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Abstract  

 Widely used to treat cognitive, affective, psychiatric, and neurological disorders, 

electroencephalographic neurofeedback (EEG-NF) provides individuals with a real-time 

feedback of their EEG activity to modify brain function. However, the mechanisms behind the 

EEG changes targeted by EEG-NF remain unclear. The present study addresses this gap by 

examining methodological issues in the assessment of spontaneous EEG changes during EEG-

NF sessions.  

Over multiple trials, healthy young adults observed a grey circle that either remained 

constant (control condition) or was continuously modified in size at different frequency rates 
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(1, 5 and 10 Hz). We investigated whether EEG frequency bands classically targeted by EEG-

NF: (i) change spontaneously over time, (ii) are influenced by a continuously modified visual 

stimulus and by (iii) the frequency at which this stimulus is modified. 

 Results revealed: (i) a spontaneous increase in alpha power throughout the entire task, 

(ii) an increase in theta power when exposing participants to a continuous modification of the 

visual stimulus (relative to perceiving the same unmodified stimulus), and (iii) an absence of 

changes in the EEG frequency bands studied when manipulating the frequency of stimulus 

modification.  

 These findings suggest that the EEG changes observed during EEG-NF are influenced 

by the task environment itself rather than successful EEG self-modulation. It is therefore 

crucial to carefully design EEG-NF protocols to account for non-specific effects and ensure 

that observed EEG changes are due to the hypothesised mechanisms. Further research is needed 

to delineate the mechanisms underlying EEG modulation in EEG-NF and to refine protocols 

prior to clinical application. 
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Impact statement 

This study adds a new perspective on the mechanisms responsible for the EEG modulation 

reported in EEG neurofeedback studies. While it is historically claimed that spectral changes 

within classic EEG frequency bands are due to an active self-regulation mechanism, we 

highlight that these changes may be partly due to uncontrolled factors intrinsic to 

neurofeedback protocols (spontaneous fluctuations, processing of visual information).  
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Introduction  

Electroencephalographic Neurofeedback (EEG-NF) typically involves humans in a 

self-regulation task during which they receive a real-time external feedback of their own EEG 

activity (Sitaram et al., 2017). By modulating the EEG power of frequency bands underlying 

specific pathologies, this technique stands as an effective treatment for a wide range of 

cognitive, affective, psychiatric and neurological disorders (Arns et al., 2017; Micoulaud-

Franchi et al., 2015; Thibault et al., 2016). For instance, EEG-NF is effective in treating 

depression and anxiety disorders (Hammond, 2005), attentional deficit hyperactivity disorders 

(ADHD; Enriquez-Geppert et al., 2019) or pharmacoresistant epilepsy (Tan et al., 2009). 

However, despite its increasing popularity among academics and medical practitioners, the 

clinical relevance of EEG-NF remains in a decade-long debate (Kalokairinou, Sullivan, et al., 

2022; Loo & Makeig, 2012; Thibault et al., 2015). Recent publications of rigorously designed 

studies have brought to light concerns regarding its effectiveness on clinical outcomes 

(Neurofeedback Collaborative Group, 2021, 2023; Schabus et al., 2017; Schönenberg et al., 

2017). The clinical benefits, while indeed present, may actually be driven by non-specific 

factors such as placebo effects, sustained concentration over iterative sessions, interactions 

with practitioners, as well as patients’ expectations and motivation levels (Schönenberg et al., 

2021; Thibault et al., 2017; Thibault & Raz, 2017). In parallel, the growing use of EEG-NF to 

enhance behavioural performance in healthy subjects is also beginning to face scrutiny 

regarding its actual effectiveness (Dessy et al., 2018). 

To date, the field has mainly focused on establishing that EEG-NF protocols are 

effective treatments for various disorders (Thibault et al., 2018). The clinical benefits of EEG-

NF are classically attributed to the modulation of EEG power within specific frequency bands 

that are directly related to the targeted clinical outcomes (the so-called “neurophysiological 

mechanisms”; Micoulaud-Franchi et al., 2019). Changes in EEG power are typically expected 



PASSIVE EEG MODULATION 

 

to occur across EEG-NF sessions, across the trials of a single session, as well as between pre- 

and post-intervention resting-state EEG activity (Ros et al., 2020). Yet, the mechanisms 

underlying each of these three forms of EEG modulation through EEG-NF are still poorly 

understood (Micoulaud-Franchi & Fovet, 2018; Pigott et al., 2017, 2021). For instance, resting-

state EEG is not systematically modulated (Neurofeedback Collaborative Group, 2021; 

Schabus et al., 2017; Schönenberg et al., 2017), and discrepancies are sparked over the relevant 

outcome to measure the success of the EEG modulation, necessary to expect specific clinical 

benefits (Mirifar et al., 2022; Schabus, 2017, 2018; Witte et al., 2018). Importantly, basic 

interrogations persist regarding the natural variability of targeted frequency bands in EEG-NF 

settings (Witte et al., 2018). 

Therefore, it remains unclear whether EEG changes observed during EEG-NF solely 

result from an active modulating mechanism or are influenced by confounding factors inherent 

to EEG-NF tasks (e.g., sustained attention to the variations of the same stimuli over iterative 

periods). Especially, there is a critical lack of standardisation in EEG-NF protocols (Gruzelier, 

2014; Strehl, 2014). Indeed, significant differences between protocols include the frequency 

and number of sessions, the number of trials per session, the duration of trials and the type of 

stimuli used as feedback (Chiasson et al., 2023; Hasslinger et al., 2022). As a result, a spurious 

environment in EEG-NF studies steadily fails to optimally induce the desired EEG modulation. 

Thus, before diving to clinical applications, more fundamental, basic studies in healthy 

individuals are required to develop a better understanding of EEG modulation through EEG-

NF (Chiasson et al., 2023; Witte et al., 2018). 

In line with these existing challenges and uncertainties, we submitted healthy young 

adults to a passive task mimicking the time structure and environment of an EEG-NF session, 

albeit without involving them into a genuine EEG-NF task (i.e., controlling one’s own brain 

activity). The aim was to evaluate whether the time structure and the feedback presentation of 
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an EEG-NF session influence the EEG power of classically targeted frequency bands, i.e., theta 

(4-8 Hz), alpha (8-12 Hz), sensorimotor rhythm (SMR, 12-15 Hz), and beta (15-30 Hz) (Dessy 

et al., 2020; Micoulaud-Franchi et al., 2015, 2019; Thibault et al., 2015). During an EEG-NF 

session, participants are usually provided with a visual stimulus continuously modified as 

feedback of their EEG activity within multiple trials. Yet, there are no common standards 

across studies for the frequency at which this stimulus is modified from real-time EEG changes. 

Here, we thus investigated whether the EEG spectral power of the classically trained frequency 

bands was influenced by: (i) the presentation of the same visual stimulus over multiple trials, 

(ii) the continuous modification of this stimulus, and (iii) the frequency at which this stimulus 

is modified over time. To the best of our knowledge, this study is the first to properly 

investigate the natural time course of classically trained frequency bands in EEG-NF studies, 

and the impact of observed discrepancies in protocol design on these frequency bands.  

Materials and methods  

Participants 

Thirty-two healthy young adult volunteers (Mage = 23.67 years, SD = 3.41, age range = 

18-33; 23 females; 29 right-handed [self-reported]) were recruited in September 2023. All 

participants reported normal or corrected-to-normal vision, and no neurological and/or 

psychiatric disorders. Participants were enrolled via a learning platform at Aix-Marseille 

University or through posts on the lab’s channels. Student participants (n = 13) received course 

credits as compensation for participation.  

All participants gave written and informed consent in accordance with the Declaration 

of Helsinki. Confidentiality was preserved, and an anonymous code was assigned to each 
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participant. The experimental procedure was approved by the French Personal Protection 

Committee (CPP Sud Méditerranée V, ref. 19.09.12.44636). 

Material 

To mimic the time structure of a single EEG-NF session, the task was composed of four 

conditions of eight 60-second trials, each trial corresponding to the presentation of a grey circle 

at the centre of a blank screen. In the first, control condition, the size of the circle remained 

constant across trials (size 100 pixels). In the remaining three conditions, the circle size was 

continuously modified during the trials. The continuous modification was performed at three 

different frequencies, respectively corresponding to the three remaining conditions: 1 Hz, 5 Hz, 

or 10 Hz. These frequencies were chosen to reproduce common frequencies at which feedback 

is updated in EEG-NF protocols in healthy adults (Berger & Davelaar, 2018; Boe et al., 2014; 

Enriquez-Geppert, Huster, Figge, et al., 2014; Enriquez-Geppert, Huster, Scharfenort, et al., 

2014; Hsueh et al., 2016; Kober, Witte, et al., 2015; Salari et al., 2014; Studer et al., 2014; Wei 

et al., 2017). Except for the frequency of the circle size modification, all characteristics of the 

circle remained constant across trials and conditions (i.e., colour, maximum and minimum size, 

variations in size). 

A partial Latin-square design was used to counterbalance the order of conditions across 

subjects. An in-house Matlab script randomly generated four quadruplets (2143, 1432, 3214 

and 4321) to ensure each condition appeared in every temporal position. Each participant was 

then pseudo-randomly assigned one quadruplet, resulting in an even distribution.  

Visual stimulus modification 

During each trial, a grey circle was presented on the centre of a blank screen. In the 

control condition, the circle remained the same across trials. Within the other three conditions, 

the circle size changed at different frequency rates depending on the condition: 1, 5 or 10 Hz 
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(i.e., changed every 1000, 200 or 100 ms, respectively). Possible values for the circle size were 

determined prior to data collection using EEG data from a previous pilot study. In EEG-NF 

protocols, the feedback stimulus is continuously modified based on the real-time fluctuations 

of an EEG spectral feature. These fluctuations follow a specific oscillatory pattern over time, 

reflecting the activity of neuron populations (Cohen, 2017). By basing the circle size changes 

on dynamics observed in previously recorded EEG activity, we sought to present changes that 

visually mimicked what is observed during a genuine EEG-NF session. The pilot study was 

similar to the control condition of the present experiment in design, EEG recording, apparatus 

and population. We used the variations in the alpha band (8-12 Hz) spectral power during this 

pilot to generate the variations of the circle in the present study. Details about the pilot study 

and the procedure to generate current circle sizes can be found in the Supplementary Material.  

Apparatus  

The task and simultaneous EEG data acquisition were implemented in Matlab Release 

2023a (Mathworks, Inc.) using a DELL Mobile 3571 computer running Ubuntu 22.04 OS, and 

a NVIDIA T600 Laptop GPU. Specifically, EEG data acquisition required the Brainflow 

library version 5-8-1 and was done using an OpenBCI Cyton 8-channels board, with OpenBCI 

Gold cup and Earclip electrodes. The visualisation task was implemented using Psychtoolbox-

3 (Kleiner et al., 2007), and was displayed on a flat-screen computer monitor (DELL P2419H) 

with a screen resolution of 1920 × 1080 pixels at a refresh rate of 60 Hz. During the task, the 

distance between the monitor (screen size 52.704 × 29.646 cm) and the back of the chair was 

kept constant. The distance ranged from 90 to 100 cm depending on the participant. EEG data 

was processed in Matlab Release 2023a (Mathworks, Inc.). Statistical analyses and figures 

were performed in R version 4.3.3 (R Core Team, 2024). 

https://brainflow.readthedocs.io/en/stable/index.html
https://brainflow.readthedocs.io/en/stable/index.html
https://docs.openbci.com/GettingStarted/Boards/CytonGS/
https://shop.openbci.com/products/openbci-gold-cup-electrodes
https://shop.openbci.com/products/earclip-electrode
http://psychtoolbox.org/
http://psychtoolbox.org/


PASSIVE EEG MODULATION 

 

EEG recording 

EEG data was digitalised at 250 Hz in microvolts (mV) from the OpenBCI board in 

Matlab R2023a matrices. Data acquisition was done using the laptop’s GPU to minimize 

computation time. We recorded the EEG signal from six OpenBCI Gold Cup electrodes placed 

in accordance with the 10-20 International System at the following positions: Fp1, Fpz, Fp2, 

Fz, Cz, and Pz. Two OpenBCI earclip electrodes placed on the left and the right earlobes were 

used as a reference for all electrodes and as a noise-cancelling ground electrode, respectively. 

Impedance was kept below 10 kΩ. 

Procedure 

Participants were seated in front of a monitor throughout the experiment. After 

obtaining written and informed consent, the EEG setup was installed and impedance checked. 

Participants were submitted to a passive visualisation task, while their EEG activity was 

recorded. To mimic the conditions of an EEG-NF session, participants were repeatedly asked 

to look at the same visual patterns on the monitor. Before the start of the task, participants were 

given verbal instructions (in French) about the design of the task: “You will complete 4 blocks 

of 8 trials, each lasting one minute. During each trial, a circle will be presented in the centre of 

the screen. During the 8 trials of a block, the circle can either remain the same, or its size will 

be changed continuously at the same rate. Your only task is to keep your eyes on the circle. 

There are no other particular instructions.” To avoid disturbing the EEG signal, participants 

were also asked to remain as calm and relaxed as possible during the trials. To start a new trial, 

participants had to press the “Enter” key on a keyboard placed between them and the screen. 

All participants were then free to take self-paced breaks between trials. During the task, the 

experimenter (JM) remained in the room, but out of the participant’s field of vision.  
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EEG processing  

In accordance with the guidelines for spectral analyses proposed by Keil et al. (2022) 

(see Supplementary Table 1 for the corresponding completed checklist), EEG data processing 

was performed using in-house Matlab scripts and EEGLAB (Delorme & Makeig, 2004) in 

order to compute spectral power of theta (4-8 Hz), alpha (8-12 Hz), SMR (12-15 Hz), and beta 

(15-30 Hz) frequency bands. Given that neurofeedback studies traditionally do not propose an 

explicit model for the generation of oscillatory activity and the 1/f noise (Enriquez-Geppert et 

al., 2017), we adopted the narrowband model implicitly assumed in the field for analyses (Keil 

et al., 2022). As a first step, data from all channels was zero-phase filtered using a 0.5 Hz high-

pass filter (6th order IIR Butterworth) and a 50 Hz notch filter (2nd order IIR). For each trial 

data, the first 2 seconds and the last one were removed to delete the filter transients, resulting 

in segments of 57 seconds. Filtered data was then imported in EEGLAB and an extended 

Infomax Independent Component Analysis (ICA) was applied (Delorme et al., 2007). ICA 

components for eye blinks and lateral eye movements were identified and subtracted from the 

data by visual inspection of the component scalp topography, time series, and power spectrum 

distributions. For each participant, one to four components were removed. The resulting EEG 

filtered and artifact-corrected data was re-imported in Matlab format. 

At this stage, only data from Fz, Cz, and Pz electrodes was kept for further analyses. 

We used the Matlab function pspectrum to analyse EEG signals in the frequency domain using 

FFT. We computed spectral power estimates in dB for each participant and trial. The 

spectrograms computed by this function had a frequency resolution of ~0.305 Hz. We extracted 

the power estimates of each frequency in the ranges of 4-8 Hz, 8-12 Hz, 12-15 Hz, and 15-30 

Hz. The power estimates of each frequency range were averaged to obtain spectral power of 

theta, alpha, SMR and beta frequency bands, respectively.  

https://www.mathworks.com/help/signal/ref/pspectrum.html
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Statistical analyses and hypotheses testing 

The z-score standardised values of the resulting twelve dependent variables (i.e., 

spectral power of theta, alpha, SMR and beta frequency bands measured by Fz, Cz, and Pz 

electrodes) were used for statistical analyses. For the purpose of this study, we arbitrary 

hypothesised the presence of each effect of interest on these variables, i.e., that their spectral 

power is influenced by (i) trial repetition, (ii) the continuous modification of the circle, and (iii) 

the frequency at which the circle is modified.  

We fitted several Bayesian linear multilevel models using the brms and rstan R 

packages (Bürkner, 2017; Stan Development Team, 2024). Bayesian analyses provide several 

advantages for statistical analyses over frequentist equivalents (see Schad et al., 2021, 2022 for 

extended tutorials on the use of Bayesian analyses), including the robustness to low-power 

situations (Schönbrodt & Wagenmakers, 2018), the facilitation of developing and fitting 

multilevel (or hierarchical/mixed) models (Gelman et al., 2014), and the possibility to 

distinguish sensitive from insensitive evidence for an absence of effect, i.e., the null hypothesis 

H0 (Dienes & Mclatchie, 2018). Each model considered one of the above mentioned dependent 

variables as continuous, and included the maximal varying effect structure to account for the 

individual variability of subjects (Barr et al., 2013). As constant effects, we included the Trial 

number continuous predictor (i.e., integers from 1 to 8) and the Condition categorical predictor 

(i.e., Control, 1 Hz, 5 Hz, and 10 Hz), as well as their interaction. For the Trial continuous 

predictor, we defined the first trial as a reference for comparison. For the Condition categorical 

predictor, we followed Schad et al. (2020) guidelines to determine a custom contrast matrix in 

order to relate to hypotheses testing via the generalised inverse. The contrast matrix shown in 

Table 1 was obtained by applying the generalised matrix inverse to the hypothesis matrix 

reported in Supplementary Table 2. This contrast matrix was assigned to the Condition 

predictor of each model, defining the control condition as reference for comparison.  
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Because the effect size of a classic EEG-NF session is still not clearly identified, if even 

considered (Micoulaud-Franchi & Fovet, 2018; Schabus, 2017; Thibault & Raz, 2017; 

Vollebregt et al., 2014; Witte et al., 2018), we placed regularising priors of N(0, 1) on each 

parameter, constraining the models to plausible values and avoiding overfitting issues (Schad 

et al., 2021). This prior indicates, for example to the model fitted on Fz alpha standardised 

power (Mpower = -3.62 dB, SD = 2.63), that the effect of trial repetition will most likely be close 

to zero, with either a positive or negative sign, and has a 95% probability of lying between -2 

and 2 standard deviations (SD) of alpha power distribution (i.e., between -5.25 and 5.25).  

For each effect of interest, we computed Bayes Factors (BFs) to quantify the strength 

of evidence for an hypothesis over another (Dienes & Mclatchie, 2018). To ensure we used 

enough Markov chain Monte Carlo (MCMC) draws to estimate stable BFs, we performed all 

reported statistical analyses five times (Schad et al., 2022). For each effect of interest, we report 

the mean of the five obtained posterior distributions, along with the largest limits of the 95% 

credible interval (CrI). We also report the mean of the obtained BF10 quantifying evidence for 

the presence of an effect (alternative hypothesis) over its absence (null hypothesis). As 

recommended by Jeffrey (1939), we consider that a BF10 of above 3 indicates substantial 

evidence for the alternative over the null hypothesis, and that a BF10 of below ⅓ substantial 

evidence for the null over the alternative hypothesis. A BF10 between ⅓ and 3 indicates data 

insensitivity to distinguish null and alternative hypotheses (Dienes, 2014). When an effect was 

confirmed (i.e., BF10 > 3), we also reported the BF10+ quantifying the amount of evidence for 

a positive-directional (i.e., one-sided) effect. Estimates (standardised units) and BFs from each 

of the models regarding the predictors of interest are presented in Supplementary Table 3. 

Finally, since BFs are sensitive to priors, we conducted a sensitivity analysis by 

computing BFs for a range of priors to determine how these affected our conclusions (Schad 

et al., 2021). The range of priors assumed a priori effect sizes progressively restricted, with a 
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95% probability of lying between -2 and 2 SD, to between -0.4 and 0.4 SD. For each set of 

priors, we again computed each model five times to ensure BFs stability for inference. The 

results of this analysis are reported in the Supplementary Material.  

Table 1 Custom-coded contrast matrix assigned to the Condition predictor of each model.  

Condition labels Intercept Exp vs. Control  
(1st contrast) 

5 Hz vs. 1 Hz 
(2nd contrast) 

10 Hz vs. 5 Hz 
(3rd contrast) 

Control 1 -3/4 0 0 
1 Hz 1 1/4 -2/3 -1/3 
5 Hz 1 1/4 1/3 -1/3 
10 Hz 1 1/4 1/3 2/3 

Within the four conditions composing our task, we manipulate the presence (three 
Experimental conditions) or absence (Control) of the continuous modification of the 
circle size. We also manipulate, depending on the experimental condition, the frequency 
rate of this continuous modification: 1 Hz, 5 Hz, or 10 Hz. To include both predictors (i.e., 
the continuous modification of the circle size, and the frequency at which the circle was 
modified) in our models and relate to our hypotheses testing, we applied the present 
custom contrast matrix to the categorical predictor ‘Condition’. This matrix was obtained 
by applying the generalised inverse to the Hypothesis matrix (Supplementary Table 1) 
referring to our hypotheses. The ‘Exp vs. Control (1st contrast)’ column refers to the 
hypothesis that there is a difference in spectral power when participants are presented 
with a continuously modified circle (Experimental conditions), relative to when the circle 
remains the same (Control). The ‘5 Hz vs. 1 Hz (2nd contrast)’ column relates to the 
hypothesis that there is a difference in spectral power when participants are presented 
a circle modified at 5 Hz relative to 1 Hz. The ’10 Hz vs. 5 Hz (3rd contrast)’ column relates 
to the hypothesis that there is a difference in spectral power when participants are 
presented a circle modified at 10 Hz relative to 5 Hz.  

Results  

Alpha power increases spontaneously when looking at the same stimulus 

over time 

 Fig. 1 shows the evolution of the different frequency bands considered here (i.e., theta, 

alpha, SMR, beta) over the eight trials of the control condition, and the BF10 used to evaluate 

whether these frequency bands power remained stable across repeated trials. We observed 

moderate to strong evidence for a positive effect of trial repetition on the alpha spectral power 
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at Fz (β = 0.02, 95% CrI [0.01, 0.029], BF10 = 7.642, BF10+ > 100), Cz (β = 0.023, 95% CrI 

[0.013, 0.032], BF10 = 17.402, BF10+ > 100) and Pz (β = 0.024, 95% CrI [0.013, 0.035], BF10 

= 15.581, BF10+ > 100), indicating that the alpha power at Fz, Cz and Pz increases at each trial 

of the control condition (Fig. 1B). For the other frequency bands of interest, we confirmed with 

moderate to extreme evidence the absence of an effect (Fig. 1A,C-D). Model estimates 

regarding the trial repetition parameter are reported in Table 2.  

Figure 1 Evolution of EEG spectral power across the trials of the control condition. (A) BF10 
quantifying evidence in favour of the alternative hypothesis (H1, i.e., the presence of an effect) 
over the null (H0, i.e., absence of effect) concerning the trial repetition effect on each of the 
frequency bands considered. The dashed horizontal line at y = 3 indicates the level of evidence 
above which the presence of an effect is favoured (“In favour of H1”). The dashed horizontal 
line at y = ⅓ indicates the level of evidence under which the absence of an effect is favoured 
(“In favour of H0”). (B-E) Respectively, evolution of theta (4-8 Hz), alpha (8-12 Hz), SMR (12-
15 Hz) and beta (15-30 Hz) bands across the trials of the control condition. Each line point 
represents the EEG spectral power averaged at the group-level. Error bars indicate 95% 
confidence intervals.  

Table 2 Estimates of trial repetition effect from models computed with hypothesised 

regularising prior effect sizes of N(0, 1).  

EEG Band Electrode Estimate Lower Upper BF10 BF10+  

Theta Fz 0,01 0,002 0,019 0.065 91.227  

Alpha Fz 0,02 0,01 0,029 7.642 > 100  

SMR Fz 0,01 0,001 0,019 0.045 56.728  

Beta Fz 0,018 0,004 0,032 0.196 > 100  

Theta Cz 0,008 -0,002 0,019 0.018 15.48  

Alpha Cz 0,023 0,013 0,032 17.402 > 100  

SMR Cz 0,005 -0,003 0,014 0.009 8.295  
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Beta Cz 0,001 -0,011 0,013 0.006 1.364  

Theta Pz 0,01 -0,003 0,023 0.023 16.617  

Alpha Pz 0,024 0,013 0,035 15.581 > 100  

SMR Pz 0,005 -0,003 0,013 0.008 7.397  

Beta Pz -0,007 -0,021 0,007 0.012 0.174  

Each model reported has been computed five times to ensure the stability of the BFs. If 
not specified, each numerical value corresponds to the average of the values obtained 
across these five model computations. The ‘Estimate’ column stands for the estimated 
group-level effect (slope) of the ‘Trial’ predictor considered in a model (in z-score 
standardised units). The ‘Lower’ and ‘Upper’ columns correspond to the minimal lower 
and maximal upper bounds of the five 95% CrI computed. The ‘BF10’ and ‘BF10+’ columns 
correspond to the BF in favour of the alternative hypothesis (relative to the null) and the 
directional (i.e., one-sided) BF, respectively.  
Lines in gold highlight the EEG features for which BFs quantify sufficient evidence in 
favour of the alternative hypothesis over the null (i.e., presence of an effect).   

To assess in a longer run the natural fluctuations of alpha power, we exploratorily 

computed the same models by including only the Trial number throughout the entire 

experiment. To this end, we didn’t consider the condition of trials (i.e., continuous modification 

of the circle size, frequency rate of the circle size modification). The continuous Trial predictor 

resulted in integers from 1 to 32. Fig. 2 shows the evolution of the four frequency bands (i.e., 

theta, alpha, SMR and beta) over the 32 trials (independently of the experimental condition), 

and the BF10 used to estimate whether these frequency bands remain stable over the course of 

the task. We also confirmed with moderate to extreme evidence that the alpha power at each 

electrode (Fz: β = 0.01, 95% CrI [0.005, 0.015], BF10 = 3.767, BF10+ > 100; Cz: β = 0.011, 

95% CrI [0.006, 0.016], BF10 = 8.312, BF10+ > 100; Pz: β = 0.014, 95% CrI [0.009, 0.019], 

BF10 > 100, BF10+ > 100; see Fig. 2B) increased throughout the entire task. Moderate to extreme 

evidence for no effect was observed for the power of theta, SMR, and beta frequency bands 

(Fig. 2A,C-D). These results indicate that the alpha power at frontal (Fz), central (Cz) and 

posterior (Pz) electrodes spontaneously increases throughout the experiment. Model estimates 

are presented in Supplementary Table 4. 
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Figure 2 Evolution of EEG spectral power throughout the entire task. (A) BF10 quantifying 
evidence in favour of the alternative hypothesis (H1, i.e., the presence of an effect) over the null 
(H0, i.e., absence of effect) concerning the trial repetition effect over the entire task (regardless 
of experimental conditions) on each of the frequency bands considered. The horizontal dashed 
line at y = 3 indicates the level of evidence above which the presence of an effect is favoured 
(“In favour of H1”). The horizontal dashed line at y = ⅓ indicates the level of evidence under 
which the absence of an effect is favoured (“In favour of H0”). (B-E) Respectively, evolution of 
theta (4-8 Hz), alpha (8-12 Hz), SMR (12-15 Hz) and beta (15-30 Hz) bands across trials. Each 
line point represents the EEG spectral power averaged at the group-level. Error bars indicate 
95% confidence intervals. Vertical dashed lines mark the beginning of a condition (block of 
eight trials). 

Theta power is influenced by the perception of the continuous modification 

of the visual stimulus 

 Fig. 3 shows the BF10 used to estimate whether the frequency bands considered (i.e., 

theta, alpha, SMR and beta) are influenced by the continuous modification of the circle size, 

and the spectral power of these frequency bands during the first trial of each condition (i.e., 

Control, 1 Hz, 5 Hz and 10 Hz). We founded substantial evidence for an increase in theta power 

at Pz (β = 0.165, 95% CrI [0.065, 0.269], BF10 = 5.778, BF10+ > 100) when participants 

perceived a continuously modified circle compared to when the circle remained the same (Fig. 

3A). For the remaining frequency bands, moderate to extreme evidence for the absence of an 

effect was obtained (Fig. 3B-D), except for the theta power at Cz (β = 0.149, 95% CrI [0.042, 

0.255], BF10 = 2.219) and the SMR power at Fz (β = 0.103, 95% CrI [0.007, 0.198], BF10 = 

0.465) and Cz (β = 0.096, 95% CrI [0.005, 0.187], BF10 = 0.416), where the BF10 was 
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insensitive (i.e., between ⅓ and 3). Model estimates are presented in Table 3. Perceiving the 

continuous modification of the circle size thus induced an increase of theta power at Pz.  

Figure 3 EEG spectral power at the first trial of each condition. (A) BF10 quantifying evidence 
in favour of the alternative hypothesis (H1, i.e., the presence of an effect) over the null (H0, i.e., 
absence of effect) concerning the effect of the continuous modification of the circle size on 
each of the frequency bands considered. The horizontal dashed line at y = 3 indicates the level 
of evidence above which the presence of an effect is favoured (“In favour of H1”). The horizontal 
dashed line at y = ⅓ indicates the level of evidence under which the absence of an effect is 
favoured (“In favour of H0”). (B-E) Respectively, theta (4-8 Hz), alpha (8-12 Hz), SMR (12-15 
Hz) and beta (15-30 Hz) bands on the first trial of each condition. Each line point represents the 
EEG spectral power averaged at the group-level. Each line point represents the EEG spectral 
power averaged at the group-level. Error bars indicate 95% confidence intervals.  

Table 3 Estimates of stimulus continuous modification effect from models computed with 

hypothesised regularising prior effect sizes of N(0, 1).  

EEG Band Electrode Estimate Lower Upper BF10 BF10+ 
Theta Fz 0,096 -0,08 0,219 0.247 20.424 
Alpha Fz 0,018 -0,091 0,127 0.057 1.701 
SMR Fz 0,103 0,007 0,198 0.465 55.859 
Beta Fz 0,087 -0,052 0,226 0.153 8.406 
Theta Cz 0,149 0,042 0,255 2.219 > 100 
Alpha Cz -0,004 -0,119 0,11 0.057 0.89 
SMR Cz 0,096 0,005 0,187 0.416 52.248 
Beta Cz 0,029 -0,09 0,148 0.067 2.223 
Theta Pz 0,165 0,062 0,269 5.778 > 100 
Alpha Pz -0,015 -0,14 0,109 0.064 0.675 
SMR Pz 0,091 -0,012 0,194 0.249 24.208 
Beta Pz 0,069 -0,081 0,217 0.114 4.624 

Each model reported has been computed five times in order to ensure the stability of the 
BFs. If not specified, each numerical value corresponds to the average of the values 
obtained across these five model computations. The ‘Estimate’ column stands for the 
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estimated group-level effect (slope) of the ‘Experimental conditions vs. control’ predictor 
considered in a model (in z-score standardised units). The ‘Lower’ and ‘Upper’ columns 
correspond to the minimal lower and maximal upper bounds of the five 95% CrI 
computed. The ‘BF10’ and ‘BF10+’ columns correspond to the BF in favour of the alternative 
hypothesis (relative to the null) and the directional (i.e., one-sided) BF, respectively.  
Lines in gold highlight the EEG features for which BFs quantify sufficient evidence in 
favour of the alternative hypothesis over the null (i.e., presence of an effect).  

However, the frequency of this continuous modification didn’t influence the power of 

all frequency bands and electrodes considered (see model estimates and BF10 for the 

comparisons in spectral power between the three modification frequencies in Supplementary 

Table 5). The difference in power between the four conditions (control, modification at 1 Hz, 

modification at 5 Hz, modification at 10 Hz) is illustrated in Fig. 3.  

Absence of interaction between the continuous modification of the circle (or 

its frequency rate) and trial repetition  

Finally, we founded strong to very strong support for an absence of interaction effects, 

i.e., the interaction between trial repetition and: 1) the continuous modification of the circle 

size, and 2) the frequency at which the circle was modified. These were evaluated in order to 

ensure that the evidence in favour of an effect for the Trial and Condition predictors is not 

restricted to the respective modality used as reference for subsequent comparisons (Trial 1 and 

the control condition, respectively). This suggests that the trial repetition effect on alpha power 

is independent of the continuous modification of the circle and its varying frequency rate, and 

that the effect of the continuous modification of the circle on theta power is observed no matter 

the trial number. The model estimates and BF10 corresponding to these interactions are reported 

in Supplementary Table 3. 
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Discussion  

  In this study, healthy young adults participated to a passive visualisation task 

mimicking the time structure and environment of an EEG-NF session. During multiple trials, 

participants were asked to look at a grey circle which could either remain fixed (control 

condition) or be modified at three different frequency rates (experimental conditions 1 Hz, 5 

Hz and 10 Hz). Importantly, the present study demonstrates that: (i) the spectral power of the 

alpha (8-12 Hz) band increases spontaneously throughout the task, (ii) the spectral power of 

the theta (4-8 Hz) band is higher when perceiving the continuous modification of a visual 

stimulus (relative to perceiving the same fixed stimulus), and that (iii) none of the EEG 

frequency bands considered is influenced by the frequency at which the stimulus is modified. 

These results highlight the importance of considering confounding factors, inherent to EEG-

NF tasks, when assessing the efficacy of a protocol to modulate specific EEG features.  

 EEG-NF protocols typically employ a closed-loop system comprising at least four 

components: (i) EEG recording, (ii) extracting the targeted EEG feature(s) in real-time, (iii) 

presenting a sensory feedback of this(ese) feature(s), and (iv) actively involving the participant 

in the self-regulation of this(ese) feature(s) (Chiasson et al., 2023; Enriquez-Geppert et al., 

2017). During an EEG-NF session, this closed-loop system is implemented over multiple trials, 

with an usual session length of 20-40 minutes. As a result, a wide range of EEG spectral 

features (Chikhi et al., 2023; de Zambotti et al., 2012; Dekker et al., 2014; Enriquez-Geppert, 

Huster, Scharfenort, et al., 2014; Eschmann et al., 2020; Escolano et al., 2014; Grosselin et al., 

2021; Hoedlmoser et al., 2008; Janssen et al., 2017; Jurewicz et al., 2018; Kober et al., 2020; 

Li et al., 2023; Nan et al., 2015, 2020; Reis et al., 2016; Schabus et al., 2017; Singh et al., 2020; 

Zoefel et al., 2011) is modulated through an hypothesised self-regulation mechanism 

(component iv of the closed-loop system; Sitaram et al., 2017) Yet, to the best of our 

knowledge, this hypothesis still requires to be properly evaluated. Along with component iv, 
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the implementation of an EEG-NF session involves setting up a common neuroscientific 

environment: EEG recording (components i and ii) concomitant to the presentation of a 

stimulus during repeated trials (component iii). Critically, no evidence suggests that this 

environment, and its implementation over multiple trials, do not already provide a sufficient 

framework to explain the usual EEG changes reported.  

 The alpha band is one the most widely targeted frequency bands in EEG-NF history 

(Micoulaud-Franchi et al., 2021). In clinical settings, alpha power modulation is targeted in 

order to treat disorders identified with an alpha “abnormal” activity such as depressive (Choi 

et al., 2010; Linden, 2014; Peeters et al., 2014) and anxiety (Hardt & Kamiya, 1978; Plotkin & 

Rice, 1981; Sandhu et al., 2007) disorders, post-traumatic stress disorders (PTSD; Kluetsch et 

al., 2014; Peniston & Kulkosky, 1991), alcohol addiction (Peniston & Kulkosky, 1989; Saxby 

& Peniston, 1995), headache (Andreychuk & Skriver, 1975; Mathew et al., 1987; Stokes & 

Lappin, 2010), and even chronical pain (Gannon & Sternbach, 1971). Here, when passively 

looking at the same visual stimulus, we found that the participants alpha power at Fz, Cz and 

Pz increases across the eight trials of a condition (Fig. 1B). These results suggest that a 

spontaneous modulation of alpha power can occur without any actual feedback and without 

instructing participants to self-modulate their EEG activity thanks to the latter.  

Importantly, except for the absence of instructions to self-regulate an EEG feature, our 

task has strong similarities to sham EEG-NF protocols. Sham protocols mimic genuine EEG-

NF ones, as participants are instructed to self-regulate their brain activity based on the feedback 

fluctuations. However, without informing participants, the feedback is actually factice (not 

linked to the targeted EEG feature) and its fluctuations rely either on a different EEG feature, 

on a different individual’s brain signals, or on randomness. These protocols are used to control 

for non-specific effects of EEG-NF protocols on clinical or behavioural outcomes (Ros et al., 

2020). Alternatively, the superiority of genuine over sham protocols is commonly observed in 
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terms of intended EEG changes (Thibault & Raz, 2018). Yet, by reviewing the studies 

employing a sham-controlled procedure, we noticed that EEG changes can occur during sham 

protocols (Dessy et al., 2020; Jiang et al., 2021; Naas et al., 2019; Schabus et al., 2017). For 

instance, Schabus et al. (2017) evaluated, in patients with primary or misperception insomnia, 

the between-session EEG changes in SMR amplitude in a genuine EEG-NF compared to a 

sham. Their results indicate that SMR amplitude increases over both protocols, but that the 

increase is higher and quicker in the genuine protocol. Similarly, in healthy individuals, Naas 

et al. (2019) reported an increase of alpha amplitude during both sorts of protocol (no difference 

between the two), and Dessy et al. (2020) demonstrated within and between-session changes 

in alpha and beta activity independently of their possibility to be trained. Thus, our findings 

are consistent with the occurrence of EEG changes without providing participants with actual 

information about an EEG feature to modulate, nor the opportunity to modulate it. It highlights 

the necessity for carefulness in differences between sham and genuine protocols in terms of 

EEG changes. This issue is currently underestimated in the field, as the presence/source of EEG 

changes during sham protocols is overlooked, if even considered. 

 Here, the alpha power does not only increase during a single condition of our task (i.e., 

over eight trials), but throughout the entire task, independently of the conditions (Fig. 2B). 

Interestingly, an increase in alpha activity is often occurring during the different stages of EEG-

NF protocols (Chikhi et al., 2023; Naas et al., 2019; Rogala et al., 2016), even when alpha is 

not the trained frequency band (Dessy et al., 2020). Along with our results, this suggests that 

the observed alpha activity reflects processes inherently engaged by EEG-NF environment, 

independently of the hypothesised self-regulating mechanism (Micoulaud Franchi et al., 2020). 

One possible explanation might lies in the boring nature of our task, boredom being closely 

linked to mind wandering, i.e., focus attention on task-unrelated thoughts (Blondé et al., 2022; 

Eastwood et al., 2012). As mind wandering has been shown to enhance alpha activity (Jin et 
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al., 2019), it is very likely that participants concentrated progressively more on their thoughts 

throughout the task, which in turn exhibited an increase in alpha power.   

During the present study, one can also visually notice that alpha power abruptly 

decreases at the first trial of each condition, before increasing again from the next one (Fig. 

2B). This is coherent with a previously observed “rebound” pattern occurring after a decrease 

in alpha EEG-NF studies (Dempster & Vernon, 2009; Zoefel et al., 2011; see in particular Fig. 

1 in Zoefel et al., 2011 which shows a very similar trend to ours). During the present task, 

participants were informed about the change in the visual patterns presented at each condition 

(i.e., “During the 8 trials of a block, the circle can either remain the same, or its size will be 

changed continuously at the same rate.”). These abrupt negative deflections can therefore be 

interpretated as a shift in attentional focus towards the stimulus presented at the beginning of 

each condition. With trial repetition, as there was no more surprise in the visual patterns being 

presented, participants switched progressively to mind wandering. This hypothesis finds 

support in the latest framework presenting alpha activity as inhibited vs. exhibited by directed 

attention towards external (here the circle) vs. internal (mind wandering) events, respectively 

(Cooper et al., 2003; Hanslmayr et al., 2011; Lou et al., 2014; Wang et al., 2016). 

One could argue that these findings are not relevant for EEG-NF. The present task is 

not a genuine EEG-NF protocol, and then the results might not illustrate actual mechanisms 

engaged during EEG-NF tasks. Yet, most of the models of EEG-NF learning (i.e., how 

participants become able to self-regulate their brain activity) consider internal events as an 

essential part for the self-regulation to be achieved (Birbaumer et al., 2013; Davelaar, 2018; 

Mirifar et al., 2022; Shibata et al., 2019; Wood et al., 2014). Some present the learning 

mechanism under the top-down control of higher cognitive processes which, by trial and error, 

match the fluctuations of the external feedback to internal mental states (Bagdasaryan & Le 

Van Quyen, 2013; J.-A. Micoulaud-Franchi et al., 2015). A core prediction of this theory would 
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be that attentional focus fluctuates during EEG-NF between external (feedback) and internal 

events (mental states). Aligned with our hypothesis about the top-down directed attention 

mechanism of alpha activity, this would imply that fluctuations in alpha activity would be 

observed during EEG-NF tasks. It is not surprising to notice that such alpha fluctuations are 

indeed reported (Chikhi et al., 2023; Dessy et al., 2020; Jiang et al., 2021; Naas et al., 2019). 

Hence, the present findings are consistent with EEG-NF theories and previous empirical 

results, providing a subsistent framework to study the underlying mechanisms of EEG-NF 

learning. However, we remain aware that different interpretations exist (Birbaumer et al., 2013; 

Muñoz-Moldes & Cleeremans, 2020; Ros et al., 2014; Shibata et al., 2019), and that changes 

in alpha activity is not systematically reported during learning phases (e.g., Grosselin et al., 

2021). Currently, further empirical studies like the present one are essential to rigorously 

evaluate and validate the theoretical foundations of EEG-NF learning. 

In this study, we also examined whether presenting a continuously modified stimulus, 

as opposed to an unmodified stimulus, influences the spectral power of EEG features 

commonly targeted by EEG-NF. This question is crucial due to the lack of consensus on 

evidence-based practices for presenting external feedback in EEG-NF (Chiasson et al., 2023; 

Strehl, 2014). A common approach is to provide positive feedback when the targeted EEG 

feature exceeds a threshold established during a “baseline” period, which is usually measured 

while the participant passively observes a fixation cross, similar to the control condition in this 

study (Agnoli et al., 2018; Dempster & Vernon, 2009; Gonçalves et al., 2018; Maszczyk et al., 

2020). However, using a baseline measure derived from passive observation poses significant 

issues. First, during EEG-NF sessions, participants actively engage in a self-regulation task, 

which can alter brain activity by engaging higher cognitive processes, potentially rendering the 

feedback threshold less effective as learning proxy (Micoulaud Franchi et al., 2020). 

Additionally, perceptual processes involved in observing a continuously modified stimulus can 
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also affect the targeted EEG features, thus biasing the baseline measure. For example, the 

processing of visual stimuli influences either theta and/or alpha activity, which are often 

targeted in EEG-NF (VanRullen, 2016). Unsurprisingly, our findings demonstrated that 

perceiving a continuously modified stimulus, compared to an unmodified one, led to increased 

theta power at Pz. These results suggest that careful consideration is needed when using 

baselines to define feedback criteria, especially in protocols focusing on theta activity 

modulation at Pz (e.g., Egner & Gruzelier, 2004; Rozengurt et al., 2016). 

Beyond the threshold-based feedback, another common practice involves continuously 

modifying a stimulus in proportion to the fluctuations of the targeted EEG feature (Berger & 

Davelaar, 2018; Boe et al., 2014; Eschmann et al., 2022; Hsueh et al., 2016; Kober, Schweiger, 

et al., 2015; Salari et al., 2014). This method requires a predetermined frequency rate for 

stimulus modification, although standardisation across the field is lacking. The last aim of this 

study was to assess whether variations in this modification frequency rate affect EEG activity. 

The data showed evidence for no impact on the spectral power of theta, alpha, SMR, and beta 

activities at Fz, Cz, and Pz. This absence of effect is reassuring, but the choice of feedback 

timing in EEG-NF sessions should still not be based on arbitrary decisions, as participants do 

not engage in a self-regulation task during the present study. Indeed, it remains unclear how 

such choices in feedback timing would impact self-regulation performance during actual EEG-

NF session. The frequency of feedback presentation, whether at 1 Hz, 5 Hz or 10 Hz, likely 

modifies the timing of information processing, potentially influencing the targeted EEG 

features (Fingelkurts & Fingelkurts, 2006; Madl et al., 2011; Michel & Koenig, 2018). 

Taken together, the present results indicate that arbitrary methodological choices in 

protocol design lead to an overestimation of the EEG modulation due to EEG-NF. It 

underscores the importance for further research to design optimal conditions to induce the EEG 

changes targeted through EEG-NF, and to isolate them from non-specific influences (Gruzelier, 
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2014; Hasslinger et al., 2022). In contrast, the field has focused for too long on the 

establishment of EEG-NF as an effective treatment for a wide range of disorders, attributing 

this efficacity to the intended EEG modulation (Thibault et al., 2018). Yet, in the light of the 

present study, we align with others claiming that characterising the mechanism of action of 

EEG-NF should be a prior step to its clinical application (Chiasson et al., 2023), especially 

when financial and ethical conflicts are steadily raised (Kalokairinou, Choi, et al., 2022; 

Nagappan et al., 2021). To evaluate if EEG-NF leads to specific EEG modulation, we suggest 

further research to systematically include a sham procedure. Furthermore, we propose to 

properly identify the non-specific factors contributing to EEG changes by comparing the 

present results to more ecological neurofeedback situations. In particular, comparing the EEG 

features behaviour during this task to a sham procedure could isolate the effects of an active 

cognitive engagement in a self-regulating task (see Ninaus et al., 2013 for a similar approach 

in fMRI settings).  

Conclusion 

Historically, the field has assumed that inducing specific EEG changes is a key 

prerequisite to expect clinical effectiveness from EEG-NF (the so-called “neurophysiological 

mechanisms”). Yet, recent evidence suggests that intended EEG changes are not responsible 

for the positive effects on clinical outcomes. Similar to the non-specificity of clinical 

effectiveness, this study points out that the EEG changes targeted by EEG-NF sessions can be 

induced by confounding factors inherent to EEG-NF tasks (i.e., looking at the same visual 

patterns over iterative periods, looking at a continuously modified visual stimulus). It 

highlights that before claiming that EEG changes are (or are not) responsible for clinical 

improvements, one should be sure that the target EEG changes can be effectively induced by 
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the hypothesised mechanisms. Further research along this probably long (and winding) road is 

encouraged.  
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