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ABSTRACT Nanoelectromechanical resonators (NEMS) have recently emerged as mass measurement
devices with interesting potential, and with mass ranges hardly covered by conventional techniques, they
offer the possibility of studying intact nanoparticles, whether artificial or biological. However, different
physical phenomena perturb the NEMS signals, lowering the mass accuracy and resolution of our devices. In
a previous report, we thus proposed amodel to remove colored noise affectingNEMS signals: Through a total
variation formulation, noisy NEMS signals are “projected” onto the space of piecewise constant functions, to
which non-noisy NEMS signals should theoretically belong. For the simulated NEMS signals, we obtained
better mass accuracy and resolution than a commonly used reference method. However, this first model is
not adapted to handle true experimental NEMS signals because, in the latter, we observe piecewise linear
structures in addition to noise effects. As these unexpected structures, which we refer to as "drifts", perturb
NEMS signals and consequently mass measurements, we propose a new denoising model that takes into
account both noise and drift effects under any experimental conditions. This model shows increased mass
accuracy and resolution, improved signal-to-noise ratio compared to a commonly used reference method,
and is robust enough to handle data from experimental measurements. Moreover, as the quantification of
drift features becomes accessible, we develop a scenario about the origin of the drifts and compare it with
our experimental results.

INDEX TERMS Drifts, particles mass measurements, proximal methods, nanoelectromechanical resonator,
nonlinear coupling, resonance frequency denoising, total variation algorithm.

I. INTRODUCTION

Nanoelectromechanical resonators (NEMS) are attracting
growing interest in the mass spectrometry community [1]-
[5], and are capable of measuring particle mass in the range
106-109 dalton (Da), which is hardly reached by conventional
mass spectrometers, with a mass-independent resolution [6],
[7]. These properties allow the measurement of the mass of
intact biological particles, which is particularly interesting in
viral studies to assess genome packaging [1], [8].

Measuring the masses of particles with a NEMS relies
on measuring the downwards shifts in the NEMS resonance

frequencies owing to the accretion of these particles on its sur-
face. Because NEMS resonance frequencies depend mainly
on the resonator’s mass and because accretion of a particle
increases this mass, NEMS resonance frequencies suddenly
decrease upon particle landing and stabilize to new values,
between particle deposition. In short, it is sufficient to record
NEMS resonance frequencies over time and then identify
and quantify frequency downshifts to estimate the mass of a
particle population. Nevertheless, with the NEMS geometry
considered herein (a doubly clamped beam), there is no one-
to-one mapping between the mass value of a single particle
and the downshift value of a single resonance frequency. For
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such aNEMS configuration, the authors in [6] showed that the
downshift of a single resonance frequency depends not only
on the mass of the accreted particle, but also on the particle
landing position on the NEMS. A solution to this difficulty
was proposed in [6] by relating the mass and position of a
particle to the downshifts of two resonance frequencies using
the following system of nonlinear coupled equations:

s1(t + ∆t)− s1(t)
s1(t)

:=
m
M

Φ1(x)

s2(t + ∆t)− s2(t)
s2(t)

:=
s1(t + ∆t)− s1(t)

s1(t)
Φ(x)

(1)

where si for i = 1, 2 is the ith resonance frequency, t is
the particle deposition time, t + ∆t is a time immediately
following the particle deposition time, m is the particle mass,
M is the mass of the resonator, x is the particle landing
position on the resonator, and Φ1, Φ are known bounded non-
linear functions corresponding to the shapes of the resonator’s
vibration modes (see [6] for detailed expressions).

Nevertheless, System (1) is derived from a model that
considers NEMS physics, but neglects all external phenom-
ena that could interfere with NEMS oscillations, and as a
by-product, could affect particle mass measurements. Thus,
the noise naturally affecting experimental NEMS resonance
frequencies [9] is not taken into account, whereas it has a
non-negligible effect on the particle mass derived from (1):
By making identification and precise measures of resonance
frequency downshifts more difficult, noise leads to a loss in
mass accuracy and mass resolution in experiments. The prob-
lem of loss in mass accuracy and resolution in the presence of
noise was addressed in [10], where a denoising model based
on a nonlinear total variation formulation is described. This
model "projects" noisyNEMS signals onto the space of piece-
wise constant functions, a space to which non-noisy NEMS
signals should theoretically belong. As a result, this model
shows promising results in terms of both mass accuracy
and resolution when applied to simulated signals. However,
System (1) and the aforementioned model do not account for
experimental phenomena that alter the resonance frequency
behavior. If the resonance frequencies seen as time functions
should theoretically be piecewise constant functions (every
discontinuity corresponding to a single particle deposition),
Figure 1 shows that they can actually exhibit more complex
time-dependent behavior during experimental measurements.

To the best of our knowledge, these time structures have not
been reported previously. Consequently, there have been no
explanations for their existence or evaluations of their impact
on particle mass measurements. It seems interesting to model
these structures (we call "drifts") according to these two ob-
jectives. Thus, we propose a new denoising model for NEMS
resonance frequencies that captures the real complexity of
drifts affecting these traces while preserving the particle mass
accuracy and resolution. As a by-product, our model provides
direct access to a simple drift description, creating a new

FIGURE 1. First resonance frequency trace from experiments between 0s
and 650s. Observe that this trace cannot be modeled by a piecewise
constant function over time, but instead requires the addition of
frequency drifts between discontinuities

tool that could be used in future developments to relate these
phenomena.

II. OUTLINE
After introducing the mathematical notations required to de-
fine our model, we present the scientific context on which
we rely. This includes previous studies on NEMS signal de-
noising, as well as the mass measurement device we currently
use for our experiments. This brief description enables us to
introduce and define the main structures that constitute the
NEMS resonance frequency trace. With these definitions, we
propose a model of these structures in accordance with our
experimental observations and describe the adapted detection
methods. We then show how we improve the algorithm pre-
sented in [10] by considering both drift modeling and the
need for accurate mass estimates; in particular, we present the
different minimization problems we use to this aim and their
different properties. Finally, we confront our model with ex-
perimental mass measurements and compare its performance
with that of a reference method.

III. NOTATIONS
Because this study is a direct extension of that conducted
in [10], we use similar notations. Our goal is to provide a
unified system of notations to ease reading and emphasize the
continuity between articles.

A. ALGEBRAIC NOTATIONS
We assume that all the matrices and vectors are real. A bold
capital letter denotes a matrix and a bold lower-case letter
denotes a column vector. A lower-case Greek letter denotes a
scalar.

The space of real matrices with n rows and m columns is
denoted Rn×m and the space of column vectors with n rows
is denoted Rn. Superscript > used with a matrix or vector
denotes the transposed matrix or vector. When the negative
operator precedes > symbol, it refers to the inverse of the
corresponding transposed matrix. Following this notation,
superscript −1 used with a matrix denotes the inverse matrix
if it exists. The coefficient at line i and column j of any matrix
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A is denoted Aij. Similar notation is used when dealing with
vectors. The Euclidean dot-product and norm for vectors are
denoted 〈., .〉2 and ||.||2, respectively. Similarly, the L1 norm
for vectors is denoted ||.||1.

Some letters or symbols are reserved for specific scalars,
vectors, and matrices. Thus, δij for any positive integers i and
j denotes the Kronecker symbol: δij = 1 if i = j and δij = 0
if i 6= j. For a given integer n, 1n and 0n denote a vector
in Rn whose components are equal to 1 and 0, respectively.
The square identity matrix of size n is denoted Idn. Matrices
Vi i = 1, 2 are the denoising matrices associated with the ith

resonance frequency fi and they are supposed to be invertible.
∇ is the gradient operator that maps a vector ofRn ontoRn−1:

(∇s)i := si+1 − si i = 1, . . . , n− 1, s ∈ Rn

By extension, for any vector v ∈ Rn, we will note ∇v ∈
Rn−1 the vector whose the ith component is equal to (∇v)i
for i = 1, . . . , n− 1.

B. MODEL NOTATIONS
Let T > 0 be a real number and F be a set of N ordered
and equally spaced real numbers in the interval [0,T ]. It
is assumed that the first element of F is zero and the last
element is equal to T . An element of F is denoted fi with
i = 1, . . . ,N and we assume that F is ordered in ascending
order: If 1 ≤ i ≤ j ≤ N then fi ≤ fj. Consequently, F is
equivalently represented by the set [1, . . . ,N ] (the set of the
N first non-zero integers), through the one-to-one mapping t
which verifies t(fi) = i.

For any integer k ≥ 0, Pk denote the space of polynomials
of degree k . For any subset G ⊂ F , we note C1G the space of
real continuous functions on [0,T ] that are also differentiable
everywhere except perhaps on G.

Let now consider two ordered sets J0 ⊂ J1 ⊂ F such that
if fi ∈ F ∩ J0 then fi+1 ∈ J1− J0. We also assume that f1 and
fN do not belong to J1. Without any restriction, both J0 and
J1 can be equal to the empty set ∅ if required. Once J0 and
J1 are defined, we introduce the following functions spaces
(for k = 0, 1):

V1 := {v ∈ C1J1 × C1J1 | v|[fj,fj+1] ∈ P1 × P1, ∀fj ∈ F}
V0 := {v ∈ V1 | v(fj) = v(fj+1), ∀fj ∈ F − J0}
Dk := {v ∈ Vk | vi(fj+1) ≤ vi(fj), ∀fj ∈ F ∩ J0, i = 1, 2}
With the above definitions, we have V0 ⊂ V1 and D0 ⊂

D1. Moreover, we observe that every function of these spaces
is completely defined when its values on set F are known,
which means that Vk andDk for k = 0, 1 can be equivalently
represented by some subsets ofM := RN ×RN . If we denote
Vk = t(Vk) and Jk = t(J k) for k = 0, 1, we obtain:

V1 := {v ∈M | (∇v)j = (∇v)j−1, ∀j /∈ J1}
V0 := {v ∈ V1 | (∇v)j = 0, ∀j /∈ J0}
Dk := {v ∈ Vk | vi

j+1 ≤ vi
j, ∀j ∈ J0, i = 1, 2}

Similarly to the case of function spaces, we have the
following inclusion rules: V0 ⊂ V1 and D0 ⊂ D1. It is then
equivalent to considering a function of Vk (respectively Dk )
k = 0, 1 or a vector of Vk (resp. Dk ).

It is also straightforward to see that the spaces Vk for
k = 1, 2 are finite-dimensional vector spaces. Thus, V0 has
dimension n0 := 2(1 + |J0|), where |J0| is the size of J0 and
similarly, V1 has dimension n1 := 2(2 + |J1|), where |J1|
stands for the size of J1. Based on this observation, we deduce
that there are linear mappings Gk for k = 0, 1 between
s ∈ Vk and a vector inRnk . EachmappingGk is characterized
by components that are equal to s1 and (∇s)i (plus (∇s)1 if
k = 1) for i ∈ J k because we have:

sj = s1 +

j−1∑
k=1

(∇s)k ∀j ∈ [1, . . . ,N ]

These mappings Gk for k = 0, 1 are injective matrices and
belong to RN×nk . Consequently, for a vector s ∈ Vk there is a
unique vector r ∈ Rnk such that the relation s = Gkr holds.
The vector r is called the "gradient-like" vector of s and is
denoted as g(s).

The set of all "gradient-like" vectors for elements in Dk ⊂
Vk for k = 0, 1 is denoted Gk and has the following defini-
tion:

Gk := {v ∈ Rnk | vi ≤ 0 ∀i ∈ J0}

After the definition of Gk k = 0, 1, we introduce diag-
onal matrices Jk ∈ Rnk×nk that select the components of a
"gradient-like" vector g(s) ∈ Gk corresponding to an index
in Jk for the vector s. Similarly, we denote Dk = Idnk −Jk as
the diagonal matrices in Rnk×nk which select the components
of g(s) not corresponding to an index in Jk for s. These sets
of indices are denoted IGk for k = 0, 1. In some cases, two
"gradient-like" vectors g(s) and g(u) in Gk may be related
to a linear relation of the form J0g(s) = ΦJ0g(u), where
Φ ∈ Rnk×nk is a diagonal matrix. The coefficients of matrix
Φ are all equal to zero except for the diagonal coefficients of
index i such that (J0g(u))i 6= 0. In the latter case, Φii = αi
where αi is a positive real number in an interval [0, φi], with
upper bound φi being a known function of the sole index i.
The space of this type of matrix is denoted H.
Finally, we introduce the diagonal matrix Lk ∈ RN−1×nk

k = 0, 1 which ensures that the L1 norm of ∇s for s ∈ Vk is
equal to the L1 norm of its gradient-like vector g(s):

||∇s|| = ||Lkg(s)||1

IV. SCIENTIFIC CONTEXT
The problem of loss of mass accuracy and mass resolution
owing to noise was addressed in [10], where we proposed
a process to estimate non-noisy resonance frequency traces
from experimental measurements. This process is based on
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denoising experimental traces of the first two resonance fre-
quencies through a specific adaptation of the Total Variation
(TV) minimization approaches [11], [12]:(

ŝ1, ŝ2
)

:= arg min
(v1,v2)∈D0×D0

∇v2=Φ ∇v1, Φ∈H

F1

(
v1
)

+ F2

(
v2
)

(2)

Where the functionals Fi i = 1, 2 are defined as:

Fi
(
vi) := ||∇vi||1 +

λi
2
||Vi(vi − f i)||22

We claimed that the formulation above is well adapted to
yield accurate denoised estimates of experimental resonance
frequency traces and, consequently, good estimates of particle
mass. The argument relies on the fact that (2) incorporates as
much NEMS physics as is available. Thus, D0 represents the
space of the piecewise constant functions, a space to which
the resonance frequency traces should theoretically belong.
Similarly, the imposed constraint ∇v2 = Φ ∇v1 is the mir-
ror image of (1), which theoretically relates to the downshifts
of the first two resonance frequencies. Finally, the parameters
λi and operatorsVi, i = 1, 2 reflect the noise structure, which
affects the resonance frequencies. However, (2) provides an
additional property that stems from TV formulation. Through
the L1 term, it controls the spread of resonance frequency
downshift amplitudes, and consequently, controls the sharp-
ness of the particle mass distribution.

Problem (2) eventually shows promising denoising capa-
bilities, which in turn induce a non-negligible gain in par-
ticle mass resolution [10]. However, because it is designed
for piecewise constant functions, Problem (2) appears to be
poorly suited to experimental data that show time-dependent
behavior, as shown in Figure 1. These structures may find
their origins in the NEMS interaction with its surrounding en-
vironment, comprising our NEMS mass spectrometer system
as a whole (see Figure 2 and [13] for technical details) as well
as the experimental physical conditions (ambient pressure,
temperature, etc.). Consequently, these structures may carry
interesting additional information, and we propose a model to
access this information.

V. IDENTIFYING TRACE FEATURES
In this section, we propose a classification of the different
structures that appear in experimental resonance frequency
traces. Once defined, this nomenclature enables us to propose
a model for each of the identified structures. Finally, we focus
on methods that discriminate between these structures one
from another.

A. TRACE FEATURES MODELING
As shown in Figure 1, we identify two types of structures
in the NEMS resonance frequency trace. The most apparent
structures are the sharp frequency downshifts that happen
from time to time. These downshifts occur almost instanta-
neously and appear simultaneously in the first two resonance
frequencies. These criteria are typical markers of particle

FIGURE 2. Simplified schematic of the nanomechanical mass
spectrometer. (a) SAWN or Nano-ESI : Nebulization systems to aerosolize
solvated particles. (b) Heated capillary: System to remove residual solvent
from aerosolized particles. (c) Vacuum chambers: Systems driving
aerosolized particles towards the NEMS thanks to pressure gradients
mechanisms. (d) Focusing lens: System to concentrate the aerosolized
particles into a narrow beam. (d) NEMS array: System of 20 independent
NEMS where aerosolized particles accrete. Adapted from "‘Compact and
Modular System Architecture for a Nano-Resonator-Mass Spectrometer,"
by A. Reynaud et al., Frontiers in Chemistry, vol. 11, 2023.

deposition. The other structures are located between those
identified as particle deposition events. These portions of
frequency traces appear as slowly decreasing functions with
continuous but complex shapes, and seem to have a weak
correlation in the first and second resonance frequencies.
Since these structures also exhibit a long-term trend, we
refer to them as "drifts", while particle deposition events are
referred to as "discontinuities". These denominations are used
throughout the remainder of this report.

As mentioned above, a particle deposition event induces
an increase in the NEMS mass, causing downshifts in the
first two resonance frequencies. If the latter were recorded
continuously, these downshifts would be instantaneous and
appear as discontinuities (hence, the term) in the frequency
traces. Because the frequencies are only sampled in our
experimental process, these discontinuities in traces appear
simultaneously in the first two resonance frequencies as steep
straight lines between two consecutive time points. However,
these features cannot be considered to be unequivocal. Be-
cause noise affects NEMS resonance frequencies, random
frequency downshifts with the same characteristics may oc-
cur with a certain probability. To distinguish these random
events from the true particle depositions, we need to add a
supplementary condition. Thus, a simultaneous decrease in
the resonance frequency traces can be associated with true
particle deposition if the probability of being generated solely
by pure noise effects is low.

Following the description above, a "drift" is a continuous
portion of a frequency trace that does not contain a trace
discontinuity. Because discontinuities occur simultaneously
in the first two resonance frequencies, drifts also begin and
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end simultaneously for both frequencies. To the best of our
knowledge, these trends have not been linked to a specific
physical phenomenon in the context of individual particle
mass measurements and have no clear explanations. Thus, to
obtain an idea of what could cause these trends, we propose
a model that captures what can be observed in experimental
measurements.

In the case of sampled resonance frequency traces, we
modeled drifts as trace portions containing at least three
successive time points. Such a criterion is the minimum
to differentiate a drift from a discontinuity; however, drifts
are usually constituted by more than three time points. To
transcribe the idea of a complex but continuous shape, we
then modeled every drift as a piecewise linear continuous
function. This modeling allows a large flexibility in drift
representation, because a single drift can be represented by
a single linear polynomial as well as by a set of several
contiguous linear polynomials, thus allowing the capture of
details at time scales smaller than the drift duration. More-
over, selecting linear polynomials as the basic components
is the most optimal choice because the minimum size of
the drift is three points. With higher degree polynomials, we
could overfit the resonance frequency traces in theworst cases
and conversely, choosing constant polynomials would lead to
either discontinuous or constant drifts, in contrast to what the
experimental data seem to show.

The previous considerations enabled us to define appropri-
ate mathematical structures relevant to modeling resonance
frequency traces. Thus, a frequency trace is represented by
a function that belongs to space D1, or equivalently by
a vector that belongs to D1. The starting locations of the
discontinuities are the indices in J0, and because traces are
continuous but non-necessarily differentiable as piecewise
linear functions, the set of non-differentiability points is equal
to J1.

Finally, the proposed denoising method is in charge of
identifying the sets J0 and J1, in addition to provide denoised
estimates of the experimental resonance frequency traces in
space D1.

Remark 1. Under the experimental conditions, some trace
portions between two discontinuities may contain only two
points. These trace portions should not be considered as
"true" drifts according to the previous definition. Indeed, we
cannot expect to extract interesting information from them
because the proposed modeling space exactly fits every lin-
ear polynomial whose duration is two points. Hopefully, this
situation rarely occurs. Because the particle deposition rate
on the NEMS is much lower than the frequency sampling rate,
the end point of a discontinuity and the beginning point of the
next discontinuity are generally separated by more than two
points. Even if such a situation occurs, the proposed denoising
method is unaffected.

Remark 2. The frequency traces in the present report are

functions ofD1 and the frequency traces in [10] are elements
ofD0. However, the definition of both spaces shows thatD0 ⊂
D1. Thus, the mathematical model presented here can also be
understood as a generalization of themodel presented in [10].

Remark 3. In our model, we imposed that J1 is identical
for both resonance frequency traces. Such a choice is made
for numerical purposes and does not rely on physical con-
siderations. Nevertheless, this constraint is not restrictive,
because according to the above definitions, functions in D1

are differentiable everywhere except maybe on some points of
J1. Thus, if point p is truly a non-differentiable point for the
first resonance frequency but not for the second, p is still an
element of J1. Consequently, J1 is not a minimal set.

B. TRACE FEATURES DETECTION
Locating discontinuities in resonance frequency traces is
a problem which was already addressed through a spe-
cific method, the so called "ellipse method" [6]. In short,
this method first forms N two-dimensional vectors vi =
((∇f1)i, (∇f2)i)

T i = 1, . . . ,N , and then compares each
vector vi to the level of noise affecting both frequencies. If
vector vi is above the noise level (up to the user’s choice),
then a discontinuity is identified at point i, otherwise no dis-
continuity occurs at i. The complete description is provided
in Appendix A.

This method is very intuitive because it is strongly inspired
by NEMS physics. Moreover, it provides satisfactory results
for resonance frequency traces when drifts are absent [10].
Although it might be interesting to reuse it in the present
context, this method does not rely on a precise mathematical
framework. This induces a potential lack of reliability when
analyzing experimental measurements containing drifts.

Thus, we proposed to interpret this "ellipse method" as
a χ2

2 statistical test where the statistical significance level
is a simple function of the noise level, as defined by the
"ellipse method". For proofs, the interested reader can refer
to Appendix A. Besides all the mathematical tools that this
interpretation gives access to, we can now point out the main
defect of the "ellipse method". As χ2

2 statistical test, the "el-
lipse method" is based on a statistic, which is the sum of two
squared independent Gaussian variables, with 0 means. With
drifts in resonance frequency traces, the "ellipse method" can
no longer be reduced to such a test, but can be viewed as a non-
central χ′22 test with a noncentrality parameter that depends
on drift slopes. However, using the methodology described
in this report, the drift slopes are not known beforehand.
They are estimated after the denoising steps, which require
the discontinuity locations set J0 as an input parameter. In
conclusion, the "ellipse method" is rigorously inadequate for
identifying discontinuities into traces with drifts and cannot
be adapted easily to this type of data. Nevertheless, this defect
can be partially overcome by using a simple hypothesis.
Indeed, the "ellipse method" identifies trace discontinuities
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as signal events that have intensities much higher than the
usual gradients of resonance frequency traces. However, in
portions of the traces corresponding to drifts, the aforemen-
tioned gradients are mainly equal to the local slopes of the
drifts. We deduced that to keep acceptable false detection
rate with the "ellipse method", trace discontinuities must be
much higher than the local slopes of the drifts. Although this
appears particularly constraining, most of our experimental
measurements support the hypothesis of small drift slopes.
Therefore, we assumed that this is generally true throughout
the rest of this report.

Let us now tackle the problem of drift "detection". Once the
trace discontinuity locations are identified, all drift locations
are known by definition. However, drifts are also modeled
as continuous piecewise linear functions, that is, as a set
of several consecutive linear polynomials. Since a linear
polynomial is perfectly defined with only two points, we
must identify, for every drift, all points that could represent
the boundary between different yet consecutive linear poly-
nomials. This is equivalent to searching for the set of non-
differentiability points J1. In the absence of noise and for
traces modeled as functions in D1, a point p ∈ J1 is easily
identified. Indeed, p belongs to J1 if and only if the right
derivative at p (i.e., the right local slope at p) is different
from the left derivative at p (i.e., the left slope at p). This
criterion must be revisited in the presence of noise because,
for a function in D1 and a point p /∈ J1, it may modify the
values of the points preceding and following p such that the
left and right derivatives are no longer equal. However, when
the noise level is low, it only slightly modifies the derivative
values. Although different, they should remain close to each
other. Consequently, the criterion chosen for the non-noisy
case must be slightly changed by imposing a tolerance on the
variation of the right and left local slopes at point p.

Since our goal is to propose a novel denoising method to
enhance the mass resolution of our NEMS-spectrometer, we
addressed the problem of identifying the elements of set J1

using a specialized change detection library, called "ruptures"
[14]. This PYTHON library provides a framework that is
well-adapted to our needs. For a single trace, it determines
the elements of J1 in such a manner that the traces built on
this set, as continuous piecewise linear functions, minimize
a certain L2 cost function. However, because we want the
first two resonance frequencies to belong to the same function
space D1, the provided tools must be adapted to obtain the
same set J1 for both frequencies. This can be done in many
different ways, the simplest one being to compute a set of non-
differentiability points for each resonance frequency trace and
then merge them into a single set.

Remark 4. In the library "ruptures", determining a set of
non-differentiability points without prior knowledge of its
size depends on a threshold: The higher the threshold, the
fewer points J1 contains. Consequently, the size of J1 seems

to rely entirely on the user’s choice, and thus seems to be
subjective and/or case-dependent. In fact, we will show that
our denoising model avoids this pitfall by providing a tool
that automatically selects the correct threshold to obtain the
best model according to a given criterion.

VI. DENOISING MODELING
In this section, we present the mathematical model used to
denoise the resonance frequency traces from true NEMS
experiments. While demonstrating the main ideas that un-
derlay Problem (2) remain valid in an experimental context,
we illustrate how to incorporate the introduced modeling
features to obtain a meaningful representation of drifts. We
then prove that the proposed model can be solved with a
specific numerical algorithm, the latter accounting for the
main NEMS physical features. Finally, we demonstrate that
this algorithm converges towards a local minimum, proving
that the corresponding estimates of both resonance frequency
traces are locally optimal.

A. PRELIMINARIES
Before entering into detail, we recall another equivalent for-
mulation of (2), which was implicitly introduced in [10]:(

û1, û2
)

:= arg min
(u1,u2)∈G0×G0

u2=Φu1,Φ∈H

H1

(
u1
)

+ H2

(
u2
)

(3)

Where the functionals Hi i = 1, 2 is defined as:

Hi
(
ui) := ||Mui||1 +

λi
2
||Wiui − f̃ i||22

And where we have set for:

ui := Gvi

Wi := ViG

f̃ i := Vif i

Problem (3) requires comments before proceeding further.
Observe that Problem (3) is derived from (2), owing to the
replacement of vi for i = 1, 2 by their equivalent gradient-
like vectors ui := Gvi. This change of variables is important
because it increases the capability of our modeling to obtain
realistic estimates of resonance frequency traces and comes
in addition to the other modeling elements of Problem (2).
Owing to this manipulation, the coupling between trace
discontinuities is not handled through a constraint, but is
explicitly incorporated in the functional to minimize. In doing
so, the numerical scheme presented in this report exhibits
interesting mathematical properties while maintaining a low
computational cost.

When drifts are present in resonance frequency traces, con-
trolling the gradient of the traces is a fundamental question
that is applicable not only to discontinuities but also to drifts
through the L1 norm. Contrary to the situation in [10], the L1

norm of the modeled traces is not zero for drifts. In fact, up to
the sign, they are equal to the sum of the slopes of the linear
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polynomials that constitute them. Thus, using the L1 norm on
drifts also minimizes these drift slopes over the entire trace
length. Does this idea make sense ? We believed that this is
desirable. Because we chose to use a minimization problem
as a denoising process, we are in fact looking for a minimal
explanation that could represent the recorded signals. In that
sense, trying to minimize the total drift slope seems natural,
because in ideal cases, they should be equal to zero. Never-
theless, using L1 norm for drifts implies that the algorithms
proposed in [10] can no longer be applied. We concluded that
some changes in these algorithms are required. The following
sections clarify these changes and provide adapted numerical
schemes to solve (3). However, if such changes are necessary
to consider drifts, they do not imply a total philosophy shift
in the resolution of Problem (3), and we show that a three-
step algorithm is always mandatory to obtain acceptable trace
estimates.

B. STEP 1: VALIDATION OF TRACE FEATURES MODELING
To obtain estimates of experimental resonance frequency
traces with drifts, we propose an approach involving the
solution of two simpler minimization problems:

ûi := arg min
ui∈G1

P(ui) for i = 1, 2 (4)

where the function P is defined as:

P(ui) := ||Wiui − f̃ i||22
Contrary to the function spaces modeling different struc-

tures of traces, we first notice that matrices Wi for i = 1, 2
are identical in Problems (3) and (4). Because these matrices
are designed to only consider noise features and because
noise features are totally independent of trace modeling, there
is no reason to search for new formulations. Naturally, the
previous argument extends to the following denoising steps.
Thus, we can observe that Problems (4) are simple quadratic
problems under constraints. These types of problems are
well-known, and many numerical methods exist for solving
them efficiently. Among these methods, we chose the FISTA
algorithm [15]- [16], which is a special case of accelerated
gradient descent algorithms [17]- [20]. The FISTA algorithm
ensures fast convergence while being simple to use, but
requires an auxiliary mathematical operator to work. In the
present case, this operator is a projector onto space G1 the
expression of which is given in Appendix B.

Despite their simplicity, Problems (4) provide interesting
information. Indeed, they can also be considered as a way
to measure the relevance of our trace feature modeling. To
illustrate this point, let us consider a single set of trace discon-
tinuities, denoted as J1, but with two different models of trace
space, denoted as D1

1 and D1
2 (or equivalently, two different

vector spaces D1
1 and D1

2). We will assume in the following
that drifts in D1

1 are modeled with fewer linear polynomials
than in D1

2 , i.e. D1
1 ⊂ D1

2 . Finally, we denote vi,1 and vi,2 as
the solutions of (4) for the ith resonance frequencywhen drifts

belong to D1
1 and D1

2 respectively. Based on the definition of
(4) and the previous hypotheses, we can then write:

||Wi(vi,2 − f̃ i)||22 ≤ ||Wi(vi,1 − f i)||22

Hence, increasing the number of degrees of freedom in
our mathematical modeling of drifts results in a reduction in
the discrepancy between the estimated trace and experimental
data. However, it should be noted that the previous errors can
also be viewed as an estimation of the variance of the noise
that affects the NEMS resonance frequency traces. Thus, they
can be compared with the true noise variance. Consequently,
if the true noise variance is lower than the estimated noise
variance coming from a given drift model, the latter is too
coarse and could be refined to obtain higher variance esti-
mates. On the other hand, if the true noise variance is higher
than the estimated noise variance coming from a given drift
model, the latter is too fine and could be coarsened to obtain
lower variance estimates. Problems (4) can then be used to
obtain acceptable estimates of the true resonance frequency
traces, but without controlling the trace discontinuity am-
plitude, and consequently the particle mass resolution. In
short, solving the Problems (4) can only be regarded as a
preliminary step in the entire denoising process.

Remark 5. Note that the same reasoning applies to selecting
amodel that estimates the correct number of trace discontinu-
ities in experimental signals. Thus, Problems (4) also ensure
the selection of the correct discontinuity model.

C. STEP 2: COMPUTING DENOISING PARAMETERS
In this step, the main objective is to solve intermediate min-
imization problems, whose solutions enable the computation
of the numerical parameters necessary for the last denoising
step. To enhance the similarity between the present minimiza-
tion problems and the final nonlinear problem, these problems
adopt a form in which the discontinuities of the resonance
frequency traces are controlled through L1 terms:

ûi := arg min
ui∈G1

T (ui) for i = 1, 2 (5)

where the functional T is defined as:

T (ui) := ||Lui||1 +
λi
2
||Wiui − f̃ i||22

In Problems (5), the penalization parameters λi (i = 1, 2)
are originally unknown. Intuitively, they must be set such
that the L2 terms (which can be considered as noise variance
estimates) are sufficiently close to the experimental noise
variances. Thus, providing a method to compute the correct
λi is a fundamental question. Fortunately, this question was
addressed in various general contexts in different articles,
such as [21] and [22], and extended to resonance frequency
traces from simulated data in [10]. The main idea is to
iteratively solve the targeted penalized minimization problem
while updating the penalization parameter until the estimated
variance closely matches the experimental variance. The
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update of penalization parameters can be carried out auto-
matically until convergence, as described in [21] and [22],
thereby eliminating the need for both predetermined values
and human intervention.

However, contrary to [10] where the penalized problem
is quadratic, Problems (5) are only strictly convex, which
hinders the use of the exact same algorithm for estimating λi.
In fact, Problems (5) are similar to the convex penalization
problems studied in [22]. The difference lies in the solution
space G1, which includes modeling constraints, in contrast
to [22], where no constraints are imposed. Consequently,
it seems natural to adapt the method presented in [22] to
our specific context. This implies that an adapted proximal
method is necessary to estimate the λi parameters, similarly to
what is presented in [15], [16], [23]. In our case, because dis-
continuities and drifts belong to disjointed sets, the definitions
of well-suited proximal operators are explicit (see Appendix
B), and thus enable fast solving using the FISTA algorithm.

Remark 6. Let denote vi andwi for i = 1, 2 as the solutions
to Problems (4) and (5), respectively. Then, for all λi > 0, we
necessarily have:

||Wivi − f̃ i||22 ≤ ||Wiwi − f̃ i||22
This inequality shows that if the estimated noise variances

obtained by solving (4) are above the experimental noise
variances, then Problems (5) cannot provide noise estimates
with lower variances. It then seems unnecessary to resolve
Problems (5) in addition to Problems (4). Nevertheless, we re-
call that Problems (4) do not control the amplitude of discon-
tinuities, unlike Problems (5), and thus do not provide control
over particle mass resolution, which is yet to be achieved. To
solve this issue, it is necessary to select a trace feature model
such that Problems (4) provide the estimated noise variances
below the experimental noise variances. In doing so, we have
a chance to determine parameters λi such that Problems (5)
provide accurate noise approximations while also preserving
mass resolution.

D. STEP 3: NONLINEAR DENOISING
Now, we solve a problem similar to (3), but incorporate all
the previously introduced concepts. In practical terms, we
propose the following model:(

û1, û2
)

:= arg min
(u1,u2)∈G1×G1

u2=Φu1, Φ∈H

U1

(
u1
)

+ U2

(
u2
)

(6)

Where the functional Ui i = 1, 2 is defined as:

Ui
(
ui) := ||Lui||1 +

λi
2
||Wiui − f̃ i||22

In (6), the parameters λi for i = 1, 2 are the ones deter-
mined in the previous denoising step.

This problem is not as simple as the previous ones because
it is constrained; unknownsu1 andu2 are coupled through the

matrix Φ as stated in System (1). Nevertheless, it represents
a natural generalization of Problems (5), as it reduces to the
two corresponding equations in the absence of constraint on
u1 and u2. A natural way to consider the coupling between
u1 and u2 is to use a Lagrangian multiplier, but this has
a drawback: It introduces an additional variable that must
be computed as well. The resulting algorithm would be
expensive in terms of computational cost and would thus not
be suitable for large data. We developed another approach,
detailed in Appendix C. The matrixΦ is explicitly introduced
in Ui, for i = 1, 2, by substituting the discontinuities in the
second resonance frequency trace with a suitable transfor-
mation of the discontinuities in the first resonance frequency
trace. In short, we proceeded to a change of variable that
generates a new "uncoupled" functional equivalent to the
functional in (6) but which depends on the three variables
u1, Du2 and Φ. In a more explicit manner, each variable ui,
for i = 1, 2, is expressed as the sum of two vectors Dui and
Jui. Subsequently, we substituted these expressions for ui

into Ui
(
ui
)
. Finally, we implemented the constraint in (6) by

replacingJu2 withΦJu1 in the functionalU2. As a result, the
constraint between u2 and u1 is explicitly incorporated into
the functional to beminimized. The only remaining constraint
in (6) is that Φ ∈ H, but it is easily handled owing to
its simple structure. Technical manipulations and additional
details regarding space H can be found in Appendix C.

However, the resulting minimization problem has no math-
ematical properties to obtain unique estimates for both res-
onance frequency traces [24]. Despite this drawback, we
developed an algorithm that computes estimates of the res-
onance frequency traces, and we claim that these estimates
are optimal according to some criteria. Without entering the
technical details, which are accessible in Appendix C, the
corresponding algorithm can be written as follows:

Algorithm 1 Compute û1, û2 and Φ as solutions of Equation (6)
j← 0

repeat
j← j+ 1

v1,j, (Dv2)j ← argmin
(u1,Du2)∈G1×DG1

F(u1,Du2,Φj−1)

Φj ← argmin
Ψ ∈H

F(u1,j, (Du2)j,Ψ)

until user’s threshold is reached
û1 ← v1,j

û2 ← JΦjv1,j + (Dv2)j

Φ← Φj

We observe that this algorithm iterates on two subprob-
lems, each of them having a specific role. The first subprob-
lem computes trace estimates with a fixed Φ, whereas the
second computes matrix Φ when trace estimates are fixed.
Thus, the proposed algorithm is an alternating direction al-
gorithm between the two subproblems, which do not have the
same mathematical properties. Indeed, the first subproblem is
a strictly convex problem under convex constraints, whereas
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the second subproblem is a quadratic problem under con-
straints, this quadratic nature owing to prior knowledge of the
signs of the trace discontinuities. Clearly, different techniques
are necessary to solve each subproblem. The second sub-
problem is evidently the easiest to solve, and every standard
algorithm that deals with constrained quadratic problems is
acceptable. Because our constraint space is identical to that
in (4), we chose the FISTA algorithm and the projection
operator defined in (8) to solve it. For the first subproblem,
we used a proximal method to handle the convexity property.
In addition, the proposed algorithm does not impose any
predefined relationship between the drifts in the first and
second resonance frequency traces. This is a fundamental
requirement because there is no indication that drifts in both
traces are physically correlated. Thus, if a correlation exists,
our algorithm will naturally reveal it. The only remaining dif-
ficulty is defining proper proximal and projection operators.
With the definitions given above, these operators have explicit
expressions that limit the computational costs. The expres-
sions and corresponding proofs are detailed in Appendix B.

Remark 7. Because Algorithm 1 does not possess a unique
global minimizer, the question of initialization becomes cru-
cial. Because Problem (6) generalizes Problems (5) by intro-
ducing the coupling of trace discontinuities, it seems natural
to initialize Algorithm 1 with the solutions of (5). We applied
this approach to the calculations.

Remark 8. The variable Φ has another advantage: It al-
lows for denoising of resonance frequencies without explicitly
calculating the deposited particle positions. However, these
positions are essential for calculating the mass of deposited
particles, as shown in System (1). Therefore, a means of esti-
mating these parameters retrospectively is required. Because
we modeled Φ as an element of H, the constraint u2 = Φu1

in Equation (6) and the second equation in System (1) leads
to the following equality:

Φjj =
s2j
s1j

Φ(xj)

where the j is the index of the jth deposited particle, sij is
the ith resonance frequency, and xj is the deposition position
of the jth deposited particle.

It remains to compute every position xj by solving the
above nonlinear equality, which can be done using adapted
algorithms such as the those presented in [25] or [26]. Once
every position is computed, the particle masses are estimated
by solving the first equation in System (1). See Appendix C
for further details.

VII. EXPERIMENTAL VALIDATION
In this section, we present the results of our denoising process
when applied to mass measurements of gold nanoparticles
(AuNPs) and of capsid like particles (CLPs).

A. GOLD NANOPARTICLES

Gold particles were produced by BBI Solutions, and their
shape is assumed to be spherical with a diameter of 29.2± 2
nm (BBI product code : EM. GC30). With these dimensions,
a particle has amass of 25.16 10−20 kg or equivalently 151.51
megadalton (MDa). The measurement data were acquired
using the experimental system schematically described in
Figure 2. The latter is composed of a microfluidic system
that transports the particles in methanol (concentration of
approximatively 1011 particles/mL) at a flow rate of 30µL/h,
a nebulization system that aerosolizes the solvated particles at
ambient pressure (using Electrospray Ionization under 2.18
kV), a heated capillary that removes the solvent coating of
the aerosolized particles (at 200°C), and an aerodynamic lens
that focuses the aerosolized particles towards a NEMS array
located in a chamber at 1.3 10−2 mBar. The NEMS array is
composed of 20 NEMS in silicon whose actual dimensions
-and thus masses- are known (L × 300 nm × 160 nm,
with L gradually varying from 7 µm to 9.2 µm). These
data were acquired during two experiments under constant
environmental conditions (room temperature 25°C, relative
humidity 25%). In both the experiments, the NEMS array
was identical. This indicates that the particles that landed
on the NEMS during the first experiment still adhered to
the device during the second experiment. Owing to technical
constraints, the data of each experiment were recorded in
two consecutive files. This splitting has no consequences
on the final results because it does not affect the NEMS
physics. The total duration of each experiment was 4200s
equally divided between the two recording files. Each NEMS
resonance frequency was sampled every 0.4s.

To obtain the particle mass distribution, two different meth-
ods were used. The first, denoted as WDM hereafter, consists
of computing the particle mass without prior denoising of
resonance frequency traces. This method was employed in
several reports for data treatments (see [1], [2], [13]) and was
consequently used as a reference method. Despite its sim-
plicity, WDM is a pertinent method to obtain a particle mass
distribution in the presence of noise only. With no noise filter
and providing a large number of detected particles, the mean
of the computed mass distribution should follow the Law of
Large Number (LLN) and thus should converge towards a
statistically reliable estimate of particle mass. The variance
in the distribution of particle masses serves as an indicator of
mass resolution, because it represents a measure of dispersion
around the mean of the particle mass distribution. However,
with drifts, WDM may not be as pertinent because perturba-
tions in NEMS signals cannot be modeled as pure statistical
events. Consequently, we expect the mean of the particle
mass distribution to be less accurate and the variance to be
impacted. The second method was based on the TV algorithm
presented in the previous section. Removing the noise from
frequency traces (as described in Steps 1 to 3 in the denoising
modeling section) and computing the mass distribution from
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the resulting profiles (as described in Remark 8) affect both
the mass accuracy and mass resolution. If we expect the
former to not change significantly, we anticipate a gain in
mass resolution when compared with the WDM estimate. We
note that the number of detected particles is almost similar for
the two experiments: 3015 for the first experiment and 2670
for the second (a variation of 11.5%). Thus, both experiments
play similar roles when considering the overall number of
deposited particles (the first experiment represents 53% of
the deposited particles and the second experiment 47%).

For both resonance frequencies, we automatically esti-
mated noise features (such as the Power Spectral Density of
each trace and the noise covariance matrix) at the beginning
of each experiment, when no particle deposition occurred.
These noise features were then used to design matricesVi for
i = 1, 2, following the methodology described in [10], and to
set the "ellipse" method parameters for subsequent particles
detection (with a Type I error below 1%, see Appendix A).
Of course, these "ellipse" method parameters were set to the
same values for both WDM and TV methods. This implies
that the J0 set is identical in both cases; thus, the detected par-
ticles are the same. To identify the set of non-differentiability
points P, we used the "rupture" package described in [14].
In this library, we selected the "CLinear" model to represent
a frequency trace as a continuous piecewise linear function,
and the PELT algorithm to detect every element of P. This
algorithm efficiently detects variations in the local slope of a
trace, while maintaining a linear computational cost. Never-
theless, it also requires a penalization parameterµ: The higher
the value of µ, the fewer linear polynomials are necessary to
define a single drift. Consequently, we defined a fixed set of
acceptable values for µ (here {104, 105, 106, 107, 108, 109}),
and always selected the highest value in this set that satisfies
Remark 6. The parameters λi for i = 1, 2 in Problems (5)
were calculated using the method described in [22], with two
stopping criteria: A relative error in the noise variance equal
to 1% and a relative error in successive λi values equal to
10−5.

1) Influence of drift modeling
First, we demonstrate how our drift modeling affects trace
representation. In Figure 3, we show a section of the first reso-
nance frequency trace before denoising and after applying our
TV-based denoising method. This figure clearly shows that
our model produces denoised traces that are piecewise linear,
which seem to be coherent with the experimental (noisy)
signal.

Figure 4 displays the same trace portion, denoised with
identical parameters, except for those related to the PELT
algorithm. We deliberately selected a parameter µ, which is
smaller than in the previous example, to obtain a set P with
more elements. With such a choice, we obtain a resonance
frequency trace exhibitingmore complex variations at smaller
time scales while still closely following the noisy experimen-

FIGURE 3. Left: First resonance frequency trace before denoising
between 0s and 650s. Right: First resonance frequency after denoising
between 0s and 650s. Observe that portions of the denoised trace are
clearly represented by piecewise linear functions.

tal trace. A graphical comparison is shown in Figure 4.

FIGURE 4. First resonance frequency trace when denoised with two
values of PELT parameters µ and when drifts are removed after
post-treatments. Left: First resonance frequency denoised with µ = 109

(solid blue) and after drifts removal (dashed blue). Right: First resonance
frequency denoised with µ = 104 (solid blue) and after drifts removal
(dashed blue). We observed the expected result: A lower value of µ better
captures small time scale variations in the resonance frequency trace. The
dashed blue functions represent the trace we would have obtained in the
absence of drifts, corresponding to the theoretical shape of the resonance
frequency.

In addition to showing the consistency of our drift model-
ing, the previous graphical examples also illustrate the versa-
tility of our TV-based denoising method. With an appropriate
change in parameter, we are indeed able to compute consistent
denoised resonance frequency traces that can capture varia-
tions at different time scales.

2) Particle mass computation
Let us focus on computing the mass computation of gold
nanoparticles when either the WDM or TV-based methods
are used to treat the resonance frequency traces. To achieve
statistical significance, we applied the same process to both
numerical methods: We computed the mass of every detected
particles in every NEMS for every experiment, and gathered
the results into a single dataset. This yields a larger number of
detected particles than when considering every NEMS sepa-
rately. It should be noted that for both methods, the number of
detected particles is identical before any denoising or filtering
process. This implies that only the mass distribution varies.
Among the masses obtained, we applied a filter to elimi-
nate inconsistent results. As explained in [10], this process
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is mandatory and does not depend on the chosen method.
Indeed, even for simulated data where all parameters are per-
fectly known, such inconsistencies exist and are unavoidable.
They are the consequences of the mathematical properties
of System (1), which shows intrinsic instabilities outside the
useful range of [0.27, 0.48] ∪ [0.52, 0.73] (for a normalized
NEMS length). Thus, we removed from the resulting mass
distribution all particles whose computed positions do not
belong to [0.27, 0.48] ∪ [0.52, 0.73].

We now summarize the results obtained for a mass interval
of [50, 250] MDa in Table 1 and Figure 5. We selected this
mass interval with its center aligned to the anticipated mass
of gold nanoparticles with a diameter of 29.2 nanometers.
The chosen bounds are sufficiently distant from the center to
reveal the characteristics of the mass distribution tails.

BBI gold nanoparticles TV based WDM
mass mean (MDa) 151.51 151.82 162.66

mass variance (MDa) N/A 27.63 32.92

TABLE 1. Table of mass distribution statistics for TV-based and WDM
methods in the mass interval [50, 250] MDa, with BBI AuNPs as a
reference. In this interval, the total number of detected particles was 311
and 308.

FIGURE 5. AuNP mass distribution profile for TV-based denoising and
WDM methods in the mass interval [50, 250] MDa. Bin size is equal to 7.5
MDa. In this interval, the total number of detected particles is respectively
equal to 311 and 308. Left: Mass distribution profile for the TV-based
denoising method. Right: Mass distribution profile for the WDM method.

We first observe that the mean mass obtained by the TV-
based method is close to that obtained using the manufac-
turer’s values.We also note that the relative error value (0.7%)
is in line with the results presented in [10], where no drifts
are present. This confirms that drifts are well captured by our
model. In constrat, the WDM method gives a mass estimate
that overestimates the true particle mass, while having a
mean mass relative error (around 7%) one order of magnitude
higher than that shown in [10]. For the WDM method, such
an increase in the mean mass relative error between the
present study and the aforementioned one suggests that drifts
are important signal features to consider when attempting to
obtain consistent mass estimates. In addition to the impact of
drifts on the mean mass estimate, the previous results also
suggest that drifts do not share the same physical origin as

white or colored noise, that is, they cannot be modeled as
random effects; in that case, WDMmean mass should follow
the LLN and be closer to the mean mass estimated with the
manufacturer’s value. Finally, we note that the proposed TV-
based method is more accurate than the WDM method by a
factor of ten. This increase in accuracy is particularly signif-
icant in the field of mass spectrometry. Indeed, mass spec-
trometry characterizes the different components of a sample
through their mass [27]. Thus, the more accurate the mass
measurement, the more reliable the component identification.
Therefore, it is important to develop a method that ensures a
high level of accuracy.

Remark 9. We observe that the mean mass obtained using
the TV-based method is lower than the mean mass obtained
using the WDM method. This tendency should always be
verified. Indeed, the TV-based method minimizes the sum of
trace gradients, which implies that it also minimizes the sum
of all particle masses. Consequently, we deduce that the sum
of all particle masses for the WDM method is greater than
that for the TV-based method. Naturally, this is the same for
the respective means.

The proposed TV-based denoising method behaves dif-
ferently according to the experiment. For each NEMS, the
number of linear polynomials used to model the drifts is much
higher during the second experiment than that during the first
experiment (see Table 2).

1st experiment 2nd experiment
Number of linear polynomials 46496 75272

TABLE 2. Table of the number of linear polynomials for drift
representation for all NEMS and a single resonance frequency

This difference in the resonance frequency trace represen-
tation may be a sign of the physical differences in the NEMS
between the first and the second experiments. According
to the protocol described above, the NEMS were cleaned
of particles for the first mass measurement experiment and
reused for the second experiment. In fact, the surface state of
the NEMS in the second experiment was therefore different
from that in the first one. Nevertheless, this change in drift
representation does not strongly change the mass distribution
profile. In ourmodeling, drifts are indeed identified after trace
discontinuities caused by particle deposition. Because these
discontinuities are unaffected by the level of drift modeling,
the computed particle masses should be mostly similar to
the previous case. This assertion was verified by conducting
new mass computations, which are described and analyzed in
Appendix C.

For these experiments, in addition to a gain in mass ac-
curacy, we observe a non-negligible gain in mass resolution
(approximately 16.07%) for the TV-based method compared
with the WDMmethod. Such a gain could be very interesting
for experiments in which two types of particles with similar
masses are studied. We can expect a better discrimination be-
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tween these two types of particles with the TV-based method,
whereas it could be more difficult with the WDM method.
We also observe that the gain in resolution shown here is not
as good as that shown in [10]. In the aforementioned report,
the mass resolution is estimated using simulated data, where
every particle mass distribution is exactly the Dirac function
before the addition of noise. Thus, the observed loss in the
mass resolution is only due to noise effects. In the present
case, the situation is different because the particle mass distri-
bution deviates from a Dirac function owing to the fabrication
processes. The particles have a natural mass spread, which
creates a mass distribution with a non-negligible support
that limits the mass resolution. As the TV-based denoising
method removes noise, it focuses on limiting the loss of mass
resolution owing to noise, but it has no effect on the natural
spread of the particle mass. The observed gain in the mass
accuracy is then bounded and cannot exceed a certain value.

3) Drift interpretation
In this section, we focus on comparing the experimental data
with the modeling described in Appendix F. For ease of
reading, we recall that our modeling assumes that the NEMS
operate in an atmosphere composed of different gases: Air
at low pressure and a gas generated by the evaporation of
the liquid solvent. This mixture of gases is assumed to be
uniformly adsorbed by the NEMS, both in time and space,
thus increasing their total mass. This hypothesis is related
to observations made in the field of gas sensors, where sen-
sor surfaces are deliberately functionalized to adsorb spe-
cific molecules [28]. As a by-product, this model predicts
a regular and smooth decrease over time for both resonance
frequencies, exhibiting a certain correlation factor. However,
an analysis of our experimental resonance frequency traces
does not show clear evidence of this temporal behavior. If the
traces seem to exhibit time structures that could correspond
to the expected ones, the number of data points is too low to
make a definitive decision. A similar observation can bemade
when looking for a correlation between the decrease in both
resonance frequency traces. No strong evidence emerges even
if some positive trends appear (see Appendix F).

However, our experimental results may also indicate that
some of our modeling hypotheses must be modified. It could
be more realistic to consider random and spatially discontin-
uous droplet depositions. In such a scenario, NEMS surfaces
would vary gradually over time from an initial smooth state
to various rougher states. Consequently, a variable surface
interaction between the NEMS and its surrounding environ-
ment would occur, explaining both the lack of time correlation
between the resonance frequency drifts and the drifts’ long-
term behavior observed in our data.

Eventually, it appears that additional experimental data are
required to validate or differentiate between the two previ-
ous models: Continuous homogeneous droplet deposition and
random discontinuous droplet deposition. However, even if
additional data invalidated the homogeneous deposition mod-
eling, it would not automatically validate the inhomogeneous

deposition case owing to the lack of existing modeling. In
this situation, it would be interesting to directly image the
NEMS surfaces at different times (using Scanning Electron
Microscopy [29] or Atomic ForceMicroscopy [30] methods),
and check their actual state and evolution over time. These
images could confirm inhomogeneous modeling or provide
some hints about the underlying physics that controls the drift
behavior.

B. CAPSID LIKE PARTICLES
In this section, we measured the mass of transpoviron free
Zamilon vitis virophage capsids [31], which are assimilated to
CLPs. Virophages are true viruses of giant viruses belonging
to the family Mimiviridae [32]. Virophage capsids (also
known as virions) are the protein shells that encapsulate the
genetic material of virophages. Zamilon virophage capsids
have the same structure as Sputnik virophage capsids [33]
whose icosahedral structure has been determined by cryo-
electronmicroscopy [34]. The icosahedral capsid is organized
into a T = 27 lattice with 260 trimeric capsomers, composed
of three double “jelly-roll” major capsid proteins, the most
abundant protein in the virions. Additionally, there are 12
pentameric capsomers made of five single jelly-roll proteins.
Mass spectrometry-based proteomics identified additional
proteins with variable abundance [31], the vast majority being
inside the capsids, with some also decorating the surface
of the icosahedral capsids. Finally, the virions contain the
20 kilo-base pair (Kbp) double-stranded DNA (dsDNA)
genome. Despite this regular structure and their known pro-
tein composition, obtaining precise mass measurements of
virophage capsids remains a challenge. For instance, the
proteins at the periphery of the capsids can be partially lost
during the purification procedure, altering the overall mass to
different extents and impacting their diffusion capabilities. It
has been demonstrated that NEMS are innovative and useful
tools for measuring the mass of capsids [8], but it has also
been found that a denoising process is necessary to increase
the precision and resolution of mass measurements in order
to differentiate capsids presenting various compositions.

The Zamilon vitis virophage was replicated by the giant
virus Moumouvirus maliensis in co-infected Acanthamoeba
castellanii cells. The virophage was then separated from the
giant virus by centrifugation and several rounds of filtra-
tion, and finally purified on sucrose gradient. The pelleted
virophage particles were resuspended in 40 millimolar (mM)
Tris buffer, pH 7.5. The stock solutions were then diluted in
deionized water to a concentration of about 5 1011 capsids
per milliliter (i.e. by a factor of approximately 1000) for
the mass analysis. The estimated mass of these CLPs is
about 85 MDa to 90 MDa, contributed by both the virophage
proteome and the dsDNA genome. Since there were 780
copies of the major capsid protein in the icosahedral capsids,
the copy number of the other proteins was estimated based
on their relative abundances in the mass spectrometry-based
proteomic analysis of the virophage. The nucleotide sequence
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of the virophage genome was also used to compute its mass.
The capsid mass estimation was simply derived by summing
the masses of the different proteins composing the virophage
capsid and the mass of the genome. Similar to AuNPs,
the mass measurement data were acquired with the system
described in Figure 2, along with the same microfluidic
and nebulization systems. The mass measurements represent
17 different experiments (numbered following chronological
order), conducted over several months. Therefore, while the
experimental conditions were similar across experiments,
they were not exactly identical. The relative humidity fluctu-
ated within a few percentage points around 25% and the room
temperature similarly varied around 25°C. The microfluidic
system transported the CLPs in solution to the nebulization
system at a rate ranging from 30µL/h to 60µL/h, depending
on the experiment. The capillary was heated at lower tempera-
tures than forAuNPs, as biological samples aremore sensitive
to heat than nanoparticles. The chosen temperature range was
from 150°C to 175°C. Finally, the Electrospray System was
set from 2.6kV to 3.8kV depending on the experiment and
pressure in the NEMS chamber was set at 1.3 10−2 mBar.
A total of 5 different arrays of 20 resonators each were used
for this 17 experiments. Since the architecture of these arrays
and the NEMS features were identical, these replacements in
NEMS arrays had no influence on the overall results. Also
note that the NEMS in each array had dimensions identical
to those indicated in the AuNPs section. Finally and similar
to the AuNPs experiments, each NEMS resonance frequency
was sampled every 0.4s during the whole duration of each
experiment.

1) Mass computation
The measurements of all experiments were gathered to com-
pute themass distribution of CLPs, and then were treated with
the WDM or the TV-based method. As the data are identical
for both methods, the detected discontinuities due to capsid
deposition are identical, and, thus, the overall number of de-
tected particles is also identical. As for gold nanoparticles, we
applied some position and mass filters to remove inconsistent
results: Following the same arguments as in the AuNPs case,
we remove particles whose computed positions do not belong
to [0.27, 0.48] ∪ [0.52, 0.73] and whose computed masses is
not in the range [40, 150] MDa.

Before demonstrating what the impact of our TV-based
method on the mass distribution profile is, we recall that for
virophage capsids, there is no true mass reference that can be
used as a comparison point. Contrary to gold nanoparticles,
CLPs are not produced with a perfectly controlled industrial
process. Therefore, the virophage capsid population we stud-
ied may have different compositions (due to the presence
or loss of additional proteins) and the mean of the CLPs
distribution mass only represents a mean of these capsid
masses and not a unique type of capsid. Nevertheless, it is
still pertinent to verify if the WDM and TV-based methods

obtain comparable mass means and if these means are close
to the estimated virophage capsid mass, which is computed
by summing the masses of the structural proteins and genome
that compose the capsid.

FIGURE 6. Capsid mass distribution profile for TV-based denoising and
WDM methods in the mass interval [40, 150] MDa. Bin size is equal to 3.75
MDa. In this interval, the total number of detected particles is respectively
equal to 1606 and 1988. Left: Mass distribution profile for the TV-based
denoising method. Right: Mass distribution profile for the WDM method.

We first observe that the means of both mass distribu-
tions (89.87 MDa for the TV-based method and 90.03 MDa
for the WDM) are close to each other and align with the
estimated virophage capsid mass. This initial observation
confirms the consistency of the TV-based method with the
reference method. We also observe that, contrary to the gold
nanoparticle experiments, the TV-based method has a similar
mass precision to the WDM method when compared to the
estimated capsid mass (5.5% relative error versus 6.8% for
the 85 MDa estimate and 1% relative error versus 0.8%
for the 90 MDa estimate). This can be explained by the
difference in the number of detected mass events in both
situations. Indeed, in this section, the number of detected
masses in the targeted range is approximately 5 times higher
than in the AuNPs experiments: Since the WDM method
relies on statistical properties, it is favored by this situation.
Conversely, this results seems to show that WDM needs a
large number of mass events to achieve similar results to the
TV-based method, and is therefore more time demanding.
Additionally, we notice that the background signal in the TV-
based method is lower than that obtained with the WDM,
resulting in an increased signal-to-noise ratio. This difference
can be attributed to the heavier left tail of the WDM mass
distribution. It is noteworthy that this heavier tail for WDM
is caused by the higher number of detectedmass in the studied
mass interval (approximately 20% higher). Since the total
number of detected masses is equal for both WDM and TV-
based method, this disparity can only be explained by the
denoising process of the TV-based method, which produces
resonance frequency discontinuities free from noise and drifts
and, consequently, influencing the mass estimations.

Since we do not have true mass reference for virophage
capsids, we consider another type of criterion to estimate the
mass precision and resolution. When considering different
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experiments, the variability of mass distribution across these
experiments is a good indicator of the accuracy of an analysis
method. Indeed, the more variability, the less accurate an
experiment is. Nevertheless, using such a criterion neces-
sitates experiments with the same experimental conditions
to be reliable. In order to fulfill this requirement, we thus
focus on 4 consecutive experiments among the 17 that were
conducted the same day, and, thus, under the exact same
experimental conditions. With this set of experiments, both
TV-based and WDM method can be compared regarding the
intrinsic variability of the mass distribution they contribute
to produce. Additionally, we also compare the data spread of
each experiments (i.e. the difference between the maximum
mass and the minimum mass) in this set for each method:
Since the mass distribution from the WDM method has a
heavy tail that the TV-based method does not, using standard-
deviation as a comparison criterion would excessively bias
the results in favor of the TV-based method. Both criteria
(distribution variability and data spread) are shown in Figure
7 and summarized in Table 3.

FIGURE 7. Box plots and violon iso-response curves of capsid mass for
TV-based denoising and WDM methods. Left: Box plots and violon
iso-response curves for the TV-based denoising method. Right: Box plots
and violon iso-response curves for the WDM method.

TV-based method WDM
Nb of particles median spread Nb of particles median spread

Experiment 9 111 92.1 63 116 92.5 81.5
Experiment 10 105 89.3 89.5 144 89.4 95.5
Experiment 11 35 85.8 50.27 37 85.96 51.73
Experiment 12 99 87.1 80.4 102 90.1 96.4

TABLE 3. Main information about the mass distribution profile for the
four experiments represented in Figure 7. The unit for the median and
spread data is MDa.

We observe that both methods yield similar results for each
experiment in term of median values and exhibit a similar
trend over time: A decrease for the first three experiments
followed by an increase on the last day. When comparing
the two methods, we also note that the variation in median
values over time is of the same order of magnitude from
one day to another. This indicates that the TV-based method
provides mass estimations as reliable as the WDM method.
However, the relative positions of the first and third quartile
to the median clearly indicates that the TV-based method
produces mass distributions that are more symmetrical than

the WDM method. Additionally, it is evident that the mass
distributions obtained with the TV-based method are more
consistent with each other than those obtained with the
WDM method (see also Figure 13 in Appendix E). This is
an important observation, as it aligns with expectations for
experiment conducted in identical conditions. At last, the
mass spread is lower for the TV-based method than for the
WDM method (from 2.8% to 22.7%), indicating that the
measured masses belong to a more compact interval, and
thus, the mass resolution is necessarily better. It is noteworthy
that experiment 10 does not have similar number of detected
particles in the range [40, 150] MDa for both methods. This
discrepancy is once again explained by the property of the
TV-basedmethod, which naturally removesmasses computed
from the resonance frequency discontinuities mostly affected
by noise and drifts.

2) Drift influence
We now present some results indicating that accounting for
drifts in the denoising process for NEMS signals is necessary.
To this aim, we selected two experiments among the 17where
the resonance frequencies are significantly affected by drifts,
compared with another reference experiment where drifts do
not seem to be present. It is noteworthy that these two experi-
ments are different than those presented previously since they
were the last conducted (Experiment 16 and Experiment 17).
In the following, we analyze the results for the Experiment
17 only, but conclusions for the Experiment 16, which are
similar to those presented here, can be found in Appendix D.
As shown in Figure 8, Experiment 16 exhibits a larger relative
deviation of the first resonance frequency: We observe a
relative difference of approximately one order of magnitude.
Note that the same occurs for the second resonance frequency
but, for simplicity, we choose not to show it in this report.

FIGURE 8. Normalized first resonance frequencies of the NEMS for two
different CLP mass measurement experiments. Left: Experiment with
small drifts. Right: Experiment with large drifts. Note that the first NEMS
is not shown because it was not functional in one experiment. The left
image shows data with typical resonance frequency decay, producing
similar mass density kernels for both the TV-based (light blue curve in the
inset, 195 mass events) and WDM methods (light red curve in the inset,
205 mass events). The yellow band provides a visual cue to easily
compare both situations.

We present in Figure 9, the mass kernel densities obtained
by the TV-based method and the WDM method in this case
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of prominent drifts in the recorded NEMS resonance frequen-
cies.

FIGURE 9. Density kernels of mass measurements in the range [40, 150]
MDa for the TV-based method (light blue) and the WDM method (light
red). The y-axis represents the percentage of the total number of masses
in the bins of the underlying histogram, with a bin size is set to 3.75 MDa.

With Figure 9, we observe that both kernel densities have
mass means close to each other (87.4 MDa for the TV-based
method and 85.9 for the WDM method) which are also close
to the estimated virophage mass. Interestingly, the TV-based
method produces a kernel density which can be interpreted as
representing truemass depositions corresponding to particles,
whereas the WDM method does not reveal any signal that
could be interpreted as such. This observation is attributed
to the difference in the standard deviation values, which are
11.92 MDa with 68 mass events for the TV-based method
and 28.58 MDa with 233 mass events for the WDM method,
respectively. The difference in the number of detected masses
demonstrates once again the capability of the TV-based
method to remove information that are affected mostly by
noise and drifts while keeping the information corresponding
to the virophage capsids. Also note that the difference in the
number of events (165) does not fully explain the difference in
events in the mass interval [40, 150] MDa reported in Figure
6, which is 382. Although this accounts for a significant
portion of the overall event difference, it indicates that the
TV-based method also contributes to enhancing the quality of
mass estimation, even in cases where drifts are not prominent
in the NEMS resonance frequencies. Similarly, it important
to note that the mass kernel density produced by the WDM
method in the context of large drifts contributes to the left
tail observed in Figure 6. Thus, it seems that the drifts in
resonance frequencies are responsible for the observed loss of
signal-to-noise ratio, and that a signal processing, such as the
one proposed in the present report, is necessary to keep the
noise background in mass histograms at low levels. Finally,
Figure 9 seems to show that the observed drifts increase with
the resonator number. Since the latter is directly related to
the length of the beams constituting the NEMS (the smaller
the number, the longer the beam), it may indicate that drifts
are correlated with the surface states of the NEMS. This
assumption, similar to the one formulated with the AuNPs
experiments, has not been investigated yet but will be studied
in the near future.

VIII. CONCLUSION
The modeling proposed in this report improves the repre-
sentation of the NEMS resonance frequency traces for true
experimental data. In addition to random Gaussian noise,
it incorporates the representation of unreported phenomena,
namely, frequency drifts. As drifts induce changes in the
shape of resonance frequency traces, they can negatively
affect the NEMS resolution when measuring the mass of de-
posited particles. Consequently, we proposed modeling these
drifts as sets of linear polynomials to fit experimental data
and thus prevent loss of mass accuracy and resolution. We
showed that this model, with a novel and adequate algorithm
based on the Total Variation method, provides better mass
accuracy and resolution properties, and an improved signal-
to-noise ratio on experimental data compared to the reference
method, thus underlining the importance of modeling drifts to
obtain consistent mass estimates. Additionally, by providing
quantitative measurements of the drifts’ main features, this
model offers the opportunity to obtain a deeper comprehen-
sion of NEMS physics under experimental conditions. Then,
we assumed that drifts are the consequence of a continuous
(in space and time) solvent droplet deposition on the NEMS
surface, and tested this hypothesis against our experimental
results. If the data do not show clear evidence for this depo-
sition model, they seem to indicate that there is a link either
between the initial experimental conditions and the drift slope
distribution or the surface state of the NEMS.

Our future work on NEMS will focus on two main points.
First, we will conduct additional mass measurement exper-
iments to fully assess our hypothesis of continuous solvent
droplet deposition on NEMS. Through this, we hope to gain
a deeper understanding of the factors influencing NEMS
frequencies during particle deposition. Even if our model
is proven to be erroneous, these data could still highlight
phenomena that have not been explored in this report. Second,
in connection with the previous topic, wewill explore the drift
potential to predict the wear of the NEMS over time. As a
potential marker of the NEMS surface state, drifts could be
used as a tool to identify defective devices and consequently
contribute to increase the robustness of our mass measure-
ments. In the longer term, it could also be interesting to
test artificial intelligence to improve certain aspects of our
algorithm. Such elements could build upon the propositions
presented in [35] and [36], where the sequential denoising
methodology aligns with what we propose here. In particular,
the trace feature identification part could greatly benefit from
the properties of the wavelets used in [36]; the multi-scale
nature of wavelets lends itself quite naturally to the separation
of discontinuities, drifts, and noise.

APPENDIX A
"ELLIPSE METHOD": A STATISTICAL TEST
First, we define a statistical test under classical assumptions.
Once defined, we relate this test to the "ellipse method",
the definition of which is rewritten here for the sake of
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completeness. Note that all notations used here are identical
to those described in the main part of this report.

A. "ELLIPSE METHOD" DESCRIPTION
As mentioned in the main part of this article, the "ellipse
method" described in [6] discriminates discontinuities in res-
onance frequency traces due to particle depositions from
discontinuities due to random noise. For ease of reading, we
rewrite the three steps that constitute it:

1) The first step consists of recording the first NEMS res-
onance frequency s1 and the second NEMS resonance
frequency s2 when no particle deposition occurs to
directly probe the noise affecting the NEMS resonance
frequency traces during the experiments.

2) The second step is to draw a scatter plot of ∇s2 with
respect to ∇s1, where ∇si for i = 1, 2 is defined as all
differences of si consecutive values. Once the scatter
plot has been drawn, it is fitted with a bi-variate Gaus-
sian distribution, thus defining an ellipse encapsulating
points only owing to noise.

3) The final step is the true identification part. While
recording NEMS signals when the particle deposition
experiment is conducted, both ∇s1 and ∇s2 are com-
puted and drawn on the previous scatter plot. If one
of the newly acquired points lies inside the previously
defined ellipse (up to a user defined threshold), it is
not attributed to particle deposition but to noise effects.
Conversely, if the newly acquired point lies outside the
ellipse, it is attributed to particle deposition and is thus
flagged as such.

B. χ2
2 STATISTICAL TEST

The noise affecting both NEMS resonance frequency vari-
ables at time i is modeled as a random Gaussian variable εi,
with mean equal to 0 ∈ R2, and covariance matrix equal to
a given matrix Σ ∈ R2×2. Moreover, it is also modeled such
that εi and εj are independent for all i 6= j. We denote d i as a
random variable built from the noise difference:

d i := εi+1 − εi

Consequently, d i is a Gaussian random variable with mean
0 ∈ R2, and covariance matrix Σ̄ := 2Σ ∈ R2. Note that d i
and d j are also independent for all i 6= j. Let denote si as a
random variable that is, at time i, the sum of the noise and the
differences of both resonance frequencies:

si =

((
∇s1

)
i(

∇s2
)
i

)
+ d i

At last, we define the statistics yi as:

yi :=
〈
si, Σ̄−1si

〉
2

We observe that when no particle deposition occurs at time
i, we have

(
∇sj
)
i = 0 for j = 1, 2 and thus yi depends only on

d i. Because d i follows a Gaussian law N
(
0, Σ̄

)
, we deduce

that yi follows a χ2 law with two degrees of freedom (also
denoted χ2

2 law), and does not depend on time i.

Conversely, when a particle deposition occurs at time i,
there is a vector µ ∈ R2 such that

(
∇sj
)
i = µj for j = 1, 2.

Variable yi then follows a non-central χ′22 distribution with a
noncentrality parameter λ:

λ :=

2∑
i=1

(
Σ̄−

1
2µ
)2
i

It then appears that we can define a statistical test to
determine whether a measured point is due to noise only. The
idea is to check for this point if λ can be considered equal to
0 or equivalently if yi can be considered to follow a χ2

2 law.

To this end, we define the null hypothesisH0 as "yi follows
a χ2

2 distribution" and a rejection area R ⊂ R. Then, H0 is
rejected if, for the realization y of yi, we have y ∈ R. In
addition, we can estimate the probability of a Type I error,
which is equal to P(yi ∈ R). Because yi is a real non-negative
random variable, the rejection area is an interval:

R := [δ,+∞[

where δ can be any real non-negative number.

According to the definition of yi, there is a realization set
for the random variable d i which corresponds to this rejection
area. This set, denoted S , verifies the following:

S :=
{
s ∈ R2 |

〈
s, Σ̄−1s

〉
2
≥ δ
}

Because matrix Σ̄−1 is non degenerated, S is thus an area
located outside an ellipse described by the equation:〈

s, Σ̄−1s
〉
2

= δ

Choosing a suitable δ depends only on the significance
level α ∈ R that a user wants to obtain. Indeed, δ is always
greater than or equal to the corresponding critical value.

C. THE "ELLIPSE METHOD" AS χ2
2 STATISTICAL TEST

With all the previous developments, we can now understand
why the "ellipse method" can be viewed as a statistical test.
The first and second steps of the "ellipse method" are used to
estimate the covariance matrix Σ̄. The user threshold in the
third step corresponds to the previously introduced δ param-
eter. Finally, the "ellipse" corresponds to the complementary
set of rejection area R. But by sticking to the previous statisti-
cal framework, we are now able to give additional information
to the ones provided by the "ellipse method": In particular, we
can now easily estimate the corresponding Type I Error.

APPENDIX B
PROXIMAL METHODS: APPLICATION
In this section, we briefly recall the application framework
and principal properties of proximal methods. We then focus
on their applications in themain steps of our denoisingmodel.
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A. PROXIMAL METHODS
Proximal methods (or the proximal gradient methods) are
used to solve non-differentiable convex optimization prob-
lems. In particular, they are perfect tools for finding the argu-
ment of minimum of optimization problems of the following
form:

û := arg min
u∈U

f (u) + g(u)

where U is a given space, f is a continuously differentiable
function with a Lipschitz continuous gradient, and g is (pos-
sibly) a non-differentiable but convex function.

It can be proved (see for instance [15]) that under the
previous hypotheses, û verifies for any positive integer t:

û = Proxt(g) ((Id− t∂f )(û))

In the previous equation, ∂ is the gradient operator and
Proxt(g)(v) is the proximal operator for v i.e. the unique
solution of the equation:

Proxt(g)(v) = arg min
w∈U

g(w) +
1

2t
||w − v||22 (7)

In fact, û is a fixed point and can be computed by applying
the following two-step algorithm:

Algorithm 2 Compute û as the fixed point of:
j← 0

xj ← x0

repeat
yj ← xj − t(∂f )(xj)

xj+1 ← argmin
w∈U

g(w) + 1
2t ||w − yj||22

j← j+ 1

until convergence is reached
û← xj

The first step of this algorithm is a classical step for descent
algorithms, in which the descent direction is the gradient of
f at point xj. The second step involves applying the proximal
operator to the result obtained in the first step. In general
cases, this proximal operator is not known explicitly and must
be computed numerically using iterative methods in Equation
(7). The consequence is an additional computational cost (see
[23]), which can negate the benefits of using such a simple
approach. Nevertheless, we show in the following that, for
our application, all required proximal operators are explicit,
providing inexpensive and efficient methods to denoise reso-
nance frequency traces.

Remark 10. Note that the previous algorithm is very sim-
ilar to the well-known projection-gradient method. In the
latter case, a projection operator is applied after the descent-
direction step, whereas in the present case, a proximal op-
erator is used instead. Somehow, proximal operators are
generalizations of projection operators.

B. DENOISING METHOD: FIRST STEP
In this section, we focus on Equations (4), which require
projection algorithms to be solved. As a by-product, we have
to define a single projection operator Proj from Rn1 onto G1,
because we project onto the same space for both resonance
frequency traces. This projection operator verifies for every
v ∈ Rn1 :

(Proj(v))j :=

{
min(vj, 0) if j ∈ IG1

vj if j /∈ IG1

(8)

C. DENOISING METHOD: SECOND STEP
In this section, we consider Problems (5). These problems
verify the framework of the proximal methods when we set
for every resonance frequency i = 1, 2:

f (u) :=
1

2
||Wiui − f̃ i||22 −

1

λi

∑
j∈IG1

ui
j

g(u) :=
1

λi
||L1D1ui||1 + Ind(G1)

where Ind(G1) is the indicator function of the closed
convex set G1.

Observe that in the previous equations, we split the L1

term of Equation (5) into two contributions. The first one is
dedicated to the trace discontinuities only (the second term of
the right member in f ), and the second one is attached to drifts
only (the first term of the right member in g). Because the
traces are functions of D1 and are represented by vectors in
D1, the contribution of traces discontinuities can be simplified
into linear terms. Consequently, it can be integrated into the
smooth function f without modifying its differentiability.

Considering this observation, the proximal operator
Proxλi,t is defined for every v ∈ Rn1 as:

Proxλi,t(v) = arg min
w∈G1

1

λi
||L1D1w||1 +

1

2t
||w − v||22

Because thematricesL1 andD1 are diagonal, this equation
can be rewritten as:

Proxλi,t(v) := arg min
w∈G1

T0(w,v) + T1(w,v) + T2(w,v)

Where we have set:

T0(w,v) :=
1

2t
(w1 − v1)2

T1(w,v) :=
∑
j∈IG1

1

2t
(wj − vj)

2

T2(w,v) :=
∑
j/∈IG1

j 6=1

L1
jj

λi
|wj|+

1

2t
(wj − vj)

2
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Because all the components are independent, it is easy to
obtain an explicit expression for Proxλi,t(v):

Proxλi,t(v) :=


vj if j = 1

min(0,vj) if j ∈ IG1

sign(vj) max(|vj| −
tL1

jj

λi
, 0) otherwise

where sign(x) is equal to 1 if x ≥ 0 and −1 if x < 0.

Note that operators Proxλi,t consider the discontinuity
modeling as well as the drift modeling.

D. DENOISING METHOD: THIRD STEP
Here, we focus on the minimization Problem (6). As stated,
this problem is divided into two partially convex subprob-
lems, each requiring a proximal or projection operator. In this
section, we describe how to obtain an explicit expression for
each of these operators.

Following the proofs in Appendix C, we first design the
proximal operator associated with Equation (10). In this case,
for variable u := (u1,D1u2), the functions f and g are equal
to:

f (u) := RΦ
(
u1,D1u2

)
g(u) := SΦ(u1,D1u2) + Indu1

(G1)Indu2

(G1)

Where Indui

(G1) is the indicator function of G1 for vari-
able ui and we have set:

RΦ
(
u1,D1u2

)
:= QΦ

(
u1,D1u2

)
−
∑
j∈IG1

(1 + Φjj)u
1
j

SΦ
(
u1,D1u2

)
:= ||L1D1u1||1 + ||L1D1u2||1

As in the previous section, we split the L1 term in (6)
into two contributions and dispatch them according to their
regularity. Observe that we considered System (1), which
couples the discontinuities between both resonance frequen-
cies. Consequently, the proximal operator Proxu,t associated
with function g is written for every (v1,v2) ∈ Rn1 × Rn1 as
follows:

Proxu,t(v1,v2) = arg min
(w1,w2)∈G1×G1

SΦ
(
w1,D1w2

)
+

1

2t
||(w1,w2)− (v1,v2)||22

It is clear that the variables v1 and v2 are both indepen-
dent in the previous expression. This leads to the following
expression for the proximal operator:

(Proxu,t(v1,v2))j :=


(v1

j ,v
2
j ) if j = 1

(min(v1
j , 0),min(v2

j , 0)) if j ∈ IG1

(T j(v1
j ), T j(v2

j )) otherwise

with T j(x) := sign(x) max(|x| − tL1
jj, 0).

An appropriate operator must be defined to solve Problem
(12). As shown in Appendix C, this problem is only quadratic,

and as such, we only need to define a projection operator for
matrix Φ, or equivalently for the vector y := J1u1Φ intro-
duced in (13). With Φ belonging toH, it is straightforward to
define the correct projection operator ProjΦ for variable y as:

(ProjΦy)j := max(0,min(yj,Φmaxu1
j ))

APPENDIX C
NONLINEAR MODEL: CONVERGENCE PROPERTIES
In this section, we focus on proving that Algorithm 1 con-
verges towards a local minimum of Equation (6). To this
end, we show that we can generate a minimization sequence
for an "uncoupled" version of (6). Classical arguments of
convergence for solutions can then be applied because our
solutions belong to finite-dimensional spaces. Note that the
notations are identical to those defined in the main part of
this report.

A. MINIMIZATION PROBLEM FOR COUPLED TRACES
We begin by recalling the functional U whose a minimizer
(u1,u2) has to be obtained in space G1 × G1, under the
constraint u2 = Φu1 with Φ ∈ H:

U(u1,u2) := ||L1u1||1 + ||L1u2||1 + Q1(u1) + Q2(u2)

Q1(u1) :=
λ1
2
||W1u

1 − f̃1||22

Q2(u2) :=
λ2
2
||W2u

2 − f̃2||22
(9)

To explicitly consider the constraint on space G1, we split
the unknown u2 into its discontinuity part, J1u2 and its drift
part D1u2. Consequently, the L1 and L2 terms attached to
u2 in the previous minimization problem can be rewritten in
an uncoupled form (up to constant terms because they do not
play any role in minimizing functional U ):

||L1u2||1 = ||L1J1u2||1 + ||L1D1u2||1

Q2(u2) =
λ2
2

〈(
A2 A2

A2 A2

)(
J1u2

D1u2

)
,

(
J1u2

D1u2

)〉
2

− λ2
2

〈(
A2f̃2
A2f̃2

)
,

(
J1u2

D1u2

)〉
2

Where we have set:

A2 := WT
2W2

With this formulation, we are now able to explicitly intro-
duce nonlinear relation (1), which links the discontinuities
of both resonance frequencies. By denoting Φ as a diagonal
matrix whose diagonal elements are either equal to 0 or equal
to a scalar in [0, φi] at the ith discontinuity location, we have:

||L1u2||1 = ||L1J1Φu1||1 + ||L1D1u2||1

Q2(u2) :=
λ2
2

〈
QΦ

(
u1

D1u2

)
−
(

fΦ
1

fΦ
2

)
,

(
u1

D1u2

)〉
2
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where we have set:

QΦ :=

(
ΦT (J1)TA2J

1Φ ΦT (J1)TA2

A2J
1Φ A2

)
(

fΦ
1

fΦ
2

)
:=

(
ΦT (J1)TA2f̃2

A2f̃2

)
It is worth noting that because both matrices Φ and J1 are

diagonal, they are commuting matrices. A similar observation
holds between Φ and u1 as long as we see the latter as a
diagonal matrix whose diagonal coefficients are equal to u1

components. Both these remarks enable us to reformulate the
previous quadratic form in two different ways. If we wish
to highlight u1 and D1u2 as true variables, the quadratic
form Q2 can be expressed such that its associated matrix
depends solely on Φ. In this scenario, Φ plays a role similar
to a parameter. Similarly, if Φ is regarded as a true variable,
it is preferable to express Q2 as a quadratic form, with its
associated matrix depending solely on u1 and D1u2.

Following this observation, we denote QΦ as a quadratic
form equal to Q2 when u1 and D1u2 are variables and Φ
is a parameter. Its associated symmetric matrix is QΦ, and
its linear component is vector

(
fΦ
1 , f

Φ
2

)T
. In the case where

Φ is a variable and u1 and D1u2 are parameters, we denote
Qu1D1u2

as the corresponding quadratic form equal to Q2. It
is characterized by its associated symmetric matrixQu1D1u2

,
linear component fu1D1u2

, and constant part µu1D1u2

which
verify the following equations:

Qu1D1u2

:= (u1)T (J1)TA2J
1u1

fu1D1u2

:= (u1)T (J1)T
(
A2f̃2 − 2A2D

1u2
)

µu1D1u2

:=
〈
A2

(
D1u2 − f̃2

)
,D1u2

〉
2

Consequently, the functional U in (9) can also be written
in two different ways, depending on the variables we want to
highlight.

B. MINIMIZATION PROBLEM FOR U1 AND D1U2

In this section, we focus on showing that the functional U is
strictly convex when u1 and D1u2 are used as variables and
Φ is considered as a fixed parameter. To this end, we use (9),
in which the L2 term is replaced by the quadratic form QΦ.
The functional U with these hypotheses can be rewritten as
follows:

U(u1,u2) := LΦ(u1,D1u2) + QΦ
(
u1,D1u2

)
(10)

Where we have set:

LΦ(u1,D1u2) := ||L1
(
Idn1 + J1Φ

)
u1||1 + ||L1D1u2||1

QΦ
(
u1,D1u2

)
:=

〈
Q̄Φ

(
u1

D1u2

)
−
(

f̄Φ
1

f̄Φ
2

)
,

(
u1

D1u2

)〉
2

(11)

With the following notations:

Q̄Φ :=
λ1
2

(
WT

1W1 0
0 0

)
+
λ2
2

QΦ(
f̄Φ
1

f̄Φ
2

)
:=

(
λ1

2 WT
1W1f̃1 + λ2

2 fΦ
1

λ2

2 fΦ
2

)
Considering Φ as a known and fixed parameter, the matrix

Q̄Φ in Equation (11) is well defined. In addition, we no-
tice that it is also positive-definite. Indeed the corresponding
quadratic formQΦ is only a rewriting of the sum of quadratic
forms Q1 and Q2 but for subset Q:

Q :=
{(

u1,u2
)
, u1 ∈ G1, u2 ∈ G1 and J1u2 = J1Φu1

}
Because the sum of Q1 and Q2 is trivially positive-definite

over the entire space G1, being the sum of two positive-
definite quadratic forms on two independent variables, it is
also positive-definite on Q. Consequently, the matrix QΦ

is positive-definite as well. We can then deduce that the
functional U is strictly convex in variables u1 and D1u2 as
the sum of convex functions with a strictly convex quadratic
form. Thus, U admits a single and global minimizer for a
fixed parameter Φ.

C. MINIMIZATION PROBLEM FOR Φ

We are now interested in minimizing the functionalU with Φ
as a variable, while treatingu1 andD1u2 as fixed parameters.
We aim to demonstrate that the corresponding minimizer is
unique and global. To prove this, we use the quadratic form
Qu1u2

in Equation (9) to represent the L2 term inU . With this
in mind, we write the functional U as:

U(u1,u2) := Lu1D1u2

(Φ) + Qu1D1u2

(Φ) (12)

Where we have:

Lu1D1u2

(Φ) :=||L1
(
Idn1 + J1Φ

)
u1||1 + ||L1D1u2||1

Qu1D1u2

(Φ) :=
λ2
2

〈
Qu1D1u2

Φ,Φ
〉
2

− λ2
2

〈
fu1D1u2

,Φ
〉
2

+ Q1(u1) +
λ2
2
µu1D1u2

We observe that some of the terms in the previous equation
do not depend on Φ, and thus can be discarded when looking
for a minimizer along the Φ axis. U can then be equivalently
replaced by a functional V defined in the same space but with
a simpler expression:

V (u1,u2) :=||L1J1u1Φ||1 +
λ2
2

〈
Qu1D1u2

Φ,Φ
〉
2

− λ2
2

〈
fu1D1u2

,Φ
〉
2

Considering that jump orientations are known beforehand
and that Φ is a vector whose components are all non-negative
because it belongs to H, the L1 terms in V are in fact linear
terms. Consequently, minimizing functional V is equivalent
tominimizing a simple quadratic form. It remains to show that
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this quadratic form is strictly convex. When looking at matrix
Qu1D1u2

, it does not seem that it can be a positive-definite
matrix. Indeed, u1 is a vector whose components may be
equal to zero, thus preventing Qu1D1u2

from being injective
and, in turn, from being positive-definite. Nevertheless, we
can proceed to a change of variable to remove this apparent
defect. Let denote y the following vector:

y := J1u1Φ (13)

Because we want to minimize V along the Φ axis and
because u1 is a known and fixed vector, y is a variable that
depends linearly on Φ only and belongs to a convex space Y
:

Y := {y ∈ Rn1 | yi ∈ [u1
i φi, 0] if i ∈ J1 and yi = 0 otherwise}

With this change of variable, functional V can be equiva-
lently rewritten for all y ∈ Y as:

U(u1,u2) := ||L1y||1 +
λ2
2

〈
A2

(
y − f̃2 − 2D1u2

)
,y
〉
2

In this relation, A2 is a positive-definite matrix which
implies that V is a convex functional for variable y ∈ Y .
We conclude that V admits a single global minimizer along
the y-axis. This minimizer is transformed into a minimizer in
the Φ variable. Except for the u1 components equal to zero,
the other components of Φ are computed using Equation (13)
because J1 is a one-to-one mapping . For the u1 components
equal to zero, the corresponding components of Φ are set to
φi. This is a requirement of the NEMS physics. In conclusion,
functional V (and U as well) has a single global minimizer
along the Φ axis.

The interval to which each φi belongs remains to be de-
fined. Because Φ is designed to be equivalent to the second
equation in (1), we deduce that for the ith discontinuity, we
have:

φi :=
s2i
s1i

max
xi

Φ(xi)

Given that the function Φ(xi) is known, we must estimate
the ratio s2i over s1i . To ensure the convergence of Algorithm
1, this ratio must be fixed once and for all. A consistent
way to achieve this is by utilizing the trace values computed
from Problems (5). As these trace estimates are calculated
to approximate the true signals closely owing to the noise
constraint, their ratio also approximates the true ratio. Using
this approximated ratio, it is now straightforward to define φi.

Remark 11. The previous change of variable also has prac-
tical consequences: Minimizing U on the variable y with a
numerical solver becomes an easy task thanks to the projected
gradient descent algorithms. These algorithms are efficient in
minimizing quadratic problems even with additional convex
constraints (in our case, space Y), provided that there is an
explicit projector onto these constraints. In the present case,
such an expression is available. See Appendix B for further
details.

D. CONVERGENCE TOWARDS LOCAL MINIMIZER
Now that we have proved that the functional U has a single
global minimizer in (u1,D1u2) and Φ directions, it remains
to be shown that we can provide a way to simultaneously
obtain a local minimizer in the three variables. First, let UΦ

define the following functional defined for every (u1,u2) ∈
G1 ×G1:

UΦ(u1,D1u2) := LΦ(u1,D1u2) + QΦ
(
u1,D1u2

)
Similarly, for every (u1,u2) in G1 × G1, we denote

Uu1Du2

(Φ) as the functional defined on G1 ×D1G1 which
is written as:

Uu1D1u2

(Φ) := Lu1D1u2

(Φ) + Qu1D1u2

(Φ)

Consequently, we observe that with relations (10) and (12),
the following equality holds:

UΦ(u1,D1u2) = Uu1D1u2

(Φ) (14)

Now, let u1,n, u2,n be vectors in G1 ×G1. Then, there is a
matrix Φn in H such that:

J1u2,n = J1Φnu1,n

Owing to the existence of a minimizer of U along
(u1,D1u2) axes, there are two vectors ũ1,n and ũ2,n both in
G1 ×G1 which verify the following:

UΦn
(ũ1,n,D1ũ2,n) ≤ UΦn

(u1,n,D1u2,n) (15)

Because U admits also a minimizer along the Φ axis, we
deduce that there is a matrix Φn+1 which verifies:

U ũ1,nD1ũ2,n
(Φn+1) ≤ U ũ1,nD1ũ2,n

(Φn) (16)

Now, following the definition of UΦ, Uu1u2

and Equation
(14), we have:

U ũ1,nD1ũ2,n
(Φn+1) = U(ũ1,n, ũ2,n)

U ũ1,nD1ũ2,n
(Φn) = UΦn

(ũ1,n,D1ũ2,n)

UΦn
(u1,n,D1u2,n) = U(u1,n,u2,n)

where we have implicitly written:

ũ2,n = L1J1Φn+1ũ1,n + D1ũ2,n

This equalities combined with Equations (15), (16) lead to:

U(ũ1,n, ũ2,n) ≤ U(u1,n,u2,n)

Finally, when setting:

u1,n+1 := ũ1,n

u2,n+1 := ũ2,n

We have:

U(u1,n+1,u2,n+1) ≤ U(u1,n,u2,n)

In other words, we produced a minimization sequence for
the functional U . As we work on finite-dimensional spaces,
this implies that there is a minimization sequence for U ,
which converges towards a local minimum represented by the
vectors u1,∗ and u2,∗.
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APPENDIX D
IMPACT OF DRIFT MODELING ON PARTICLE MASS
DISTRIBUTION
This section focuses on evaluating the impact of drifts on par-
ticle mass distribution in two different ways. Firstly, it aims to
determine if different drift models influence the overall parti-
cle mass distribution. This was achieved by recalculating the
mass distribution profile for the two experiments involving
AuNPs in this report. We accomplished this by doubling the
number of linear polynomials required to represent each drift.
Secondly, we provide an analysis of the mass distributions of
virophage capsids from Experiment 16: In this experiment,
the NEMS resonance frequencies were also affected by large
drifts. This analysis complements the discussion in the main
body of the report. For each scenario, we offer insights into
the varied results obtained.

A. AuNPs MASS DISTRIBUTION
The main features of the recomputed particle mass distribu-
tion are listed in Table 4 and the mass distribution obtained is
represented in Figure 10.

BBI gold nanoparticles TV based WDM
mass mean (MDa) 151.51 151.87 162.66

mass variance (MDa) N/A 27.61 32.92

TABLE 4. Table of mass distribution statistics for TV-based and WDM
methods in the mass interval [50, 250] MDa, with BBI AuNPs as a
reference. In this interval, the total number of detected particles is 312
and 308.

FIGURE 10. Mass distribution profile for TV-based denoising and WDM
methods in the mass interval [50, 250] MDa. Bin size is equal to 7.5 MDa.
In this interval, the total number of detected particles is respectively
equal to 312 and 308. Left: Mass distribution profile for the TV-based
denoising method. Right: Mass distribution profile for the WDM method.

We observe that there are no noticeable changes in themass
distribution profile in comparison with Figure 5. The same
observation occurs in the mass distribution features, where
the observed variations of the mass mean and mass variance
are of the same order of magnitude as those provided in Table
1. Both results confirm that our drift modeling has marginal
impacts on particle mass estimations; hence, it is a robust
method to capture particle mass in the presence of drifts.

B. CLPs MASS DISTRIBUTION
We present in Figure 11 the NEMS resonance frequencies
which were observed during Experiment 16.

FIGURE 11. Normalized first resonance frequencies of the NEMS for CLP
experiment number 16. The yellow band provides a visual cue identical to
that of Figure 8, indicating the band where resonance frequencies
minimally affected by drifts should be.

With Figure 11, we observe a similar decay of resonance
frequencies to those observed in Experiment 17. The order
of magnitude of decay is approximately 2 to 10 times the
expected values for experiments where resonance frequencies
are not strongly affected by drifts.

Having made this observation, we now focus on the the
mass density kernels provided by the TV-based and WDM
methods. When computing the mass for each discontinuity
detected in the resonance frequencies, we obtained Figure 12.

FIGURE 12. Density kernels of mass measurements in the range [40, 150]
MDa for the TV-based method (light blue) and the WDM method (light
red). The y-axis represents the percentage of the total number of masses
in the bins of the underlying histogram, with a bin size is set to 3.75 MDa.

Again, we observe that the TV-based method produces a
mass kernel density with a peak better defined than that of
theWDMmethod. This is due to the removal of masses in the
left part of the studiedmass interval, which are responsible for
the existence of a heavy tail in the WDM kernel density. We
also note that the TV-based method detects 64 mass events
in the interval [40, 150] MDa, whereas the WDM method
identifies 99 mass events. Although fewer that those reported
in the main body of this report, this difference follows a trend
similar to what is indicated in the CLPs section. Lastly, it is
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noteworthy that this difference in number of events (35), even
when combined with the difference reported for Experiment
17 (165), represents approximately 50% of the difference in
the number of mass events reported in Figure 6. This shows
that the TV-based method operates effectively not only in
situation where resonance frequencies are affected by large
drifts but also in more standard situations.

APPENDIX E
EXPERIMENT ANALYSIS: RESULT CONSISTENCY
In this section, we show some additional images indicating
that our TV-based method produces more consistent results
than the WDM method, when experiments conducted the
same day are analyzed.

A. COMPLEMENTARY ILLUSTRATIONS

We recall that the following results pertain to the four consec-
utive experiments on the mass measurements of virophage
capsids, as described in the main body of this report. To
illustrate our findings, we used box plots and violon iso-
responses, concluding that mass measurements are more
consistent from one experiment to another when using the
TV-based method. Nevertheless, these types of representa-
tions may require deeper insights to support our conclusion.
Therefore, we propose additional images that could more
clearly substantiate our assertion.

FIGURE 13. Density kernels of mass measurements in the range [40, 150]
MDa for the four consecutive experiments conducted on virophage
capsids. Left: TV-based method. Right: WDM method. The y-axis
represents the percentage of the total number of masses in the bins of
the underlying histogram, with a bin size is set to 3.75 MDa.

In Figure 13, we observe that the density kernels have
higher peaks and are narrower with the TV-based method
compared to theWDMmethod.Moreover, the widths of these
density kernels are more consistent with each other when
using the TV-based method than with the WDM. This is
primarily due to the more symmetrical shape and the absence
of heavy tail in the TV-based results. These observations are
entirely consistent with the ones described in the main body
of this report.

APPENDIX F
CONTINUOUS PARTICLES DEPOSITION MODELING
In this section, we present themain implications of the contin-
uous particle deposition modeling on the behavior of NEMS.
We first present the different hypotheses we use, and then
present the partial derivative equations which are the core of
our modeling.

A. HYPOTHESES
First, we used the same hypotheses on NEMS as in [6].
In particular, a NEMS is a homogeneous rectangular beam
whose length L is much larger than its width w and thickness
t . The extremal planes at x = 0 and x = L are fixed and
motionless. The lateral planes (i.e., surfaces perpendicular to
the x-axis) have a constant surface S and a constant perimeter
P. As long as we consider a NEMS between two consecutive
particle depositions (say at time t0 and time t1 > t0), the
effective weight M(t0) of any lateral plane does not depend
on x and is constant for all t0 ≤ t ≤ t1.

When considering solvent deposition on the NEMS, we
assumed that the solvent is spatially homogeneously de-
posited on the NEMS, which means that between two particle
depositions, the deposited linear solvent mass m(t, t0) does
not depend on x, y and z. We also assumed that m(t, t0) is
a summable function over time t . Finally, the NEMS was
assumed to vibrate only along the y-axis, with no displace-
ments in the other orthogonal directions, and the NEMS
vibrating mode shapes are not modified by particle deposition
or solvent deposition.

Finally, recall that our experiments were conducted with
an array of 20 NEMS.With the technology we used, the reso-
nance frequencies for the entire set of NEMS are identified
sequentially, that is, one NEMS after another. Thus, as 20
ms is sufficient to obtain the first two resonance frequencies
for a single NEMS, obtaining the resonance frequencies for
all NEMS requires 400 ms. Once all the NEMS resonance
frequencies are acquired, a new cycle of resonance frequency
measurements is initiated to detect new potential particle
depositions.

B. MODELING WITH PARTIAL DERIVATIVE EQUATIONS
According to above hypotheses, every NEMS follows the
Euler-Bernoulli beam theory, which implies that its displace-
ments w(x, t) are governed by the following partial derivative
equations for all t ∈ [t0, t1]:

(M(t0) + m(t, t0)P)
∂2w
∂t2

(x, t) + EI
∂4w
∂x4

(x, t) = 0

where E is the Young’s modulus of the NEMS, and I is the
inertial moment in flexion.

A solution is obtained by projecting this equation onto the
function space defined by the eigenfunctions of the bilapla-
cian operator ∂4/∂x4. If we denote sn(x) as these eigenfunc-
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tions and λn as the corresponding eigenvalues, this projection
operation leads to a system of linear decoupled problems (for
n ≥ 1 and for all t ∈ [t0, t1]):

(M(t0) + m(t, t0)P)
∂2αn
∂t2

(t) + EIλnαn(t) = 0 (17)

where we have set w(x, t) =
∑+∞

n=1 αn(t)sn(x).

Equation (17) can be recast as a matrix first-order ordinary
differential equation, but where the matrix components are
still dependent on time:(

∂

∂t
x

)
(t) = A(t)x(t)

x(t) :=

(
αn
∂αn
∂t

)
(t)

Unfortunately, matrix A(t) does not possess the prop-
erties required to solve the corresponding system using
classical mathematical tools. In particular, we do not have
A(t2)A(t3) = A(t3)A(t2) for all (t2, t2) ∈ [t0, t1] × [t0, t1].
This implies that such a system must be solved numerically
for a certain class of functions g(t) or approximately solved
with perturbations techniques.We focus on the latter to obtain
ideas on how a NEMS interacts with its environment.

To simplify the computations, we assume t0 = 0. This
assumption is valid because a simple change of variable in
(18) leads to the corresponding situation. Moreover, we also
suppose that function m(t, 0) writes c(t)t , where c(t) is a
function that varies slowly over time: For quite large time
interval of the form [0, t1], its derivative is close to 0. In
addition, we assume that we have c(t)tP << M(0) for all
t ∈ [0, t1]. In terms of physics interpretation, a quasi-constant
mass of solvent is continuously and slowly deposited on every
NEMS.

According to these hypotheses, Equation (17) can be ap-
proximated in the first order as (for n ≥ 1 and for all
t ∈ [t0, t1]):

∂2αn
∂t2

(t) + ω2
0,n(1−

c(0)P
M(0)

t)αn(t) = 0 (18)

where ω2
0,n := EIλn/M(0) is the nth resonance pulsation

of the NEMS (with our NEMS geometry, λ1/λ2 = 0.602
[6]).

With the previous hypotheses, it is possible to use pertur-
bation methods to solve Equation (18). Thus, the true solution
αn(t) is split into two functions,α0

n(t) andα
1
n(t), which verify

the following system of equations:

∂2α0
n

∂t2
(t) + ω2

0,nα
0
n(t) = 0

∂2α1
n

∂t2
(t) + ω2

0,nα
1
n(t) + tα0

n(t) = 0

Where we have written:

αn(t) := α0
n(t)−

c(0)P
M(0)

ω2
0,nα

1
n(t)

Again, we recall that the previous system of equations is
valid only if c(0)Pω2

0,nt/M(0) is very small; that is, for time
t close to 0. However, this condition, although restrictive, fits
with the acquisition time of the resonance frequencies for a
single NEMS, and thus is acceptable.
We can now solve the previous system of equations.

Clearly, α0
n(t) is equal to a linear combination of cos(ω0,nt)

and sin(ω0t) which are expected functions for a NEMS not
covered by a solvent layer. Once α0

n(t) is known, estimating
α1
n(t) is straightforward, and we obtain (with A and B in R):

α1
n(t) :=

∫ t

0

s(A cos(ω0,ns)+B sin(ω0,ns)) sin(ω0,n(t−s)) ds

After linearization and integration, function α1
n can be

explicitly written as a linear combination of t cos(ω0,nt) and
t sin(ω0,nt). This implies that as long as t is sufficiently small,
αn(t) can be approximated well by α0

n(t). This means that
the solvent mass deposited during the resonance frequency
measurement of a single NEMS (which lasts only 20 ms) has
no effect on the resulting values. As a side effect, the reso-
nance frequencies we obtained correspond to the resonance
frequencies of a NEMS with a constant mass, equal to the
sum of its own mass and the mass of solvent deposited before
the measurement.

Consequently, for a particular NEMS, the difference
Dn(∆t) between two consecutive measurements for the nth

resonance frequency verifies at times t0 and t0 + ∆t:

Dn(∆t) :=
ω0,n

2π
(t0 + ∆t)− ω0,n

2π
(t0)

=

√
EIλn
2π

(√
1

M(t0) + c(t0)∆t
−

√
1

M(t0)

)
where ∆t = 200ms.

Considering that the added solvent mass is assumed to be
largely inferior to the NEMS mass, the previous equation can
be rewritten as:

Dn(∆t) = −ω0,n c(t0)

4πM(t0)
∆t + o(∆t)

We then observe that our model of continuous solvent
deposition leads to a linear decrease in both resonance fre-
quencies between two frequency measurements (i.e., every
400 ms). This observation justifies the use of linear poly-
nomials as drift representations. Moreover, after two particle
deposition events, at times s0 and s1 for instance, we note that
the rate of the frequency decrease Dn(∆t)/∆t diminishes as
M(s0) ≤ M(s1) (this remark is also valid if c(s0) ≤ c(s1)).
Then, we deduce that the resonance frequency decrease slows
between successive particle depositions. Finally, this model
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predicts a linear correlation between the resonance frequency
decrease because we have:

D1(∆t)
D2(∆t)

:=
ω0,1

ω0,2
=
λ1
λ2

= 0.602

C. DRIFTS: EXPERIMENTAL VALIDATION
In this section, we attempt to extract some information from
the drifts computed using our denoising model. Experimen-
tally, we observe that drifts appear as soon as the nebulizer
works. Naturally, we would think that this observation could
be related to a fluid, a mix between air and the solvent in a gas
state, which would exist in the chamber where the NEMS are
located and would be continuously and uniformly adsorbed
on the NEMS. Intuitively, this process should cause a constant
decrease in the NEMS resonance frequencies between two
particle deposition events. This intuition is supported by the
modeling developed in the previous section, where each linear
polynomial that constitutes a drift is shown to be decreasing.

This model allows us to provide qualitative trends regard-
ing the time behavior of drifts. Thus, let us consider an exper-
iment in which a NEMS is surrounded by a very large amount
of solvent gas that is adsorbed continuously at rate c(t).
During the first moments of this experiment and for small c(t)
values, we can suppose that the amount of adsorbed solvent
gas is negligible compared to the total amount of solvent
gas around the NEMS. In the first-order approximation, the
solvent gas concentration around the NEMS remains constant
and the function c(t) remains almost constant. Consequently,
a single drift should boil down to a single linear polynomial
defined over a long time interval. If the amount of solvent gas
remains constant over time (owing to a continuous supply by
the nebulization/heating processes), this state lasts until the
end of the experiment, and the observed drifts appear as long
straight lines. If no additional supply of solvent gas occurs in
the NEMS chamber, the deposition rate c(t) cannot be con-
sidered constant between two frequencymeasurements after a
while. During this phase, the amount of adsorbed solvent gas
cannot be neglected because it represents an important portion
of the solvent gas surrounding the NEMS. Consequently,
we should observe drifts characterized by a rapid succession
of numerous linear polynomials, each defined over a short
time interval. Contrary to the initial situation where a drift is
similar to a straight line, a drift is then more like a broken
line. Finally, when no solvent gas remains, a drift should be
represented as a horizontal line over a long time interval, as
no gas adsorption occurs.

Before any comparison, we must check whether the rate
of particle deposition onto our NEMS array is similar to that
in our two experiments. On the contrary, a higher deposi-
tion rate would mean shorter durations between two particle
depositions and mechanically shorter drifts (by definition).
Consequently, we need to plot the experimental cumulative
distributions of detected particle-landing events over time and
compare it to the cumulative distribution of landing-particle

events occurring uniformly over time. The results are shown
in Figure 14.

FIGURE 14. Cumulative distributions of landing-particle events. Red lines
are the experimental cumulative distributions, black lines are the
cumulative distributions of particle-landing events occuring uniformly in
time. The first line of plots represent the landing events for the first
experiment, separated according to our recording constraints (Left: data
recorded from [0, 2600]s, Right: data recorded from [2600, 4200]s). The
second line of plots represent the landing events for the second
experiment, separated according to our recording constraints (Left: data
recorded from [0, 2600]s, Right: data recorded from [2600, 4200]s). Note
that all time are rescaled on the same interval to ease comparisons.

We note that the first experiment shows a difference
between the experimental cumulative distribution and the
expected cumulative distribution. This is essentially true for
the first half of the experiment, where the time distribution
of landing events shows a large deficit of events. The second
experiment shows a distribution closer to a uniform distri-
bution. As we observe a lack of particle deposition in only
one recording, whereas the experimental conditions did not
change during the entire experimental campaign, we attribute
the observed difference to a non-homogeneity in the sample at
the beginning of the experiment. In addition to the latter case,
the rate of landing of particles can be considered constant in
our experiments, and the observed drifts should have a similar
mean duration.

Our modeling explaining drift origin is then compared with
the experimental results, as shown in Figure 15. In the latter,
we drew the starting time of every linear polynomial in drifts
versus the size of the linear polynomials (i.e., their duration
since the sampling time is constant). When removing data
from the first half of the first experiment which show a differ-
ent distribution, we visually observe a common pattern in data
distribution: The linear polynomials constituting drifts can
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be divided into three distinct populations. A population with
small sizes, which is present at a high density from the begin-
ning to the end of the data. A population with intermediary
sizes and lower density, which may extend until a certain time
(as in the second experiment). And a population with high
sizes and low density, which is not represented after a short
period. This visual impression is strengthened by a K-means
clusteringmethod that identifies the same three populations in
the gathered data. The existence of such groups of data seems
to be in accordance with the solvent gas adsorption modeling
described above. Nevertheless, it is still insufficient, and we
then take a closer look at some other quantitative information.
Again, the first half of the first experiment shows a different
behavior. Very small linear polynomials do not appear to
be present, whereas very large linear polynomials do. These
observationsmay be linked to the fact that fewer particles land
on the NEMS. As mentioned above, less landing particles per
unit of time potentially means longer drifts, and then longer
linear polynomials. However, the absence of very small linear
polynomials results in smoother resonance frequency traces.
Apart from the different initial states of the experimental sam-
ple, we cannot provide explanations to accurately represent
the obtained results.

It is interesting to note that our TV-based denoising method
can expose the differences that may arise between different
experiments (such as in the upper left picture in Figure 15),
as well as internal structures within frequency traces that are
not accessible through mere examination of the final particle
mass distribution.

FIGURE 15. Size of linear polynomials constituting drifts vs Experiments.
As resonance frequencies are sampled at a constant time step (every
400ms), the size of a linear polynomial is equivalent to its duration. The
x-axis is the time and the y-label is the linear polynomial size. The first
line of plots represent the landing events for the first experiment,
separated according to our recording constraints (Left: data recorded
from [0, 2600]s, Right: data recorded from [2600, 4200]s). The second line
of plots represent the landing events for the second experiment,
separated according to our recording constraints (Left: data recorded
from [0, 2600]s, Right: data recorded from [2600, 4200]s). The different
colors represent the clusters as identified by the K-means method: Red is
the first cluster, green is the second cluster and blue the third one. Note
that all time are rescaled on the same interval to ease comparisons.

We now focus on the link between the slopes of the linear
polynomials in the first and second resonance frequencies.
Under the assumption of continuous adsorption of solvent
gas, there is indeed a linear correlation between the slopes
of the linear polynomials constituting drifts, as proved in

Appendix F. This correlation has a known coefficient that is
directly related to NEMS geometry. If the function of the drift
sizes over time seems to behave as expected by our modeling,
it is crucial to check the expected linear correlation to validate
it. Such a correlation is accessible by plotting the slopes of
the linear polynomials in the first resonance frequency versus
the slopes of the linear polynomials in the second resonance
frequency, as shown in Figures 16, 17 and 18.

(a)

(b)

(c)

FIGURE 16. Slopes ratio of linear polynomials. These plots are obtained
by selecting the first cluster of the K-means method. This represents the
set of the shortest linear polynomials. (a) Data points for both
experiments. (b) Data points of first experiment only. (c) Data points of
second experiment only.

It appears there is no linear correlation between the linear
polynomials with the shortest sizes. In addition to the visual
aspects shown in Figure 16, the different possible correlation
factors point towards the absence of linearity. Indeed, if we
compute the correlation for each situation represented in Fig-
ure 16, we always obtain a correlation coefficient lower than
0.2. Consequently, this type of linear polynomial cannot be
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related to the modeling of continuous solvent gas adsorption.
More likely, these polynomials represent the residues of the
Gaussian noise that have not been entirely eliminated from
the frequency traces by the constraints in Equations (4), (5),
and (6).

(a)

(b)

(c)

FIGURE 17. Slopes ratio of linear polynomials. These plots are obtained
by selecting the second cluster of the K-means method. This represents
the set of linear polynomials with intermediate sizes. (a) Data points for
both experiments. (b) Data points of first experiment only. (c) Data points
of second experiment only.

The conclusions are similar for the linear polynomials with
intermediate sizes. The computations of correlation coeffi-
cients reinforce the visual impression from Figure 10, where
no linear relations between the slopes of linear polynomials in
the first and second resonance frequencies seem to be present.
At most, we obtain a correlation coefficient of 0.52 when
simultaneously working on data from the first and second
experiment. Thus, we cannot associate these linear polynomi-
als with our solvent gas adsorption model. However, we also
observe that the data behave slightly differently, depending on

the experiment. This may be due to some differences in the
experimental conditions; however, there is no clear evidence
yet.

FIGURE 18. Slopes ratio of linear polynomials. These plots are obtained
by selecting the third cluster of the K-means method. This represents the
set of linear polynomials with the highest sizes.

The situation is slightly more complex with the linear poly-
nomials of highest sizes. First, we observe that there is a clear
separation between the data depending on the experiment.
This shows that despite a comparable mass distribution, the
resonance frequency traces are influenced by some external
phenomena. Such a data configuration could be a clue to
determine if the experimental conditions are truly equivalent
from one experiment to another, or if the state of NEMS
changes across experiments (for instance, we could think
of a change in the solvent gas affinity, which modifies the
adsorption rate due to the NEMS surface state). If we compute
the linear correlation for each experiment, we get 0.68 for the
first one and 0.63 for the second one. This is still not sufficient
to make a positive conclusion for our solvent gas adsorption
modeling, but the trend is stronger than that for the other types
of linear polynomials. Nevertheless, for this set of linear poly-
nomials, the number of data points for every experiment is
low (approximately 15 for each), and may not be high enough
to make a relevant decision. Additional experiments are re-
quired to obtain a definitive answer. Finally, we also compute
a linear regression on these data to compare the obtained slope
and intercept to the theoretical ones given by our modeling
(which should be equal to 0.602 and 0; see Appendix F). We
always obtain either inadequate intercept and/or slope values
when comparing them to the expected values. Thus, these
results do not validate our continuous deposition modeling;
however, the low number of elements in the class of long
linear polynomials prevents us from providing a definitive
conclusion. Despite the lack of strong evidence towards the
proposed model, it is worth noting that our algorithm reveals
that the drift behavior varies from one day to another. Just like
for the polynomials of intermediate sizes, this could indicate
that drifts are influenced by experimental conditions.
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