping scheme case
with a repetition rate frep, we have ∆T = 1

frep
− 1

FSR

[29, 41].
We focus on shape-preserving solution moving at the

velocity of the front V : A(z, t) = A(t− 1
V z). We may thus

rewrite Eq. (1) a reference frame moving at velocity V by
means of the change of variable t → t− 1

V z, which implies

the substitution β1 → β1 − 1
V = −∆T

L − 1
V in Eqs. (1-3).

With these definitions, we search for stationary solutions
of Eq. (1), i.e. we impose ∂z = 0, and consider a constant
pump:

Ld(i∂t)A+ γL|A|2A = [δ − iα]A+ iθEin. (4)

The continuous wave (CW) or homogeneous steady states
(HSS) As = A(z, t) are the solution of the cubic equation

θ2Pin = P
(
(γL− δ)2 + α2

)
, (5)

where P = |As|2. In order to characterize how two dif-
ferent HSSs are connected by a front, we perturb a HSS
and analyse the behavior of the perturbation. We insert
A(t) = As+η(t) in Eq. (4) and linearise assuming η small
(|As| ≫ η). We obtain:

Ld(i∂t)η + (2γL|As|2 − δ + iα)η + γLA2
sη

∗ = 0. (6)

The solution of Eq. (6) is searched in the form
η(t) = a eλt + b∗eλ

∗t, with a, b, λ = σ + iω com-
plex constants. By collecting the exponentials having
the same power, we get the system:

M(a, b)T = 0,

M =
[

D(iλ)L + 2γL|As|2 − δ + iα γLA2
s

γLA∗2
s D(−iλ)L + 2γL|As|2 − δ − iα)

]
(7)
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In order to get a nontrivial solution, we impose det(M) =
0, which gives:

(De(iλ)L+ 2γPL− δ)2 − (iα+Do(iλ)L)
2 − (γPL)2 = 0,

(8)

where we have defined the even and the odd parts of the
complex dispersion relation as:

De(iλ) =
D(iλ) +D(−iλ)

2
, (9)

Do(iλ) =
D(iλ)−D(−iλ)

2
. (10)

Fig. 1(e) gives a representation of Eq. (8). It show-
cases the real part (i.e. Re(det(M)) = 0) in green
and the imaginary part (i.e. Im(det(M)) = 0) in or-
ange. The roots, either real or in complex-conjugate
pairs (λ = σ + iω), correspond to the intersection of
these curves (blue dots). The real part (σ) characterizes
the exponentially growing or decaying behavior in the
transverse dimension (i.e. in time), while the imaginary
part (ω) denotes the oscillatory nature of the perturba-
tions around the continuous wave solution. Therefore,
the transverse linear stability analysis reveals that the
oscillatory tails are an inherent characteristic of the con-
tinuous wave (CW) solution itself, and the frequency of
these oscillations is determined by the imaginary part of
the roots of Eq. (8). Interestingly, we found that Eq. (8)
can be written as

iα+Do(iλ)L = ±
√

(De(iλ)L+ 2γPL− δ)2 − (γPL)2 ,

(11)

In the limit of |γPL| ≪ |De(iλ)L + 2γPL − δ|, we can
expand Eq. (11) to get the following equation

iα+Do(iλ)L± [(De(iλ)L+ 2γPL− δ] = 0. (12)

The positive branch of Eq. (12) can be written in the
form of a phase-matching condition

L
∑
n≥1

βn

n!
(iλ)n − iλ

L

V
+ 2γPL− δ + iα = 0, (13)

which has been used before to describe emission of radia-
tion from solitons (bright and dark) or shock waves [38].
Even if the equation is the same, it has been derived as-
suming that a nonlinear localised solution emits DWs
due to perturbations (i.e. HOD). The derivation of
Refs. [19, 24–27, 38] do not justify the use of Eq. (13) to
characterize the nonlinear solution itself, namely its os-
cillatory tails which give rise to spectral shoulders, since
the oscillatory tails resulting from SWs constitute a dis-
tinct process from dispersive waves. The procedure re-
ported here does not make use of this assumption, giving
clear and solid physical foundations to the derivation of
Eq. (13).

Fig. 1 illustrates an example of the analytical pre-
dictions. The parameters are L= 16.18 cm, F = 600
γ = 10.8 W−1km−1, δ = 0.032 rad, Pin = 0.5 W, which
correspond to experimental ones used in Part. IV. A

TABLE I. Cavities parameters

Cavity #1 Cavity #2 Cavity #3
L (cm) 8.21 8.09 8.78

FSR (GHz) 1.28 1.27 1.17
F 500 600 420

γ (W−1km−1) 2 10.8 10.8
β2 (ps2km−1) 6.3 1.3 0.4

down SW is represented in Fig. 1(a). It connects the
higher and lower states of the bistable regime of the sys-
tem [Fig. 1(b)], and is therefore limited to this regime
[green arrow in Fig. 1]. As expected the oscillation fre-
quency of the SW corresponds to the imaginary part of
the roots of the polynomial (8) represented in Fig. 1(e).
Note that as the oscillations appear on the lower state,
the power of the lower branch of the bistable regime PL

has thus to be considered in Eq. (8). In this example,
the stationary states calculation give PL = 0.75 W. By
incorporating it into Eq. (8), we find fSW = 2.67 THz.
SWs propagate indefinitely in a resonator only if their

velocity relative to the driving field is zero [28–31]. Oth-
erwise, they eventually decay on the lower or upper HSS.
For each value of the detuning, this condition is achieved
for only one value of the input power Pin, corresponding
to a single couple of stable higher and lower state values
(PH and PL). This point, named Maxwell point (MP)
[28, 30, 31], can be found by calculating the SW veloc-
ity through numerical methods [31] [Fig. 1(c), (d)]. In
the example shown in Fig. 1, the SW [Fig. 1(a)] is at its
MP and therefore has zero speed [orange dotted line in
Fig. 1(a), (b), (c) and (d)].
In the following, Eq. (8) is used to predict OFC gener-

ation via SWs excitation in FFP resonators. Note that
the cross-phase modulation (XPM) which occurs in these
cavities between the co and counter propagating fields
is considered as an additional phase shift and can be
compensated for by a slight change in the pump laser
detuning: δ ≈ δFP − 4fγPL [42, 43] (where f is the ra-
tio between the pulse duration and the cavity roundtrip
time). For the experimental results presented in the fol-
lowing, this phase difference is very small and always
around 0.003 rad.

III. EXPERIMENTAL SETUP

Three FFP cavities with similar lengths (around 8 cm)
were fabricated from normal dispersion optical fibers
with different GVD values: 6.3 ps2.km−1, 1.3 ps2.km−1

and 0.4 ps2.km−1, are represented in Fig. 2(b). For
all cavities, we checked numerically that the respective
fiber HOD terms does not have a significant impact.
They are made by connecting the optical fibers between
two FC/PC connectors, where Bragg mirrors are de-
posited at each sides [zoom in Fig. 2(b)] with a phys-
ical vapor deposition technique, to achieve 99.86% re-
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FIG. 2. Experimental setup and FFP cavities. (a) Experi-
mental setup with a two-arms stabilization system. Brown
(upper) line: nonlinear beam; beige (lower) line: control
beam. Both beams are perpendicularly polarized to each
other. TFS: Tunable Frequency Synthesizer; EPG: Electri-
cal Pulse Generator; RFA: Radio Frequencies Amplifier; IM:
Intensity Modulator; PM: Phase Modulator; EDFA: Erbium
Doped Fiber Amplifier; PC: Polarization Controller; OI: Op-
tical Isolator; PD: Photodiode; PBS: Polarization Beam Split-
ter; PDH: Pound-Drever-Hall; SSB: single-side-band genera-
tor; ESA: Electrical Spectrum Analyser; OSA: Optical Spec-
trum Analyser; OSO: Optical Sampling Oscilloscope. (b)
Photograph of FFP cavities with zoom on a deposited mirror.
(c) Recording of a pump pulse with an OSO (blue dotted line)
and the the fitted Gaussian curve (black line)

flectance over a 100 nm bandwidth at the pump wave-
length (1550 nm) [44]. Hence, they possess a free spec-
tral range (FSR) around 1.2 GHz, and a finesse ranging
between 400 and 600 (i.e. a quality-factor between 69
and 92 million). For clarity and consistency throughout
the text, they are referred to as cavity #1, #2 and #3
and their parameters are listed in Table I. As reported,
these devices are very practical for generating OFCs in
the GHz range [12, 25, 45–47]. Nonetheless, due to their
few cm length, these systems are sensitive to mechan-
ical and acoustical vibration, and thermal fluctuations,
requiring a stabilization or isolation. For this study, we
employed an active laser stabilization system to coun-
teract cavity resonance variations, a technique that has
shown excellent results in previous studies [15, 43, 46].
The FFP resonators are exploited in the experimental
setup described in Fig. 2(a). Similar to studies on fiber

ring cavities, that stabilize the pump laser in one direc-
tion while inducing nonlinear effects in the other by using
clockwise and counter-clockwise propagation directions
[14, 15, 41], a two-arms stabilization scheme is utilized.
However, the two main polarization axes provided by the
natural birefringence of the fiber cavities are used, rather
than managing the two-way flow which is impractical due
to the Fabry-Perot structure. In Fig. 2(a), the lower beige
arm employs a Pound-Drever-Hall system [48, 49] to lock
the pump laser on the top of a cavity resonance, while the
upper brown arm triggers nonlinear effects by pumping
the cavity with a Gaussian pulse train. This pulse train
is generated using an intensity modulator driven by an
electrical pulse generator to obtain Gaussian pulses with
a duration of 45 ps at full width half maximum [Fig. 2(c)].
A frequency synthesizer enables precise adjustment of the
repetition rate [frep in Fig. 2(a)], allowing it to match
the cavity roundtrip time within the Hz range. Finally,
a homemade tunable single-sideband generator [see SSB
in Fig. 2(a)] affords fine control over the cavity detun-
ing within a range of hundreds of Hz, which is three or-
der of magnitude lower than the linear transfer function
linewidth.

IV. SWITCHING WAVES GENERATION

Our setup facilitates the straightforward generation of
SWs, by making possible pulsed pumping and perfect
control of the cavity detuning. When the latter is such
that the system is bistable, SWs can be generated at the
MP. Additionally, employing a pulsed-pump with suffi-
ciently high peak power ensures a specific time on the
rising and falling fronts of the pump corresponding to
the MP, where SWs can effectively link the lower and
higher states of the cavity without any group-velocity
offset, and thus remain stable [28]. The oscillatory tails
manifest at the trailing edges of the pulse, where the
power variation can be regarded as adiabatic, as it is
considerably slower than the front created by the SW.
This assumption justifies the use of the model introduced
in Part II to describe the observed phenomena, even if
Pin is not strictly constant. Moreover, it turns out that
our model is remarkably robust with respect to this ap-
proximation. Indeed, we verified by numerical simula-
tions (not reported here) that it works well even if the
pump pulse has extremely steep fronts. Fig. 3(a) and
(b) report cavity output signals in the frequency and
time domains, respectively, with Cavity #2, for differ-
ent detuning values. The generation of SWs is clear from
its signature in the spectral domain, i.e. symmetrical
shoulders around the pump [Fig. 3(a)] corresponding to
the SWs frequency and leading the OFC span. In the
time domain, the SWs generation is characterized by the
steep pulse fronts [Fig. 3(b)], which link the higher and
lower states. It results in almost-square output pulses,
which can be seen in the spectra with a sinus cardinal
like shape modulation [see insert in Fig. 3(a)]. These
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FIG. 3. Experimental recordings performed in cavity #2 as a function of the cavity detuning. Blue (lower lines): δ = 0.012 rad;
orange (middle lines): δ = 0.017 rad; green (upper lines): δ = 0.032 rad. (a) Generated spectra recorded with an OSA. Colored
lines: experiments (pink-central line: pump spectrum); black dashed lines: numerics. (b) Time domain traces recorded with an
OSO. Black line: Pump pulse envelope; colored dotted lines: time-domain recording corresponding to the experimental spectra
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observations illustrate also that the SWs frequency, and
thus the generated OFC width, increases with the de-
tuning [Fig. 3(a)], from 1.3 THz for δ = 0.012 rad, to
2.7 THz for δ = 0.032 rad. It is also noticeable that
the spectral shoulders become more marked with larger
detuning values, leading to increased amplitude in the
oscillatory tails of SWs. Interestingly, the MP rises the
top of the driving pulse with the detuning [circles in
Fig. 3(b)], leading to much shorter pulse duration at the
cavity output, in accordance with other studies in ring
cavities [28, 29]. Pulses can be obtained with a duration
ranging from 52 ps to 25 ps. All these observations are in
very good agreement with numerical of LLE [solid lines
in Fig. 3(b)]. Note, however, that this phenomenon is
particularly significant here, considering that the driving
pulses are Gaussian, with relatively smooth fronts. With
pump pulses having steep fronts, the rise of the MP along
the front would not result in a shortening of the output
pulses, as the SW would consistently form in the original
front, regardless of the MP position. The SWs frequen-
cies and the shoulders positions can also be analytically
predicted thanks to the model introduced in Part II. The
red dashed lines in Fig. 3(a) correspond to the imaginary
part of the roots of the Eq. (8). They perfectly match
with the shoulders positions. As an example, Fig. 1 de-
picts the case when the detuning is set to 0.032 rad [green
plots in Fig. 3]. The MP correspond to PL = 0.75 W, and
leads to fSW = 2.67 THz (roots of Eq. (8)). Note that
this oscillations are not observed experimentally with the
OSO due to its limited bandpass (700 GHz). They can
be seen through numerics [insert in Fig. 3(b)].

Beyond enabling the generation of OFCs through spec-
tral broadening, SWs are particularly interesting due to
their excellent stability, which make them very attractive
for applications. We conducted phase noise spectra mea-
surements of the generated OFC using an electrical spec-
trum analyzer (ESA) and a fiber Bragg grating (FBG) as
a notch filter to remove the pump component [Fig. 2(a)].
They revealed that the nonlinear process does not intro-

duce any noise [green and pink lines in Fig. 3(c)]. A phase
noise under −110 dBc/Hz from 500 Hz is observed for
the generated OFC signal [green line in Fig. 3(c)]. When
compared to the reference frequency synthesizer [red line
in Fig. 3(c)], there is no additional phase noise observed
in the lower frequencies, indicating an excellent trans-
mission of stability during the comb generation process.
Only in the higher frequencies, a phase noise difference
of 30 dB is noted [green and red lines in Fig. 3(c)].

V. IMPACT OF THE SYNCHRONISATION
MISMATCH

The synchronization mismatch between the pump rep-
etition rate and the cavity roundtrip time significantly
influences the dynamics of SWs [24, 26, 27, 29]. It is de-
fined as the difference between the pump period and the
cavity roundtrip time: ∆T = 1

frep
− 1

FSR . Here, spectra

were obtained for three distinct cavity mismatch values
(−0.8, 0, and 0.8 fs) with Cavity #2, while maintaining
a fixed detuning δ = 0.025 rad. Without synchronisation
mismatch (∆T = 0), the spectrum and output pulses
are perfectly symmetric. However, with positive (nega-
tive) ∆T , the spectrum’s shoulders shift towards higher
(lower) frequencies, resulting in asymmetrical spectra.
This is experimentally observed in Fig. 4(a), (b) and (c)
[colored lines] in good agreement with numerics [black
dashed lines], where synchronisation mismatch is consid-
ered in the governing equation LLE [Eq.(1)] by introduc-

ing a drift velocity 1
β1

=
(
−∆T

2L − 1
V

)−1
[29, 41]. Corre-

sponding time domain traces, recorded with an OSO, and
calculated from numerics are shown in Fig. 4(d), (e), and
(f). They also exhibit asymmetry due to the synchroni-
sation mismatch (∆T ̸= 0). Notably, the frequency of
oscillations tails of the fronts, reflecting the spectrum’s
shoulder positions, differs along with the power at which
these oscillations appear [Fig. 4(g), (h), and (i)]. The
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black dashed lines: corresponding numerics from LLE. (d), (e) and (f) Corresponding time domain traces. Dots: Experimental
traces recorded with an OSO; lines: Numerics from LLE. (g), (h), (i) Zoomed-in views are provided for better visibility of the
oscillation power levels at the pulse bottoms. (j) and (k) SW inverse velocity as a function of the lower state power, for the
three synchronization mismatch values; (j): rising front, (k): falling front. Colored dashed lines are used to identify which
spectral component corresponds to which front.

model depicted in Part II gives a clear explanation of
this phenomenon. First, the power at which the oscil-
lations appear can be determined finding the MPs for
each front. This is achieved by calculating the SWs in-
verse velocity as a function of the lower state power PL

for both the rising [Fig. 4(j)] and falling [Fig. 4(k)] fronts,
considering the three ∆T values. An inverse velocity con-
tribution of −∆T/(2L) is added when ∆T ̸= 0. As de-
picted, the yellow curves in Fig. 4(j) and (k) are shifted
by −∆T−/(2L) = 5 fs/m compared to the blue curves,
while the red curves is shifted by −∆T+/(2L) = −5 fs/m.
As a result, the power levels where the SWs velocity
reaches zero (i.e. the MP) vary with the synchroniza-
tion mismatch. Additionally, given that the slopes of the
curves are inverse for the rising and falling fronts, the
MP for the two fronts differ when ∆T ̸= 0. For instance,
for ∆T− = −0.8 fs [yellow case in Fig. 4 (c), (f) and
(i)], the MP corresponds to PL = 1.55 W for the rising
edge [green dotted lines in Fig. 4 (i) and (j)], while it is
PL = 0.67 W for the falling edge [orange dotted lines in
Fig. 4 (i) and (k)]. Consequently, the PL value used to
compute the SWs frequency in Eq. (8) are different, ex-
plaining the difference in SW frequencies for both fronts
and the asymmetry in the spectral domain. Specifically,
we found −2.88 THz for the rising edge and 1.81 THz for
the falling one [orange and green dotted lines in Fig. 4
(c)]. There is a very good agreement with both numer-
ical simulations and experimental observations. When

∆T = 0 [blue case in Fig. 4 (b), (e) and (h)], the MP re-
mains the same for both fronts, allowing us to calculate
the SWs frequency as detailed in Part IV. Conversely, for
∆T+ = 0.8 fs (red case in Fig. 4 (a), (d) and (g)) a per-
fectly opposite scenario to that of ∆T− = −0.8 fs occurs.
Here, the two fronts are reversed, with the MP regis-
tering at 0.67 W and 1.55 W for the rising and falling
edges, respectively, corresponding to shoulder positions
at −1.81 THz and 2.88 THz.

VI. IMPACT OF THE GROUP VELOCITY
DISPERSION

Eq. (8) and (13) predicts that the cavity dispersion (i.e.
β2) also impacts the SWs frequencies and thus the OFC
span. To illustrate it, OFCs were similarly generated in
two other cavities (Cavity #1 and #3), exhibiting dif-
ferent GVD values. The results are depicted in Fig. 5.
In this comparison, the analysis is primarily qualitative,
considering the finesse values and nonlinear coefficients
across different cavities [see Table I]. The pumping power
and detuning value are adjusted to achieve comparable
ϕ values, where ϕ = 2γP (2L)− δ, ensuring that only the
dispersive term changes in Eq.(8) and (13). The setup
parameters employed for generating the respective OFCs
are detailed in the Figure 5’s caption. Thus, ϕ#1 = 0.004,
ϕ#2 = 0.006, and ϕ#3 = 0.004, making them comparable
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FIG. 5. OFC generation as a function of the cavity dispersion.
Cavity #1: δ = 0.032 rad, Pin = 3 W. Cavity #2: δ =
0.032 rad, Pin = 0.5 W. Cavity #3: δ = 0.09 rad, Pin =
1.5 W.

in relation to the dispersion term values β2

2 ω2, more than
500 times greater at 4 THz for Cavity #2 for instance.
Note that dispersion exerts the most significant influence,
often serving as the sole determinant in numerous studies
for predicting the spectral positioning of dispersive phe-
nomena [1, 9, 28, 50]. Notably, the cavity with the lowest
dispersion showcases a remarkable capability to generate
a wide-ranging OFC spanning a 15 THz bandwidth. In
this instance, the flattened dispersion curve of the fiber
used to construct Cavity #3 leads to a weak contribution
of third order of dispersion (TOD) which would leads to
an asymmetry in the spectrum [28]. Nonetheless, TOD
cannot be completely neglected, leading to a very low β3

value (β3 = −2.73 × 10−3 ps3km−1) and a slight asym-
metry in the spectrum, fSW = −7 THz for the left front
VS 7.9 THz for the right front [blue line in Fig. 5]. We
observe that radiation efficiency decreases with SW fre-
quency, given that the cavity with the highest dispersion
get the most powerful comb lines. These findings further
underscore the inherent benefits of FFP cavities, high-
lighting their manufacturing adaptability to meet specific
needs.

VII. DISCUSSION AND CONCLUSION

We demonstrate experimentally that broadband OFCs
can be generated in fiber Fabry-Perot resonators in the

normal dispersion regime, by generating SWs from a
pulsed pump. We illustrate the impact of the dispersion
using different cavities as well as the impact of the syn-
chronisation mismatch between the pump and the cavity.
We introduce a theoretical approach based on the trans-
verse linear stability analysis, which allows us to predict
the bandwidth of the OFC, i.e. the oscillation frequency
of the SWs. Unlike previous studies that attribute SW
generation to dispersive wave emission from a pulse front
[19, 24–27], our work considers that SWs are exact so-
lutions of the Lugiato-Lefever equation. Remarkably, we
have derived a phase-matching condition similar to those
employed in prior studies, enabling us to predict the SW
frequency with high accuracy. In addition to providing
insights into the dynamics of SW formation, our results
highlight the ability of FFP resonators to produce broad
and stable frequency combs in the GHz range. By fine-
tuning the dispersion and nonlinearity characteristics of
the optical fiber used, we have realized optical frequency
combs that cover up to 15 THz in bandwidth, feature
a frequency spacing of 1.2 GHz, and demonstrate phase
noise as low as -110 dBc/Hz at 1 kHz. This research
contribute to a better understanding of the dynamics of
SWs in high quality-factor resonators and facilitates the
development of innovative platforms for OFC generation.
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