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Abstract: As atmospheric CO2 emissions and the trend of urbanization both increase, the ability to
accurately assess the CO2 budget from urban environments becomes more important for effective CO2

mitigation efforts. This task can be difficult for complex areas such as the urban–coastal Mediterranean
region near Marseille, France, which contains the second most populous city in France as well as
a broad coastline and nearby mountainous terrain. In this study, we establish a CO2 modeling
framework for this region for the first time using WRF-Chem and demonstrate its efficacy through
comparisons against cavity-ringdown spectrometer measurements recorded at three sites: one 75 km
north of the city in a forested area, one in the city center, and one at the urban/coastal border. A
seasonal CO2 analysis compares Summertime 2016 and Wintertime 2017, to which Springtime 2017
is also added due to its noticeably larger vegetation uptake values compared to Summertime. We
find that there is a large biogenic signal, even in and around Marseille itself, though this may be a
consequence of having limited fine-scale information on vegetation parameterization in the region.
We further find that simulations without the urban heat island module had total CO2 values 0.46 ppm
closer to the measured enhancement value at the coastal Endoume site during the Summertime 2016
period than with the module turned on. This may indicate that the boundary layer on the coast is less
sensitive to urban influences than it is to sea-breeze interactions, which is consistent with previous
studies of the region. A back-trajectory analysis with the Lagrangian Particle Dispersion Model
found 99.83% of emissions above 100 mol km−2 month−1 captured in Summer 2016 by the three
measurement towers, providing evidence of the receptors’ ability to constrain the domain. Finally,
a case study showcases the model’s ability to capture the rapid change in CO2 when transitioning
between land-breeze and sea-breeze conditions as well as the recirculation of air from the industrial
Fos region towards the Marseille metroplex. In total, the presented modeling framework should open
the door to future CO2 investigations in the region, which can inform policymakers carrying out CO2

mitigation strategies.
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1. Introduction

Atmospheric CO2 concentrations are increasing at their fastest observed decadal
rate as a result of growing anthropogenic CO2 emissions [1,2]. There is a near-linear
relationship between CO2 emissions and resultant global warming effects [3]. About 70%
of these emissions originate from urban areas, which is expected to increase as urbanization
continues, with forecasts predicting an additional 2.5–3 billion people relocating to urban
areas by 2050 [4,5]. Thus, to aid policymakers in their mitigation strategies, it is essential to
undertake emission quantification and monitoring efforts near urban areas (e.g., [6,7]).

Currently, urban emission quantification efforts rely heavily on self-reported estimates
following one of a few standard protocols, such as those laid out in, e.g., Carney and Shack-
ley [8], Ewing-Thiel and Manarolla [9], Fong et al. [10,11], with only a few scientifically
intensive investigations undertaken for a handful of cities, e.g., [12]. While it is difficult to
quantify the uncertainty in any inventory estimate (e.g., [13]), those with a heavy reliance
on self-reported data may be particularly susceptible to biases and errors [14,15]. Therefore,
an independent quantification method is extremely useful for analysis and attempted verifi-
cation. Atmospheric methods, including direct measurement and model-based approaches,
can provide additional constraints on anthropogenic carbon emissions to better inform
policymakers about their decisions (e.g., [16–19]).

Mesoscale urban-related CO2 quantification has been conducted using a combination
of atmospheric transport models and in situ observations in “mega-city” regions such
as Paris [18–22] and Los Angeles [23–26], in regions with smaller cities around varying
terrain such as Salt Lake City [27,28], Boston [29], and Indianapolis (e.g., [30,31]), and in
regions such as the Korean Peninsula [32]. The advent of satellite measurements has
also allowed for some comparisons using total-column XCO2, including in Berlin [33]
and Réunion island [34]. These investigations have been able to address a wide range of
complicating issues around CO2 emission validation, as each geographic region brings
its own challenges. Coastal regions bring unique difficulties as well, and there have
not been many CO2 analyses in such areas. Los Angeles, a coastal city that has been
well-studied, has complex air transport because of regional effects, for instance “Catalina”
eddies induced by the shape of the Southern California Bight [35–37]. The surrounding
mountain ranges and large number of daily emitters lead to a persistent urban dome where
CO2 builds up [23], while sea-breeze conditions that are strong enough to truly flush the
basin are only episodic [26]. In a study of the coastal region of Valencia, Spain, Pérez-
Landa et al. [38] found it challenging to quantitatively match modeled CO2 to observations
due to modeling limitations and the complexity of the territory, in particular the land–
sea breezes. Despite these difficulties, they were able to reproduce proper transport
processes during their period of observation, including a CO2 vertical depletion between
500–2000 km with permanent buildup below. Addressing the paucity of CO2 studies in
other urban/coastal regions with complex terrain is a major aim of the present study.

The SUD-PACA (Provence-Alpes-Côte d’Azur) Region in southeastern France presents
a unique opportunity in Europe to assess the formation and variability of atmospheric CO2
over a large coastal metropolitan area, namely, Marseille. Marseille is the second-largest
city of France by population, with over 869,000 inhabitants as of 2015 [39]. It is situated
on hilly terrain along the coast of the Mediterranean Sea. Significant and varying CO2
enhancement from Marseille has been recorded in measurements taken in and around
Marseille as well as further north at the Obervatoire Haute-Provence (OHP) dating back
to 2016 [19,40,41] Additionally, an intensive campaign with the acronym ESCOMPTE was
undertaken in the early 2000s to map out some of the atmospheric dynamics in the Marseille
region, particularly wind dynamics and pollutant transport, for the purpose of gaining
a deeper understanding of the atmospheric behaviors in this complex terrain for use in
future regional emission transport studies [42–44]. While ESCOMPTE focused some of its
efforts on pollutant transport, there has not yet been a CO2-specific study in the region,
which is an additional motivation behind the present study. Furthermore, ESCOMPTE
focused only on the summer season, whereas here we include seasonal comparisons.
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Forward-model comparisons have proven to be sufficiently accurate for regional
constraining of CO2 emissions, and often serve as a crucial first step towards the imple-
mentation of inverse atmospheric methods [22]. In this study, we establish a CO2 modeling
framework in the complex urban–coastal SUD-PACA region of France and assess its effec-
tiveness in replicating contemporaneous CO2 mixing ratio measurements. The Weather
Research and Forecasting Model with Chemistry (WRF-CHEM) atmospheric transport
model is adapted to include the most complete and accurate available emissions estimates
for all CO2 components in the region. We analyze and discuss the capacity of the model to
reproduce the observations at different spatial and temporal scales, including testing the
effectiveness of the Urban Heat Island (UHI) module. We couple the Lagrangian Particle
Dispersion Model (LPDM) as an adjoint to assess the capacity of the utilized measurement
towers to constrain emissions within the model domain. Finally, we finish with a case study
focusing on two consecutive days with opposing wind conditions to test the sensitivity of
the model and measurement to the regional flow dynamics.

2. Materials and Methods
2.1. Study Area

Our investigation focuses on the Aix-Marseille metroplex and the surrounding region,
which provides a unique urban–coastal makeup. According to the Köppen–Trewartha
Climate Classification, this region falls under the category of Subtropical summer—dry (Cs),
also known as the “Mediterranean climate”, which is characterized by 8–12 months above
10 degrees Celsius, annual rainfall less than 89 cm, and a dry summer [45]. The climate in
Marseille itself is becoming warmer and drier as a result of climate change [5]. Occasional
high-speed winds called the “mistral” originate from the Rhone Valley to the north, where
the air is funneled between Massif Central to the northwest and the Alps to the east and
northeast [46]. Marseille, being situated on the water, also experiences the expected regular
land and sea breezes. In addition to CO2 emissions originating from anthropogenic sources
within the city, there may be substantial additional emissions from off-shore ships and
the industrial area of Fos/La Mède to the immediate west of Marseille. Therefore, we
undertake this study to explore how the air transport conditions impact the local CO2
concentrations.

2.2. Modeling Framework
2.2.1. Model Configuration

We implement the Weather Research and Forecasting (WRF) model [47] with Chem-
istry [48], following the setup used in the INFLUX project by [49,50]. This allows for
independent simulation of each CO2 component in a passive tracer mode, which can be
useful for comparison against in situ observations. Simulations were run using WRF-
Chem Version 3.7. For the land surface model (LSM), the default Noah LSM scheme was
used [51,52], which accounts for vegetation categories and fractions and includes informa-
tion such as plant roots, evapotranspiration, soil runoff, and snow/ice cover. With respect
to the boundary layer physics, the MYNN 2.5-level TKE scheme was used along with
the corresponding built-in urban canopy model, which is compatible with the Noah LSM
scheme. For comparison, an additional set of simulations was run with this urban canopy
model turned off. In our investigation, we used three nested domains at 9 km, 3 km,
and 1 km, as shown in Figure 1. The meteorological driver data were supplied by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) (https://www.ecmwf.int,
accessed on 7 May 2024), from which we used the reanalysis product.

https://www.ecmwf.int
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Figure 1. Extent of the 9 km, 3 km, and 1 km domains, shown in green, yellow, and red, respectively,
along with labels in blue for measurement sites where CO2 is recorded. The Cap Corse station
(ERSA), is used here as the observation background station, is beyond the boundaries of the 3 km
and 1 km domains.

We configured the WRF system to run simulations spanning three one-month periods:
July 2016, which we call “Summertime 2016”, 27 January–27 February 2017, which we
call “Wintertime 2017”, and 22 April–22 May 2017, which we call “Springtime 2017”. This
was to allow for seasonal comparisons, as typically more CO2 uptake is expected in the
summer after the plants have bloomed. Springtime 2017 was included because most of the
CO2 uptake in the region was found to occur during this period rather than during the
summer. Following [49], each month of simulations was created in segments of 5 d with an
additional 12 h overlapping time window to allow the meteorology to spin up. In addition,
an extra segment of 5.5 d was run before the period of interest to spin up the CO2 mixing
ratios in the region from the boundary conditions, i.e., to allow enough time for the domain
to be filled with ambient background values.

The model was adapted to include multiple CO2 components which could run simulta-
neously and be combined post-simulation for direct comparison against other models and
in situ measurements taken at the sampling sites. For this study, the relevant components
included the Open-source Data Inventory for Anthropogenic CO2 (ODIAC2017) product
for anthropogenic emissions [53,54], the European Centre for Medium-Range Weather Fore-
casts (ECMWF)-based C-TESSEL model estimates for biogenic emissions (gross primary
production (GPP), net ecosystem emissions (NEE), respiration (including both autotrophic
and heterotrophic) [55,56], Fire INventory from NCAR (FINN), consisting of the version 1.5
model estimates for fire emissions [57], a manually-created ocean flux product, and Carbon
Tracker Europe for boundary conditions [58,59]. Each of these components are explained
in further detail in the following subsection.

2.2.2. Model CO2 Flux Components

For the anthropogenic component, ODIAC estimates from the 2017 version were
used, hereinafter referred to as ODIAC2017. ODIAC is a satellite-based product that
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uses nighttime light data to estimate population, which is then used as a proxy for CO2
emissions [53,54]. Although it lacks the sector-specific nature of more traditional bottom-
up inventory assessment, it provides a global product, allowing for estimates in regions
where trustworthy bottom-up products may not yet be available. In comparisons, it has
been shown to match well with other inventory flux estimates [50,60]. For our study, the
ODIAC2017 estimates were taken at 1 km resolution and then interpolated onto the 9 km,
3 km, and 1 km simulation domains, as shown in Figure 1. Figure 2 shows three example
hourly flux maps for the innermost domain for 3 July 2016 at 14:00 UTC, 3 February 2017 at
14:00 UTC, and 3 May 2017 at 14:00 UTC. The emissions are plotted on a log-10 scale to
allow the spatial variations to be seen, otherwise the very strong point sources would wash
out the colorscale.

Figure 2. Flux maps for several of the tracers included in the model. From top to bottom: ODIAC2017
anthropogenic emissions, ECMWF NEE, and derived sea flux (using ECMWF SST and 10-m winds).
The left column is for 3 July 2016 at 14:00 UTC, the middle column is for 3 February 2017 at 14:00 UTC,
and the right column is for 3 May 2017 at 14:00 UTC, chosen as arbitrary demonstrative examples
from each seasonal period. Units are all in mol/km2/h, while ODIAC2017 is plotted on a log-10 scale
because of the large spatial emission variations.

The ODIAC2017 files are provided as monthly totals for the years 2015 and 2016 [61].
For this analysis, we used the files from 2016 for each of our July 2016, Wintertime 2017,
and Springtime 2017 periods of interest, as 2017 files were not yet available at the time
of this analysis. In order to convert these emissions files to the hourly resolution needed
to match our WRF model, the emissions were first divided equally among all the hours
of the month. We then imposed a diurnal cycle on the model based on the one used by
corresponding emission files provided by AtmoSud (formerly AirPACA), the local Air
Quality institute in the region. The diurnal cycle was extracted and imposed in an hourly
fashion by calculating a scaling factor

Shr =
∑J

j=1 Xj,hr

∑J
j=1 Xj,day

, (1)
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where J indicates the total number of pixels in the domain, j specifies an individual pixel,
hr is the subscript denoting a particular hour, Xj,hr is the AtmoSud estimated flux at a
given pixel at this hour, and Xj,day is the mean AtmoSud estimated flux at this pixel for the
whole day. The sum of emissions for all hours in a day is then preserved at the same value
irrespective of whether or not this scaling factor is used. Pixels with emissions greater than
4 × 105 mol/km2/h are assumed to contain a plant with emissions that are not expected to
follow a normal diurnal cycle, and as such are excluded from this scaling factor treatment.

For the biogenic CO2 flux estimates, we use the ECMWF land–surface model known as
C-TESSEL [55], which offers global coverage of natural land CO2 fluxes that are especially
useful in atmospheric-model-based CO2 emissions analyses (e.g., [18,20,62]). C-TESSEL
provides estimates of GPP, NEE, and Respiration (including both autotrophic and het-
erotrophic) at a resolution of approximately 0.09◦ latitude and longitude. These are then
interpolated onto our relevant WRF grid using linear triangulation, as was done with
the other CO2 component estimates. Figure 2 includes example flux maps of NEE on the
innermost 1 km domain for 3 July 2016 (middle row, left column), 3 February 2017 (middle
row, middle column), and 3 May 2017 (middle row, right column), all at 14:00 UTC.

Fire estimates are obtained through the Fire Inventory from NCAR (FINN) ver-
sion 1.5 [57], which provides global fire emissions estimates at ∼1 km2 resolution. There are
multiple speciation options; for this study, we chose the product based on the MOZART-4
chemical mechanism [63]. To create the flux maps for the WRF simulations, the emissions
were assigned to the relevant WRF domain and scaled appropriately to suit the pixel size.
For example, a fire burning in a space of approximately 1 km2 would have its emissions
scaled down by 1/9 when assigned to the domain with (3 km)2 resolution.

We calculated the ocean fluxes manually using the sea surface temperature (SST),
surface pressure, and 10 m u and v wind speed component values provided in the ECMWF
model files used to drive WRF. With these values, we incorporated measured pCO2 values
from the Bay of Marseille along with background atmospheric CO2 mixing ratios measured
at the ICOS station at Cap Corse. These were combined to solve the following formula:

Flux = k · K0(pCO2_water − pCO2_air)

= k · (K0 · pCO2_water − F · XCO2_air) (2)

where pCO2_water is the measured partial pressure of CO2 in the water, XCO2_air is the
measured dry air mole fraction of CO2, K0 is the solubility, F is the solubility function,
and k is the gas transfer velocity. For pCO2_water, we used values measured in the Bay of
Marseille during the same period [64]. For XCO2_air, we used the monthly mean observed
CO2 dry air mixing ratio values from ERSA, except for the Springtime 2017 period, when
such measurements were not available. For this period, measurements from the SME site
were used as a background instead (see Figure 1), a change which is expected to have a
minimal impact on the resulting flux values [64], particularly considering how low these
values are compared to the other CO2 flux components. The calculation of the other parts
of the oceanic flux equation is complex; here, we follow recommendations from [65,66]
and the detailed explanation in [67]. As with the other flux variables, a positive value here
indicates that the oceanic reservoir is acting as a source, while a negative value indicates
that it is acting as a sink.

By using the six-hourly ECMWF maps for the u and v wind components, surface
pressure, and SST to solve Equation (2), we obtained ocean flux maps for every 6 h. These
were linearly interpolated to create hourly ocean flux maps and appropriately converted
to units of mol/km2/h for use in our WRF-Chem simulations. Figure 2 includes example
sea flux maps on the bottom row, where the left-hand map shows the fluxes for 3 July 2016
at 14:00 UTC, the middle map shows the fluxes for 3 February 2017 at 14:00 UTC, and the
right-hand map shows the fluxes for 3 May 2017 at 14:00 UTC.

We also maintained a tracer strictly to set the boundary conditions. This was achieved
by providing blank (i.e., zero-emission) flux maps for the three domains. The boundary
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conditions of the outer ((9-km)2) domain were defined based on the output of a global
CO2 model. For this study, these boundary condition values were provided by the latest
available output from CarbonTracker Europe [58,59] (specifically, CTE2017-FT), which was
originally an offshoot of the CarbonTracker CO2 data assimilation system developed at the
National Oceanic and Atmospheric Administration (NOAA) [68,69]. This latest version
of CarbonTracker Europe implements a gridded state vector for improved accuracy of
ecosystem emission regional estimates [59]. Newer versions of the CarbonTracker Europe
results have been used in studies of various regions and fields of research, including
Amazon carbon balance (e.g., [70]), China/Asia CO2 balance (e.g., [71]), global methane
inversions (e.g., [72]), and more.

The provided CarbonTracker Europe files come with 1◦ latitude and longitude spatial
resolution and three-hourly temporal resolution. They are 3D molefraction files, which
were converted from the forward run’s molefraction files with the optimized fluxes from
CTE2017-FT. As previously suggested by Díaz-Isaac et al. [73], strong vertical gradients
affecting near-surface mixing ratios in the first two vertical levels of CarbonTracker were
smoothed by averaging over the first three levels weighted by thickness of each vertical
level. This approach conserves the mass and removes excessive accumulation or depletion
caused by incorrect representation of vertical mixing in the first levels above the surface.
The CTE2017-FT three-hourly simulated mixing ratios were then interpolated onto our
WRF boundaries and continuously advected into the domain. The interpolation of pressure
levels and mass balance conservation was achieved using the algorithm described in
Butler et al. [74], which has been adapted from a script originally developed by Rainer
Schmitz (University of Chile, Santiago, Chile) and Steven Peckham (NOAA/ESRL/GSD,
Boulder, CO, USA), and has adaptations specifically suited to a WRF-Chem setup using
multiple tracers.

The mean CO2 fluxes emitted from each of the respective components are shown in
Figure 3 for the innermost 1 km WRF domain, showing both the spatial and temporal means.
Spatially, the means are taken across every land pixel for the land-based fluxes and across
every ocean pixel for the ocean flux. Temporally, the mean is taken across all hours in the
three periods of interest: Summertime 2016, Wintertime 2017, and Springtime 2017. We
chose to include all three biogenic components here, namely, GPP, NEE, and Respiration,
for illustrative/comparative purposes. Fire emissions were left out because they are point
sources, meaning that the spatial average over the whole domain is effectively zero even
during emission events.

The summertime fluxes are the most dynamic, as was expected. The magnitudes of
both the GPP and Respiration are significantly higher in summer than in winter. The dry-
ness of the Marseille cityscape explains the respiration; however, the region around Mar-
seille is well forested (in fact, forests represent almost half of the PACA territory [75,76]),
which accounts for the increased GPP. Unlike many regions, NEE is positive in the summer-
time and negative in the winter. This is a known feature of this climate (e.g., [77]) and is
primarily driven the hot and dry the summers are, which lead to increased respiration,
while the winters are relatively mild and wet. Because of how unusual this feature is, we
include the Springtime 2017 period for comparison. During the spring, there is significantly
more GPP with a moderate amount of respiration, leading to a significantly more negative
NEE than during the winter, as would be expected.
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Figure 3. Comparison of the CO2 flux amounts from the different components for the different time
periods of the model in the 1 km domain.

2.2.3. Coupling a Dispersion Model

Lagrangian models simulate random pathways through the turbulent flows that fluid
elements carve [78], which makes them especially adept at simulating tracer paths through
atmospheric turbulent flow. When used in the context of atmospheric dispersion models,
trajectories are created for a large number (often tens of thousands) of particles over the
course of hours, which can trace out the atmosphere’s mean flow and turbulence as well
as account for subgrid-scale transport processes. By contrast, in Eulerian simulations
a point source is instantly averaged out into its corresponding grid box, resulting in loss
of resolution. In Lagrangian models, each air parcel can be assigned a mass and a loss
process to match the limitations of the particular investigation. Although their stochastic
differential equations may lead to some numerical errors [79], in general Lagrangian models
have less numerical diffusion than their Eulerian or semi-Lagrangian counterparts [80,81].
When factoring in that Lagrangian models can simulate backwards in time, allowing them
to act as reliable tracers to source regions, they become especially useful in investigating
emission regions and making comparisons against in situ measurements [82].

Here, we couple the Lagrangian Particle Dispersion Model (LPDM) defined in [83] as
an adjoint to the WRF forward model to create influence functions from current CO2 mea-
surement sites in the Aix-Marseille region. The influence functions are used to understand
the footprint of the airmass before its arrival at the observation site in order to understand
the fluxes that influence atmospheric CO2 concentrations at the location. The LPDM is
provided with the u, v, and w wind components, the temperature, and the Turbulent
Kinetic Energy (TKE) from the WRF output files for our innermost (1 km × 1 km) domain
at hourly resolution. Then, at the desired receptor spots and altitudes corresponding to the
aforementioned real or potential future measurement sites (see Table 1), 35 particles are
released backwards in time every 30 s, advecting through the WRF-generated wind fields.
Files are saved every 2 min; these files are then used to create hourly influence function
files by integrating along all particles within the lowest 400 m, following the procedure laid
out in [84]. This height was chosen to account for the difficulties LPDM has with sudden
terrain height changes, which are present within our domain. Following the procedure set
out in [50], 12 hours of influence function files are used to create a single influence function
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(footprint) for a receptor site of interest at a given time of interest in order to allow enough
time for all particles to sufficiently traverse the domain.

In our study, influence functions were generated from the three receptor positions out-
lined in Table 1: Observatoire Haute-Provence (OHP), Marseille Longchamp (CAV), and En-
doume (SME). These were the sites for which measurements were available during our
period of interest. Their respective positions in the 1 km domain can be seen in Figure 1.
These influence functions are used in Section 3.4 to showcase the differences in potential
source regions during the different seasons as well as during particular distinct wind
condition events, as demonstrated with a case study of 24 July 2016.

Table 1. Names, locations, and measurement heights in meters above ground level (mAGL) for the
CO2 instrument sites from which influence functions were created using the LPDM.

Station Latitude (◦N) Longitude (◦E) Z (mAGL)

OHP 43.9315 5.7134 100
CAV 43.3060 5.3950 5
SME 43.2806 5.3499 3

2.3. Observations

Observations were available from up to four measurement sites for the three periods
of interest in this study. These were the only available CO2 monitoring sites in the region at
the time of the analysis [41]. Three of these sites fall within the boundaries of our highest-
resolution (1 km)2 WRF domain, as shown in Figure 1: Observatoire Haute Provence (OHP),
Marseille Longchamp (CAV), and Endoume (SME). The fourth site, Cap Corse (ERSA), lies
within our outermost (9 km)2 domain, and is included in this study as a background site for
the other stations. These ERSA observations were subtracted off of the measurements at the
other three sites to yield enhancement values, which were then used for comparison against
the concentration fields output from the modeled emissions at the three sites. Technical
information on the four stations and the datasets, including calibration and maintenance of
the instruments, can be found in Xueref-Remy et al. [41]. Data for the springtime period
were not available from either the ERSA or SME stations. The precision of the CO2 datasets
was lower than 0.1 ppm for all stations. The accuracy was less than 0.1 ppm at OHP, ERSA,
and CAV and was equal to −0.2 ppm at SME, as described in [41].

Figure 4 shows the time series observations for the dry air mole fractions of CO2 at the
different sites for the periods of interest. The wintertime mole fractions are elevated over
the summertime values, as would be expected, and the values recorded at the inner-city
CAV station are predictably larger than those in more arboreous regions (e.g., OHP) or
along the coast (e.g., SME). A deeper analysis of the observations and the observation
network can be found in Xueref-Remy et al. [40] and Xueref-Remy et al. [41].

Figure 4. CO2 mixing ratio measurements for July 2016 (left), part of Winter 2017 (center), and part
of Spring 2017 (right) across the four sites: OHP, CAV, SME, and ERSA. Adapted from
Xueref-Remy et al. [19]. Data from the SME and ERSA stations were not available for the spring-
time period.
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2.4. Comparison Statistics

Several statistical metrics were utilized to facilitate the analysis of the results, includ-
ing the Mean Error (ME) and Mean Absolute Error (MAE). We compared the transport
model against in situ observations and conducted percentage difference comparisons when
assessing differences in the modules of the model.

The Mean Error serves as an assessment of the bias between the model and observa-
tions, and can be defined as follows:

ME =
1
n

n

∑
i=1

(ŷi − yi) (3)

where i iterates through individual observations, n indicates the total number of observa-
tions being compared, ŷ denotes the modeled values, and yi denotes the corresponding
observed values.

The Mean Absolute Error serves as an assessment of the corresponding uncertainty,
and can be defined similarly:

MAE =
1
n

n

∑
i=1

|ŷi − yi| (4)

where the same variable definitions are used as in the ME equation.
Later, we assess the percent difference between the output from different model

modules, for which the equation is

Percent Difference =
y − y′

y
× 100, (5)

where y is the mean output from the original model and y′ is the mean output from the
adjusted model.

3. Results and Discussion
3.1. WRF-Chem Meteorological Performance Evaluation

The French National Weather Service (Meteo France) [85] maintains a network of
meteorological stations throughout France that continuously monitor standard meteoro-
logical variables as part of the World Meteorological Organization network. Twelve of
their stations fit within the bounds of our 1 km WRF domain, as shown in Figure A1 in
Appendix A. We obtained corresponding measurements of temperature, wind speed, wind
direction, and relative humidity. To help validate the WRF-Chem model, we compared
the simulated values from the corresponding pixels, including the relevant pressure level,
against the simultaneous measurements. Following the methodology of [49], a calm wind
threshold of 1 ms−1 was set such that wind values at or below that threshold were excluded
from the analysis, as the wind direction for calm conditions is undefined. This filtered out
526 of 2604 (20.4%) of the summertime measurements, 197 of 2688 (7.3%) of the wintertime
measurements, and 31 of 2604 (1.2%) of the springtime measurements. The exclusion
of these undefined measurement values allows for a more robust comparison with the
model, making the agreement more evident. For example, without this filtering the MAE
values for Summertime 2016 wind speed and direction would have been 35% and 21%
larger, respectively. The ME and MAE values were calculated for each station and for each
variable, following the equations in Section 2.4, then the mean was taken across all stations.

Table 2 shows the results of the ME and MAE analyses for the daytime hours
(12–18 UTC) of the Summertime 2016, Wintertime 2017, and Springtime 2017 periods.
The model performs especially well in the Wintertime and Springtime periods. When
compared against Deng et al. [49], whose model setup we emulated, we find our values to
be comparable to theirs for the 1 km domain of Indianapolis in the WRF-Chem simulation
without Four-Dimensional Data Assimilation, which had MAE numbers of 30 degrees and
1 ms−1 and ME numbers of 6 degrees and 0.2 ms−1, respectively. The Summertime 2016
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values show a wider range of disagreement, which is most likely a result of the model hav-
ing difficulty accurately capturing specific features of atmospheric dynamics of this coastal
area, e.g., sea and land breeze processes. Further studies may want to address whether the
worse agreement in the model during summertime is a recurrent event, and if so whether
CO2 studies in this region should account for the increased uncertainty during this period
of the year. Overall, the observed values are considered to be within the expected range for
model performance for an analysis of this type in a region with such complex terrain.

Table 2. The mean error (ME) and mean absolute error (MAE) for wind speed (ws) and wind direction
(wd) across all 12 meteorological stations in Figure A1 for the analyzed hours of the Summertime
2016, Wintertime 2017, and Springtime 2017 periods.

Summertime 2016 Wintertime 2017 Springtime 2017

ME ws 1.0 ms−1 1.4 ms−1 0.7 ms−1

wd −10.78◦ 8.1◦ 6.6◦

MAE ws 2.4 ms−1 2.3 ms−1 1.8 ms−1

wd 58.36◦ 29.3◦ 28.5◦

3.2. Impact of the Urban Heat Island Effect

The Urban Heat Island (UHI) effect describes the additional heat that becomes trapped
in urban areas compared to adjacent rural areas as a result of human activities [86]. These
activities include anthropogenic heat emissions, topographical changes (especially to land
cover, where permeable moist ground is replaced by impermeable dry pavement and
concrete [87]), buildings and their surroundings [88], lowered wind speeds, and generally
diminished evaporative surfaces [89–91]. In cities with a population of over one million,
the mean yearly air temperature can be 1–3 degrees Celsius higher than in adjacent rural
areas [92], and the effect tends to scale with city size [89]. While this effect is more pro-
nounced at night, it is still present during the day, and the warmer air promotes turbulent
mixing of pollutants [93].

An analysis was performed to test the differences in model performance compared
to observations when the UHI effect is not simulated. As stated in Section 2.2.1, the WRF-
Chem configuration for this investigation uses the Noah LSM scheme land surface model,
the MYNN 2.5 level TKE boundary layer model, and the built-in urban canopy model
that was intended for use with the Noah LSM. Additional runs were performed with the
UHI module turned off. In order to achieve this, the Noah LSM was replaced by a simple
thermal diffusion scheme that only uses five layers of soil temperature for its calculations,
and no urban canopy model was assigned.

Simulations were run without the UHI module for each of the Summertime 2016,
Wintertime 2017, and Springtime 2017 periods. Figure 5 shows a comparison of the time
series of the simulated boundary layer heights with and without the UHI effect for each of
the three stations (OHP, CAV, and SME) recording CO2 measurements. These time series
include only the daytime hours of 12:00–18:00 UTC.

Overall, Figure 5 shows that there is an enhanced Planetary Boundary Layer (PBL)
when the UHI is included in the model, as is to be expected. This difference is the greatest
in Summertime 2016, the warmest season. The differences in simulated total CO2 will
be touched upon in the succeeding section. The figure also seems to indicate that the
boundary layer heights track well with each other. In order to better quantify the boundary
layer height difference with and without the UHI module, we calculated the percentage
difference of the mean values across the three analysis periods for each of the three sites,
with the results presented in Table 3.
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Figure 5. Boundary layer height comparison for WRF-Chem simulations with and without the urban
heat island effect. The top, middle, and bottom row are the three stations: OHP, CAV, and SME,
respectively, while the first, second, and third column are the Summertime 2016, Wintertime 2017,
and Springtime 2017 periods, respectively.

Table 3. Mean difference in boundary layer height between simulations with and without the urban
heat island effect module, expressed as percentages, at each of the measurement sites across each of
the periods.

Station Summertime 2016 Wintertime 2017 Springtime 2017

OHP 19.85% 8.49% 7.59%
CAV 5.01% 5.68% 6.41%
SME 22.02% 4.24% 9.55%

Table 3 shows that the simulations with and without the UHI module agree rather well
in the wintertime and springtime periods, which is potentially a result of the PBL having
less variability compared to the summertime. Additionally, they agree best at the urban
station, CAV. The disagreement at SME, which is at the ocean–land border, may result from
difficulties with accurately capturing the PBL along this boundary. The site/period combi-
nation with the highest amount of disagreement is the SME station during Summertime
2016. To gain more insight into how these differences might influence model CO2 estimates
in the region during common summertime wind events, Section 3.4.2 examines a wind
shift from land-breeze conditions (at 23 July 2016 16:00 UTC) to sea-breeze conditions (at
24 July 2016 16:00 UTC). Additionally, we note that there were significant differences at
OHP during the Summertime 2016 period, which was not expected, as this is not an urban
area. We hypothesize that this may be evidence of terrain influence, as the WRF urban heat
island scheme was optimized over the United States.

3.3. CO2: WRF-Chem vs. Observations

To assess the efficacy of the WRF-chem model-based CO2 values, we compared them
against the observations at particular CO2 instrument sites. As stated in Section 2.3,
observations during our Summertime 2016, Wintertime 2017, and Springtime 2017 periods
of interest were available from four sites: OHP, CAV, SME, and ERSA. Of these, three sites
are within the innermost highest-resolution 1 km WRF domain. The enhancement values
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shown here are calculated as described in the Methods section. Hours when the wind
was blowing from the NE at ERSA were considered to be potentially contaminated by
urban and industrial plumes coming off of Italy, and were consequently left out of the
analysis [40].

Table 4 shows a comparison of the background values from the model and from the
observations (mean and one standard deviation) for Summer 2016 and Winter 2017; note
that no background observations were available for Springtime 2017. For each season,
the model background value is similar at the three stations, showing that the modeling
framework has very little regional background variability. This point is expanded upon in
the next section. In Summertime 2016, the model background is 3 to 3.2 ppm above the
observation background and is less variable by about 40%. In Wintertime 2017, the model
background is lower than the ERSA background value by about 3.5 ppm and is less variable
by about 70%. These differences are taken into account when comparing the modeled and
observed enhancements.

Table 4. Mean modeled and observed background values and one standard deviation of the mean for
Summertime 2016 and Wintertime 2017 in the simulations with the urban heat island module.

Station Summer Model Summer Obs Winter Model Winter Obs

OHP (ppm) 403.6 ± 1.6 400.4 ± 2.7 409.3 ± 0.7 412.8 ± 2.5
CAV (ppm) 403.4 ± 1.8 400.4 ± 2.7 409.5 ± 0.7 412.8 ± 2.5
SME (ppm) 403.4 ± 1.6 400.4 ± 2.7 409.5 ± 0.7 412.8 ± 2.5

The remaining enhancement values were then compared against the WRF-based mixing
ratio values, which are composed of a combination of four CO2 components: ODIAC2017 as
the anthropogenic component, NEE as the biogenic component, our manually-derived
ECMWF-based ocean product for the sea component, and the FINN fire component.
The values are taken from the latitude/longitude/altitude pixel which encompasses the
measurement site in question at the appropriate sampling height. Although (1 km)2 is
high-resolution, these sites are significantly smaller than the pixels, which will necessarily
introduce some unknown amount of uncertainty due to representation error (e.g., [94]).

Figure 6 shows this comparison with the component breakdown for three of the sites:
OHP at 100 m sampling height in the top row, CAV in the middle row, and SME in the
bottom row. The left-hand column shows the Summertime 2016 comparisons, the middle
column contains the Wintertime 2017 comparisons, and the right-hand column shows the
Springtime 2017 comparisons. The total simulated CO2 value is included as a blue line. We
also include the total CO2 value for the simulations that did not include the urban heat
island effect, shown as a dotted brown line, although the component breakdowns are left
out of the figure. We limit our comparison to only the daytime hours of between 12:00
and 18:00 UTC, where the model’s boundary layer is expected to be sufficiently developed
and well-mixed to provide reasonable results. We note that because of the lack of data at
ERSA in the Springtime 2017 period, no measurement enhancement time series is available,
as this was the designated background site. However, the figures are included to show
the component breakdown from the simulations and to allow for comparison against the
simulation when the urban heat island module was turned off.

Table 5 shows the mean and one standard deviation of the modeled and observed
enhancements for Summertime 2016 and Wintertime 2017. Lauvaux et al. [50] found
wintertime enhancements in a similar range for Indianapolis, which has a comparable
population. Their winter modeled values were −0.52 ppm compared to their measured
enhancements, which is broadly consistent with what we find here. Their analysis did not
extend to the summer. Los Angeles has a much stronger CO2 enhancement that can range
from 2–8 ppm [95], which during the day is almost entirely due to fossil fuel emissions [25].
Although the former is to be expected due to the larger population and number of emission
sources, which work with the local geography to create a persistent urban dome [23],
the latter point is consistent across all three seasons, as seen in Figure 6.
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Figure 6. A comparison of WRF-based CO2 enhancement values, including a component break-
down, compared against a measured enhancement, subtracting off the ERSA station. The left column
is July 2016, the middle is Wintertime 2017, and the right is Springtime 2017. The top row is the OHP
station at 100 m sampling height, the middle is the CAV station, and the bottom is the SME station.

Table 5. Mean and one standard deviation of the enhancement values provided by the model
framework and the observations for Summertime 2016 and Wintertime 2017.

Station Summer Model Summer Obs Winter Model Winter Obs

OHP (ppm) −4.0 ± 2.8 −2.3 ± 3.5 −1.4 ± 1.5 −1.1 ± 2.3
CAV (ppm) −1.6 ± 2.7 1.2 ± 5.5 3.3 ± 3.2 5.7 ± 7.5
SME (ppm) −3.3 ± 3.4 0.1 ± 4.7 1.7 ± 2.4 2.5 ± 6.3

First, we note that the modeled and measured enhancement values at OHP are neg-
ative and are even stronger in the summertime than in the wintertime. This is because
of increased biogenic CO2 uptake, which is logical because OHP is mostly surrounded
by vegetation. The modeled enhancement is 74% more pronounced than the observed
value, and almost matches the NEE component. As Table 4 shows, the model provides a
background value that is 3 ppm higher than the measured marine background. This is not
expected, as the biosphere signal in the summer would normally bring the continental back-
ground value below that of the marine background. This difference in background values
between the model and the observations is partially compensated for by the larger negative
enhancement provided by the model. However, the observations do not perfectly follow
the NEE component, indicating that the site is likely partly influenced by anthropogenic
fluxes, as we be analyzed further below. We note that in Figure 6 the model provides
FF fluxes at OHP that are about ten times lower than the NEE ones during the summer
(top left-hand panel). In the winter, the enhancement values provided by the model and
the observations agree quite well, although the background value is 3.6 ppm lower in
the model than in the ERSA data. This is also somewhat surprising, as the continental
background would be expected to be higher than the marine background in the winter,
when vegetation is dormant and anthropogenic emissions are at their maximum. Here
too the modeled enhancement at OHP mostly follows the NEE variations (Figure 6, top
middle panel), while the observations show some peaks that are likely due to the influence
of anthropogenic emissions, as analyzed further below.
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The enhancement values in the city (CAV, in the heart of Marseille) have much stronger
anthropogenic CO2 emissions compared to OHP. At CAV, the model indicates that the
FF emissions signal is quite similar in winter and in summer, while the biospheric fluxes
are five to ten times higher in summer than in winter, and are quite small in the latter
period. Depending on wind speed and wind direction, peaks of several ppm can be seen in
the observations (in the 20–30 ppm range in wintertime and 5–15 ppm in summertime),
which is likely due to the contribution of FF emissions, as analyzed further below. The tem-
poral variation pattern is quite different between the model and the observation, with a
higher variability in the observations in both seasons. In wintertime, the modeled CO2
signal mostly follows the FF emissions’ temporal variations and the pattern is closer to
the observations; however, the model framework seems to underestimate the contribution
of FF emissions, as the modeled peaks only reach the 10–15 ppm range. In summertime,
the modeled CO2 signal results from a combination of biospheric and FF fluxes, but again
underestimates the observed peaks. Thus, the model seems to underestimate the FF emis-
sions at CAV in both seasons (Figure 6, middle left and middle central panels, respectively),
but could also overestimate the biospheric fluxes in summertime or mix too much. This
could partly arise from limitations in the modeling framework’s accuracy and spatial and
temporal resolution with regard to local urban vegetation. There is a need to establish
a detailed database providing this information and the associated biogenic parameters
required as inputs in C-TESSEL. Additional field work is needed to further address these
questions, including: (i) the use of C14 isotope analysis, potentially with CO measurements,
to separate out biogenic and anthropogenic signals (e.g., [96]); (ii) the use of background
measurements closer to the city, which would pick up much of the same vegetation sig-
nal advected by synoptic airmasses as well as the spatial variability of the background
(e.g., [19,97]); and (iii) monitoring of the boundary layer height to infer the correctness of
the mixing in the model.

The SME station, which is located where the edge of Marseille meets the coast, shows
an observed mean enhancement in the summertime that, while almost zero, is still quite
variable as a function of the wind conditions (Figure 6, bottom middle panel). The pattern
is similar to that at CAV, but with less apparent influence from anthropogenic emissions
evident in both the model and the observations. The model enhancement is more than
3 ppm lower than the observed value, which is compensated for by the higher background
value of the model. The model mostly follows the variation in NEE fluxes, but is partly
influenced by the FF fluxes. It underestimates the peaks seen in the observations and the
observed variability. In the wintertime, the NEE fluxes are much lower than in the sum-
mertime, while the FF fluxes are quite similar in both seasons. The modeled enhancement
is lower and less variable than the observed one, mostly because the model is not able
to reproduce the amplitude of the observed peaks that reach 30 ppm and models them
at about half of their observed values. This could be due to an underestimation of the
contribution of FF emissions in the model, but might also be due to overly strong mixing.
The prevailing winds at this site may play a large role in this issue, as noted in Xueref-Remy
et al. [40]; we explore this possibility in further detail in Section 3.4.2.

While the total simulated CO2 line without the urban heat island generally follows
the corresponding line in the model that included the urban heat island effect, the match is
not perfect. Table 6 shows a series of comparisons at each site for each analysis period to
determine how well their performance compares to each other relative to the measured
enhancements. This was achieved by first taking the mean value of the magnitudes
(i.e., the absolute values) of the differences between either simulation and the measured
enhancement value at a particular hour. The value in any given cell in Table 6 is the mean
difference value from the simulation with the urban heat island effect minus the mean
difference value from the simulation without the urban heat island effect. Because there
were no viable data from the ERSA background station during Springtime 2017, this
comparison cannot be made for that period.
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Table 6. Difference values showing the similarity between the simulation with UHI and the average
measured enhancement value relative to the simulation without UHI, along with the corresponding
standard deviations. This value was calculated at each of the three sites during each of the three
analysis periods, matching Figure 6.

Station Summertime 2016 Wintertime 2017 Springtime 2017

OHP (ppm) 0.01 −0.17 N/A 1

CAV (ppm) 0.29 4.5 × 10−3 N/A 1

SME (ppm) 0.46 0.15 N/A 1

1 N/A denotes where measured enhancement data was not available to make the comparison.

The results in Table 6 indicate that the simulation with the urban heat island turned off
was generally better able to match the measured enhancements, i.e., there are more positive
values. In both summer and winter, the simulation without UHI performed significantly
better at the coastal SME station (by almost half of a ppm of CO2 in the Summertime 2016
period); this may be due to the coastal position of that station and to the complexities
of atmospheric dynamics, particularly in the evolution of the boundary layer caused
by the unique topography of Marseille and its interaction with the different sea breeze
conditions. This was detailed by Lemonsu et al. [98], who found that the daytime evolution
of the boundary layer over Marseille can become dominated by influences from the sea
breezes rather than urban effects, such that a UHI module might be overemphasizing these
dynamics and causing a mismatch with measurements. Additionally, it is worth noting
that the site/period combinations with the most disagreement and the most agreement
with respect to each other (SME in Summertime 2016 and CAV in Winter 2017, respectively)
correspond with the worst and best site/period combinations for PBL agreement in Table 3.

3.4. Back-Trajectory Footprints
3.4.1. Cumulative Footprints

To showcase how the wind conditions may have changed generally over the course of
the different analysis periods, Figure 7 includes maps showing the cumulative footprints
from each of the three stations. Following the method described in Section 2.2.3, these
footprints are computed only for the daytime hours that match the rest of the analyses, i.e.,
12:00–18:00 UTC.

Figure 7. Log-scale maps showing the long-term footprints from each of the CO2 measurement sites
for the full Summertime 2016 (left), Wintertime 2017 (middle), and Springtime 2017 (right) periods.

In Figure 7, each season’s footprints mostly follow the terrain, with the Pre-Alps to
the North and the Cévennes mountains to the West of the domain. The prevailing wind
direction is typically from the west, as would be expected, which is also consistent with
previous studies using long-term footprints such as these to qualitatively assess CO2 source
regions in Europe (e.g., [99,100]). Similarly, Levin et al. [101]’s aggregated footprints for
a station in Paris for October 2017 (only including footprints from 13 h, a mid-afternoon
time with well-mixed conditions, consistent with what we present here) show the wind
mainly coming from the west except during times when it followed the terrain between
the mountains.

Our long-term footprints show that even with only three measurement stations in
the area, the footprints are able to reach nearly every part of the domain over the course
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of the ∼month of each period. Generally speaking, emissions are shown to come from a
wider range of areas during the summertime due to more variable synoptic conditions.
The wintertime shows a dominant wind direction directly from the east which then traces
from the southeast, which is consistent with regular sea breezes that occur in Marseille;
however, the direction of these breezes can be complicated by the geometry of the local
coastline [43]. The wintertime footprint also shows an increase in air coming from the
northwest, indicative of the Mistral wind driven by anticyclonic conditions in the Bay of
Biscay, along with an area of low pressure over the Mediterranean Sea. This is as expected,
because under these conditions cold air from the north flows between the two pressure
systems at lower elevations between the Alps and the Cevennes mountains (see [102,103]),
and is consistent with previous wind analyses of the region (e.g., [42,43] ).

We quantified the fraction of anthropogenic emissions constrained by our three-site
network by convolving the site footprints with the ODIAC2017 fossil fuel emissions. Using
the Summertime 2016 period as an example, we filtered out pixels with relatively small
contributions, technically removing pixels where the corresponding flux value was below
1000 mol km−2 month−1. Site footprints cover about 43% of the domain but capture 95.20%
of emissions. Similarly, if the threshold is set at 100 mol km−2 month−1, the footprints
cover 55.87% of the domain and capture 99.83% of emissions.

While this analysis shows that the emissions in the region appear to be well-constrained,
it is worth acknowledging several sources of uncertainty. Our wind analysis shows that
there may be significant offset between the modeled and the observed wind direction at
any particular point, even if the model’s performance overall is deemed to be good. With
enough resources, one way to address this would be to run an ensemble of simulations
and generate the corresponding footprints to find the most probable mean footprint of
the region for conducting this coverage assessment. Additionally, the uncertainty in the
distribution of bottom-up emissions, which can be large, may affect the coverage analysis.
A similar approach involving increasing the number of estimates and creating an ensemble
analysis would be ideal; however, it is often difficult to find multiple emissions estimates for
the same region. Even with these sources of uncertainty, we can conclude from our analysis
that the current network is sufficient to constrain a significant fraction of the regional fossil
fuel emissions.

3.4.2. Sea Breeze Case Study: 23–24 July 2016

In Figures 5 and 6, we focus on one particular event observed at SME in the summer-
time, corresponding to a large PBL height mismatch between 23 July 2016 at 16:00 UTC
and 24 July 2016 at 16:00 UTC. This 24 h period includes an uncharacteristically significant
mismatch in the PBL height for the simulations with and without UHI. The corresponding
simulated total CO2 value drops sharply, from 3.94 ppm to −3.94 ppm in the simulation
including UHI and from 3.00 ppm to 1.08 ppm in the simulation without UHI, as evidenced
in the lower-left panel of Figure 6. A zoomed-in look at this period for these figures is
included as the middle and right-hand images along the bottom row of Figure 8.

The corresponding CO2 enhancements from WRF and those observed at the CAV
station are shown in Figure 8 (middle panels), while the simulated PBL heights are shown
on the right-hand side of the top row. To compare the wind conditions at these hours,
the 12 h footprints corresponding to the measurements recorded at each of the OHP, CAV,
and SME stations at these times are shown in the left-hand column of Figure 8. These figures
are plotted on a log-scale because of the high density of released particles. The footprints
for 23 July 2016 16:00 UTC are on the top and those from 24 July 2016 16:00 UTC are on
the bottom.

Looking at the footprints on 23 July 2016 at 16:00 UTC, it can be seen that the CO2
enhancement values were higher and that the model captured this better at SME than at
CAV. Using data from AtmoSud measured at the CAV site, the wind for the 16:00 UTC hour
was 3.9 ms−1 at 10◦, coming from the northwest between 3:00 and 16:00 UTC and from the
northeast before that, which compares well with the corresponding footprint figure. In the
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course of the 12 h of the footprints from CAV and SME, the airmasses traveled for about
200 km, but the wind direction was not very stable (NW–NE) and CAV mostly received
emissions from the Marseille agglomeration and Berre l’Etang, an industrialized area region
near Berre Pond in the central part of the domain (https://cigale.atmosud.org/, accessed
on 7 May 2024). The middle panel shows that the observations captured an enhancement
that the model does not reproduce. The enhancement is less pronounced at SME, and the
model matches the observed enhancement reasonably well when using the UHI module.

Figure 8. The left column shows log-scaled maps of the 12 h footprints from each of the CO2

measurement sites on 23 July 2016 at 16:00 UTC (top) and 24 July 2016 at 16:00 UTC (bottom).
The middle column shows a zoomed-in view of the CO2 model/data comparison from Figure 3
during the period of this case study for CAV (top) and SME (bottom). The right column shows a
zoomed-in view of the PBL comparison from Figure 5 during the period of the case study for CAV
(top) and SME (bottom).

The footprints from 24 July 2016 at 16:00 UTC show some distinct differences from
those of the previous day at the same time. In particular, we focus on the footprints from
CAV and SME stations. The AtmoSud wind data at the CAV site at the 16:00 UTC hour was
4.5 ms−1 at 260◦. This seems to indicate a higher wind speed; however, over the course
of the 12 h of the footprints the mean hourly wind speed shifted between 0.6 ms−1 and
6.0 ms−1, compared to a range of 0.2 ms−1 to 5.9 ms−1. In effect, the wind speeds across the
footprint periods between these two days were very similar. In contrast, the wind direction
data for the footprints on 24 July was more stable, starting north and then heading west.
The sources seem to have originated north of Montélimar in the Rhone Valley, after which
the footprint passed over Fos/La Mède, where there are large industrial sites, then passed
over the Bay of Marseille, which should not contain any major sources. The westerly wind
observed at CAV and SME corresponds to typical summertime sea-breeze conditions, with a
strong influence from the industrialized Rhone valley. Biogenic signals remain dominant
in the observed CO2 mixing ratio enhancements, originating from active cropland in the
Rhone valley. Here, the model does a poorer job reproducing the observed enhancements
at SME but a decent job at CAV.

Overall, this case study demonstrates the differences in CO2 mixing ratio values in the
region during land breeze versus sea breeze events. In addition, it showcases the differences
in the captured and simulated values between the CAV site near the city center and the SME
site on the coast. For example, independent of the land breeze/sea breeze wind conditions,
the CAV site captures enhancements that are much more variable compared to the SME
site, with the enhancements at SME being more stable throughout. The model tends to
underestimate the CO2 enhancement seen at one of the sites under both land-breeze and sea-
breeze conditions. On 23 July, under land-breeze conditions, the underestimation happened
at CAV, while on 24 July, during sea-breeze conditions, the underestimation happened
at SME. There may be several reasons for this mismatch, including underestimation of

https://cigale.atmosud.org/
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emissions, overestimation of the biogenic fluxes, misrepresentation of the mixing, etc.
The forthcoming ANR COoL-AMmetropolis project aims to use CO, 14C, Volatile Organic
Compounds, and Black Carbon measurements to partition fossil fuel signals from biogenic
sources, along with LIDAR measurements for better PBL characterization.

4. Conclusions

In this paper, we demonstrate the feasibility of a CO2 modeling framework for the
urban–coastal Mediterranean region around Marseille, France. The setup includes emis-
sions maps from anthropogenic, net ecosystem emissions, fire, and ocean components.
A seasonal analysis and case study of two specific days are used to showcase the model’s
ability to accurately characterize CO2 enhancement events under a variety of conditions
unique to the area, although there remains room for improvement in future investigations.
We tested the benefits of including or excluding an urban heat island module in the simula-
tion. Additional optimizations of the model for this specific region might include a better
accounting of the terrain height and boundary layer dynamics as well as improvements
taking into account the specificity of local urban vegetation and the urban background,
potentially leading to better model–observation agreement in future investigations of this
region. Further studies might also look into improving model performance by incorporat-
ing more accurate emission inventories, enhancing model resolution, or using Bayesian
methods to estimate emission totals.

Our investigation has confirmed a previously-observed result that there is a positive
NEE in the region during summertime; thus, we included a springtime period in our
seasonal analysis to allow for a more comprehensive comparison. Our model results
seem to indicate that the vegetation signal in the region can be strong compared to the
anthropogenic signal, even at the CAV and SME measurement sites situated within and
along the coast of the city, respectively. Only in the wintertime was the anthropogenic
signal dominant over the vegetation signal, and only at these two sites; this may at least
partially be due to the characterization of the local urban vegetation not having sufficiently
high accurate and resolution, which is a limitation of the presented modeling framework.
We conclude that there is a need to build such databases as inputs to the C-TESSEL model
in order to aid future studies. Furthermore, any analysis looking to constrain the fossil fuel
CO2 signal for the region will need to use additional methods to accurately account for
the local vegetation signal, including using a continental background site closer to the city
borders (instead of a marine one) to capture the regional biogenic signal and including the
use of measurements such as those from C14 and CO to help distinguish between the fossil
fuel and biogenic signals.

In addition, we analyzed the effects of including or excluding an urban heat island
module. We found that the choice of inclusion had an effect on the boundary layer height,
changing it by as much as ∼35% at SME in Summertime 2016 and by as little as ∼10%
at CAV in Wintertime 2017. This amount of change in the boundary layer height can
significantly affect the CO2 mixing. We extended the comparison to the CO2 analysis,
where the simulation with the UHI module turned off performed better in almost every
case we tested, presenting average values that were closer to the measured enhancements
than its counterpart with the UHI module turned on. The disconnect in performance was
most evident at the coastal SME site, where it was almost half a ppm of CO2 closer to
the measured enhancements on average for the Summertime 2016 period. We suspect
that these disagreements between the model and measurements may be related to the
coastal position of the SME site as well as to the previously identified interrelationship
between the Marseille boundary layer and the daytime sea breeze [98,104]. This implies
a minimal impact on the ABL evolution from urban influences, such that the inclusion of
the UHI module overemphasized this feature. We conclude that sites in this region should
be equipped with atmospheric profiles such as those obtained from LIDAR instruments
in order to properly constrain PBL simulations with real measurements in future studies.
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An additional analysis using back-trajectory footprints was used to illustrate the
complex local dynamics over Marseille, which may require specific network designs.
Notably, a greater area of the region contributes to measurements more often during the
summertime period than during the wintertime or springtime periods. A case study
looking at the wind conditions between 23 July 2016 at 16:00 UTC and 24 July 2016 at
16:00 UTC demonstrated the nuanced ability of the model to capture short-term sea-breeze
conditions with a low mixing ratio versus land-breeze events with a high mixing ratio
at the coastal SME station. In the case study, it was again found that simulations with
and without the UHI module were sensitive to these conditions with respect to how the
boundary layer is affected and, correspondingly, the CO2. Future studies may want to
use these back-trajectories to create influence functions for use in a Bayesian analysis of
optimized emissions estimates.

The establishment of this CO2 modeling framework in the urban–coastal Aix-Marseille
region can be useful for policy and practical applications. Our model can be used in
conjunction with continuously monitoring CO2 measurement sites to track pollution events
to their most probable source sectors, assess the effectiveness of mitigation efforts over time,
and inform decision-makers about the best areas to implement new mitigation strategies.
The results from this and future studies could be used to better constrain emissions in
other urban–coastal regions. With such a system in place, urban planners, environmental
agencies, and decision-makers will be better positioned to implement plans with long-term
rewards for improving air quality and combating climate change.
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Appendix A

Here, we include some figures and explanations that add further context to the body
of the manuscript.

Figure A1. Positions of the twelve stations recording meteorological measurements that were within
our 1 km domain boundaries.
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