Manipulating the Optically Active Defect–Defect Interaction of Colloidal Quantum Dots for Carbon Dioxide Photoreduction - Aix-Marseille Université
Article Dans Une Revue ACS Catalysis Année : 2023

Manipulating the Optically Active Defect–Defect Interaction of Colloidal Quantum Dots for Carbon Dioxide Photoreduction

Guangqin Li

Résumé

Defect engineering in colloidal quantum dots (QDs), a typical photocatalytic material, is promising to tailor optoelectronic properties and achieve solar-to-fuel energy conversion. However, understanding the effect of defect–defect interactions on both charge carrier and catalytic dynamics is still challenging. Here, we report a class of defect-engineered copper-deficient Zn-doped CuInS2 (ZCIS) QDs that synergistically utilize copper vacancy and Cu2+ defect states to realize CO2 photoreduction. Steady and transient optical characterizations reveal that the density of copper vacancy can manipulate the distribution of optically active Cu+ and Cu2+ defect states (appearing as CuIn″ and CuCu• species, respectively), wherein the Cu+ defect states suppress interband absorption and sharpen the Shockley–Read–Hall recombination, while Cu2+ defect states enable the prolonged exciton lifetime of QDs. In situ infrared spectroscopic investigation and theoretical density functional calculation demonstrate the photoactive Cu2+ defect states nearby the copper vacancy in ZCIS QDs can effectively activate CO2 to the COOH* intermediates, leading to a remarkable photocatalytic CO production rate up to 532.3 μmol g–1 h–1 (turnover number ∼1963) after 120 h illumination.
Fichier principal
Vignette du fichier
ACS Catalysis-Revised manuscript with marks-231029 (1).pdf (3.99 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04801033 , version 1 (25-11-2024)

Identifiants

Citer

Mengke Cai, Xin Tong, Peisen Liao, Shujie Shen, Hongyang Zhao, et al.. Manipulating the Optically Active Defect–Defect Interaction of Colloidal Quantum Dots for Carbon Dioxide Photoreduction. ACS Catalysis, 2023, 13 (23), pp.15546-15557. ⟨10.1021/acscatal.3c03884⟩. ⟨hal-04801033⟩

Collections

CNRS UNIV-AMU LP3
0 Consultations
0 Téléchargements

Altmetric

Partager

More