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RESEARCH
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ABSTRACT

Patients presenting with drug-resistant epilepsy are eligible for surgery aiming to remove the
regions involved in the production of seizure activities, the so-called epileptogenic zone
network (EZN). Thus the accurate estimation of the EZN is crucial. Data-driven, personalized
virtual brain models derived from patient-specific anatomical and functional data are used in
Virtual Epileptic Patient (VEP) to estimate the EZN via optimization methods from Bayesian
inference. The Bayesian inference approach used in previous VEP integrates priors, based on
the features of stereotactic-electroencephalography (SEEG) seizures’ recordings. Here, we
propose new priors, based on quantitative 23Na-MRI. The 23Na-MRI data were acquired at 7T
and provided several features characterizing the sodium signal decay. The hypothesis is that
the sodium features are biomarkers of neuronal excitability related to the EZN and will add
additional information to VEP estimation. In this paper, we first proposed the mapping from
23Na-MRI features to predict the EZN via a machine learning approach. Then, we exploited
these predictions as priors in the VEP pipeline. The statistical results demonstrated that
compared with the results from current VEP, the result from VEP based on 23Na-MRI prior has
better balanced accuracy, and the similar weighted harmonic mean of the precision and recall.

AUTHOR SUMMARY

For the first time quantitative 23Na-MRI were used as prior information to improve estimation
of epileptogenic network (EZN) using VEP pipeline, a personalized whole-brain network
modeling from patient’s specific data. The prior information of EZN can be derived from
23Na-MRI features using logistic regression predictions. The 23Na-MRI priors inferred EZNs has
a better balanced accuracy than the previously used priors or the no-prior condition.

INTRODUCTION

Epilepsy is a neurological disorder that affects about 1% of the world population, of which
approximately 30% are drug-resistant (Picot, Baldy-Moulinier, Daurès, Dujols, & Crespel,
2008). The epileptogenic zone (EZ), corresponding to the cerebral region generating the
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seizure, might be arduous to locate, and its localization is crucial in refractory epilepsy that
requires surgery. Indeed, surgery success is based on the accurate delineation of the EZ, but
this area is rarely reduced to a limited brain region (Bartolomei, Wendling, Bellanger, Régis, &
Chauvel, 2001), hence the name of “epileptogenic zone network” (EZN) (Bartolomei et al.,
2017) used in the following. Great efforts are being made to find objective and quantifiable
markers of EZN including interictal markers such as spikes and high-frequency oscillations
(HFO), or ictal markers such as the Epileptogenicity index (EI) (Bartolomei, Chauvel, &
Wendling, 2008; Scholly et al., 2019). Therefore SEEG recordings are still the gold standard
to define EZN, and allows identification of propagation networks (PZ) as well as regions non-
involved by electrical abnormalities (NIZ).

The virtual epileptic patient (VEP) is the personalized whole-brain model for the estimation
of EZN using patient-specific data (Jirsa et al., 2023; Jirsa et al., 2017; Wang et al., 2023). The
VEP contains modules providing an estimation of the EZN, but also modules virtualizing sur-
gery strategies (Wang et al., 2023). The structural scaffold of the patient-specific whole-brain
model is constructed from anatomical T1 weighted MRI, and the network from diffusion-
weighted MRI. Each network node is equipped with a mathematical dynamical model, called
Epileptor (Jirsa, Stacey, Quilichini, Ivanov, & Bernard, 2014), to simulate seizure activity. Bayes-
ian inference methods sample and optimize key parameters of the personalized model using
functional stereo-EEG recordings of patients’ seizures (Jha, Hashemi, Vattikonda, Wang, & Jirsa,
2022; Vattikonda et al., 2021). These key parameters together with their personalized model
determine a given patient’s EZN. The VEP provides the fully nonlinear system analysis of
whole-brain neural mass models and works on the whole-brain source spaces rather than
the sensor recording spaces alone. Epileptor is a phenomenological model based on a system
of coupled nonlinear differential equations with five state variables. All together, these equa-
tions generate epileptic dynamics called seizure-like events (SLEs). The parameter x0 in
Epileptor, the excitability for each brain region, is a key parameter to lead the system switch
between the normal and ictal states (Houssaini, Ivanov, Bernard, & Jirsa, 2015). The VEP model
inversion has been proposed to estimate the parameters in order to best fit SEEG recordings
data. In addition, the VEP has been compared in a retrospective study of 53 patients to EI type
quantification methods and to clinical analysis showing encouraging performances (Makhalova
et al., 2022; Wang et al., 2023). The intrinsic nonlinear dynamics of neural mass models in
addition to a large number of model parameters and observations render this inversion problem
challenging. To solve this problem in Bayesian inference framework (Aster, Borchers, &
Thurber, 2018; Gelman et al., 2013), the usage of priors is paramount since it ensures efficient
exploration of the posterior distribution by constraining the parameter space (Hashemi et al.,
2021). Several prior knowledge can be incorporated such as plausible range of model param-
eters, dynamics of unobserved brain state, MRI lesions or even the clinical hypothesis of EZN,
for instance. The previous VEP priors were mainly based on delay information from filtered
SEEG signals in multiple frequency bands during seizure onset or directly from clinical hypoth-
esis (Makhalova et al., 2022; Wang et al., 2023). It is important to explore other neuroimaging
modalities as an additional knowledge and as the prior to complement and potentially improve
the identification of EZN in the VEP. Moreover, to avoid invasive recordings such as SEEG in the
future, an important objective is to feed it with noninvasive data. Here, we explored the poten-
tial contribution of 23Na-MRI, complementing a recent study seeking to evaluate the link
between 23Na-MRI measures and excitability, that is, x0, to eventually demonstrate how such
imaging techniques can complement the in silico diagnosis of the EZN.

23Na-MRI is the only way to noninvasively quantify sodium in the brain in vivo. However, it
can be challenging as the sodium signal is weak compared to proton signal (Madelin, Lee,

Virtual epileptic patient (VEP):
Module simulating epileptic patient’s
brain activity to assist clinicians in
the identification of the epileptogenic
zones (EZN).

Neural mass models (NMM):
A straightforward approach to
modeling the activity of neuronal
populations, the so-called neural
masses, described as groups of
neurons with a common function
and with similar or equal in-going
and out-going connections.

Epileptor:
Phenomenological model based on a
system of coupled nonlinear
differential equations generating
epileptic dynamics.

VEP priors:
Priors providing the location of the
initiation of the seizures based on
SEEG recordings processing.

23Na-MRI:
Imaging technique allowing to
quantify human brain sodium
in vivo.
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Regatte, & Jerschow, 2014). In epilepsy, the first 23Na-MRI study performed at 3T in a group of
human focal epilepsy showed a significant increase of total sodium concentration (TSC) in
EZN compared to propagation zone (PZ) and noninvolved zone (NIZ) (Ridley et al., 2017).
Nevertheless, TSC has limited specificity for epileptogenicity as it likely reflects intracellular
and/or extracellular changes as well as differences in cell density or organization. The quadru-
polar interactions of the 3/2 spin of sodium with the electric field gradient of surrounding
molecules (Rooney & Springer, 1991) dictate variation in T2

* decay behavior, of which a
multiparametric investigation has been made with the biexponential fit of the T2

* decay of
the sodium MR signal (Ridley et al., 2018). In this article, we used 23Na-MRI at 7T with the
enhanced signal-to-noise. The study of quadrupolar interactions gives an indication of the tis-
sue organization and the molecular environment. Bi-exponential of the T2

* decay enables the
characterization of the apparent short fraction sodium concentration (NaSF) and the apparent
long fraction (NaLF), which when added together gives the TSC (Ridley et al., 2018). In addition,
by quantifying the sodium signal fraction with the short T2

* decay component ( f ) this approach
may offer a more relevant metric for studying tissue alterations and potentially provide a better
link between sodium homeostasis and neuronal excitability in human epilepsy. In a recent study,
an increase of f in the EZN compared to controls and to PZ and NIZ has been reported, whereas
TSC was increased in all regions, including PZ and NIZ (Azilinon et al., 2023).

We hypothesized that 23Na-MRI data can provide complementary knowledge to the VEP
through prior. Thus in this paper, we aimed to investigate the predictive power of the combi-
nation of 23Na-MRI features for identifying EZNs. To do so, we explored whether or not the
priors derived from 23Na-MRI can be used in the VEP framework and evaluated their effi-
ciency. In order to study the individual patterns and to find common features between the
different patterns, we combined the different sodium features via machine learning approaches
using classification models to predict the possible EZN. We then exploited the sodium features
derived EZN candidate as priors in the VEP framework and compared their efficiency to the
current used VEP in the clinical trial, Epinov.

RESULTS

VEP Workflow With 23Na-MRI Prior

The VEP workflow, in Figure 1, starts from clinical imaging (anatomical and diffusion MRI) and
SEEG data to estimate the EZN via a whole-brain network modeling. Briefly, the brain network
model is formed by nodes defined by the regions of the VEP atlas (Wang et al., 2021) linked by
the structural connectivity, obtained from the patient-specific imaging data. Note that here the
network is patient specific. Epileptor, a phenomenological neural mass model, is then used to
simulate seizure-like activity on each brain region. The signals are generated in the source
space and then projected onto the sensors, thus obtaining the simulated activity on each chan-
nel of the SEEG electrodes.

The model inversion module infers the free parameters of the model related to the excit-
ability of EZNs from SEEG data recording. The data features are extracted through SEEG
recordings. Here we used the optimization method using the L-BFGS algorithm, the goal is
to obtain the maximum of the posterior distribution of the model parameters, called maximum
a posteriori (MAP). To do this, 100 MAP estimates are obtained on datasets with a random
sensor removed, resulting in a distribution of epileptogenicity values (EVs) for each region.
The EV is calculated by considering the seizure delay in the source level activity based on
optimized parameters including excitability of each brain region and structural connectivity.

Maximum a posteriori
probability (MAP):
Estimate and unknown quantity
corresponding to the mode of the
posterior distribution.
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The random sensor removed is for robustness of different electrode combinations. The regions
are labeled as EZN if the median of its EVs distribution > 0.6 and confidence > 75%.

Data feature is the power envelope of the signal extracted from the SEEG recordings. We used
priors based on 23Na-MRI data. We first identified the combinations of 23Na-MRI features via a
machine learning model called logistic regression to predict the EZN prior. We used the clinical
hypotheses as targets in the classification model to predict these hypotheses with the 23Na-MRI
features. The predictions of the two models tested were used as priors (Na-MRI priors 1 and 2).

EZN Estimation: Clinical Use Case

The VEP workflow was applied to recordings and imaging data from a 17-year-old female
patient, with no surgical intervention yet. The patient was initially diagnosed with bilateral

Figure 1. The whole workflow, including flowchart of the VEP pipeline and flowchart of the estimation of the 23Na-MRI based priors. (A) In
the VEP pipeline, the T1-weighted images define the patient-specific high-resolution space and are used for the parcellation (brain regions on
each vertex) according to the VEP atlas. Co-registration of diffusion-weighted images and CT onto T1-weighted images gives structural con-
nectivity, gain matrix, and sensor-to-source matrix in the patient specific brain space. VEP pipeline is run for each seizure, providing EV
distribution as well as the diagnosis, and the goodness of fit for the MAP algorithm. (B) 23Na-MRI volumes at the 24 echo times (TE) are
preprocessed before the biexponential fit estimating the 23Na-MRI features extracted into VEP atlas ROIs. The quantitative data are transformed
and scaled. The training dataset is splitted into two subsets according to the spectral embedding first eigenvector values as described in the
Methods section. Both training datasets were resampled for providing more data points. Hyperparameters were tuned to refine the model
selection procedure. Selected models are tested on the testing dataset and the predictions are used as priors.

Na-MRI priors:
Priors providing the location of the
initiation of the seizures-based
machine learning model (beforehand
trained with 23Na-MRI) predictions.
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temporal plus epilepsy and a radiologically observed bilateral periventricular nodular hetero-
topia (Supporting Information Table S1).

The structural connectivity matrix (Supporting Information Figure S1) and sensor-to-source
mapping (Supporting Information Figure S2) were extracted from patient T1-weighted image,
diffusion weighted images, and postimplantation CT scan data. These matrices, alongside the
data features of SEEG seizures recording, were used as input to run the optimization pipeline.
Supporting Information Figure S3B exhibits the distribution of the signal power among all elec-
trodes, alongside one recorded seizure (Supporting Information Figure S3A). We can observe
here a high activity in the left and right anterior hippocampi in the studied seizure. The VEP
prior algorithm takes into account the onset delay of the seizure in each channel while com-
puting sensor prior vector based on 52 different frequency bands from 10–110 Hz. This prior
vector is then projected at source level (i.e., brain regions) in two different ways, providing two
distinct priors: VEP-M (Supporting Information Figure S4) directly maps the prior value of the
sensor with the shortest distance to a given source, while VEP-W (Supporting Information
Figure S5) maps a weighted sum of the prior values of all sensors (i.e., all SEEG electrodes)
to each source, based on their distance (see Methods).

We also get two other priors from 23Na-MRI features. We performed a classification of the
regions investigated by clinicians using SEEG, that is, predictions were made on the set of VEP
atlas regions that were investigated with SEEG and that were included in the EI analysis. Using
the 23Na-MRI features (f, NaSF, NaLF, and TSC ) we first trained classification models as
described in Figure 1B in order to predict the clinical hypothesis of EZN, as we do not have
access to ‘gold standard’ surgery outcome for all the patients included in this prospective
study. Features were extracted in the considered regions of interest (ROIs), transformed,
rescaled, and the most important were selected as classification models predictors (see
Methods). The training dataset is composed of patients that would not be virtualized in the
present study, as only patients from the testing dataset would be. Logistic regression was tuned
using Grid search function, and after model selection procedure, two logistic regressions (with
different hyperparameters and different features) were selected. The predictions made on the
testing dataset were used as two distinct priors: Na-MRI prior 1 and Na-MRI prior 2. Hence, we
ran the optimization pipeline on six different prior-based networks listed in Figure 2: Na-MRI
prior 1, Na-MRI prior 2, VEP-M, VEP-W, uninformative prior, and clinical hypothesis.

Neurologists ( JS and FB) furnished the clinical hypothesis based on the EI index (Bartolomei
et al., 2008) and other SEEG data, such as direct electrical stimulations. In this clinical use
case, we showed that 23Na-MRI priors complement VEP priors, particularly VEP-W, which
together matched the clinical hypothesis. In fact, we were able to retrieve four over six EZNs
(the most evident ones) of the clinical hypothesis, three with VEP-W including right and left
anterior hippocampi and left posterior hippocampus (Figure 3D) and one, right amygdala with
23Na-MRI prior (Figure 3E and F). This example demonstrates that 23Na-MRI is a useful tool to
help and complement the diagnosis of the VEP framework.

Feature Importance and Models Tuning and Selection

The permutation feature shows importance benefits from being model agnostic and can be
calculated many times with different permutations of the feature. Here we estimated the
cross-validated permutation importance, with 10 repeats and with balanced accuracy as scor-
ing metric, over 17 features. The features and the results of this procedure are listed in the
Supporting Information Figure S6. Balanced accuracy is the accuracy adapted to imbalanced
data and is defined as the arithmetic mean of sensitivity (true positive rate) and specificity (true
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negative rate). While thresholding at 0.05, we obtained six features for the training dataset 1
and eight features for the training dataset 2. The two sets of features have three common
features: NaLF, TSC, and f 2. Therefore, we can consider these three features as “universal” epi-
leptogenic markers, as they are important independently of the training dataset. The difference
in features highlights the fact that each training dataset has a different pattern selective of EZN.
Some features, were totally useless, with a poor permutation feature importance score, such as
the categorical features “lesional patient” and “lesional zone,” make this information not
meaningful to predict EZN with these models.

The selected features are used in the models for the hyper-parameters tuning stage. The
model selection was based on a cross-validated validation score higher than 0.65 and a dif-
ference score lower than 0.1, resulting in 12 models selected. Next, models were trained on
their respective training dataset and provide a (optimized) prediction for each patient. The
model with the highest mean testing balanced accuracy, for each training split, was selected
for the next stage. The retained parameters for these two models are summarized in Table 1.
Both models get a tolerance C = 10, a L2 regularization, and similar class weight. On the other
hand, solvers differ, logistic regression 1 getting a L-BFGS solver, and logistic regression 2 the
SAGA solver.

Model Testing and Probabilities

Before converting prediction into x0 and running simulations in the VEP framework, we eval-
uated performances of the two best logistic regressions, tuned using each training subdataset.
Model performances were evaluated against clinician hypothesis about the EZN. Due to var-
iability of 23Na-MRI data features between patients in epilepsy, we explored whether a training
dataset split can give a more homogeneous training subdataset, and thus better model

Figure 2. Diagram of comparison of VEP based on different defined prior. We compared the results
of VEP based on five different priors: uninformative prior where all nodes are assumed healthy; two
Na-MRI prior from Na-MRI data features; and VEP-M and VEP-W prior from SEEG recordings. The
compared golden standard is the results of VEP based on clinical hypothesis. These procedures are
detailed in section Estimation of Prior and 23Na-MRI-based EZN Prediction as Prior.
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performance. Thus, the training dataset was split into two subsets according to the spectral
embedding first eigenvector values as described in the Methods section. We found out that
logistic regression predictions are better on average when using split training dataset compared
to the three surrogate models with shuffled targets and to models fitted on the whole training
dataset without any splitting. This shows that our splitting approach using spectral embedding
was quite efficient. The performances obtained on models trained with the whole dataset with
the correct labels are comparable to those of the surrogate models (Figure 4).

Figure 3. The results of six VEP pipeline based on different priors for the example patient. The results of the VEP based on the prior using (A)
the clinical hypothesis; (B) uninformative prior; (C) the VEP-M prior; (D) the VEP-W prior; (E) the Na-MRI prior 1; and (F) the Na-MRI prior 2.
Inside each subfigure, on top, the VEP results are labeled in MRI slides, and on bottom, the clinical report tables, where brain regions are
selected when median > 0.5 (red dotted line) and confidence > 75%.

Table 1. Table of tuned parameters of each selected logistic regression resulting from the grid search
procedure

Models Solver Class weight C
Logistic Regression 1 L-BFGS EZN: 3—rest: 0.6 10

Logistic Regression 2 SAGA EZN: 4—rest: 0.57 10

Spectral embedding:
A nonlinear dimensionality reduction
using Laplacian eigenmaps, which
preserves the local geometry.
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The predictions used to estimate the balanced accuracy were binarized model probability
predictions. The threshold was optimized for each model and each patient in order to obtain
the best prediction of the EZN. These probabilities are represented in Supporting Information
Figure S7 for each region’s clinical hypothesis. We observe a clear gradient, with higher prob-
abilities in effective EZN—in the clinical hypothesis—and lower probabilities in NIZ, while PZ
probabilities are in between. It is likely that this is due to the 23Na-MRI features used as
predictors.

Comparison of Different Priors

At the group level, we analyzed 26 seizures from nine patients as the test dataset using the
VEP pipeline. We used five priors for the model inversion on each seizure: Na-MRI-prior 1,
Na-MRI-prior 2, VEP-M, VEP-W, and VEP-no-prior. Na-MRI-prior 1 and Na-MRI-prior 2 are
derived from predictions of the previous section logistic regression 1 and logistic regression
2, respectively. Parameters resulting from model inversion permit simulation proper to each
prior. This was also done for the clinical hypothesis of the EZN, using the VEP-EI prior, and
the resulting EZN estimation was used as reference in the performance evaluation approach.
Evaluation of performance was made with two different metrics specifically used while dealing
with imbalanced data: balanced accuracy and F0.5-score (Figure 5). These scores were
computed for each prior’ EZN estimation against the EZN estimation of the VEP-EI prior.
Bootstrapped paired t test shows a significantly (p < 0.01) higher accuracy of Na-MRI-prior

Figure 4. Balanced accuracy of two selected logistic regression prediction results based on
23Na-MRI data features against clinical hypothesis. Two logistic regression models were tuned using
23Na-MRI data features from two different training datasets, each with eight different patients. We
used 23Na-MRI data features from nine patients in the test dataset through two trained models (see
Table 1) to output their EZNs prediction. Then we calculated the balanced accuracy by comparing
obtained EZNs with clinical hypothesis (shown in red dots). Dot plus-minus error bars represent the
mean balanced accuracy plus-minus standard error of the mean. When the two models are trained
on the complete training dataset (all 16 patients without splitting), the mean balanced accuracy is in
purple. Shuffled means that the clinical hypotheses based target labels (i.e., classes to predict) were
randomly shuffled. Here we estimate the mean balanced accuracy while shuffling only the training
dataset (light gray), only the testing dataset (dark gray), and the whole dataset (black).
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1 and Na-MRI-prior 2 compared to no-prior. We also can visually see the higher balanced
accuracy compared to VEP-M and VEP-W priors, but with lower significance (p < 0.05). Boot-
strapped paired t test does not identify any significant difference of F0.5-score between priors.
By comparing the EZN defined by the 23Na-MRI feature against clinical hypothesis shown in
Figure 5, the results from VEP with the 23Na-MRI feature have higher balanced accuracy.

DISCUSSION

For the first time we used quantitative 23Na-MRI as additional knowledge to help estimation of
EZN using the model-based method of VEP pipeline. The priors were based on logistic regres-
sion predictions of the EZN, using 23Na-MRI features as predictors. The classification proce-
dure outcomes confirmed the existence of variability in sodium feature patterns relative to
epileptogenicity, since the use of two training subsamples proved to be more efficient than
the use of the whole sample. The procedure provided two models (corresponding to each
subsample) built from parameters and features selected specifically for each of them. The pre-
dictions of the two models reached an average balanced accuracy of 0.75, much better than
those of the surrogate models or the models trained on the whole training set. The 23Na-MRI
priors inferred EZNs significantly closer to the clinical hypotheses than the currently used
priors or the no-prior, in terms of balanced accuracy, but not for F0.5-score. No significant
difference in F0.5-score reflects no significant difference in precision, as F0.5-score is rather
weighted with precision (positive predictive value). On the other hand, balanced accuracy
of the prediction, and therefore the sensitivity (true positive rate) and specificity (true negative
rate) with each other are significantly improved while using 23Na-MRI priors.

23Na-MRI Features

The feature engineering methodology makes it impossible to evaluate the contribution of each
23Na-MRI feature. Most 23Na-MRI studies (the vast majority at 3T) have shown an increase in
TSC in neurological diseases such as ALS (Grapperon et al., 2019), Huntington’s (Reetz et al.,
2012), Parkinson’s (Grimaldi et al., 2021), multiple sclerosis (Maarouf et al., 2017; Zaaraoui
et al., 2012), and, of course, epilepsy (Ridley et al., 2017). Using 7T MRI we also used f, NaSF,

Figure 5. Performance evaluation results. Balanced accuracy (left) and F0.5-score (right) for each prior EZN estimates for each patient’s
seizures against VEP-EI prior EZN estimates. Black dots represent score value for a given seizure on a given patient. Scores of 23Na-MRI based
priors are represented in shades of red, and those of the currently implemented priors in the VEP (VEP-M and VEP-W) are in shades of blue.
Scores of uninformative prior are illustrated with the green box. The top and the bottom of the rectangle in the boxplot represent the first and
the third quartile, the line representing the median, and the error bars the extrema. *p < 0.05. **p < 0.01.
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and NaLF, measures estimated from the biexponential fit parameters of the 24 TEs (see section
Data Processing). f reflects the apparent ratio of short and long T2

* sodium signal decays, and
thus encompasses the smallest measurable effects at each TE, with a weighting for short TEs.
While in free liquid such as the CSF, the T2

* signal decay is mono-exponential, the quadrupolar
interaction of sodium nuclei with the electric field of molecules lead to bi-exponential T2

*

decay in the tissues (Berendsen & Edzes, 1973). Here we assumed that NaSF and NaLF will
be important in the characterization of EZN via logistic regression; in fact, both measurements
together constitute TSC, hence we have the opportunity to investigate whether or not they can
refine the characterization of EZN when not encompassed in TSC, which appear to be crucial
for the prediction of the EZN (Supporting Information Figure S6). We could therefore imagine
in the future to refine these measures by improving the compartmental models of sodium (mul-
tiexponential decays accounting for intracellular, extracellular, CSF, and vascular compart-
ments) for a better characterization of the epileptogenic network.

Together, these measurements provide information on several aspects: (i) sodium homeo-
stasis; (ii) microstructure, as the sodium signal may also reflect the structure of the medium in
which the sodium is located (Rooney & Springer, 1991); and (iii) variation in perfusion (already
demonstrated in epilepsy (Kojan et al., 2021; Wang et al., 2018)), which may impact blood
sodium signal as well, not negligible in the total sodium signal (Driver, Stobbe, Wise, &
Beaulieu, 2020). It should also be kept in mind that unlike SEEG, which records electrical
activity emanating from neurons, 23Na-MRI measures the above-mentioned phenomena in
the tissue and thus in neurons and glial cells. Thus, when the SEEG is clearly designated as
measuring excitability, we are able to ask ourselves, in view of the results, whether the com-
bination directly measures cortical excitability. We can also ask whether these metrics can
be used to analyze phenomena involved in the ongoing epileptogenesis, such as inflamma-
tion, glial reaction, plasticity, or reorganization (Scharfman, 2007).

Predictive Model

Being in a supervised training paradigm, we studied the different feature patterns within
the EZN in the training dataset. The complete training dataset gave poor performance. Indeed,
the raw data showed various patterns, specific to each patient. To provide consistent datasets,
we used Spectral Embedding for feature reduction, and we used the eigenvector resultant to
split the data into two subsamples. In the context of epilepsy, this is easily explained because
in our sample, epilepsies are heterogeneous in terms of causes, disease duration, and location
and anatomical organization. These differences should involve various ionic and metabolic
changes in the tissue. Presumably, the patterns of sodium features should vary with these dif-
ferences. This aspect could not be addressed in this study because of the small number of
patients with each type of epilepsy. In the future it may be interesting to explore this issue.

Polynomials and interactions allow the models to learn a more complex decision boundary,
thanks to the nonlinearity introduced (Kuhn & Johnson, 2019). However, overfitting becomes a
risk and interpreting feature importances gets trickier. In fact, it is difficult to biologically inter-
pret feature combinations because the permutation value of a feature combination is relative
to other combinations. All these weaknesses might be addressed in future works. In this work
we rather aimed to define an accurate and efficient marker of epileptogenicity than an inter-
pretable model. Nevertheless, in the case of two correlated features, if one of the features is
permuted, the model will still have access to the feature through its correlated feature. This will
induce a lower importance value for both features, while they may be important. Here, there
are indeed correlated features, which expose us to this bias. But we have other downstream
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strategies to manage the possible biases induced, like the L2 regularization of the models,
which will minimize the impact of the ‘useless’ features. In case we missed a feature, we
can live with that as long as the model classifies well.

Studying logistic regression predictions probabilities and searching for the optimal thresh-
old for the best performance (balanced accuracy score), we observed that the model seems to
be sensitive to clinical hypotheses. In fact, there is a gradient of prediction probabilities with
EZN the higher, NIZ the lower, and PZ in between. This means that although the model was
trained on binary targets (EZN vs. non-EZN, i.e., PZ and NIZ), the 23Na-MRI features used as
predictors show that PZs are not quite NIZs nor quite EZNs. The average probability of EZN is
very high (around 0.8), that of NIZ is below 0.4, while that of PZ is slightly higher than NIZ.
This is even more pronounced in logistic regression 2 than in logistic regression 1 (Supporting
Information Figure S7) showing that the model is rather indecisive about PZ. It would be very
interesting to study multiclass classification in this context, which would also address the issue
of regional variance.

VEP Pipeline and Model Inversion

The clinical hypothesis used here depicts the epileptogenic zone network (EZN), the propa-
gation zone (PZ) and the noninvolved zone (NIZ), but to simplify the procedure we have binar-
ized these assumptions—corresponding to our classification targets—considering a “one vs the
rest” strategy, since we are interested in the EZN specifically. This is a strong assumption that
affects the choice of x0 (either −1.5 for a strong excitability or −3 otherwise). Nevertheless,
when we look at the probabilities of the models, we notice a gradient, which shows that
the models consider the PZs as fuzzy zones between pathological and healthy excitability.
It also reflects a continuum of the excitability, referred to in the literature (Bartolomei et al.,
2008) We could therefore deepen this study by making a multiclass classification aiming at
predicting the EZN, the PZ, and the NIZ, to then fix the values of x0 according to each pre-
diction, with an x0 between −1.5 and −3 for the propagation zones.

Here we use MAP for the VEP model inversion. The main advantage of MAP is that it is not
computationally expensive. However, MAP can get stuck in a local extrema as other optimi-
zation algorithms. One of the solutions is to use MCMC-based sampling methods such as
NUTS or HMC (Betancourt, 2017; Hoffman & Gelman, 2014). It was recently shown that
HMC sampling implemented in the VEP provides similar results. But in the future, to confirm
the results of the present study, or to refine the estimation of EZN, more robust (but also more
expensive computationally) techniques like HMC sampling could be employed.

The parameters provided by the optimization procedure using MAP tune the neural mass
model, which in turn generate simulated brain activity of a bulk group of neurons. Indeed,
reducing 1,000 vertices of source activity into one node mapped to a VEP region cancels
out the directionality of the current dipole of the folded cortical sheet, which may lead to
wrong mapping from sources to sensors and thus possibly introduce errors into the estimation
of EZN. The neural field model (NFM) might be a solution, simulating brain activity at the
vertex level. But the relatively low resolution of 23Na-MRI will complicate the mapping of
sodium features onto the vertices. Moreover, the important bias that partial volume effect
might introduce in the vertex level sodium estimates will eventually mistake the 23Na-MRI
based priors. An improvement of the 23Na-MRI resolution will facilitate the approach.

Multiple aspects of focal seizures may vary, such as causes, electrographic onset patterns,
duration and underlying dynamics. Moreover, it can also happen in a given patient. Our data
contains all this possible variability. A priori this variability can be explained by seizure-
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specific excitabilities (VEP-M and VEP-W) combined with patient-specific structural connec-
tivity. On the other hand, 23Na-MRI priors do not take into account the seizure-specific aspect,
since only one interictal prior will be used for all seizures of a given patient. Interestingly, this
did not have any impact on the outcome, given the high balanced accuracy obtained for
23Na-MRI priors. This may mean that commonalities between different seizures could be
detected with noninvasive interictal measures such as 23Na-MRI, but more studies are needed
to make this claim.

In future, the usage of 23Na-MRI-based priors could pave the way for the current VEP
protocol toward noninvasive diagnosis. In theory, any other quantitative measure, such as
positron emission tomography (PET), can be tested and used as prior in our modeling
approach. We are also testing the VEP pipeline on noninvasive electrophysiology data, such
as MEG and EEG, to predict the EZN noninvasively. These offer ways to transfer new relevant
methods to clinical practice.

Limitations and Perspectives

In the present study, we based data selection on the clinical hypothesis which lies on SEEG
recording analysis and implantation spatial sampling, considering it as ground truth. As SEEG
recordings analysis may suffer from spatial sampling problems, using it as ground truth is
debatable, especially when the ground truth is usually considered to be the brain region which
once removed leads to no more seizures (Lüders, Najm, Nair, Widdess-Walsh, & Bingman,
2006). Nevertheless, we had to make a choice for a ground truth using such a prospective
database, where the majority of the patients have not had a surgery, and the choice was to
use the best estimation of the EZN common to all patients at the moment of this study. In
future, applying a similar approach on seizure-free patients only will be needed to confirm
these results.

We have considered a normal distribution of excitability to compute parameter likelihood.
The excitability of a region, in the context of a phenomenological model such as Epileptor, is
the cumulative sum of the effects of the components that play a role in seizure generation. If
these components can be random independent variables then, according to the central limit
theorem (Sip et al., 2021), their sum converges to a normal distribution. However, we can
imagine that in the case of some epileptogenic lesions, which may or may not generate
seizures, a bimodal distribution would be more appropriate.

This last point can also be improved by introducing the regional variance. Currently the
parameterization is identical for all the parameters of the model except x0, and this for all
the sources. It would be interesting to vary the parameters according to other biological infor-
mation, such as cell density, cell type within a region, as well as functional specialization of
brain regions. The regional variance can also depend on the functional specialization of
regions or the structural connectome. Regional activity variance has been demonstrated using
power spectra and peak frequency of functional data such as SEEG (Frauscher et al., 2018).
Most of the anatomical and functional data related to regional variance are available at the
group level, making it challenging to use this information in an individualized approach like
the one used in this study. In the future it would be interesting to explore how 23Na-MRI data
can provide information in this sense; now that we are able to extract 23Na-MRI data in the
whole brain via VEP atlas, we need to determine the right model parameters which can be
tuned based on these data to address regional activity variance from the homeostatic point
of view. Virtual brain twins have been extended from VEP to various brain disorders, such
as Parkinson’s and multiple sclerosis, among others (Wang et al., 2024). Sodium MRI shows
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promise in these domains and may offer the useful personalized information that enhances the
clinical utility of virtual brain twins (Grimaldi et al., 2021; Maarouf et al., 2017).

CONCLUSION

For the first time, quantitative 23Na-MRI was used in the VEP framework. One of the main
results of this study is that 23Na-MRI features help the VEP to better predict the EZN in terms
of a high balanced accuracy when taking the clinical hypotheses as the ground truth. Com-
bining 23Na-MRI features via a machine learning approach appears to be a relevant tool to
predict the clinical hypothesis and, therefore, the derived prediction used as priors in the
VEP pipeline can provide more information and a new point of view about the EZN. The next
steps would be to upgrade this approach, considering multimodal imaging data, combining
other quantitative imaging modalities such proton spectroscopy imaging, as input data to
the machine learning pipeline as well as surgery-defined EZN as targets, aiming for more pre-
cise estimation of the EZN.

MATERIALS AND METHODS

Data Acquisition

We obtained the dataset from 25 patients with drug resistant focal epilepsy who underwent a
standard presurgical protocol at La Timone hospital in Marseille. Informed written consent was
obtained for all patients in compliance with the ethical requirements of the Declaration of
Helsinki, and the study protocol was approved by the local Ethics Committee (Comité de Pro-
tection des Personnes sud Méditerranée 1).

Patients’ clinical records, neurological examinations, neuropsychological testing, and EEG
recordings were assessed in the noninvasive evaluation. The subjects’ clinical data are given
in Supporting Information Table S1. The evaluation included noninvasive T1-weighted imaging
(see MRI Acquisition section of the article for more information) and diffusion-weighted images
(DTI-MR sequence, either with an angular gradient set of 64 directions, repetition time = 10.7 s,
echo time = 95 ms, voxel size 1.95 × 1.95 × 2.0 mm3, b-weighting of 1,000 s × mm2, or with
an angular gradient set of 200 directions, repetition time = 3 s, echo time = 88 ms, voxel size
2.0 × 2.0 × 2.0 mm, b-weighting of 1,800 s/mm2) acquired on a Siemens Magnetom Verio 3T
MR-scanner.

In addition, 23Na-MRI was acquired using a dual-tuned 23Na/ 1H QED birdcage coil and a
multiecho density adapted 3D projection reconstruction pulse sequence on a whole-body
7-Tesla Magnetom Step 2 MR system (Siemens, Erlangen, Germany) (for acquisition informa-
tion see MRI Acquisition section of the article). To ensure a sufficient number and distribution
of TEs, 3D 23Na MRI volumes were obtained at 24 echo times (TEs) ranging from 0.2 ms to
70.78 ms. This approach also takes into account the 5-ms readout of the sequence, needed to
acquire 23Na signal with short T2 decay. Signal quantitative calibration into sodium concen-
tration was performed using six tubes (80-mm length, 15-mm diameter) filled with a mixture of
2% agar gel and sodium at different concentrations: two tubes at 25 mM, one at 50 mM, two at
75 mM, and one at 100 mM. These external references were positioned in the field of view in
front of the subject’s head and maintained using a cap.

Implanted depth electrodes provide patients’ invasive electrophysiological recordings.
Electrodes used in SEEG contain 10–18 contacts 2 mm long, which are spaced by 1.5-mm
or 5-mm gaps. The SEEG signals were acquired on a 128 channel Deltamed/Natus system with
at least a 512 Hz sampling rate and recorded on a hard disk (16 bits/sample) using no digital
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filter. A high-pass filter (cut-off frequency equal to 0.16Hz at −3dB) was used in the acquisition
procedure, as well as an anti-aliasing low-pass filter (cutoff at one third of the respective sam-
pling frequency). SEEG electrodes location are obtained by dint of cranial CT scan, performed
after the implantation of electrodes.

Data Preprocessing

To construct the individual brain network models, we performed a volumetric segmentation
and cortical surface reconstruction from the patient-specific T1-MRI data using the recon-all
pipeline of the FreeSurfer software package (https://surfer.nmr.mgh.harvard). The cortical sur-
face was parcellated according to the VEP atlas (Wang et al., 2021) (code available at https://
github.com/HuifangWang/VEP_atlas_shared.git).

We used the MRtrix software package to process the DW-MRI (Tournier et al., 2019), using the
iterative algorithm described in Tournier, Calamante, and Connelly (2012) to estimate the response
functions and subsequently used constrained spherical deconvolution (Tournier, Calamante, &
Connelly, 2007) to derive the fiber orientation distribution functions. The iFOD2 algorithm
(Tournier, Calamante, & Connelly, 2010) was used to sample 15 million tracts. The streamlines to
and from each VEP ROI were assigned and counted, providing the structural connectome. Self-
connections, represented by the diagonal of the structural connectome matrix, were excluded by
setting them to 0. Finally, the matrix was normalized so that the maximum value was equal to one.

GARDEL (Graphical user interface for Automatic Registration and Depth Electrodes Local-
ization), as part of the EpiTools software package (Villalon et al., 2018), estimated the location
of the SEEG contacts from postimplantation CT scans. Afterwards, we coregistered the contact
positions from the CT scan space to the T1-MRI scan space of each patient.

23Na-MRI data processing is summarized in Figure 6. All 24 TEs acquired were denoised
and realigned on the first TE volume in the same fashion as in the article. VEP atlas volume

Figure 6. Diagram of 23Na-MRI data processing. The 24 volumes acquired with different TEs acquired using a 3D radial density adapted
sequence at 7 Tesla are first realigned and denoised. The resulting TE1 image is used for the linear fit of tubes sodium signal to calibrate the
sodium signal afterwards. All 24 TE signal intensities are extracted into VEP atlas ROIs and fitted with the biexponential model. The fit provides
parameters such as A and f, that provideM0 signals fractions. The resulting short and longM0 are calibrated into NaSF and NaLF. The sum of the
resulting NaSF and NaLF gives TSC (Azilinon et al., 2023; Grimaldi et al., 2021; Ridley et al., 2017).
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obtained from VEP pipeline data preparation is ‘voxel cleaned’ via cerebrospinal fluid (CSF)
mask obtained with SPM segment function from high-resolution T1 (MP2RAGE) image, after
coregistration in the corresponding space. All the voxels shared by this CSF mask and any VEP
atlas ROI are erased. This stage was performed in the ultrahigh resolution of the 7T T1 image
space (for more information about the MP2RAGE see MRI Acquisition section of the article).
The cleaned atlas was then projected into 23Na-MRI native space for extraction of the 24 TE
signals into each of the 162 VEP atlas ROIs. The mean signal of each TE in each ROI was then
fitted with the biexponential model presented in the first part of this manuscript.

ROIsignal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 f ⋅ e

−TE
T2

�
short þ 1 − fð Þ ⋅ e

−TE
T2

�
long

� �
þ Ric2

h ir

We derived from the biexponential fitting the magnetization (M0) corresponding to the signal
fraction estimated by the model in terms of the intercepts of the signal fraction components of
the model, obtaining M0SF = A ⋅ f andM0LF = A ⋅ (1 − f ). Then, NaSF and NaLF were calculated
with raw M0 signal values and the linear fit estimated over the tube phantoms, that is, slope (a)
and intercept (b):

NaSF ¼ M0SF − að Þ
b

NaLF ¼ M0LF − að Þ
b

TSC ¼ NaSF þNaLF

f ¼ NaSF
TSC

VEP Model Construction

To predict individualized EZNs, whole-brain neural model (Sanz-Leon, Knock, Spiegler, &
Jirsa, 2015)—considering brain areas as nodes connected through edges formed with white
matter fibers—was used. Basically, the VEP atlas provides the brain regions, the so-called
nodes, whereas dWI provides the white matter tracts used to attribute a connection strength
to edges. Dynamical equations model the activity of each node, which propagates from one
region to another depending on the connection strength between them. The seizure-like
activity is modeled with Epileptor, a 6D phenomenological model (Jirsa et al., 2014). The
model is composed of three neural populations and three time scales: fast, intermediate,
and slow. Taking advantage of time scale separation and using averaging methods, the 6D
Epileptor is reduced to a 2D system (Proix, Bartolomei, Chauvel, Bernard, & Jirsa, 2014):

_xi ¼ Ii − x3
i − 2x2

i − zi

_zi ¼ 1
τ0

4 xi − xi;0
� �

− zi þ K
XN

j¼1
Ci;j xj − xi

� �� �
8<
:

where τ0 scales the length of the seizure. The state variable xi describes the activity of neural
populations on a fast time scale and can model fast discharges, mostly during ictal periods.
The oscillation of the slow permittivity variable zi drives the system autonomously between
ictal and interictal states. The parameter x0 indicates the degree of excitability (or epileptogeni-
city) and directly controls the dynamics of the neural population to produce the seizure or not.
The coupling between nodes of the network is defined by Ci,j, which comes from the structural
connectivity. K scales the connectivity, which can be varied between simulations to investigate
different scenarios. The external input is defined as I1 = 3.1. In this work we exploited the 2D
Epileptor for model inversion in order to speed up the computations essentially.
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Neural Mass Modeling

Neuronal population macroscopic behavior is modeled by neural masses. In TVB (Sanz-Leon
et al., 2015), neural masses represent activity of a single brain region, linked through the struc-
tural connectivity, forming a complete brain network model. The global equation for such a
model can be given by

_ψ i tð Þ ¼ F ψ i tð Þð Þ þ K
XL
j¼1

W i; jð ÞS ψ i tð Þ;ψ j tð Þ
� �

where Ψi(t) is a state vector of neural activity at brain region i and time t. _Ψ is the temporal
derivative of the state vector. F, a function of the state, captures the local neural activity; F
reflects the Epileptor model in the present work. W is a matrix of heterogeneous connection
strengths between nodes i and j. S is a coupling function of the local state Ψi and the distant
delayed state Ψj. The sum across the number of nodes L (scaled by a constant K ) gives the
network input received by a node i.

Forward Solution

Solving the forward problem and estimating a source-to-sensor matrix permits one to map the
neural activity from sources (VEP brain regions) to the sensors (SEEG electrods contacts). This
matrix gj,k from source brain region j to sensor k—also called Gain matrix—is equal to the sum
of the inverse of the squared Euclidean distance di,k from vertex i to sensor k, weighted by the
area ai of the vertex on the surface.

gj;k ¼
XNj

i¼0

ai
di;k

2

Region j contains the vertex i, containing a total of Nj vertices. The area ai of vertex i is
obtained by summing up one third of the area of all the neighboring triangles. To obtain the
gain for a single region of the brain network model, vertices from the same brain region are
summed. The resulting gain matrix has dimensionsM × N, with M being the number of regions
and N the number of sensors. Matrix product of the simulated activity at the source with the
gain matrix gives the simulated SEEG signals.

Estimation of Prior

Here we provide prior to the model inversion module as x0 parameter values. Prior was
usually estimated from SEEG processing (Hashemi et al., 2020; Wang et al., 2023). The
Fourier transform of the SEEG signal provides a spectrogram in 200 consecutive windows.
After log transformation of spectrogram values, the seizure onset in each SEEG channel is
identified by a sensor-prior vector. The values of the vector are estimated based on channel
spectral content across 52 different frequency bands. Each frequency band is defined by
the combination of a lower bound ranging from 10 to 90 Hz and an upper bound ranging
from lower bound +10 to 120 Hz, both in steps of 10 Hz. Averaging spectrograms across a
given frequency band gives an average time series per SEEG channel, which is thresholded
by its 90% percentile. Early increase in a specific frequency band is illustrated by high
values of normalized reciprocal value (reciprocal of the first time point above the threshold
in each channel). This is considered to be a specific indicator of the SEEG channel where
seizure begins. These values are mapped to the source brain region, considering the 60
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closest vertices to the sensor for each region. The entries of the sensor-to source-matrix
corresponds to

1
60

X60
i¼1

1

dk
i

with di
k being the euclidian distance from sensor k to source vertex i. The prior VEP-M

consists of assigning the sensor-prior value to the region with the strongest projection to
a particular sensor in the sensor-to-source-matrix. VEP-W calculates one onset value per
region for each frequency band, which is then averaged across all frequency bands and
divided by the max. For both strategies, regions with the resulting value higher than 0.5 are
assigned with a x0 = −1.5 (putting a high epileptogenicity on nodes representing those
regions), and a x0 = −3 when lower than 0.5, considering these brain regions as nonepi-
leptogenic. In fact, all brain regions get this x0 value for VEP-no-prior. For the VEP-EI prior,
regions diagnosed as EZN by clinicians are assigned with a x0 = −1.5 and the other
regions with x0 = −3. Estimation of 23Na-MRI-derived priors is detailed in the next section.

23Na-MRI Based EZN Prediction as Prior

Seeking to predict the clinical diagnosis of EZN with 23Na-MRI features, we evaluated the
classification performances of logistic regression with 23Na-MRI-derived features as predictors.
All classification models are binary, where the positive class is “EZN” and the negative class is
“not EZN.” Since the data is highly imbalanced (there are much less “EZN” and “not EZN”), a
cost-sensitive framework—through the usage of class weights parameter—is necessary to
adjust models prediction (Fernández et al., 2018). The “not EZN” label corresponds to the
concatenation of PZ and NIZ labels. These labels are mostly diagnosed based on SEEG record-
ing processing, using the Epileptogenic Index (EI) (Bartolomei et al., 2008). Hence, the classi-
fication was focused on the region with one of those labels. While setting the procedure, we
observe a huge variability in Na features patterns, making the model perform poorly. We then
decided to split the training dataset to deal with this issue. We tuned the models on both train-
ing datasets. The resulting tuned models were used to predict the EZN in of the test dataset
patients, providing two priors for the VEP pipeline. The whole procedure is detailed below. All
priors definitions are summarized and illustrated in Figure 2.

Data Preparation

Data split. The train-test split was performed over the 25 patients dataset, training dataset used
only for hyperparameter tuning, model selection and model fitting, and a testing dataset from
which we get the predictions of fitted models and use them as priors in the VEP pipeline. Not
all of the 25 patients had all the necessary data for the VEP pipeline, so we put those patients
into the train dataset. The final training dataset contained 16 patients (9 in the testing dataset).

We observed heterogeneous 23Na-MRI feature patterns at the individual level, which ini-
tially provided weak performance. So we opted to split the train set to train the models on data
with different patterns. We arbitrarily choose to split into two different datasets using spectral
embedding (Luxburg, 2007) with 2-dimensional projected subspaces. The patients with the
mean value of the first eigenvector in the EZN over 0 were included in the training dataset
1, and the others in the training dataset 2, making two sets of eight patients each. Briefly, spec-
tral embedding is a nonlinear dimensionality reduction using Laplacian eigenmaps, which pre-
serves the local geometry. Here, we used a graph of nearest neighbors to construct the affinity
matrix. After this stage, Laplacian decomposition is applied to the corresponding graph
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Laplacian. The eigenvectors for each data point provide the resulting transformation. Here,
spectral embedding dimensionality reduction that preserves the local geometry is crucial to
categorize patients with similar 23Na-MRI feature patterns. Figure 4 illustrate the added value
of this approach.

Feature analysis procedure. The first step consists in applying a polynomial transform to features
(degree = 2, with interaction terms), basically creating new input features from existing fea-
tures. The resulting polynomial features correspond to the initial feature plus squared features
and interaction terms of each pair of the initial features, obtaining 15 features, in addition to
the two categorical features (17 altogether) considered here: “lesional patient,” binary vector
containing 1 for regions of a patient with a lesion, and “lesional zone,” binary vector contain-
ing 1 for lesional regions. Thanks to the exponent, this transformation separates small and big
values and thus changes the probability distribution. The addition of polynomial features to
model inputs allowed the model to identify nonlinear patterns alongside linear patterns (Kuhn
& Johnson, 2019). Polynomial transformation was followed by a data standardization step,
needed for the majority of machine learning models.

The next step was permutation feature importance, which corresponds to the decrease in
the model score when a feature values are randomly permuted (Breiman, 2001). This proce-
dure can be applied multiple times on repeated permutation of a feature (repeated 10 times
here). For each model and on both training sets, this approach was validated using nested
cross validation. For each cross-validation fold, permutation feature importance got a fitted
predictive model and training-split of a fold as inputs. Then it computed the reference score
of the model on the data, in this instance balanced accuracy. Next, each feature was randomly
permuted 10 times, computing at each repetition the permuted score. The importance was
finally obtained from the difference between the reference score and the permuted scores.

The nested cross-validation and the resampling technique used in the hyperparameters
tuning were also used in this procedure; the cross-validation providing the training and the
validation folds, where the training fold was resampled according to the resampling procedure
described in the next section. The so-called permutation importance is estimated by comput-
ing the difference between baselines core and permuted score. For each model and training
set, the decision threshold of the permutation importance was set to 0.05, considering (arbi-
trarily) that the most important features should induce a score drop of at least 0.05 when
permuted.

Model selection procedure and priors estimation. Feature permutation outcomes are used as pre-
dictors in the following steps. Models hyper-parameters were tuned using a grid search func-
tion, which searches over a specified set of parameters values (Table 1) the best mixture of
parameters. Each mixture provides a model that will fit on the training dataset, and then pro-
vides a performance score, here balanced accuracy. Cross-validated grid search over a param-
eter grid optimizes parameters of the models. We used a nested cross-validation (CV)
approach (Wainer & Cawley, 2018), resampling the train-split of each CV fold (Batista, Prati,
& Monard, 2004). In our nested CV, the outer fold contains two patients and the inner fold is
composed of one patient. For each fold the minority class is oversampled to 60 points while
the majority class is oversampled to 180 points before undersampling by ENN, which pre-
serves a relative imbalance, managed by model class weights. The decision about the sets
of parameters to use is based on their respective models performance, using the mean
cross-validated validation score and the scores difference (mean CV train score − mean CV
validation score). The models should have a mean cross-validated score above 0.65 to remove

Nested cross-validation:
Also called double cross-validation,
this procedure uses two k-fold type
loops, meaning that each training
fold is also folded.
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all the models with a performance close to the chance-level. A score difference lower than 0.1
removes all models that overfit, that is, train score is much higher than the validation score.

The parameter combinations retained provide 12 models. In order to reduce the number of
models, we have chosen a model for each training dataset—as all models reached similar
performance—considering the mean test balanced accuracy maximum value. The parameters
and scores of the selected models are listed in Table 1.

Model validation consists in comparing model performance on real data compared with
surrogate data (shuffled targets, shuffled training dataset targets, and shuffled testing dataset
targets). This last stage defines the models used for the prediction/priors estimation stage. Pre-
dictions are made from prediction probabilities defined by each model. These probabilities are
threshold in order to optimize the test score and obtain the best prediction possible from those
models. The thresholding binarized the probabilities, in order to be integrated into the VEP
framework, and more specifically into the Epileptor model. The predictions are then converted
into x0, the neural mass excitability parameter.

Optimization MAP Pipeline

To infer the epileptogenicity parameter and source time series for each seizure, we apply a
Bayesian modeling approach. According to Bayes’ theorem, the posterior probability distribu-
tion p(θ|y) of a parameter θ given the data y is equal to the product of the likelihood L(y|θ) of
the data given the parameter and the prior probability distribution p(θ) of the parameter
divided by the marginal likelihood p(y) of the data.

p θjyð Þ ¼ L y jθð Þp θð Þ
p yð Þ

In such a complex multivariate models as (Epileptor) VEP, the marginal likelihood

p yð Þ ¼
Z

L y jθð Þp θð Þdy

is unsolvable; but as it scales to 1 the integrale across the posterior distribution, one can state
the Bayes theorem as

p θjyð Þ ∝ up θjyð Þ ¼ L y jθð Þp θð Þ
Where the posterior probability is proportional to the unnormalized posterior probability up(θ|
y). Normalized and unnormalized posterior distributions have the same properties (namely the
shape, maxima and minima), but they are scaled by their respective constant versions. Markov
chain Monte Carlo methods generate samples of the unnormalized posterior distribution,
hence the posterior distribution can be approximated and inference can be made about the
parameters of interest, with a sufficient amount of samples. The maximum-a-posteriori esti-
mate θMAP was computed in the optimization pipeline using the L-BFGS (Nocedal, 1980)
quasi-Newton method.

θMAP yð Þ ¼ argmax up θjyð Þ½ �
The optimization algorithm performs an iterative process to find θMAP. It starts with an initial
assumption of the parameter before moving through parameter space following the direction
of the gradient of the probability distribution. The algorithm terminates after either a maximum
of 20,000 steps or convergence has been reached. When changes in parameters, gradients, or
probability density between steps are below a certain threshold, convergence is detected. In
the current work exploiting the VEP model, the product of prior probability of each parameter

Network Neuroscience 691

23Na-MRI-derived priors support estimation of EZ using model methods

D
ow

nloaded from
 http://direct.m

it.edu/netn/article-pdf/8/3/673/2466827/netn_a_00371.pdf by guest on 02 O
ctober 2024



and the likelihood of the data provide the posterior probability. Stan (Carpenter et al., 2017)
transforms probability into log proba, resulting in a log of posterior proba that corresponds to
the sum of log likelihood and log prior probability of all parameters. We specified the prior
probabilities for the epileptogenicity parameter xi,0 for brain region i, the time scale of the
slow variable τ0, one scaling s and one additive constant of the simulated SEEG, the global
coupling scaling factor K, and the initial conditions for state variables xi(t0) and zi(t0) in region
i, as well as the distribution width of the extracted data features ϵν:

xi;0 ∼ N xi;m; 1
� �

τ0 ∼ N 20; 10ð Þ with 5 ≤ τ0 ≤ ∞

s ∼ N 1; 10ð Þ with 0 ≤ s ≤ ∞

a ∼ N 0; 10ð Þ

K ∼ N 1; 10ð Þ with 0 ≤ K ≤ ∞

xi t0ð Þ ∼ N −2; 10ð Þ

zi t0ð Þ ∼ N 3:5; 10ð Þ

ϵν ∼ N 1; 10ð Þ with 0 ≤ ϵν ≤ ∞

where N μ; σð Þ is a normal distribution with mean μ and dispersion σ and xi,m 2 {−3,−1.5} is
the epileptogenicity prior for each brain region. Some prior probabilities are truncated by
setting a possible minimum value. The likelihood function is given by

P ν t½ � ∼ x; θð Þ ∼ N eν; ϵνð Þ
where ν and eν are the empirical and estimated SEEG data features. Both the seizures envelopes
and the simulated SEEG channel power were considered to be the data feature here. Two algo-
rithmic diagnostic metrics are (i) goodness of convergence, the number of runs that terminate
properly (the varying of the likelihood converges to the given threshold), and (ii) goodness of

fit equals to 1 −
P

var ν−~νð Þð ÞP
var νð Þð Þ , where the sum is across all the SEEG recorded channels.

Calculation of Epileptogenic Values

Brain region-specific epileptogenicity values (EVs) are computed based on estimated source
time series resulting from the optimization pipeline, just like Wang et al. (2023). The onset
of the seizure ti in the region i corresponds to the first occurence of its source time series
(variable x of the 2D Epileptor) of region i values above a threshold, set at 0 for empirical data.
We set t0 = min(ti),i = 1, …, 162. When there are no values above 0, meaning no estimated
seizure in a brain region, the onset value is set to ti = 200. We calculate the EVi of brain region
i by

EVi ¼ − log
ti − t0ð Þ þ 1

20

� �
:

Once the EV vector is normalized to [0, 1] for each optimization run, the optimization pipeline
gives the distribution of EVs while considering the sensitivity of the sensor spatial sampling.
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Sensor Sensitivity

Measure of estimated EVs confidence was obtained from bootstrapping in the optimization
pipeline. The measure evaluates the robustness of the identified source with regard to sensor
location sensitivity. The bootstrapping approach relies on a leave-one-out approach, removing
one randomly chosen sensor in each bootstrapping sample, while the optimization algorithm
is run on the remaining data. The procedure is repeated 100 times using a random SEEG con-
tact selection process with replacement, exactly in the same manner that Wang et al. (2023).
All EVs are normalized by subtracting the minimum median EV and dividing by the difference
between the maximum and minimum median EVs.

Statistical Analysis

Performance scores. Usually, the performance scores used to evaluate binary classification
models, especially when the dataset is imbalanced are derived from the confusion matrix.
The confusion matrix summarizes the correct and the wrong predictions and thus helps to
understand the number of predictions made by a model for each class, and the classes to
which those predictions actually belong. It helps to understand the kind of prediction errors
the model made. Figure 3 illustrates this matrix, the derived rates, and formula of performance
scores used here: true positive rate, false positive rate, true negative rate, and false negative
rate. Those rates are then used to compute precision (percentage of correct prediction of the
positive class) and recall (percentage of correct predictions for the positive class out of all pos-
itive predictions).

Balanced accuracy, the imbalanced data adapted accuracy, is the arithmetic mean of sen-
sitivity and specificity (Kelleher, Namee, & D’Arcy, 2015). The classic accuracy score tends to
be inflated due to the imbalanced nature of the dataset, which balanced accuracy prevents.
The F-beta score used in this project is the harmonic mean of recall and precision (Baeza-Yates
& Ribeiro-Neto, 1999) (Supporting Information Figure S8). As we are more interested in the
precision than in recall, we gave more importance to precision than to recall, setting beta =
0.5. These two metrics were first used in combination during parameter tuning procedure as
scoring functions, as well as to evaluate VEP pipeline EZN estimation. The model selection is
based on balanced accuracy.

VEP outcome analysis. Over the nine patients of the test dataset that we virtualized using all the
described priors (VEP-EI, VEP-M, VEP-W, Na-MRI-prior 1, Na-MRI-prior 2, VEP-no-prior), the
VEP pipeline provides results for a total of 26 seizures. In order to evaluate the performance of
each prior, we compute the balanced accuracy and the F0.5-score for each seizure, using VEP-
EI results as reference. Next, we compared the resulting balanced accuracy and F0.5-score with
a bootstrapped (1,000,000 resampling) paired t test comparing each pair of priors. We used the
classical threshold of 0.05 for the p value, also considering the threshold of 0.01.
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