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Bell scenarios are multipartite scenarios that exclude any communication between parties. This
constraint leads to a strict hierarchy of correlation sets in such scenarios, namely, classical, quantum,
and nonsignaling. However, without any constraints on communication between the parties, they can
realize arbitrary correlations by exchanging only classical systems. Here we consider a multipartite
scenario where the parties can engage in at most a single round of communication, i.e., each party is
allowed to receive a system once, implement any local intervention on it, and send out the resulting
system once. While no global assumption about causal relations between parties is assumed in this
scenario, we do make a causal assumption local to each party, i.e., the input received by it causally
precedes the output it sends out. We then introduce antinomicity, a notion of nonclassicality for
correlations in such scenarios, and prove the existence of a strict hierarchy of correlation sets classified
by their antinomicity. Antinomicity serves as a generalization of Bell nonlocality: when all the
parties discard their output systems (i.e., in a nonsignaling scenario), it is mathematically equivalent
to Bell nonlocality. Like Bell nonlocality, it can be understood as an instance of fine-tuning, one that
is necessary in any classical model of cyclic causation that avoids time-travel antinomies but allows
antinomic correlations. Furthermore, antinomicity resolves a long-standing puzzle, i.e., the failure of
causal inequality violations as device-independent witnesses of nonclassicality. Antinomicity implies
causal inequality violations, but not conversely.

The scientific enterprise hinges on uncovering causal
explanations for observed correlations. Usually these ex-
planations assume definiteness of causal order between
the relevant events. If, however, causal order is subject
to quantum indefiniteness in a similar sense as physi-
cal properties like position and momentum, what would
such explanations look like? Aside from its intrinsically
foundational motivations, this question is also motivated
by considerations of what a theory of quantum gravity
that combines the probabilistic aspects of quantum the-
ory with the dynamical aspects of general relativity might
look like [1–3]. The process-matrix framework [4], in of-
fering a possible answer [5] to this question, allows for the
violation of statistical constraints called causal inequal-
ities that hold under the assumption of definite causal
order. However, the framework has a puzzling feature:
causal inequality violations occur even in its classical de-
terministic limit [6], contrary to expectations that they
witness nonclassicality akin to Bell inequality violations.

To address this puzzle, we consider arbitrary multi-
partite correlations in a single-round communication sce-
nario. That is, unlike Bell scenarios, we allow parties to
communicate via exchanging systems in a single round, as
envisioned at the operational level in the process-matrix
framework [4] but without assuming a specific theory
that gives rise to the correlations. By a ‘single round’, we
mean that the maximum number of times any party can
receive or send a system, under the constraint that receiv-
ing precedes sending according to a definite causal order
local to the party, is one. We then ask whether there is
a natural generalization of Bell inequalities—in the sense
of witnessing nonclassicality—in such scenarios without
making global causal assumptions. To answer this ques-

tion we introduce antinomicity [7], a notion of nonclassi-
cality inspired by Bell nonlocality but applicable without
any assumption of definite causal order between different
parties. If one restricts attention to scenarios where the
parties discard their output systems after making their
local interventions (i.e., they do not communicate), anti-
nomicity formally reduces to Bell nonlocality.1

Intuitively, antinomicity captures the fact that some
correlations can be so strong that any classical causal
explanation of them—even one invoking cyclic causality
[5]—would necessarily hit a roadblock: Namely, the un-
derlying classical physics must entertain time-travel anti-
nomies [9] that are hidden at the operational level via a
statistical fine-tuning [10]. This is analogous to how some
nonsignaling correlations can be so strong that any classi-
cal causal explanation of them must—under the assump-
tion of free local interventions2—either allow a party to
causally influence its own past (‘retrocausality’) [13] or it
must invoke hidden superluminal causal influences (‘non-
locality’) [10]. Such influences, nevertheless, are not ob-
served operationally because of fine-tuning [10].

We classify correlations in any single-round commu-
nication scenario into four distinct sets based on their

1 We note that a different route to generalizing Bell nonlocal-
ity via partial causal constraints was recently developed by
Gogioso and Pinzani [8]. Since the axiomatic foundations of
their framework are very different from ours, it remains unclear
whether antinomicity—which does not rely on any global causal
constraints—admits an interpretation within their framework.

2 Thereby excluding the possibility of measurement settings being
fixed by the local hidden variable, e.g., as in superdeterminism
[11, 12].
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antinomicity and prove strict inclusions between them.
This is analogous to the strict inclusions between classi-
cal, quantum, and nonsignaling correlations in Bell sce-
narios. We identify antinomic correlations that cannot
be realized with process matrices, analogous to the un-
achievability of PR boxes [14] with nonsignaling quan-
tum correlations. More specifically, all deterministic cor-
relations that are not realizable via process functions
[6, 9, 15] (and which are therefore antinomic, see The-
orem 1 below) cannot be realized by process matrices.
One of these, namely, the correlation that wins the bi-
partite ‘Guess Your Neighbor’s Input’ (GYNI) game [16]
perfectly, was previously shown to be unachievable in any
finite dimension via a dimension-dependent bound [17].
Moreover, following results we report here [7], Liu and
Chiribella also obtained Tsirelson-type bounds on some
causal inequalities [18].

While in bipartite scenarios antinomicity is equiva-
lent to causal inequality violations [4], this equivalence
doesn’t hold for three or more parties, i.e., antinomicity
is sufficient for causal inequality violations but not nec-
essary. To clarify this distinction, we propose a tripartite
antinomicity witness, termed the ‘Guess Your Neighbor’s
Input, or NOT’ (GYNIN) inequality. We show that this
inequality cannot be saturated by causal correlations and
is maximally violated by a process matrix.

For approaches to quantum gravity [1, 4] that allow
for causal inequality violations without time-travel anti-
nomies [9, 19, 20], our results could provide an opera-
tional way to determine whether such causal indefinite-
ness requires a nonclassical spacetime. That is, experi-
menters in local labs can, based only on the antinomicity
of observed correlations, rule out the possibility that their
labs are embedded in an environment modelled by classi-
cal closed timelike curves without time-travel antinomies
(known as process functions [9, 21]). Since we make min-
imal assumptions, antinomicity can provide a tool to dis-
criminate between different models of nonclassical space-
times [22] in terms of their ability to support antinomic
correlations. This is analogous to how Bell nonlocality—
namely, observed correlations in a Bell scenario that can-
not arise from classical shared randomness—provides a
useful tool to classify nonsignaling theories according to
their ability to support Bell nonlocal correlations [23–25].

We now define some preliminary concepts before mov-
ing on to our main results.

The operational paradigm.—We work within the fol-
lowing operational paradigm (introduced in [4]): con-
sider N isolated labs embedded in some environment;
each lab can receive an input system from the environ-
ment and subsequently (according to a local notion of
definite causal order) send an output system to the en-
vironment; party Sk (in the kth lab) receives a classical
setting (or question), ak ∈ Ak, and reports a classical
outcome (or answer), xk ∈ Xk. To determine xk, Sk

can implement some local intervention based on ak on

the input system it receives from the environment and,
depending on the result of this local intervention, Sk re-
ports the answer xk and sends an output system to the
environment. Crucially, each party can apply arbitrary
local interventions on the input system it receives. The
communication between the labs is mediated entirely by
the environment, with the parties limited to local in-
terventions in their respective labs. The central object
of investigation is the observed multipartite correlation
p(x⃗|⃗a) := p(x1, . . . , xN |a1, . . . , aN ). Note that the par-
ties can execute at most a single-round communication
protocol since each party receives or sends out a system
at most once (see Ref. [26] for a generalization to mul-
tiple rounds).3 This operational paradigm is a priori
agnostic about i) the nature of the input/output sys-
tems received/sent by the local labs, ii) the nature of
the local interventions on them, and iii) the nature of
communication between the labs that is mediated by the
environment. To specify the nature of these three as-
pects amounts to specifying a particular operational the-
ory that fixes them, e.g., the (quantum) process-matrix
framework, where the input/output systems are quan-
tum systems, the local interventions are quantum instru-
ments, and the nature of (quantum) communication be-
tween the labs is dictated by the process describing the
environment. In general, the specification of a particular
operational theory restricts the set of multipartite corre-
lations p(x⃗|⃗a) to a subset of the set of all correlations.
The process-matrix framework.—Within the opera-

tional paradigm outlined above, we now assume that the
parties perform local quantum operations, i.e., party Sk

has an incoming quantum system Ik with Hilbert space
HIk , an outgoing quantum system Ok with Hilbert space
HOk , and can perform arbitrary quantum operations
from Ik to Ok. A local quantum operation is described
by a quantum instrument, i.e., a set of completely pos-
itive (CP) maps {MSk

xk|ak
: L(HIk) → L(HOk)}xk∈Xk

,

where the setting ak ∈ Ak labels the instrument and
xk ∈ Xk labels the classical outcome associated with each
CP map.4 Summing over the classical outcomes yields a
completely positive and trace-preserving (CPTP) map
MSk

ak
:=

∑
xk

MSk

xk|ak
. The correlations between the clas-

sical outcomes of the different labs given their classical
settings are given by

p(x1, x2, . . . , xN |a1, a2, . . . , aN )

=Tr(WM I1O1

x1|a1
⊗M I2O2

x2|a2
⊗ · · · ⊗M INON

xN |aN
), (1)

3 Our operational paradigm specializes to a Bell scenario if the par-
ties discard their output systems, i.e., they do not communicate
and merely receive input systems once from the environment.

4 Without loss of generality, we assume that the outcome set Xk is
identical for all settings ak ∈ Ak: this can be ensured by includ-
ing, if needed, outcomes that never occur, i.e., those represented
by the null CP map, for settings that have fewer non-null out-
comes than some other setting.
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where M IkOk

xk|ak
:= [IIk ⊗ MSk

xk|ak
(dIk |Φ+⟩ ⟨Φ+|)]T ∈

L(HIk ⊗ HOk) is the Choi-Jamio lkowski (CJ) matrix
associated to the CP map MSk

xk|ak
, |Φ+⟩ ∈ HIk ⊗

HIk is the maximally entangled state, i.e., |Φ+⟩ =
1√
dIk

∑dIk
j=1 |j⟩ |j⟩, and IIk : L(HIk) → L(HIk) is

the identity channel. We have that M IkOk
ak

≥ 0,
TrOk

M IkOk
ak

= 11Ik .
The operator W ∈ L(HI1 ⊗HO1 ⊗HI2 ⊗HO2 ⊗ · · · ⊗

HIN ⊗ HON ) is called a process matrix and it estab-
lishes correlations between the local interventions of the
labs. W satisfies the following constraints: W ≥ 0,
and ∀MSk ≥ 0 where MSk ∈ L(HIk ⊗ HOk) and

TrOk
MSk = 11Ik : Tr(W

⊗N
k=1 M

Sk) = 1.
Classical processes and process functions.—We now

consider two other instantiations of the operational
paradigm, the classical process framework and the
process-function framework, both of which can be shown
to arise in the diagonal limit of the process-matrix frame-
work (i.e., where the process matrix is assumed to be di-
agonal relative to some fixed choice of bases) [6]. In both
cases, the input and output systems are classical random
variables, the local operation of each party is a classical
stochastic map, and the environment is described by a
conditional probability distribution dictating how the in-
puts received by the parties are affected by the outputs
sent out by the parties.

More concretely, each party Sk has an incoming clas-
sical system represented by a random variable Ik that
takes values ik ∈ {0, 1, . . . , dIk − 1} and an outgoing
classical system represented by a random variable Ok

that takes values ok ∈ {0, 1, . . . , dOk
− 1}.5 The local

operations of party Sk are specified by the conditional
probability distribution p(xk, ok|ak, ik) ∈ [0, 1], where
ak and xk denote, respectively, the setting and outcome
for party Sk. Using the notation x⃗ := (x1, x2, . . . , xN ),
and a⃗ := (a1, a2, . . . , aN ), the multipartite correlations,
p(x⃗|⃗a), are then given by

p(x⃗|⃗a) =
∑
i⃗,o⃗

N∏
k=1

p(xk, ok|ak, ik)p(⃗i|o⃗), (2)

where p(⃗i|o⃗) is the conditional probability distribution
describing the environment and, as such, is not arbi-
trary but constrained to satisfy the requirement of logi-
cal consistency, i.e., p(⃗i|o⃗) should be such that for any
arbitrary choices of local interventions by the parties,
{p(xk, ok|ak, ik)}Nk=1, the correlation defined by Eq. (2)
satisfies non-negativity (p(x⃗|⃗a) ≥ 0 for all x⃗, a⃗) and nor-
malization (

∑
x⃗ p(x⃗|⃗a) = 1 for all a⃗). This condition of

5 With a slight but standard abuse of notation, we will often also
use Ik and Ok to represent the respective sets in which these
random variables take values.

logical consistency is necessary and sufficient to exclude
the possibility of time-travel antinomies [6, 9]. A logi-
cally consistent p(⃗i|o⃗) is a classical process in the sense
of Ref. [6] and correlations that are achievable by such
a process via Eq. (2) are said to belong to the classical
process framework.

On the other hand, correlations achievable via clas-
sical processes of the following form are said to be-
long to the process-function framework [6, 9]: p(⃗i|o⃗) =∑

λ p(λ)δ⃗i,ωλ(o⃗), where λ labels the process function ωλ :

O⃗ → I⃗ [6, 9, 15, 27] defined via ωλ := (ωλ
k : O⃗ → Ik)Nk=1.

A process function is a map from the outputs of the
parties to their inputs that satisfies logical consistency
when written as a conditional probability distribution
pλ(⃗i|o⃗) := δ⃗i,ωλ(o⃗). The set of classical processes defin-
ing the process-function framework corresponds to the
deterministic-extrema polytope of Ref. [6].
Classical quasi-processes.—We will refer to an arbi-

trary conditional probability distribution p(⃗i|o⃗) as a clas-
sical quasi-process and when this distribution is deter-
ministic, we will represent it via a quasi-process func-
tion ω : O⃗ → I⃗, where ω := (ω1, ω2, . . . , ωN ), ωk :

O⃗ → Ik for all k ∈ {1, 2, . . . , N}, and p(⃗i|o⃗) = δ⃗i,ω(o⃗) =∏N
k=1 δik,ωk(o⃗).

6 A classical quasi-process that satisfies
logical consistency is a classical process [6]. If a classical
process is deterministic, the quasi-process function asso-
ciated with it is a process function [9]. The correlations
achievable by a classical quasi-process p(⃗i|o⃗) are given by
Eq. (2), with the caveat that local interventions cannot
be arbitrary when the classical quasi-process fails to be
a classical process, i.e., some local interventions must be
disallowed in that case to ensure that the left-hand-side
of Eq. (2) is a conditional probability distribution that is
normalized for all settings. This restriction on local in-
terventions means that classical quasi-processes do not,
in general, fall within the operational paradigm we en-
visage.7

Antinomicity.—For nonsignaling correlations p(x⃗|⃗a),
local causality [11, 28] requires that p(x⃗|⃗a) =∑

i⃗

∏N
k=1 p(xk|ak, ik)p(⃗i), where i⃗ = (i1, i2, . . . , iN ) de-

notes a source of classical shared randomness that is dis-
tributed among the parties and p(xk|ak, ik) denotes the
local strategy of party Sk with the key feature that it is
independent of the settings and outcomes of other (space-
like separated) parties. Here p(⃗i) lives in a probability
simplex with the vertices of the simplex denoting deter-

6 This is non-standard terminology, but we will later find it useful
in describing the most general set of correlations in multipartite
scenarios.

7 A concrete example outside our operational paradigm is the
single-party quasi-process function p(i1|o1) = δi1,o1 (where
i1, o1 ∈ {0, 1}) which results in the grandfather antinomy [9]—
corresponding to p(x1|a1) = 0 (for all x1, a1)—for the interven-
tion p(x1, o1|a1, i1) = δo1,i1⊕1δx1,a1 (where x1, a1 ∈ {0, 1}).



4

ministic assignments to i⃗. In terms of classical processes,
local causality is mathematically equivalent to requiring
that the parties cannot signal to each other via the envi-
ronment, i.e., p(⃗i|o⃗) = p(⃗i) for all o⃗, so that o⃗ in Eq. (2)
can be marginalized and we recover correlations within
the Bell polytope. Hence, p(⃗i) is a nonsignaling clas-
sical process. It can be understood as a probabilistic
mixture of deterministic nonsignaling classical processes,
i.e., p(⃗i) =

∑
l p(l)δ⃗i,⃗il , where l labels deterministic as-

signments i⃗l to i⃗. This is consistent with the idea that any
indeterminism in classical physical theories (like special
or general relativity) can always be understood as one’s
lack of knowledge about an underlying physics that is
deterministic. In keeping with this idea when we move
to the single-round communication scenario, we propose
that the most general correlations achievable in a classi-
cal physical theory without definite causal order are those
that can be understood as arising from probabilistic mix-
tures of process functions. We refer to this notion of clas-
sicality as deterministic consistency, or simply, nomicity.
Deterministic consistency (or nomicity) can be viewed as
a conjunction of two assumptions on the realizability of
a correlation via some classical quasi-process under lo-
cal interventions:8 firstly, that the classical quasi-process
satisfies logical consistency, i.e., it is a classical process,
and, secondly, that it satisfies determinism, i.e., it lies
within the deterministic-extrema polytope [6].

We refer to the failure of deterministic consistency or
nomicity (analogous to the failure of local causality) as
antinomicity (analogous to nonlocality), i.e., any corre-
lation that fails to be nomic is antinomic. This termi-
nology is motivated by the fact that antinomicity entails
the presence of time-travel antinomies [9, 21] in any un-
derlying classical explanation of the correlation.

Results.—We can now define a hierarchy of sets of
correlations as follows: i) Deterministically Consistent
(nomic) correlations DC (achievable by convex mix-
tures of process functions), ii) Probabilistically Consis-
tent correlations PC (achievable by classical processes),
iii) Quantum Process correlations QP (achievable by pro-
cess matrices), and iv) Quasi-consistent correlations qC

(achievable by classical quasi-processes). Our main result
establishes the following strict inclusions:

DC ⊊ PC ⊊ QP ⊊ qC. (3)

We show in the Appendix that qC is the set of all mul-
tipartite correlations. The following theorem then is key
to these strict inclusions.

Theorem 1. Every deterministic correlation that can
be realized by a process matrix can also be realized by a
process function.

8 As we will show further on, every correlation admits a realiza-
tion with a classical quasi-process under local interventions if no
further assumptions are imposed on the realization.

Theorem 1 follows from Theorem 4 in our companion
article [7]. We outline a proof sketch in the Appendix.
Theorem 1 can be viewed as a generalization of the fol-
lowing observation that holds in Bell scenarios: every de-
terministic nonsignaling correlation (vertices of the Bell
polytope) that can be realized by a quantum state can
also be realized by a local hidden variable model. The
logic of the strict inclusions is then as follows.

1) QP ⊊ qC: The bipartite Guess Your Neighbor’s
Input (GYNI) game requires each party to guess (as out-
come) the other party’s input (setting) [16]. A corre-
lation that wins the GYNI game perfectly entails that
for a1, a2, x1, x2 ∈ {0, 1}, the parties S1 and S2 should
guess each other’s inputs (settings) deterministically, i.e.,
x1 = a2 and x2 = a1. In the bipartite case, perfect
GYNI correlation is unachievable by any process func-
tion since there are no causal inequality violations in the
bipartite diagonal limit of the process-matrix framework
[4]. Hence, by Theorem 1, perfect GYNI correlation is
impossible with process matrices, i.e., QP ⊊ qC.

2) PC ⊊ QP: This follows from the fact that in the
bipartite case DC = PC and that bipartite causal in-
equalities are violated by process matrices [4, 6].

3) DC ⊊ PC: This strict inclusion follows from our
construction of the tripartite Guess Your Neighbor’s In-
put, or NOT (GYNIN) inequality and its violation, as we
demonstrate below.

GYNIN game: Three parties S1, S2, S3 receive set-
tings a1, a2, a3 (respectively) and report outcomes
x1, x2, x3 (respectively) with the winning condition
that either (x1, x2, x3) = (a3, a1, a2) or (x1, x2, x3) =
(ā3, ā1, ā2). The winning probability when the settings
are drawn uniformly at random is given by pgynin :=
1
8

∑
x⃗,⃗a p(x⃗|⃗a) (δx1,a3

δx2,a1
δx3,a2

+ δx1,ā3
δx2,ā1

δx3,ā2
).

The following GYNIN inequality then serves as our
witness of antinomicity:

pgynin ≤ 5

8
. (4)

This inequality is saturated by the deterministic AF/BW
process [6, 29] but not by any causal strategy since the
causal bound on the winning probability is 1

2 . Finally,
this game can be won perfectly, i.e., with pgynin = 1,
for a probabilistically consistent correlation realized by
the Baumeler-Feix-Wolf (BFW) process [30]. This es-
tablishes the strict inclusion DC ⊊ PC. The causal
bound follows quite similarly as in the case of other
causal inequalities, e.g., GYNI inequality [16]. We pro-
vide a proof sketch for the classical bound in the Ap-
pendix and refer to our companion article [7] for more
details. The BFW process [30] can be expressed as a
conditional probability distribution given by p(⃗i|o⃗) :=
1
2δi1,o3δi2,o1δi3,o2 + 1

2δi1,ō3δi2,ō1δi3,ō2 , where ik, ok ∈ {0, 1}
for all k ∈ {1, 2, 3}. The interventions on this process
that, via Eq. (2), win the GYNIN game perfectly are
given by p(xk, ok|ak, ik) = δxk,ikδok,ak

for all k ∈ {1, 2, 3}.
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All correlations

Quantum process
correlationsNomic 

correlations
Causal

correlations
Nonsignaling
correlations

Probabilistically
consistent

correlations

GYNI

GYNIN OCB

FIG. 1: Inclusion relations between different sets of
correlations. The point GYNIN refers to the correlation
for which pgynin = 1, achieved by the BFW process [30].
The point OCB refers to the correlation that wins the

Oreshkov-Costa-Brukner game with probability 2+
√
2

4
[4]. The point GYNI [16] refers to the correlation that
wins the GYNI game with probability 1. Antinomicity
witnesses such as Eq. (4) separate nomic correlations

from the rest.

Discussion.— Going beyond Bell and causal inequali-
ties [4, 25], we have introduced antinomicity as a notion
of nonclassicality for correlations in single-round com-
munication scenarios without global causal assumptions
(cf. Fig. 1). Similarly to Bell nonlocality [10], antinomic-
ity requires fine-tuning [10] underlying statistical param-
eters in a classical model to avoid operational time-travel
antinomies. The physical implications of antinomicity for
correlations in the process-matrix framework depend on
the existence of a unitarily-extendible process that can
exhibit antinomic correlations, e.g., by violating Eq. (4).
If such a process exists, then antinomicity of the asso-
ciated correlation would certify that the correlation can-
not be causally explained using classical split-node causal
models while still admitting a causal explanation via a
quantum causal model (in the sense of Ref. [5]). If, on
the other hand, such a process provably doesn’t exist,
then antinomicity would serve as a device-independent
witness of non-unitarily extendible processes, i.e., a pro-
cess matrix witnessing antinomicity would necesssarily
fail to be unitarily extendible, falling outside the scope
of quantum causal models [5]. Furthermore, in this case,
if one adopts the purification postulate of Ref. [31] as a
necessary condition for physical realizability, antinomic-
ity of a correlation would certify its unphysicality by this
criterion. We have largely adopted a strictly operational
(or device-independent) perspective [25, 32] in this arti-
cle. In our companion article [7] we adopt a more causal
perspective on antinomicity [5, 10, 27, 32–34] and refer
the reader to it for a deep dive in that direction.
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APPENDIX

qC is the set of all correlations: To show that the set
qC is the set of all correlations, we simply need to pro-
vide a quasi-consistent realization of any given correla-
tion p(x⃗|⃗a). The following quasi-consistent realization
works for any given correlation p(x⃗|⃗a): We define the
classical quasi-process and the associated local interven-
tions via

p(⃗i|o⃗) :=
∑
x⃗′ ,⃗a′

p(x⃗′ |⃗a′)δ⃗i,x⃗′δo⃗,⃗a′ , (5)

p(xk, ok|ak, ik) := δxk,ikδok,ak
, (6)

so that

∑
i⃗,o⃗

N∏
k=1

δxk,ikδok,ak

∑
x⃗′ ,⃗a′

p(x⃗′ |⃗a′)δ⃗i,x⃗′δo⃗,⃗a′ = p(x⃗|⃗a). (7)

Here the classical quasi-process encodes p(x⃗|⃗a) perfectly
and the local interventions simply extract the correla-
tions implicit in p(⃗i|o⃗). The correlation set qC is therefore
subject only to the minimal constraints of non-negativity
and normalization, i.e.,

p(x⃗|⃗a) ≥ 0 ∀x⃗, a⃗ and
∑
x⃗

p(x⃗|⃗a) = 1 ∀a⃗. (8)

Proof sketch of Theorem 1.—
We provide a proof sketch of Theorem 1 below.
As illustrated in Fig. 2, we first argue that in any

process-matrix realization (using a process matrix W ,
say) of the correlation p(x⃗|⃗a) = δx⃗,f(a⃗), we can replace
the quantum instrument of any party Sk (k ∈ [N ]) by a
sequence of three instruments without changing the cor-
relation:

• a fixed Lüders instrument with classical outcome
bk and resulting state ρbk ∈ L(Hbk),

https://www.templeton.org/grant/the-quantum-information-structure-of-spacetime-qiss-second-phase
https://www.templeton.org/grant/the-quantum-information-structure-of-spacetime-qiss-second-phase
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FIG. 2: Transformation of the local operations of any party Sk without changing the deterministic correlation
x⃗ = f (⃗a), following Lemma 1. Solid lines indicate quantum instruments, systems, and processes, while dashed lines

indicated classical instruments, systems, and processes.

• a classical instrument p(xk, a
′
k|ak, bk), and

• a fixed quantum instrument M
′bkOk

a′
k

that accepts

the inputs a′k and ρbk and performs exactly as the

original quantum instrument M IkOk

a′
k

, but now re-

stricted to the subspace Hbk ⊆ HIk .

This is summarized in the following lemma:

Lemma 1. In any process-matrix realization of a deter-
ministic correlation p(x⃗|⃗a) = δx⃗,f(a⃗), the local quantum
operation performed by any party Sk (where k ∈ [N ])
can be replaced by a sequence of operations as described
in Fig. 2 without changing the deterministic correlation,
where

• the instrument (1) is a fixed Lüders instrument
that projects the incoming state onto one of a
set of mutually orthogonal subspaces Hbk , where
bk ∈ {1k, . . . , Nk}, yielding classical outcome bk,
and outputting the projected state ρbk ∈ L(Hbk) ⊆
L(HIk);

• the instrument (2) is a classical instrument depen-
dent on the local setting ak that takes as an in-
put the outcome bk of instrument (1), sends out
the output a′k = ak, and produces the outcome
xk = f ′

k(ak, bk);

• the instrument (3) is a fixed instrument M
′bkOk

a′
k

that takes as input a′k and ρbk and performs
exactly what the original quantum instrument
{M IkOk

xk|ak
}xk∈Xk

would perform from HIk to HOk

depending on ak, but now from Hbk to HOk con-
ditionally on the value of a′k, with the outcome of
that operation traced out.

We refer the reader to our companion article [7] for a
complete proof of Lemma 1 and simply outline below the
logic of the remaining steps towards proving Theorem 1.

1. Using Lemma 1, we replace the local intervention
of each party by those in Fig. 2. This yields a real-
ization of p(x⃗|⃗a) using the same process matrix W
as before but now with local interventions of the
type illustrated in Fig. 2.

2. To show that p(x⃗|⃗a) can also be obtained by ap-
plying local interventions on a classical process, we
argue that we can absorb instruments (1) and (3)
in the surrounding process, thereby redefining the
local lab—as one that implements only the classical
instrument (2)—as well as the surrounding process.

3. The reason the above procedure results in a valid
process is the following: in the original lab one
could replace a particular classical instrument (2)
with any other classical instrument and still obtain
a valid correlation since that would still define an
overall instrument (sequentially composed of (1),
(2), and (3)) in the original lab. Since the new lab
has (classical) input bk and (classical) output a′k,
the new process we obtain through this procedure
is a classical process.

4. We then argue—based on our construction of in-
strument (1) while proving Lemma 1—that the
classical process is, in fact, a process function, i.e.,
any string a⃗′ sent out by the parties to the pro-
cess is mapped to a unique string b⃗ received by the
parties.

This completes our proof sketch for Theorem 1 and we
refer the reader to our companion article [7] for more
details.

Proof sketch of the GYNIN bound in Eq. (4).— To
obtain the classical upper bound, we first argue that we
can, without loss of generality, consider process functions
with binary inputs and outputs while maximizing the
value of pgynin over process functions. This simplifies
the problem to simply maximizing pgynin over variants
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of the AF/BW process following the characterization of
Baumeler and Wolf [6], yielding the upper bound of 5

8 .

∗ quaintum.research@gmail.com
† ognyan.oreshkov@ulb.be

[1] L. Hardy, Probability theories with dynamic causal struc-
ture: a new framework for quantum gravity, arXiv
preprint gr-qc/0509120 (2005).

[2] L. Hardy, Towards quantum gravity: a framework for
probabilistic theories with non-fixed causal structure,
Journal of Physics A: Mathematical and Theoretical 40,
3081 (2007).

[3] L. Hardy, Operational general relativity: possi-
bilistic, probabilistic, and quantum, arXiv preprint
arXiv:1608.06940 (2016).

[4] O. Oreshkov, F. Costa, and Č. Brukner, Quantum corre-
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