
HAL Id: hal-04761386
https://amu.hal.science/hal-04761386v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inertial wave super-attractor in a truncated elliptic cone
Benjamin Favier, Stéphane Le Dizès

To cite this version:
Benjamin Favier, Stéphane Le Dizès. Inertial wave super-attractor in a truncated elliptic cone. Journal
of Fluid Mechanics, 2024, 980, pp.A6. �10.1017/jfm.2024.5�. �hal-04761386�

https://amu.hal.science/hal-04761386v1
https://hal.archives-ouvertes.fr


This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1

Inertial wave super-attractor
in a truncated elliptical cone

Benjamin Favier1† and Stéphane Le Dizès1
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We consider inertial waves propagating in a fluid contained in a non-axisymmetric three-
dimensional rotating cavity. We focus on the particular case of a fluid enclosed inside a
truncated cone or frustum, which is the volume that lies between two horizontal parallel
planes cutting an upright cone. While this geometry has been studied in the past, we
generalise it by breaking its axisymmetry and consider the case of a truncated elliptical
cone for which the horizontal sections are elliptical instead of circular. The problem
is first tackled using ray tracing where local wave packets are geometrically propagated
and reflected within the closed volume without attenuation. We complement these results
with a local asymptotic analysis and numerical simulations of the original linear viscous
problem. We show that the attractors, well-known in two dimensional or axisymmetric
domains, can be trapped in a particular plane in three-dimension provided that the
axisymmetry of the domain is broken. Contrary to previous examples of attractors in
three-dimensional domains, all rays converge towards the same limit cycle regardless of
initial conditions, and it is localised in the bulk of the fluid.

1. Introduction

Inertial waves and internal gravity waves are waves propagating in rotating and
stratified fluids, respectively. In three dimensions, when forced locally in a uniformly
rotating (or stratified) fluid, these waves have the particularity to propagate along a
double cone that makes a constant angle with respect to the axis of rotation (or to the
direction of stratification). This property allows to show that, when propagating within a
closed container, wave packets may converge after multiple reflections on solid boundaries
to a particular surface called attractor in 2D (Maas & Lam 1995) or axisymmetric
geometries such as the spherical shell (Rieutord & Valdettaro 1997). One of the simplest
geometries giving rise to attractors is a rectangular container with a sloping boundary.
This trapezoidal geometry has been the subject of numerous works since the first study
in a stratified fluid by Maas et al. (1997). The theoretical attractors obtained by ray
tracing have been observed both experimentally (Hazewinkel et al. 2008, 2010; Scolan
et al. 2013) and numerically (Drijfhout & Maas 2007; Grisouard et al. 2008). Similar
results were also obtained in rotating fluids in the same geometry (Maas 2001; Manders
& Maas 2003, 2004) or in its axisymmetric version (Klein et al. 2014; Sibgatullin et al.
2019; Boury et al. 2021; Pacary et al. 2023). Attractors have also been found to be generic
features of inertial waves in spherical shells (Rieutord & Valdettaro 1997; Rieutord et al.
2000). Early studies concerned attractors localised close to the equator (Stern 1963;
Bretherton 1964; Stewartson 1972) which possess similar properties as 2D attractors
(Rieutord et al. 2002). But the picture seems more complex in a spherical shell owing
to the presence of the rotation axis in the domain and of a critical latitude singularity
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issued from the inner sphere (Rieutord & Valdettaro 2010, 2018; He et al. 2022, 2023).
The robustness of attractors has been analysed with respect to wall friction (Beckebanze
et al. 2018), nonlinearity (Grisouard et al. 2008; Jouve & Ogilvie 2014; Favier et al. 2014;
Beckebanze et al. 2021; Ryazanov et al. 2021) and instabilities (Brouzet et al. 2016b,
2017; Dauxois et al. 2018). The 2D framework has also been used to obtain most of
the available mathematical results (Maas & Lam 1995; Manders et al. 2003; Maas 2009;
Bajars et al. 2013; Beckebanze & Keady 2016; Colin de Verdière & Saint-Raymond 2020;
Dyatlov et al. 2022; Makridin et al. 2023).
While fundamental in nature, studies about attractors are motivated by their ability

to focus energy at small length scales, which could potentially impact the dissipative
properties of many geophysical systems. Internal gravity waves and attractors can break
and lead to turbulence (Staquet & Sommeria 2002; Brouzet et al. 2016a), and as such
are known to play an important role in the energy budget of the ocean where they are
often excited by tides (Wunsch 1975). Attractors can for example be excited by tidal
waves in a paraboloidal basin (Maas 2005) or between two ridges (Echeverri et al. 2011).
Their occurrence has been analysed in the configurations of the Mozambique Channel
(Manders et al. 2004) and of the Luzon strait (Tang & Peacock 2010; Wang et al. 2015).
In the astrophysical context, inertial waves and attractors could be important in the
synchronisation processes of rapidly-rotating astrophysical objects as they provide a way
to rapidly dissipate energy (Zahn 1975; Ogilvie & Lin 2004).
Most of the works mentioned above have considered a 2D or a 3D framework with

symmetry (axisymmetric or invariant along one direction). In that case, rays were
assumed to remain confined within a particular 2D plane since the system is effectively
invariant along the third direction. As soon as the rays are assumed to propagate out
of this 2D plane, it becomes important to consider the 3D reflection law of localised
wave beams (Manders & Maas 2004; Maas 2005). This was done in an axisymmetric
geometry by Maas (2005) and Rabitti & Maas (2013, 2014), and in a 3D rectangular
domain with a sloping wall but invariant along one direction by Manders & Maas (2004)
and Pillet et al. (2018). For both the axisymmetric spherical shell and the 3D trapezoidal
basin that has a uniform shape in a transverse direction, the authors showed that the
attractor is possibly trapped in a specific plane which depends on the initial conditions of
the ray tracing protocol. To our knowledge, the only study who considered a completely
3D geometry is the recent work of Pillet et al. (2019). They considered a trapezoidal
geometry, but for which the sloping plane is also inclined in the transverse direction,
thus breaking the symmetry on which previous studies were implicitly constructed. In
that case, the ray beams tend to drift along the twice-inclined boundary towards the
vertical boundary eventually closing the domain. The rays accumulate there around a
trapped attractor close to the vertical boundary (Pillet et al. 2019), which is not due
to a global focusing but instead due to the arrest by the vertical side boundary of the
continuous shift of the wave beams.
In the present work, focusing on the purely rotating case with inertial waves only, we

consider a 3D non-axisymmetric geometry and show that we obtain a global focusing,
regardless of initial conditions, of the wave beams along a local curve (as opposed to
a surface in the axisymmetric case). Contrary to the work of Pillet et al. (2019), our
attractor does not rely on the confinement induced by a vertical boundary but is trapped
in the bulk of the fluid domain. We thereby provide the first evidence of a super-attractor,
that is a 1D curve on which all rays tend to focus after multiple reflections on solid
boundaries, regardless of their initial positions and orientations within the fluid volume.
In §2, we present the framework, the 3D reflection law and our geometry (a truncated
elliptic cone). In §3, we demonstrate that, in our geometry, ray beams corresponding
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to waves of a given frequency do converge for almost all initial conditions to a unique
limit cycle. This limit cycle only depends on the geometry and the frequency of the
waves. An analytic formula for the contracting factors obtained in the two focusing
directions is derived in this section and compared to numerical ray tracing results. In
§4, numerical simulations of the linear viscous problem are presented. We show that
the viscous response to a global forcing tends to be focused onto the super-attractor. A
preliminary scaling with respect to the Ekman number is also proposed for the velocity
amplitude, before we finally present our conclusions.

2. Formulation of the problem and methods

In this section, we describe the equations of motion, the reflection law of a localised
wave packet and the particular geometry considered for the rest of the study.

2.1. General problem and equations

We consider the incompressible flow of a fluid of constant kinematic viscosity ν
contained inside a closed container rotating at a constant rate Ω = Ωez. While we
expect our results to remain valid when the fluid is stratified in density, due to the
similarity in the dispersion relations and propagation properties, we focus on the purely
rotating case here for simplicity. Using 1/(2Ω) as the time scale and the characteristic
length scale a of the container as the reference length scale, and focusing on infinitesimal
perturbations to the solid body rotation flow, the linearised dimensionless equations of
motion in the rotating frame are

∂u

∂t
+ ez × u = −∇P + E∇2u (2.1)

∇ · u = 0 (2.2)

where u is the perturbation velocity, P is the pressure incorporating the centrifugal
acceleration and E = ν/(2Ωa2) is the Ekman number. We shall focus on the response
to an harmonic boundary forcing of dimensionless frequency ω and for small Ekman
numbers. The frequency of inertial waves is bounded by twice the rotation rate and we
therefore focus on dimensionless frequencies comprised between 0 and 1.
Information on the solution can be obtained in an inviscid framework by monitoring

the propagation of localised wave beams, as detailed in the next section.

2.2. Reflection law of a localised beam

Our description mainly follows the approach of Manders & Maas (2004), Maas (2005),
Rabitti & Maas (2014) and Pillet et al. (2018, 2019). Yet, we slightly modify their
approach to obtain a simpler reflection law.
As in Rabitti & Maas (2014), we consider a wave beam of frequency ω that is sufficiently

localised such that it travels along a geometrical ray path. Each ray is characterised by its
angle of propagation φ with respect to the vertical rotation axis ez and by its azimuthal
angle ϕ with respect to the axis ex. We assume 0 ⩽ φ ⩽ π and 0 ⩽ ϕ < 2π. The angle
φ is given by π/2 ± θ where the angle θ (between 0 and π/2) is fixed by the frequency
of the inertial oscillations according to the dispersion relation of inertial waves, which in
our dimensionless formulation is simply

ω = cos θ . (2.3)

This condition means that the rays propagate in an axial cone that makes an angle θ with
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Figure 1. Reflection of an inertial beam on an inclined surface. The incident and reflected
beams are defined by their velocity vectors Vi and Vr, the surface by its normal vector n
oriented toward the fluid. (a) 3D view; (b) Projected view on the horizontal plane.

respect to the horizontal plane. This property is maintained during the ray propagation
including when it reflects on solid boundaries (Phillips 1966). In two-dimensional or
axisymmetric domains, this non-specular reflection can lead to limit cycles towards which
all rays converge. These cycles are called attractors.
The horizontal (or azimuthal) angle ϕ is irrelevant in two dimensions since the ray

always propagates inside the same predefined plane. In three dimensions however, the
ray is free to move through the whole volume. Contrary to φ, ϕ is not conserved during
reflections on solid boundaries. The reflection law is not specular but corresponds to a
tendency for the ray to converge towards the vertical plane containing the steepest descent
direction. This has been extensively discussed in Manders & Maas (2004), Rabitti & Maas
(2013, 2014) and Pillet et al. (2018, 2019).

In the present study, we shall use the following relation between the incident and
reflected angles ϕi and ϕr when a ray reflects on a plane surface inclined by an angle α
(between 0 and π/2) with respect to the horizontal plane (see figure 1)

tan(ϕr − ϕn) =
(tan2 θ − tan2 α) sin(ϕi − ϕn)

(tan2 θ + tan2 α) cos(ϕi − ϕn) + 2ζ tanα tan θ
. (2.4)

In this expression, ϕn is the azimuthal angle of the normal vector n of the surface oriented
towards the fluid and ζ = sgn(nzViz), where nz is the vertical component of the normal
vector and Viz is the vertical component of the incident velocity. A similar expression
was derived in Manders & Maas (2004) for wavevector angles in the context of plane
wave reflection. In term of wave propagation directions, the reflection law has never been
written in this form in the literature. We provide a derivation in Appendix A.

2.3. Geometry of the fluid domain

We consider the volume contained within a truncated elliptic cone defined by

x2 +
y2

b2
⩽

z2

tan2 α
, (2.5)

with tanα ⩽ z ⩽ tanα + H. The angle α is the angle made by the conical surface
with respect to the horizontal in the x-direction. The base of the cone always has a unit
radius along the x-axis while it reaches b along the y-axis. Without loss of generality,
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Figure 2. (a) 2D ray paths for two particular trajectories starting from the orange empty circles
and for ω = 0.8. The red path corresponds to the last half of the many reflections and shows
the final attractor. (b) Position of each reflection along the x axis of the last few reflections as

a function of ω. The two vertical lines correspond to ω = 1/
√
2 and ω = 2/

√
5.

we assume b ⩾ 1 so that the short axis is always along the x-axis. As it will become
apparent later, the attractor will localise in that case onto the particular plane (Oxz).
The case b = 1 corresponds to the classical axisymmetric truncated cone geometry. This
type of axisymmetric geometries involving a truncated conical surface, sometimes called
a frustum, has already been studied previously (Beardsley 1970; Henderson & Aldridge
1992; Borcia & Harlander 2013; Klein et al. 2014; Sibgatullin et al. 2019; Pacary et al.
2023). The novelty of our study is to extend the linear wave dynamics to the case of
non-axisymmetric domains which correspond in our case to b > 1. Although theoretical
results will be derived for any values of H and α, the numerical investigations will focus
on the particular parameters H = 1 and α = π/4 and consider super-critical slopes only
for which θ < α.

3. Ray tracing and local analysis

In this section, we discuss the properties of the three-dimensional ray paths satisfying
the reflection laws discussed above. We start by discussing the axisymmetric case (b = 1)
before considering ray paths in the non-axisymmetric geometry (b > 1).

3.1. Axisymmetric truncated cone

In this section, we consider the case b = 1 in equation (2.5) which corresponds to
an axisymmetric truncated cone. This geometry has been recently considered in Pacary
et al. (2023). It corresponds to the axisymmetric version of the 2D trapezoidal geometry
that has been studied in numerous works, as described in the introduction. Owing to the
axisymmetry, the normal vector of the conical surface is always oriented toward the axis
of symmetry Oz. This implies that if a ray is oriented towards this axis, it reaches the
conical surface with a meridional angle ϕi = ϕn + π, and reflects with an angle ϕr = ϕn
as prescribed by (2.4). It therefore continues to be oriented towards the axis. This means
that if a ray initially lies within a meridional plane, it remains confined to this plane
forever as in a 2D geometry.
The ray paths confined within a particular meridional 2D plane of the axisymmetric

cone, which is equivalent to a 2D trapezoid, have been analysed in many papers (Maas &
Lam 1995; Maas et al. 1997; Grisouard et al. 2008; Brunet et al. 2019; Pacary et al. 2023).
They converge towards attractors owing to the focusing effect resulting from the reflection
along the conical slope. This is illustrated in figure 2(a) where we show two ray paths
converging towards an attractor for the particular case ω = 0.8, H = 1 and tanα = 1.
This particular attractor (shown in red in figure 2(a)) is composed of two symmetrical
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quadrangles and is the simplest attractor (with the lowest number of reflections) that can
be obtained in this geometry. It exists for α > θ (i.e. when the reflection on the sloping
boundary is subcritical) and in a finite range of parameters that can be obtained by
finding the coordinates of the reflection points. For instance, the points (±xa, za) where
the attractor reflects on the inclined boundary (see figure 6 below) can be expressed in
terms of the angles α and θ and the height H as

xa =
H

tan θ
, za =

H tanα

tan θ
. (3.1)

Writing the condition that za is between tanα and tanα + H, implies the following
condition

tan θ < H <
tanα tan θ

tanα− tan θ
. (3.2)

This condition can be written in term of the frequency ω = cos θ as

1√
1 +H2

< ω <
tanα+H√

(tanα+H)2 +H2 tan2 α
(3.3)

which defines the frequency range for which this type of attractor exists. For the
parameters used in figure 2 (H = 1 and tanα = 1), it corresponds to the interval
1/

√
2 < ω < 2

√
5. This interval can be seen in figure 2(b) where we show the positions

on the x-axis of each reflection (after a large number of reflections in order to focus on
the attractor path) for many random initial conditions uniformly distributed across the
surface and as a function of frequency. There are no attractors for frequencies below
ω < 1/

√
2. The relatively empty regions for these low frequencies correspond to rays

trapped in the upper corners. For ω > 2/
√
5, other attractors are still observed but they

are now characterised by a more complex path involving multiple reflections on each
of the boundaries. In the following, we will focus on the simpler attractor observed for
frequencies satisfying the conditions (3.3).
If we now authorise the ray beams to deviate from a particular meridional plane, their

path becomes more complex. One has to monitor the horizontal angle ϕ of the direction
of the ray and the meridional angle ψ of the position where it reflects on the boundaries
(see figure 6(b) below). This problem has been recently studied in Pacary et al. (2023)
for this particular geometry (see also section 7 in Maas (2005)). They showed that the 2D
attractor is still obtained but its location along the azimuthal direction is now dependent
on the choice of initial conditions. This phenomenon is illustrated in figure 3 where
we show that two rays emitted from the same location with different initial horizontal
angles of propagation ϕ end on the same 2D attractor but in different meridional planes.
However, the geometry being azimuthally invariant, all the meridional planes are possible
and should be obtained with the same probability. A fully axisymmetric attractor would
then be obtained (with a non-uniform distribution of trapping planes though, see Maas
(2005)) if all the possible initial conditions were simultaneously considered (with the
exception of whispering gallery modes (Pillet et al. 2019) which we did not observe
here). More details can be found in Pacary (2023); Pacary et al. (2023), where such an
axisymmetric system is explored using both ray tracing and experiments.

3.2. Elliptic cone

In this section, we consider the unexplored case b > 1 in equation (2.5) which
corresponds to a truncated elliptic cone. As the axisymmetry is now broken, we do
not expect the presence of any axisymmetric attractor. In the following, we focus on the
case where the reflection on the conical surface remains subcritical which leads to the
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Figure 3. Ray path for two particular trajectories initialised at the same point indicated by the
empty circle. The two trajectories differ only by the initial horizontal angle of propagation. The
thin lines correspond to the transient propagation while the thick lines correspond to the final
limit cycle after many reflections. The conical surface is coloured in light grey to distinguish it
from the horizontal planes. The height of the cone is H = 1, its opening angle is tanα = 1 and
the frequency is ω = 0.8. (a) Side view. (b) View from the top. A movie (Movie1) showing the
propagation of many randomly initialised rays can be found in Supplementary materials.
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Figure 4. Same as figure 3 but for a non-axisymmetric domain with b = 1.2 in equation (2.5).
The other parameters are ω = 0.8, H = 1 and tanα = 1. (a) Side view in the (y, z) plane. (b)
Side view in the (x, z) plane. (c) 3D view. (d) Top view in the (x, y) plane. A movie (Movie2)
showing the propagation of many randomly initialised rays can be found in Supplementary
materials.

following upper bound on b

b < bc =
tanα

tan θ
. (3.4)

The first effect of the elliptic deformation is to modify the orientation of the normal
vector of the conical surface. Except in the vertical planes x = 0 and y = 0 corresponding
to the directions of the principal axes of the elliptical cone, the normal vector to the cone
is no longer oriented towards the vertical rotation axis. This means that contrary to the
axisymmetric case, no ray can stay trapped in a particular meridional plane apart from
the planes x = 0 and y = 0. When a ray is initialised inside any other meridional plane,
it deviates from it after its first reflection on the conical surface. Whether the planes
x = 0 and y = 0 are stable or unstable equilibrium will be discussed below.
We first repeat the ray tracing experiment done previously for b = 1 but in a non-

axisymmetric geometry with b = 1.2. The same frequency ω = 0.8 is considered. An
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Figure 5. Positions of the reflection points along the x axis in red and along the y axis in blue
for the final limit cycle obtained from many random initial conditions. (a) Axisymmetric case
b = 1 and (b) elliptic case b = 1.2. The cone height is H = 1 and its opening angle is tanα = 1.
The graph focuses on the frequency range defined by equation (3.3). The thin lines correspond
to the analytical position of the six reflection points of the 2D attractor.

example is shown in figures 4, where two ray paths are generated from the same initial
position but with different horizontal angles. We observe that the two ray paths now
converge towards the same unique attractor localised in the plane y = 0 containing the
semi-minor axis of the elliptical cone. One can repeat the experiment for many initial
positions and horizontal angles ϕ showing that all rays eventually end up in this particular
plane y = 0 and along the same limit cycle. For this particular case, it thus seems that
the plane y = 0 is a stable equilibrium while the plane x = 0 is unstable. This is further
confirmed in figure 5 where we show the positions x and y of the reflection points of the
limit cycle (obtained by considering the last ten iterations of a total of five hundred) for
many frequencies and many random initial conditions. We compare the axisymmetric
case b = 1 in figure 5(a) with the elliptic case b = 1.2 in figure 5(b). The thin lines
indicate the x coordinates of the six reflection points of the 2D attractor path, as already
shown in Figure 2(b), in the particular plane y = 0 which is the same for all ellipticities
b in our case. For the axisymmetric case, each independent ray path converges towards a
similar 2D attractor in a particular meridional plane, depending on its initial conditions,
leading to a dense pattern of reflection points when plotting their (x, y) coordinates.
Note that the projection from the axisymmetric domain to the arbitrary coordinates x
and y leads to a non-uniform density of reflection points which tend to accumulate close
to the expected positions of the 2D attractors (shown by the thin lines). For the non-
axisymmetric case b = 1.2 however, all the rays converge towards the particular plane
y = 0, regardless of their initial conditions in terms of position and initial horizontal
angle, while we recover the same attractor structure as in 2D when considering the x
coordinates. Note that we recover this peculiar property for all frequencies within the
attractor range given by equation (3.3).
The attractor in the particular plane y = 0 seems to attract all the rays, regardless of

their initial positions within the volume, at the exception of rays initialised within the
x = 0 plane which is also an equilibrium, albeit unstable. Contrary to the axisymmetric
case, there is a second azimuthal convergence (related to the varying curvature of the
elliptical cone along the azimuthal direction) in addition to the meridional convergence at
the origin of the classical 2D attractor (related to the inclination of the conical surface).
For this reason, we call this final limit cycle a “super-attractor”, to differentiate it from
the classical attractor surface observed in the axisymmetric case. The super-attractor
results from a convergence of rays in both axial and azimuthal directions while there is
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ϕ1.

no azimuthal convergence for an attractor in an axisymmetric geometry, as its azimuthal
position depends on the initial position and horizontal angle of propagation.

3.2.1. Local analysis of the super-attractor

In this section, we analyse the local properties of the super-attractor. Our objective
is to confirm the attracting character of the super-attractor both towards a particular
limit cycle in the meridional plane and towards a particular meridional plane regardless of
initial conditions. While the first property is shared with regular attractors, we show that
the second is specific to super-attractors. We aim to obtain an analytic expression for the
attraction rate (i.e. Lyapunov coefficient) as a function of the geometrical parameters.

We focus on the super-attractor which is made of two symmetrical quadrangles as
illustrated in figure 2(a). This 2D attractor has been studied in section §3.1. It exists in
the plane x = 0 for frequencies in the interval defined in (3.3). The points (±xa, 0, za)
where reflection occurs has been given in (3.1).
We now want to analyse the behaviour of a ray close to the attractor. We consider

a ray emitted from a point (x0, y0, z0) on the inclined surface close to (xa, 0, za). This
ray is emitted downward with a vertical angle φ0 = π/2 + θ and an azimuthal angle
ϕ0 as illustrated in figure 6. If this ray is not too far from the attractor, it first reflects
on the lower plane surface, then reflects on the upper plane surface before reaching the
inclined surface on the other side in a point (x1, y1, z1) close to (−xa, 0, za). Both points
(x0, y0, z0) and (x1, y1, z1) are on the cone defined by (2.5) so their horizontal coordinates
can be written as

x0 = z0
cosψ0

tanα
, y0 = bz0

sinψ0

tanα
, (3.5a)

x1 = z1
cosψ1

tanα
, y1 = bz1

sinψ1

tanα
, (3.5b)

where ψ0 and ψ1 are their azimuthal angles (see figure 6(b)).
As the reflections on the plane surfaces do not modify the azimuthal angle of the ray

(see equation (2.4) for the particular case α = 0), the coordinates of the point (x1, y1, z1)
can be obtained by continuing the ray in horizontal mirror images of the cones. Such a
ray reaches the boundary of the second cone image in a point which has just been shifted
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vertically by twice the height of the cone, that is in (x1, y1, z1 − 2H) (see figure 6). This
property means that there exists λ such that

x1 = x0 − λ cos θ cosϕ0 , (3.6a)

y1 = y0 − λ cos θ sinϕ0 , (3.6b)

z1 − 2H = z0 + λ sin θ . (3.6c)

When the ray is close to the attractor, (x0, y0, z0) and (x1, y1, z1) are assumed to be
close to (xa, 0, za) and (−xa, 0, za), respectively. Moreover, ψ0 is assumed to be small,
and ϕ0 and ψ0 are close to π. At first order, equations (3.5) give for the relative distances

δx0 ∼ δz0
tanα

, δy0 ∼ bza
ψ0

tanα
, (3.7a)

δx1 ∼ − δz1
tanα

, δy1 ∼ −bza
(ψ1 − π)

tanα
. (3.7b)

From (3.6c), one gets λ as

λ ∼ −2H + δz1 − δz0
sin θ

. (3.8)

Inserting this expression in (3.6a), one obtains using (3.7a,b)

δx1 ∼ −Kδx0 , δz1 ∼ Kδz0 , (3.9)

with

K =
tanα− tan θ

tanα+ tan θ
=

sin(α− θ)

sin(α+ θ)
, (3.10)

which corresponds to the 2D contraction factor of the attractor.
In (3.5b), we obtain

δy1 ∼ δy0 −
2H(ϕ0 − π)

tan θ
, (3.11)

which gives a first relation between the angles

ψ1 − π = −ψ0 +
2

b
(ϕ0 − π) . (3.12)

A second relation that expresses the angle ϕ1 of the reflected ray in terms of ϕ0 and
ψ0 is obtained by applying the condition of reflection (2.4) at (x1, y1, z1). Close to the
attractor, the azimuthal angle ϕn of the normal vector n is given at leading order by

ϕn ∼ (ψ1 − π)

b
. (3.13)

The normal vector n and the incident rays are oppositely oriented with respect to the
vertical, so ζ = sgn(nzViz) = −1. Expression (2.4) then gives for small angles

ϕ1 − ϕn ∼ − tanα− tan θ

tanα+ tan θ
(ϕ0 − π − ϕn) = −K(ϕ0 − π − ϕn). (3.14)

Using (3.12) and (3.13), this expression finally reduces to

ϕ1 ∼ −1 +K

b
ψ0 +

(
2(1 +K)

b2
−K

)
(ϕ0 − π) . (3.15)

Expressions (3.12) and (3.15) can be written as

Ψ1 = MΨ0 (3.16)
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for the vectors Ψ1 = (ψ1 − π, ϕ1)
⊤ and Ψ0 = (ψ0, ϕ0 − π)⊤ where the matrix M is

M =

(
−1 2/b

−(1 +K)/b 2(1 +K)/b2 −K

)
. (3.17)

The operation can be repeated and after 2N reflections on the cone boundary, that is N
cycles, we get

Ψ2N = M2NΨ0 (3.18)

where Ψ2N = (ψ2N , ϕ2N − π)⊤.
Introducing the eigenvalues λ± and associated eigenvectors Ψ± of the matrix M which

are defined by

λ± =
(1 +K)(2/b2 − 1)±

(
(1 +K)2(2/b2 − 1)2 − 4K

)1/2
2

, (3.19a)

Ψ± = (2/b, 1 + λ±)
⊤ , (3.19b)

Ψ2N can be written as

Ψ2N = C0(λ+)
2NΨ+ +D0(λ−)

2NΨ− , (3.20)

where C0 and D0 are constants depending on the initial condition only

C0 =
2(ϕ0 − π)− b(1 + λ−)ψ0

2(λ+ − λ−)
, (3.21a)

D0 =
2(ϕ0 − π)− b(1 + λ+)ψ0

2(λ− − λ+)
. (3.21b)

The functions λ+ and λ− characterise the behaviour of the angles ψ2N and ϕ2N −π as
a function of the cycle number N . These angles go to zero if and only if |λ±| < 1. This
condition is here equivalent to b > 1 (since 0 < K < 1). The functions λ± depend on the
value of b with respect to the particular values

bc± =

√
2(1 +K)

1±
√
K

. (3.22)

The two λ± are real positive for 1 < b < bc+, and real negative for b > bc−. For
bc+ < b < bc−, they are complex conjugates with a constant absolute values equal to√
K. When b = bc±, the solution evolves differently as shown in appendix B.

3.2.2. Comparison between local analysis and numerical ray tracing

This section compares the prediction of the local analysis with that of the global ray
tracing approach described above. To do so, we randomise the initial position inside
the volume, the horizontal angle of propagation and the sign of the vertical velocity
component. We then track the ray for 104 reflections on boundaries which is enough to
reach the attractor in most cases. The horizontal angle is computed at each reflection
on the conical surface and for xi > 0 according to ψi = arg(xi + iyi) = atan2(yi, xi)
where (xi, yi) are the coordinates of the ith reflection point on the positive half x > 0
of the conical surface. The horizontal angle difference ∆ψi = |ψi − ψi−1| is then tracked
as a function of the number of cycles. Note that we track the convergence of the
horizontal angle after a complete cycle around the attractor for comparison with the
prediction (3.19) of the local analysis presented in section 3.2.1. In that case, the analysis
is performed on the number of cycles around the attractor and not on the number of
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Figure 7. (a) Angle difference ∆ψN = |ψN − ψN−1| in logarithmic scale as a function of the
number of cycles N . We show 100 independent realisations with different initial conditions for
each value of b. (b) Decay rate σ defined by ∆ψN ∼ exp(σN) as a function of the long axis b.
Symbols correspond to the ray tracing approach while lines correspond to the linear local analysis
(3.19). The upper branches correspond to σ = ln |λ+| while the lower branches correspond to
σ = ln |λ−|. Note that the data for ω = 0.76 stop because of the upper bound bc ≈ 1.17 as given
by (3.4).

reflections on the boundaries (there are 6 reflections on boundaries and 2 reflections on
the conical surface per cycle for the particular attractor considered here).
The evolution of the horizontal angle increment is typically characterised by a short

transient followed by an exponential decay until machine accuracy is eventually reached
and the ray becomes trapped in a particular plane. Some examples for ω = 0.8, H = 1,
tanα = 1 and three values of b are shown in Figure 7(a) to illustrate the convergence
process. We observe that all rays converge towards the super-attractor at the same
exponential rate, irrespective of the initial conditions. The duration of the transient before
the ray effectively converges towards the attractor depends on the initial conditions and
corresponds to the early reflections far from the final limit cycle. Note that for this
particular case, the particular value of b defined by equation (3.22) is bc+ = 1.097.
Consistent with the theoretical prediction, we observe real values for the decay rate
when b < bc+ (see the two cases b = 1.02 and b = 1.05 in figure 7(a)) and complex values
when b > bc+ (see the case b = 1.2).
A best fit ∆ψN ∼ exp(σN), where N is the number of cycles, is computed in the range

10−14 < ∆ψN < 10−3 and averaged over 103 independent rays initialised randomly within
the whole volume. Results are shown in Figure 7(b). An excellent agreement between the
local theoretical prediction and the ray tracing approach is observed for various values
of b and three different frequencies within the attractor range. Interestingly, the decay
rate is σ = ln |λ−| = ln |K| when b = 1 while it is smaller when b > 1. There is therefore
a drastic difference between the case b = 1, for which all rays converge rapidly toward a
plane different for each ray, and the case b > 1 for which the convergence rate is smaller
and actually tends to 0 when b → 1. Although the breaking of the axisymmetry does
create a globally attracting plane as already discussed previously, the rate of convergence
towards this unique plane increases with b and is actually maximum once b > bc+. In
that case, it is actually half of that observed when b = 1.

4. Numerical simulations of the linear viscous problem

Up to now, we have only discussed the properties of the ray paths which are only valid
in the limit of vanishing Ekman numbers. The link between the properties of the ray
paths and the actual viscous solution of the original linear Navier-Stokes equations (2.1)



Inertial wave super-attractor 13

(a)

0.8

1

1.2

1.4

−π/2 0 −π/2

N
or
m
al
is
ed

av
er
ag
ed

ve
lo
ci
ty

am
p
li
tu
d
e
al
on
g
at
tr
ac
to
r
p
at
h

Azimuthal angle

b = 1

b = 1.05

b = 1.1

b = 1.15

b = 1.2

(b)

0.1

0.2

0.3

0.4

−π/2 0 π/2

A
ve
ra
ge
d
ve
lo
ci
ty

am
p
li
tu
d
e

al
on
g
at
tr
ac
to
r
p
at
h

Azimuthal angle

E = 10−4

E = 10−5

E = 10−6

E = 10−7

Figure 8. Azimuthal profile of the velocity amplitude averaged over time and over the 2D
attractor path on each meridional plane. (a) Variable long axis b at constant Ekman number
E = 10−7. The amplitude is normalised by its azimuthal average. (b) Variable Ekman number
at constant long axis b = 1.2. The forcing frequency is ω = 0.8 and the forcing pattern is defined
by equation (4.1) in all cases.

is not obvious. In this context, it is desirable to check whether the globally-attracting
solutions discussed in previous sections have any counterpart when considering the direct
solution of equations (2.1).
To that end, we solve the linear viscous equations (2.1) using the spectral element solver

Nek5000 (Fischer 1997; Deville et al. 2002). The domain is discretised using a number E
of hexahedral elements. Elements have been refined close to all boundaries to properly
resolve viscous Ekman layers. The velocity is discretised within each element using
Lagrange polynomial interpolants based on tensor-product arrays of Gauss-Lobatto-
Legendre quadrature points. The polynomial order ld of the expansion basis on each
element is fixed to 11 in this study, while the number of elements goes up to E = 29952
for E = 10−7. Convergence has been tested by gradually increasing the polynomial
order for a fixed number of elements. The Coriolis term is treated explicitly by a third-
order extrapolation scheme whereas the viscous terms are treated implicitly by a third-
order backward differentiation scheme. Similarly to the ray tracing approach discussed
previously, we focus on the particular case H = 1, α = π/4 and ω = 0.8.
Since we want to compare the axisymmetric conical geometry with its elliptical coun-

terpart, care must be taken when choosing the forcing. In particular, latitudinal libration
is not well suited since the forcing would be of viscous nature in the axisymmetric case
(since the velocity at the boundaries would be purely tangential) while there would be a
non-zero normal velocity and hence pressure coupling in the non-axisymmetric elliptical
case. Another constraint comes from the corners which will inevitably contribute to the
viscous dynamics by emitting their own singular shear layers. Taking into account these
considerations, we opted for a rotating vertical forcing at the bottom plane of the cone,
sometimes called negative nutation (Sibgatullin et al. 2017), defined by

uz(z = 1) =

{(
x cos(ωt)− y sin(ωt)

)
f(r) if r < 1

0 if r > 1
, (4.1)

where f(r) = 2r3 − 3r2 + 1 is a smoothing function to ensure that the forcing vanishes

close to the corners and r =
√
x2 + y2 is the cylindrical radius. The other two velocity

components are zero and the other boundaries are all no-slip. A similar forcing has
already been used both experimentally (Pacary et al. 2023) and numerically (Sibgatullin
et al. 2019). Note that we obtained qualitatively similar results when considering an
axisymmetric forcing similar to that used by Boury et al. (2021) for example.
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Figure 9. Vertical velocity component in the planes (a) y = 0, (b) x = 0 and (c) z = 1.9. The
same color scale is used for the three plots. Parameters are E = 10−7, ω = 0.8 and b = 1.2. The
inclined line in (a) indicates the profile of the plane shown in Figure 10. The dotted lines in (a)
and (b) indicate the plane z = 1.9 shown in (c) while the dash lines show the 2D attractor path
in each meridional plane.

From a fluid at rest, we run the simulation until a periodic response is obtained. In order
to quantify the inhomogeneities between different attractor planes, we first define the 2D
attractor path for each plane obtained from the intersection between a vertical plane
containing the origin and the frustum. Each plane is parametrised with its azimuthal
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Figure 10. Maps of averaged velocity amplitude normalised by its maximum value on the local
plane shown in Figure 9(a). The Ekman number is decreasing from left to right. The top row
(a-c) corresponds to the non-axisymmetric case b = 1.2 while the bottom row (d-f) corresponds
to the axisymmetric case b = 1. The line shows the iso-contour corresponding to 90% of the
local maximum value around the theoretical attractor location which is the origin of the local
frame used here.

angle with respect to the x direction. The plane crossing the short elliptical axis thus
corresponds to ϕ = 0 while the plane crossing the long elliptical axis corresponds to
ϕ = ±π/2. Note that the 2D attractor path on each plane depends on the ellipticity
b. While the same attractor path is expected on each individual plane when b = 1,
different attractors (but the same rectangular topology) are expected when b > 1.
We then compute the averaged velocity amplitude along each path by averaging over
time once the periodic response is obtained and along the attractor path. This averaged
amplitude is a constant in the axisymmetric case b = 1 but depends on the orientation
of the plane once b ̸= 1. As we vary the ellipticity of the domain, the amplitude of the
response also varies. In order to focus on the azimuthal inhomogeneities induced by the
wave attractor, we further normalise the amplitude by its average over all azimuthal
angles ϕ.
This ratio is plotted in figure 8(a) for a fixed E = 10−7 and varying b ⩾ 1. As

expected, it is unity for the axisymmetric case b = 1. As b increases, a clear focusing of
the energy along the short axis corresponding to ϕ = 0 is observed. Note that a second
local maximum is also observed along the long axis ϕ = ±π/2. The same simulations are
now run at a fixed b = 1.2 and varying Ekman number from E = 10−4 down to E = 10−7.
Results are displayed in figure 8(b). While focusing is observed for all Ekman numbers, it
is more and more pronounced as the Ekman number decreases. Note again that a residual
localisation also persists around the long axis ϕ = ±π/2. This secondary localisation of
the energy is not expected from the ray tracing approach only since it corresponds to
an unstable equilibrium as discussed previously in section 3.2.1. We have observed such
residual localisation strongly depends on the particular choice of forcing and seems to
be partially dependent on contributions from the bottom corner (see Figure 9(b)), which
goes well beyond our current understanding mostly based on local ray tracing.
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A visual inspection of the wave field qualitatively confirms this conclusion. Figure 9
shows the vertical velocity component at a particular time once a periodic response has
been obtained. One can see that the response along the attractor path is much stronger
in the y = 0 plane (see Figure 9(a)) than it is in the x = 0 plane (see Figure 9(b)). Note
of course that the 2D attractor path (shown as dash lines in Figures 9(a) and (b)) is
not the same in both planes since the domain is non-axisymmetric. This explains why
we observe apparently curved wave beams. They correspond to the gradual modification
of the attractor path as the geometry changes along the azimuthal direction due to the
weak elliptical deformation. Similar structures were for example observed by Bühler &
Muller (2007). We also see in Figure 9(b) that the attractor path in the unstable plane
x = 0 is very close to the bottom corner, which perhaps explains why we have observed a
secondary peak of energy in Figure 8. The bottom corner forces a local shear layer which
might overlap with the attractor beam in a non-trivial way. Nevertheless, Figure 9(c)
clearly shows that the amplitude of the stable attractor localised around the plane y = 0
is significantly larger than that of any other planes, including the unstable attractor
localised in the x = 0 plane.
In order to show the local structure of the super-attractor, we define a plane perpen-

dicular to the attractor path along the short axis, as shown in Figure 9(a). The velocity
amplitude is averaged over time and normalised by its local maximum closest to the
attractor path to obtain the maps displayed in Figure 10. We compare the axisymmetric
case b = 0 on the bottom row with the non-axisymmetric case b = 1.2 on the top row.
For the axisymmetric case, one observes the gradual focusing of the axisymmetric wave
beam around the attractor position as the Ekman number is decreased. The observed
curvature is due to intersection between the flat plane and the curved axisymmetric wave
beam. This axisymmetric pattern is clearly broken for b = 1.2. At E = 10−5, while we
observe a local maximum close to the theoretical position of the super-attractor (which
corresponds to the origin with our choice of coordinates), no local beam is observed. At
lower Ekman numbers however, a localised beam is observed with a complex anisotropic
structure. It is more elongated along the transverse direction y than along the in-plane
coordinate s. This confirms that the energy injected by the global large-scale forcing
is eventually focused preferentially onto the super-attractor path localised around the
y = 0 plane. While it is too early to convincingly discuss possible scalings with the
Ekman number, we nevertheless report the amplitude scaling observed in our simulations
in Figure 11. We consider three different measures of amplitudes. The first is obtained
by averaging over all 2D attractor paths of each meridional section, which we refer to
as global. The second corresponds to the average on the short axis attractor only while
the last corresponds to the local amplitude maximum obtained from the maps displayed
in Figure 10. We observe that for all three measures, the amplitude increases as the
Ekman number decreases. The local measure might follow the scaling E−1/6, which is
expected from classical 2D attractors (He et al. 2023) forced by inviscid forcing, although
a much larger range of Ekman numbers should be explored to convincingly conclude on
this matter. This is left for future works.

5. Discussion

We have shown how a 2D attractor can be localised in 3D into a particular plane
by breaking the axisymmetry of the fluid domain. All ray paths have been observed to
converge to a particular 1D curve contained within a specific plane. A local analysis
has allowed us to confirm the exponential decay of the horizontal angle and has been
successfully compared with ray tracing computations. While numerical simulations have
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Figure 11. Amplitude scaling with Ekman for three different measures: the average is performed
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path corresponding to the short axis (Short axis) or focusing on the local maximum observed
on the maps shown in Figure 10 (Local). Note that the local value at E = 10−4 is absent since
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shown a localisation of the energy onto the attracting plane, the harmonic response also
contains contributions from the corners which might be at the origin of a secondary peak
of energy along the long-axis which is unstable according to our ray tracing analysis.
By construction of our particular geometry, the secondary unstable attractor is more
and more affected by the corner contributions as b increases, which might explain why
we observe a secondary energy increase there. However, the observed increase of kinetic
energy along the stable super-attractor can only be explained by a secondary focusing
since its topology within the particular plane y = 0 remains the same regardless of the
elliptical deformation b.
While our example has convincingly shown the existence of such super-attractors,

generalising this result to other geometries would be valuable. We have focused on
super-critical reflections only since α > θ in our case while it is known that the
focusing properties of the 3D reflection is non-trivially depending on the criticality of
the slope (Pillet et al. 2019). We suspect that similar super-attractors exist in other
conical geometries, including those involving sub-critical slopes, such as those used by
Klein et al. (2014), Sibgatullin et al. (2017) and Boury et al. (2021), provided that
the axisymmetry used up to now is broken. Other geometries known to support 2D
or axisymmetric attractors, such as the spherical shell or the paraboloidal/parabolic-
shaped stadium, can probably generate super-attractors once elliptically deformed. In
that respect, much remains to be done to bridge the gap between the local analysis close
to the attracting plane and the global properties for which the whole geometry, and not
just its asymptotic behaviour close to the attracting plane, matters.
We have considered the particular case of an elliptic deformation in order to break

the axisymmetry. While it has the advantage of being a well-defined perturbation of
the axisymmetric reference case, it is certainly not the only way to proceed. It would be
interesting to consider other types of non-axisymmetric geometries like cuboids (Wu et al.
2023). Possible connections with quantum chaos in stadium billiards resulting in scarred
patterns could also be explored (Kudrolli et al. 2001). One could also further investigate
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the required geometrical properties of the fluid container necessary for the emergence of
super-attractors. Finally, it is important to realise that, while the final super-attractor
is indeed one-dimensional in the sense that all rays converge towards a one-dimensional
parametric curve, this particular attractor is contained inside a plane since it corresponds
to the localisation of the otherwise 2D attractor. An interesting question would be to
know whether general 1D curves, not necessarily contained within the same plane, can be
super-attractors and if so in which geometries. This is a tremendous geometrical problem
and we hope this preliminary work will motivate future studies in that direction.
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Appendix A. 3D reflection law

In this section, the 3D reflection law is obtained. The relation between the incident
and reflected angles ϕi and ϕr can be obtained by writing down the conditions on the
velocity vectors Vi and Vr during the reflection process. We consider a plane surface
inclined by an angle α (between 0 and π/2) with respect to the horizontal plane and
defined it using its normal vector n oriented towards the fluid. The first condition is the
condition of non-penetrability which reads

(Vr +Vi) · n = 0. (A 1)

The second condition is the conservation of the horizontal velocity perpendicular to the
normal which can be written as

(Vr × ez) · n = (Vi × ez) · n. (A 2)

They are two other conditions that prescribe the direction of propagation of the incident
and reflected beams which should be on the axial cone of angle θ

tan2 θ||Vr × ez||2 = |Vr · ez|2, (A 3)

tan2 θ||Vi × ez||2 = |Vi · ez|2. (A 4)

To obtain a general formula, the idea is to express the vectors n, Vr and Vi in the
frame (x′, y′, z) oriented along the steepest descent direction (see figure 1).
The above equations can then be written as

(Vrx′ + Vix′) tanφn + (Vrz + Viz) = 0, (A 5a)

Vry′ = Viy′ , (A 5b)

tan2 θ(V 2
rx′ + V 2

ry′) = V 2
rz, (A 5c)

tan2 θ(V 2
ix′ + V 2

iy′) = V 2
iz, (A 5d)
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where φn is the angle (between 0 and π) of the vector n with respect to the vertical axis.
Using (A 5b) to eliminate Vry′ and Viy′ in the equation obtained by subtracting (A 5d)
to (A 5c) gives

tan2 θ(V 2
rx′ − V 2

ix′) = V 2
rz − V 2

iz , (A 6)

which, after eliminating vix′ using (A 5a), reduces to

(tan2 θ − tan2 φn)Vrx′ = 2 tanφnViz + (tan2 θ + tan2 φn)Vix′ . (A 7)

Using

Viz
Viy′

=
cotanφi

sin(ϕi − ϕn)
,
Vix′

Viy′
= cotan(ϕi − ϕn) ,

Vrx′

Vry′
= cotan(ϕr − ϕn) (A 8)

we get an expression that gives the angle ϕr − ϕn:

tan(ϕr − ϕn) =
(tan2 θ − tan2 φn) sin(ϕi − ϕn)

(tan2 θ + tan2 φn) cos(ϕi − ϕn) + 2 tanφncotanφi
. (A 9)

This formula applies to all configurations. Only the term tanφncotanφi depends on
the orientation of the normal n and of the incident beam Vi with respect to the vertical.
As φi = π/2 − θ and φn = α (resp. φi = π/2 + θ and φn = π − α) when these vectors
are oriented upwards (resp. downwards), we get

tan(ϕr − ϕn) =
(tan2 θ − tan2 α) sin(ϕi − ϕn)

(tan2 θ + tan2 α) cos(ϕi − ϕn)± 2 tanα tan θ
, (A 10)

where the sign − is taken when the two vectors n and Vi are oriented oppositely
with respect to the vertical (one of the two vectors is oriented upward and the other
downward). This formula works for all types of reflections (subcritical or supercritical),
and for horizontal and vertical surfaces as well. For this reason, we think that it is more
convenient than the formulas that have been used in Rabitti & Maas (2014) and Pillet
et al. (2018).

Appendix B. Local behavior for b = bc±
For the values b = bc±, the two eigenvalues are equal (to λc± = ±

√
K) and equations

(3.21a,b) giving C0 and D0 break down. In that case, the two eigenvectors given by
(3.19b) are also equal (to Ψc±). One should introduce another vector, say E1 = (1, 0)⊤

to decompose the vector Ψ2p. Using the fact that when b = bc±

M2pE1 = KpE1 ∓ pKp−1/2
√
2(1 +K)Ψc±, (B 1)

one can easily show that

Ψ2p =
(
Cc±K

p ∓Dc pK
p−1/2

√
2(1 +K)

)
Ψc± +DcK

pE1 (B 2)

where

Cc± =
ϕ0 − π

1±
√
K

, Dc = ψ0 −
√

2

1 +K
(ϕ0 − π). (B 3)
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