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I. PROOFS OF TECHNICAL RESULTS IN THE
MAIN TEXT

A. Every non-trivial joint measurability structure
admits a resolution into N-Specker scenarios

We will use some generic properties of any partial order
over a set in proving our claim. Namely,

1. Any partially ordered set, say (X,�), admits min-
imal elements.

2. The upward closure of any element x ∈ X is defined
by the (upward closed) set ↑ x := {u|u ∈ X,x �
u}.1

3. The union of the upward closures of the minimal
elements of (X,�) is equal to X, i.e.,

X =
⋃
xmin

↑ xmin.

It is easy to see this as follows: Suppose some x ∈ X
but x /∈

⋃
xmin
↑ xmin. That is, x is not above any

minimal element xmin in the partial order. Hence,
for each minimal element xmin, x is either below
xmin or incomparable to xmin: the former is ruled
out because nothing is below xmin by definition,
and in the latter case, x must be a minimal ele-
ment itself and therefore cannot be outside the set⋃
xmin
↑ xmin. Thus, our supposition is flawed and

we have X =
⋃
xmin
↑ xmin.

We now apply the above properties to the partial order
over incompatible subsets in any given non-trivial joint
measurability structure J . Given J , let us define the
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1 This set is “upward closed” in the sense that it contains any
element above x in the partial order (X,�).

hypergraph, J , with vertices V (J ) = V (J ) and hyper-
edges E(J ) = {e ⊆ V (J )|e /∈ E(J )}.2 It is now easy
to see how the resolution of J into N -Specker scenarios
works using the joint measurability structure in Figure 1
in the main text as our working example: the incompat-
ible subsets (i.e., hyperedges of J ) are given by

{{M1,M2,M3,M4}, {M1,M2,M4}, {M2,M3,M4},
{M1,M3,M4}, {M1,M3,M2}, {M1,M3}}. (1)

Of these incompatible subsets, the minimal ones—
namely, those for which every proper subset is
compatible—are given by (cf., Figure 1 in the main text)

{{M1,M2,M4}, {M2,M3,M4}, {M1,M3}}. (2)

The non-minimal incompatible sets in J (equivalently,
hyperedges of J ) can be generated from the minimal
ones by progressively adding a new vertex to each min-
imal subset until the full set of vertices in J is cov-
ered: e.g., the minimal incompatible (2-Specker) set
{M1,M3} generates the non-minimal incompatible sets
{{M1,M3,M4}, {M1,M3,M2}, {M1,M2,M3,M4}}; the
other two minimal incompatible sets generate the (non-
minimal) incompatible set {M1,M2,M3,M4}. The same
argument for resolution into N -Specker scenarios applies
for any J . The formal reason for this is that the in-
compatibility relations in J form a partial order with
respect to set inclusion, i.e., for any two incompatible
subsets S1, S2 of V (J ), S1 ⊆ S2, S2 ⊆ S1, or neither is
a subset of the other, i.e., S1 * S2 and S2 * S1. The
minimal elements of this partial order for any non-trivial
joint measurability structure are given by N -Specker sce-
narios since they do not contain any proper subset that
is incompatible, i.e., there are no incompatible subsets
below them in this partial order over incompatible sub-
sets. Similarly, the maximal element of any non-trivial

2 Note that both J and J are valid representations of the
(in)compatibility relations, the former denoting compatibility via
hyperedges and the later denoting incompatibility. Further, the
partially ordered set of interest here is (X,�) := (E(J ),⊆),
where the set X denotes all incompatible subsets of V (J ) and
the partial order relation (�) is given by set inclusion (⊆).
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joint measurability structure is the full set of vertices,
V (J ). Denoting the minimal elements of this partial
order—namely, N -Specker scenarios—by {Sps(J )}s, we
have that

E(J ) =
⋃
s

↑ E(Sps(J ))

=
⋃
s

↑ {V (Sps(J ))} (3)

where ↑ E(Sps(J )) denotes the upward-closure of N -
Specker scenario Sps(J ) under set inclusion. Here,

Sps(J ) is the hypergraph obtained from Sps(J )

via V (Sps(J )) = V (Sps(J )) and E(Sps(J )) =
{V (Sps(J ))}.

Hence, ↑ {V (Sps(J ))} is obtained by constructing in-
compatible subsets starting from the minimal incompati-
ble subset V (Sps(J )) and progressively adding other ver-
tices from V (J ) to it, e.g., in Figure 1 in the main text,
the minimal incompatible subset V (Sps(J )) = {M1,M3}
has the upward-closure

↑ {{M1,M3}}
={{M1,M3,M4}, {M1,M3,M2}, {M1,M2,M3,M4}}

(4)

under set inclusion.

B. Proof that our quantum realization is
Bell-violating for any non-trivial J

The statistics relevant for Ivv22 is determined by the
following probabilities:

pA(0|x) = Tr
(
ρM0|x ⊗ 11

)
= Tr

(
ρ
(⊕

s

M
(s)
0|x
)
⊗
(⊕
s′

11s′
))

= Tr
(
ρ
(⊕

s

(M
(s)
0|x ⊗ 11s)⊕

⊕
s6=s′

(M
(s)
0|x ⊗ 11s′)

))
= Tr

((⊕
s∗

rs∗ρs∗
)(⊕

s

(M
(s)
0|x ⊗ 11s)

))
= Tr

(⊕
s

rsρs(M
(s)
0|x ⊗ 11s)

)
=
∑
s

rs Tr
(
ρsM

(s)
0|x ⊗ 11s

)
(5)

=
∑
s

rsp
(s)
A (0|x). (6)

pB(0|y) = Tr
(
ρ11⊗M0|y

)
= Tr

(
ρ
(⊕
s′

11s′
)
⊗
(⊕

s

M
(s)
0|y
))

= Tr
(
ρ
(⊕

s

(11s ⊗M (s)
0|y )⊕

⊕
s6=s′

(11s ⊗M (s′)
0|y )

))
= Tr

((⊕
s∗

rs∗ρs∗
)(⊕

s

(11s ⊗M (s)
0|y )
))

= Tr
(⊕

s

rsρs
(
11s ⊗M (s)

0|y
))

=
∑
s

rs Tr
(
ρs11s ⊗M (s)

0|y

)
(7)

=
∑
s

rsp
(s)
B (0|y). (8)

p(00|xy) = Tr
(
ρM0|x ⊗M0|y

)
= Tr

(
ρ
(⊕

s

M
(s)
0|x
)
⊗
(⊕
s′

M
(s′)
0|y
))

= Tr
(
ρ
(⊕

s

(M
(s)
0|x ⊗M

(s)
0|y )⊕

⊕
s6=s′

(M
(s)
0|x ⊗M

(s′)
0|y )

))
= Tr

((⊕
s∗

rs∗ρs∗
)(⊕

s

(M
(s)
0|x ⊗M

(s)
0|y )
))

= Tr
(⊕

s

rsρs
(
M

(s)
0|x ⊗M

(s)
0|y
))

=
∑
s

rs Tr
(
ρs(M

(s)
0|x ⊗M

(s)
0|y )
)

=
∑
s

rsp
(s)(00|xy). (9)

We then have:

Ivv22

≡− pB(0|0)−
v−1∑
x=1

pA(0|x) +

v−1∑
x=0

p(00|x, y = 0)

+

v−1∑
x=1

p(00|x, x)−
∑

0≤x<y≤v−1

p(00|x, y) (10)

=
∑
s

rsI
(s)
vv22 > 0. (11)

The last inequality follows from the fact that I
(s)
vv22 > 0

and rs > 0 for all Sps(J ) in the resolution of J . Hence,
given any non-trivial joint measurability structure re-
quired of Alice’s measurement settings, our construction
provides a Bell-violating quantum realization of it.

C. Proof that our quantum realization is
Bell-violating for every non-trivial joint
measurability structure contained in J

To see this for a non-trivial joint measurability struc-
ture, say Jsub, contained in J , one simply has to note
that a subset of N -Specker scenarios in the decomposi-
tion of J are sufficient to reconstruct Jsub, i.e., to obtain
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the full set of incompatibility relations in Jsub. Further,

since I
(s)
vv22 > 0 and rs > 0 for all Sps(J ) in the resolution

of J , this is also true for the Sps(J ) in the resolution of
Jsub. Denoting the number of vertices in Jsub as w (≤ v),
we have that

Iww22 :=− pB(0|0)−
w−1∑
x=1

pA(0|x) +

w−1∑
x=0

p(00|x, y = 0)

+

w−1∑
x=1

p(00|x, x)−
∑

0≤x<y≤w−1

p(00|x, y) (12)

=
∑

s:V (Sps(J ))⊆V (Jsub)

rsI
(s)
ww22 > 0, (13)

where the sum is over those N -Specker scenarios Sps(J )
that are contained in Jsub.

II. BELL-VIOLATING QUANTUM
REALIZATION OF Sps(J )

We use the Bell-violating quantum realization of N -
Specker scenarios in Ref. [1] to construct a quantum re-
alization of each such scenario Sps(J ) in the resolution
{Sps(J )}s of J . That is, given a Sps(J ) in J , we assign

POVMs {M (s)
x }Nx=1 in B(Hs) (where Hs ∼= CN ) to the N

vertices of Sps(J ) following the construction of Ref. [1]:

M
(s)
a=0|x = η |Ax〉 〈Ax| , |Ax〉 =

N∑
j=1

Axj |j〉 (14)

where {|j〉}Nj=1 is an orthonormal basis of CN , η =
1/(N − 1), and the probability amplitudes Axj are de-
fined as entries of the N ×N matrix

A =



0 0 . . . 0 0 −q1 −q0
0 0 . . . 0 −q2 q1

N−1 q0
0 0 . . . −q3 q2

N−2
q1
N−1 q0

...
...

. . .

−qN−1 qN−2

2 . . . q3
N−3

q2
N−2

q1
N−1 q0

qN−1
qN−2

2 . . . q3
N−3

q2
N−2

q1
N−1 q0


, (15)

where q21 + q20 = 1 and q2k+1 =
(

1− 1
(N−k)2

)
q2k for k ≥ 1.

This means that each row of A denotes the unit state

vector |Ax〉, i.e.,
√∑N

j=1 |Axj |2 = 1 [1, 2]. Hence, Al-

ice has access to the POVMs M
(s)
x ≡ {M (s)

a=0|x,M
(s)
a=1|x =

11s −M (s)
a=0|x} for all x ∈ {1, 2, . . . , N}. Here, the condi-

tion that η = 1
N−1 is sufficient to ensure that the joint

measurability structure is an N -Specker scenario follow-
ing the construction in Section 4 of Ref. [1]).

To witness a Bell inequality violation, Bob is given

access to N POVMs M
(s)
y ≡ {M (s)

b=0|y,M
(s)
b=1|y = 11s −

M
(s)
b=0|y} given by

M
(s)
b=0|y = |By〉 〈By| , |By〉 =

N∑
j=1

Byj |j〉 (16)

where Byj are entries of the N ×N matrix

B =



0 0 . . . 0 0 0 1
0 0 . . . 0 −p2 p1

N−1 p0
0 0 . . . −p3 p2

N−2
p1
N−1 p0

...
...

. . .

−pN−1 pN−2

2 . . . p3
N−3

p2
N−2

p1
N−1 p0

pN−1
pN−2

2 . . . p3
N−3

p2
N−2

p1
N−1 p0


, (17)

where p20 = 1
N , p21 = N−1

N = 1 − 1
N , p2k+1 =(

1− 1
(N−k)2

)
p2k for k ≥ 1. Again, each row of B de-

notes the unit state vector |By〉, i.e.,
√∑N

j=1 |Byj |2 = 1

[1, 2].
The quantum state |ψ〉ε ∈ CN ⊗ CN shared between

Alice and Bob is given by

|ψε〉 =

√
1− ε2
N − 1

(
N−1∑
k=1

|k〉 |k〉

)
+ ε |N〉 |N〉 , ε ∈ [0, 1].

(18)
The Bell scenario therefore consists of two parties, each

with N dichotomic measurements. The I
(s)
NN22 Bell in-

equality [3] for this scenario is given by

I
(s)
NN22 :=− p(s)B (0|1)−

N∑
x=2

p
(s)
A (0|x) +

N∑
x=1

p(s)(00|x, y = 1)

+

N∑
x=2

p(s)(00|x, x)−
∑

1≤x<y≤N

p(s)(00|x, y)

≤0. (19)

Using the state and measurements above, we have (fol-

lowing Ref. [2]) for the probabilites entering I
(s)
NN22:

p
(s)
B (0|1) = ε2, (20)

p
(s)
A (0|x) =

1− ε2

N − 1
(1− q20) + ε2q20

for 2 ≤ x ≤ N, (21)

p(s)(00|x, y = 1) = ε2q20
for 1 ≤ x ≤ N, (22)

p(s)(00|x, x) =

(√
1− ε2
N − 1

p1q1 + εp0q0

)2

for 2 ≤ x ≤ N, (23)

p(s)(00|x, y) =

(√
1− ε2
N − 1

p1q1
1−N

+ εp0q0

)2

for 1 ≤ x < y ≤ N. (24)
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Following Ref. [2], we choose ε to maximize the violation
of Eq. (19), i.e.,

ε2 =
1− q20

1 + [(N − 1)2 − 1]q20
, (25)

so that the terms p(s)(00|x, y) are set to zero for all x, y
such that 1 ≤ x < y ≤ N . We then have that

I
(s)
NN22 = ηε2

(
−1

η
+ q20N

)
> 0, for η >

1

Nq20
, (26)

and η = 1
N−1 >

√
1

Nq20
requires that q0 >

(
1− 1

N

)
.

Hence, q0 >
(
1− 1

N

)
implies that η = 1

N−1 is sufficient

to violate the inequality I
(s)
NN22 ≤ 0.

III. BELL VIOLATION FROM ANY 2-SPECKER
SCENARIO

We consider any Sps(J ) in the resolution of J that
is just a pair of incompatible vertices. Under the no-

signalling condition, the expression for I
(s)
NN22 Bell in-

equality reduces to the CHSH inequality for N = 2. That
is, the inequality (also, referred to as the CH inequality
[4])

I
(s)
2222

=− p(s)B (0|1)− p(s)A (0|2) + p(s)(00|1, 1) + p(s)(00|2, 1)

+p(s)(00|2, 2)− p(s)(00|1, 2) (27)

≤ 0 (28)

is equivalent to the Bell-CHSH inequality [5]. We refer
the reader to Ref. [4] for a proof of this equivalence (see
also [6] for a more modern treatment).

Now, to obtain a violation of the CHSH inequality from
a 2-Specker scenario, all we need is any pair of incompati-
ble dichotomic POVMs. Wolf et al. [7] showed that Alice
can use any such pair POVMs to violate the CHSH in-
equality for some choice of entangled state shared with
Bob and some choice of POVMs for Bob. For example,
one could take the shared state ρs to be a two-qubit max-
imally entangled state (henceHs ∼= C2) and the measure-

ments {M (s)
x }2x=1 and {M (s)

y }2y=1 to be those that achieve
Tsirelson’s bound [8]. The assignment of trivial {0, 11s}
POVMs to the rest of the v−2 vertices in J can proceed
as we did in the N ≥ 3 case.

IV. BELL VIOLATIONS IN THE 3-SPECKER
SCENARIO

We investigate the ability of three qubit POVMs with
coplanar Bloch vectors to violate the I3322 Bell inequality
[3] in the 3-Specker scenario. In Ref. [1] it was shown
that following set of trine spin POVMs form a 3-Specker

scenario but never violate a Bell inequality (thus showing
that incompatibility does not imply Bell nonlocality):

∀k ∈ {1, 2, 3}, xk ∈ {−1,+1} :

Ek(xk) =
1

2
(I + 0.67xk~nk · ~σ) ,

where ~nk = cos
2kπ

3
~ex + sin

2kπ

3
~ez,

and ~ex = (1, 0, 0), ~ez = (0, 0, 1), ~σ = (σx, σy, σz).
(29)

This inspires us to look at two families of POVMs to
which the set in Eq. (29) belongs, i.e., to two general-
izations of Eq. (29). In both of these generalizations we
keep the trine directions but we introduce a global pu-
rity parameter η ∈ [0, 1] and a bias b ∈ [−1, 1] such that
|b| ≤ 1− η. Since bias introduces a preferred orientation
along the Bloch line there are two ways to assign biases
producing the two families of interest, i.e.,

Ek(xk) =
1

2
((1 + xkb)I + ηxk~nk · ~σ) , (30a)

Ek(xk) =
1

2

(
(1 + (−1)kxkb)I + ηxk~nk · ~σ

)
, (30b)

where ~nk = cos
2kπ

3
~ex + sin

2kπ

3
~ez,

k ∈ {1, 2, 3}, xk ∈ {−1,+1}. (30c)

In contrast to the trine example used in Ref. [1] (namely,
Eq. (29)), Ref. [9] provides an example of POVMs with
trine spin directions that does form a 3-Specker scenario
and violates Bell’s inequalities. Generalizing the con-
struction of Ref. [9], we define another family of POVMs
as

E1(+1) =
1

2
α (I + ~n1 · ~σ) , (31a)

E2(+1) =
1

2
α (I + ~n2 · ~σ) , (31b)

E3(+1) =
1

2
β (I − ~n3 · ~σ) , (31c)

which recovers the example from [9] when β = 3α/5,
where α, β ∈ [0, 1].

For the three families of trine POVMs we have defined
(Eqs. (30a), (30b), (31)), we will investigate the depen-
dence of the joint measurability structure they realize and
their ability to violate the I3322 Bell inequality on the pa-
rameters we have introduced in each case. For each fam-
ily, the pairwise joint measurability is determined analyt-
ically [10], while the triplewise joint measurability condi-
tion is obtained by solving a semidefinite program (SDP)
that maximizes that relevant parameters in the POVMs
subject to the existence of a triplewise joint POVM.

Example 1. We consider the family in Eq. (30a), i.e.,

Ek(xk) =
1

2
((1 + xkb)I + ηxk~nk · ~σ) ,

where ~nk = cos
2kπ

3
~ex + sin

2kπ

3
~ez, k ∈ {1, 2, 3}. (32)
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This set is pairwise jointly measurable if and only if (blue
line in Fig. 1) [10]

η ≤


1 + b, −1 ≤ b < − 1

3 ,√
3− 2b2 − 1, b ∈

[
− 1

3 ,
1
3

]
,

1− b, 1
3 < b ≤ 1.

(33)

To determine triplewise joint measurability, we solve an
SDP that maximizes η for each b picked from a discretiza-
tion of the interval [−1, 1], subject to the existence of a
triplewise joint POVM. We obtain numerically a plot for

η
(3)
1 (b) such that the set is triplewise jointly measurable

iff (red line in Fig. 1)

η ≤ η(3)1 (b). (34)

Based on our numerical evaluation and visual inspection,

we conjecture the exact form of η
(3)
1 (b) to be

η
(3)
1 (b) =


1 + b, −1 ≤ b < − 1

3 ,
2
3 , b ∈

[
− 1

3 ,
1
3

]
,

1− b, 1
3 < b ≤ 1.

(35)

This means that the 3-Specker scenario is realized iff the
following system of inequalities is satisfied:

|b| ≤ 1

3
,

2

3
< η ≤

√
3− 2b2 − 1. (36)

As is clear in Fig. 1, there is no violation of the I3322
inequality using such measurements when they form a
3-Specker scenario.

Example 2. We consider the family in Eq. (30b), i.e.,

Ek(xk) =
1

2

(
(1 + (−1)kxkb)I + ηxk~nk · ~σ

)
,

where ~nk = cos
2kπ

3
~ex + sin

2kπ

3
~ez, k ∈ {1, 2, 3}. (37)

The pair {E1, E3} is jointly measurable iff (blue line in
Fig. 2)

η ≤


1 + b, −1 ≤ b < − 1

3 ,√
3− 2b2 − 1, b ∈

[
− 1

3 ,
1
3

]
,

1− b, 1
3 < b ≤ 1.

(38)

while, pairs {E1, E2} and {E2, E3} are jointly measurable
iff (green line in Fig. 2)

η ≤


1 + b, −1 ≤ b < 3− 2

√
3,

√
2
√

2 + b2 −
√

3(1 + 2b2), |b| ≤ 2
√

3− 3

1− b, 2
√

3− 3 < b ≤ 1.

(39)

We solve an SDP—that maximizes η for each b picked
from a discretization of the interval [−1, 1], subject to the

existence of a triplewise joint POVM—to obtain η
(3)
2 (b)

such that we have triplewise joint measurability iff (red
line in Fig. 2)

η ≤ η(3)2 (b). (40)

As is clear in Fig. 2, there is no violation of the I3322
inequality using such measurements when they form a
3-Specker scenario.

Example 3. We consider the family given in Eq. (31).
Pairs {E1, E3} and {E2, E3} are jointly measurable iff
(blue diagonal line in Fig. 3)

β ≤ 4− 4α

4− α
. (41)

The pair {E1, E2} is jointly measurable iff (blue vertical
line in Fig 3)

α ≤ 2

3
. (42)

From an SDP—maximizing β for each value of α picked
from a discretization of the interval [0, 1] subject to the
existence of a triplewise joint POVM—we obtain the
boundary for triplewise joint measurability, i.e., our fam-
ily is compatible iff

β ≤ β(3)(α). (43)

Based on our numerical evaluation and visual inspection,
we conjecture the boundary β(3)(α) (red line in Fig 3) to
be

β(3)(α) =

{
1− 3

2α, for α < 2
3 ,

0, for 2
3 ≤ α ≤ 1

. (44)

We refer to Fig. 3 for a depiction of the region (“BCD”)
where the I3322 inequality is violated by a 3-Specker sce-
nario.
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FIG. 1. Red line represents the upper bound for η given b such that the whole set is compatible. Blue line (coinciding with
the red one for |b| > 1/3) represents the upper bound for η such that each pair is jointly measurable. Black line represents
lower bound for η such that we have I3322 violation. The points along the black line are numerically obtained and the rest
of it is an extrapolation. In the region between the blue and the red line, where we have a 3-Specker scenario, there are no
I3322 violations. Point A represents the POVMs used for Alice (same as our Eq. (29)) in Ref. [1] to show that measurement
incompatibility does not imply Bell nonlocality.

-1.0 -0.5 0.5 1.0
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FIG. 2. Red line represents the upper bound for η given b such that the whole set is compatible. Blue line represents the upper
bound for η such that {E1, E3} is compatible. Green line represents the upper bound for η such that each of the pairs {E1, E2}
and {E2, E3} is compatible. Black line represents lower bound for η such that we have I3322 violation. In the region between the
green and the red line, where we have a 3-Specker scenario, there are no I3322 violations. However, there are violations in the
region between the green and the blue line where only the pair {E1, E3} is compatible while other two pairs are incompatible.
Point A represents the POVMs used for Alice (same as our Eq. (29)) in Ref. [1] to show the that measurement incompatibility
does not imply Bell nonlocality.
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FIG. 3. Red line represents upper bound for β such that we have 3-way compatibility. Blue line passing through points A
and B represents the upper bound for β such that {E1, E3} and {E2, E3} are compatible. Vertical blue line represents the
upper bound for alpha such that the pair {E1, E2} is compatible. For triangle-like region ABC, 3-Specker is realized. Black
line represents the lower bound for β given α such that we have I3322 violation. In the region defined by the points BCD we
have a 3-Specker scenario capable of violating I3322 Bell inequality. Dashed line represents the planar family of POVMs from
Appendix B in Ref. [9]. The red dot on that line is the critical point for I3322 violation by the family in the same Appendix
(its criticality is here confirmed).
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