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Abstract 

There is growing evidence that a wide range of human diseases and physiological traits are influenced by genetic variation of cis -regulatory 
elements. We and others ha v e sho wn that a subset of promoter elements, termed Epromoters, also function as enhancer regulators of distal 
genes. This opens a paradigm in the study of regulatory variants, as single nucleotide polymorphisms (SNPs) within Epromoters might influence 
the expression of several (distal) genes at the same time, which could disentangle the identification of disease-associated genes. Here, we built a 
comprehensive resource of human Epromoters using newly generated and publicly available high-throughput reporter assays. We showed that 
Epromoters display intrinsic and epigenetic features that distinguish them from typical promoters. By integrating Genome-Wide Association 
St udies (GWA S), e xpression Quantitativ e Trait L oci (eQTLs) and 3D chromatin interactions, we found that regulatory variants at Epromoters are 
concurrently associated with more disease and ph y siological traits, as compared with typical promoters. To dissect the regulatory impact of 
Epromoter v ariants, w e e v aluated their impact on regulatory activity b y analyzing allelic-specific high-throughput reporter assa y s and pro vided 
reliable examples of pleiotropic Epromoters. In summary, our study represents a comprehensive resource of regulatory variants supporting the 
pleiotropic role of Epromoters. 
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ntroduction 

n higher eukaryotes, gene transcription is regulated through
he involvement of regulatory elements that are located near
he transcription start site (TSS), called promoters, and those
hat are located far from TSS, called enhancers. This clas-
ical definition implies that enhancers activate gene expres-
ion at a distance while promoters induce local gene expres-
ion. However, several lines of evidence have now established
hat some coding-gene promoters, termed Epromoters, also
ork as bona fide enhancers in different cellular contexts from
rosophila to humans ( 1–10 ). These promoter elements can
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regulate distal promoters when assessed in episomal reporter
systems or high-throughput reporter assays ( 1 , 2 , 4 , 6 , 9 , 11 ).
More importantly, their deletion or epigenetic silencing in
their natural context results in the loss of expression of distal
genes ( 5–9 ). Subsequent studies have shown that Epromot-
ers work as a hub for recruiting essential transcription fac-
tors (TFs) required for gene activation in different inflamma-
tory and stress conditions and establishing connections with
other distal response genes within the same clusters to ensure a
rapid coordinated expression response ( 6 ,9 ). Although typical
enhancers and promoters are generally distinguished by their
 8, 2024. Accepted: December 19, 2024 
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relative location to the TSS of genes they regulate, their shared
architectural properties have suggested a unifying model of
gene regulation by cis -regulatory elements ( 10 ,12–16 ). Previ-
ous studies have suggested that Epromoters share functional
and architectural properties with both types of cis -regulatory
elements ( 10 , 12 , 13 ). Epromoters have been associated with a
higher density of TFs and co-activators binding, higher lev-
els of unstable bidirectional transcripts and more frequent
promoter–promoter (P–P) interactions ( 6 , 10 , 17 ). However, a
more systematic comparison between typical promoters and
Epromoters should provide a better understanding of the in-
trinsic features driving the dual enhancer and promoter func-
tion of Epromoters. 

There is growing evidence that a wide range of human dis-
eases is influenced by the dysfunction of cis- regulatory ele-
ments caused by genetic, structural or epigenetic mechanisms
( 18 ). These processes frequently underpin the susceptibility to
common diseases but can be also directly involved in cancer or
Mendelian diseases. The advent of genome-wide association
studies (GWASs) in the past decade has been a great endeavor
in genomic research toward identifying genetic variants asso-
ciated with candidate genes for common diseases. The major-
ity of these genetic variants are found in non-coding regions
and, therefore, are likely to be involved in regulatory mech-
anisms controlling gene expression ( 19–21 ). However, a ma-
jor challenge in interpreting the impact of genetic mutation
or variation in disease is to identify the targets that are im-
pacted by the genomic alteration, which might not necessar-
ily be the closest genes and might have confounding features
( 22 ). Despite this, most studies select the closest gene to the
associated GWAS variant to establish possible causal mecha-
nisms, namely when the variant lies in the vicinity of a TSS
or within an intronic region. However, GWAS variants might
regulate the expression of distal disease-causing genes, in par-
ticular when lying within Epromoters. 

The discovery of Epromoters thus opens a new paradigm
in the study of regulatory variants. Previous studies have in-
dicated that Epromoters are more frequently associated with
distal expression Quantitative Trait loci (eQTLs) that can po-
tentially influence the expression of distal genes ( 6 , 17 , 23–25 ).
Therefore, genetic variation mutation in an Epromoter could
affect the expression of several genes or change the relative
ratio of promoter versus enhancer activity. This could result
in a variety of potential changes in the relative expression of
neighboring genes. In addition, it is plausible that the same
cis -regulatory element displays preferential promoter activity
in some tissues while displaying increased enhancer activity
in other tissues, depending on the expressed combination of
TFs and the epigenetic context ( 6 , 26 , 27 ). Given the potential
regulation of proximal and distal genes by Epromoters, we hy-
pothesized that genetic variation or mutation at Epromoters
might therefore impact several physiological and pathological
traits simultaneously. 

To better assess the functional properties of Epromoters and
the impact of genetic variation on physiological traits and dis-
eases, we generated a comprehensive resource of human Epro-
moters by combining published and newly generated STARR-
seq data from different cell lines and conditions. Epromot-
ers displayed intrinsic genomics and epigenomics features that
distinguish them from typical promoters. Furthermore, we
found that Epromoters have a higher probability of being as-
sociated with multiple different GWAS traits, suggesting they
are more pleiotropic. Strikingly, Epromoter pleiotropy was
found to be associated with distal gene regulation and func- 
tional regulatory variants. Our finding supports the hypoth- 
esis of an important and pleiotropic role of Epromoter vari- 
ation on the ontogeny of different diseases and physiological 
traits. 

Materials and methods 

Cell culture 

K562, CCRF-CEM and RPMI cells were maintained in RMPI 
1640 medium GlutaMAX (Gibco, 61870010) supplemented 

with 10% FBS (Gibco, Fetal Bovine Serum A5256701) (inac- 
tivated at 55 

◦C for 1 hour) between 0.3 × 10 

6 and 1 × 10 

6 

cells per mL, incubated at 37 

◦C with 5% CO 2 . GM12878 

cells were maintained in the same conditions but with 15% 

instead of 10% FBS. Cells were tested for mycoplasma in- 
fection once a month and tested negative. A549 cells were 
maintained in DMEM / F12 GlutaMAX (Gibco, 10565018) 
supplemented with 10% deactivated FBS, incubated at 37 

◦C 

with 5% CO 2 . When 90% confluent, the medium was aspi- 
rated and cells rinsed with phosphate-buffered saline (PBS),
followed by trypsinization (Trypsin-EDTA (0.05%), phenol 
red, Gibco, 25300–062) at 37 

◦C for 5 min. 5x the volume 
of medium is added to detach the cells from the dish, the cells 
are centrifuged, resuspended in the medium and split at the 
appropriate density into a new dish. Cells were tested for my- 
coplasma infection once a month and tested negative. 

CapSTARR-seq 

The human promoter CapSTARR-seq library used in this 
study has been generated previously ( 6 ,9 ). The STARR-seq 

protocol was performed in CCRF-CEM (without stimulation 

and with interferon alpha (IFNa) stimulation), RPMI and 

GM12878 cell lines. Around 100 million cells were trans- 
fected with 1.25 mg of CapSTARR-seq promoter library using 
the Neon transfection system (Thermo Fisher Scientific) using 
the following settings: voltage V 1300, pulse width 20 and 

pulse number 3. After 24 h of incubation, either the STARR- 
seq protocol was performed as published before ( 6 ), or (for 
CCRF-CEM cells) IFNa was used to induce interferon re- 
sponse (100 ng / mL, Sigma Aldrich, SRP4594) for 6 h fol- 
lowed by the STARR-seq protocol ( 9 ). cDNA and input li- 
braries were sequenced on an Illumina NextSeq500, and map- 
ping and analysis were performed as published ( 9 ). 

STARR-seq and CapStarr-seq data processing 

Human enhancers were retrieved from 19 whole-genome 
ST ARR-seq, 2 ChIP-ST ARR-seq and 7 CapStarr-seq datasets 
( Supplemental Table S1 ). Seventeen whole genome STARR- 
seq datasets (A549, MCF-7, HCT116, SH-SY5Y, HepG2 and 

K562 with different stimulation) were obtained from EN- 
CODE and were already processed by STARRPeaker ( 28 ) or 
MACS2 ( 29 ) for peak calling defining the active enhancer re- 
gions. The peak files in bed format were directly downloaded 

from ENCODE (ENCODE accessions in Supplemental Table 
S1 ). To recover high-quality peaks, we took common peaks 
from different replicates for each dataset and averaged the 
enhancer activity values. Common peaks were ranked by the 
average values and peaks with the values higher than the in- 
flection point (inflection R package) were taken as enhancers 
in this study. Two whole genome STARR-seq datasets in 

Hela were collected from supplementary data (GSE100432) of 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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uerdter et al. ( 11 ). Two ChIP-STARR-seq datasets in hESC
ere collected from supplementary data of Barakat et al. ( 30 )

GSE99631). The two hESC datasets were filtered by at least
ne of the active regions of NANOG, OCT4, H3K27ac and
3K4me1, with the enhancer activity score RPP (reads per
lasmid) over 256 according to the original analysis described
n ( 30 ). Three Capstarr-seq datasets in Hela and K562 were
ollected as Epromoters from supplementary data of Dao et
l. ( 6 ) and Santiago et al. ( 9 ). Four Capstarr-seq datasets in
M12878, CCRF-CEM (with and without IFNa stimulation)
nd RPMI were generated in this study (GEO accession num-
ers are provided in Supplemental Table S1 ) and processed
s previously described ( 6 ,9 ). Briefly, fastq files were trimmed
sing sickle with -q 20 option and mapped to the hg19 ref-
rence genome using Bowtie2 with default parameters. Sam
les were converted using SamTools and bed files were gen-
rated with bedtools ‘BamToBed’ command. Fragment reads
ere extended to 314 nt, corresponding to the average size
f the captured fragments. Coverage of captured regions was
omputed using bedtools ‘coverage’ command for both trans-
ected and non-transfected libraries. The coverage was nor-
alized by Fragments per kilobase per million reads mapped

FPKM). Promoter regions with an FPKM < 1 in the input
ibrary were removed. The ratio of the Capstarr-seq coverage
ver the input (fold-change) was computed for each sample.
romoter regions with enhancer activity were defined using
he inflection point of the ranked fold-change as a thresh-
ld. Finally, all the enhancer regions from the 28 datasets
ere converted to hg38 coordinates and merged into a single
on-redundant list in bed format. This resulted in 58388 non-
edundant enhancers in 11 cell lines ( Supplemental Table S2
nd Supplemental Table S3 ). 

promoter identification 

o identify Epromoters in the human genome, first, we de-
ned the promoter region according to the hg38 genome an-
otation file from Ensembl (release-103, http://ftp.ensembl.
rg/ pub/ release-103/ gtf/ homo _ sapiens/ ). The promoters were
efined as 500-bp region upstream of the TSS of each protein-
oding transcript. The promoter regions were overlapped with
o-redundant enhancers by bedtools intersect (v2.28.0) ( 31 ),
ith at least 50% overlap (bedtools intersect -wa -wb -f 0.5 -F
.5 -e). The enhancer-overlapping promoters were defined as
promoters. The Epromoter regions were merged if they over-

apped by at least 1 nt. Finally, 5743 non-redundant Epromot-
rs were defined ( Supplemental Table S2 and Supplemental 
able S3 ). 

ene expression and tissue specificity calculation 

ene expression data was downloaded from the supplemen-
ary data of Uhlén et al. ( 32 ) (Table EV1). The study provided
 gene expression matrix of 18684 genes across 30 human
issues from GTEx. The tissue specificity was calculated ac-
ording to Yanai et al. ( 33 ), using the following formula: 

T issue speci f icity index = 

∑ N 

i =1 ( 1 − x i ) 
N − 1 

, 

here N is the number of tissues and x i is the expression pro-
le component normalized by the maximal component value.
he tissue specificity index varies from 0 to 1, where 0 means
road expression and 1 means high specificity. 
Control promoter set 

We generated a control promoter set associated with genes dis-
playing the most similar expression patterns as the Epromoter-
associated genes. First, all coding genes were clustered ac-
cording to the gene expression across 30 tissues using the ex-
pression matrix from ( 32 ) (Hierarchy cluster was performed
with the ‘Euclidean’ method in R4.3.2). For each Epromoter-
associated gene, the gene that is nearest to the Epromoter
gene in the cluster results was assigned as a control gene.
The control promoter regions were defined as described for
Epromoters. 

P–P interactions analysis 

The P–P interaction data were collected from two promoter
capture-Hi-C studies ( 24 ,34 ) and the ABC model predictions
( 35 ). We downloaded the processed high-confidence interac-
tions (CHICAGO score ≥ 5) from Supplemental Data S1 of
( 34 ), which was generated by promoter capture-Hi-C from 17
blood cell types. The data from ( 24 ) were downloaded from
their Supplementary Table 4 , which includes processed signif-
icant P–P capture-Hi-C interactions from 26 human tissues.
Nasser et al. provided a comprehensive element-gene connec-
tions resource across 131 human cell types and tissues by the
ABC model, which is a high-performance prediction model
based on measurements of chromatin accessibility, H3K27ac
and Hi-C data ( 35 ). The ABC predictions in 131 cell types and
tissues were downloaded from ( https://www.engreitzlab.org/
resources ). After converting to hg38, all interactions from the
three datasets were overlapped with total promoters (5 

′ up-
stream 500bp of TSS, Ensembl) in both anchors as the total
P–P interactions. The target genes of Epromoters and control
promoters were identified by overlapping their coordinates
with the total P–P interactions, which include the target genes
associated with each promoter. The circular visualization and
P–P interactions in the Epromoter instances was performed by
R package circlize ( 36 ). 

CRISPRi screen analysis 

CRISPRi-based inactivation (CRISPRi) screen data were
collected from Replogle et al. ( 37 ) and Gasperini et al.
( 38 ). Replogle et al. generated genome-scale CRISPRi screen
data in K562 by Perturb-seq. We downloaded the pro-
cessed Perturb-seq file of K562 genome-scale sample in h5ad
format ( https:// gwps.wi.mit.edu/ , gemgroup Z-normalized
pseudo-bulk expression data). The processed Perturb-seq
file was processed by Seurat (V5) ( 39 ) into a normalized
expression matrix of all gRNAs and effect genes. We first
identified a set of 5054 promoters that had been efficiently
inactivated (i.e. the associated gene is among the top 2 of
repressed genes). The top 30 repressed genes were taken
as regulated genes of these promoters. We then identified
the promoters for which CRISPRi resulted in the repres-
sion of cis -distal genes ( < 1 Mb). This CRISPRi result
was intersected with Epromoters and control promoters
to identify their cis -regulated genes. Gasperini et al. per-
formed CRISPRi perturbations in K562, which include
target sites on TSS as positive controls. We downloaded the
CRISPRi screen results from the pilot and scale experiments
( https:// www.ncbi.nlm.nih.gov/ geo/ query/ acc.cgi?acc= 

GSE120861 ). The results include the target sites’ posi-
tion and expression-affected genes. The target sites of
positive controls were extracted to overlap with Epro-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
http://ftp.ensembl.org/pub/release-103/gtf/homo_sapiens/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://www.engreitzlab.org/resources
https://gwps.wi.mit.edu/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE120861
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moters. The expression-affected genes that were not on
the target sites were taken as distal effect genes of Epro-
moters. The same analysis was performed for control
promoters. 

Chromatin state enrichments 

The chromatin state annotation data was down-
loaded from full-stack ChromHMM model trained
with 1032 datasets from 127 reference epigenomes
( https:// public.hoffman2.idre.ucla.edu/ ernst/ 2K9RS/ 
full _ stack/full _ stack _ annotation _ public _ release/hg38/) ( 40 ).
The full-stack annotations in bed format were overlapped
with Erpromoters and control promoters by command
‘ChromHMM.jar OverlapEnrichment’ ( 41 ). In this com-
mand, the fold enrichment was calculated as the ratio of the
proportion of overlapping bases in the state to the proportion
of bases in the external annotation, relative to the total
genome size. 

Sequence conservation analysis 

The sequence conservation was evaluated by three dif-
ferent methods, including phyloP ( 42 ), PhastCons ( 43 )
and Combined Annotation Dependent Depletion scores
(CADD) ( 44 ). For phyloP, the sequence conservation data
was downloaded from the Zoonomia Placental Mam-
mals track (including 241 vertebrate species) ( 45 ) in the
UCSC genome browser ( https://hgdownload.soe.ucsc.edu/
goldenPath/ hg38/ cactus241way/ cactus241way.phyloP.bw ). 
The conservation scores included in the bigwig file were
computed by phyloP ( 42 ) from the PHAST package ( 43 )
at each single nucleotide level. In this conservation score,
each base with positive scores was predicted as conserved,
and negative scores were predicted as fast-evolving. The
bigwig file of conservation scores was converted into
wig format by ‘bigW igToW ig’ and then into bed file by
‘wig2bed’. The conservation score of each Epromoter was
calculated by the sum of all the bases. For PhastCons, the
sequence conservation data were downloaded from the
Multiz 470-way track (470 mammals) in the UCSC genome
browser ( https:// hgdownload.soe.ucsc.edu/ goldenPath/ hg38/
phastCons470way/hg38.phastCons470way .bw ). Similarly ,
the conservation scores in bigwig were overlapped with
Epromoters and control promoters. For CADD, the mu-
tation effect data were downloaded from CADD website
in version 1.7 ( https:// kircherlab.bihealth.org/ download/
CADD/ bigWig/ CADD _ GRCh38-v1.7.bw ). The mutation
effect scores in bigwig were overlapped with Epromoters and
control promoters. 

CpG island and G4 analysis 

The CpG islands (CGIs) annotations have been recovered
from UCSC ( https:// genome.ucsc.edu/ cgi-bin/ hgTables?
hgta _ doMainPage=1&hgta _ group=regulation&hgta _ track= 

cpgIslandExt&hgta _ table=cpgIslandExt&hgsid= 

1956573466 _ K6emxl9N7oynnWsuT8Zjnyk9XX6n ) in
hg38 genome version. This dataset contains CGIs ‘masked’
that do not contain repetitive elements. CGIs in Epromoter
or control promoters were identified by using the Bedtools
(2.31.0). The coverage of G-quadruplexes (G4) in Epromoters
or control promoters was calculated as the percent of base
pairs covered by predicted G4 annotations. These annotations
and G4 Hunter scores are obtained from the G4Hunter algo-
rithm described in Bedrat et al. ( 46 ) by using the threshold 

score 1. The statistical significance was calculated by R with 

the Kolmogorov–Smirnov test. 

TF binding analysis 

TF binding sites (TFBS) data were collected from the 
JASPAR (2022) database ( 47 ), which was downloaded in 

bigbed format ( http:// hgdownload.soe.ucsc.edu/ gbdb/ hg38/ 
jaspar/JASPAR2022.bb ) from the UCSC genome track with 

a score of P -value for each binding site. All the TFBSs were 
filtered by a score higher than 400 ( P -value ≤ 10e-4). The fil- 
tered TFBSs were overlapped with Epromoters by bedtools 
intersect. Each TFBS was associated with a corresponding 
TF family according to the supplemental data from Castro- 
Mondragon et al. ( 47 ). The TFBS family density was calcu- 
lated by the binding sites of TF families at each Epromoter.
The TFBS family diversity was calculated by the number of TF 

families at each Epromoter. The same analysis was performed 

for control promoters. TF binding data were collected from 

ReMap (2022) ( 48 ). We used the ReMap datasets that include 
68.2 million non-redundant ChIP-seq peaks from 1210 TFs 
in humans ( https:// zenodo.org/ records/ 10527088 ). The non- 
redundant ChIP-seq peaks were overlapped with Epromoters 
to quantify the number of peaks per Epromoter. 737 cell lines 
and tissues associated with the ChIP-seq peaks were classified 

into 18 biotypes to describe TF diversity ( 48 ). The same analy- 
sis was also performed for control promoters. The odds ratio 

and P -value were calculated for each TF between Epromot- 
ers and control promoters by the number of ChIP-seq peaks,
as the description of TFs binding enrichment at Epromoters.
The uniform manifold approximation and projection (UMAP) 
analysis was performed by the R package umap, which is 
based on a matrix of each TF binding state (ReMap) at each 

Epromoter or control promoter (Value 1 is defined as binding,
and value 0 is defined as no-binding). Then each Epromoter 
or control promoter was quantified by the TF binding peak 

density. 

CAGE data analysis 

The CAGE data were collected from FANTOM5 ( 49–51 ).
The CAGE peaks were downloaded in bed format with 

hg38 ( https:// fantom.gsc.riken.jp/ 5/ datafiles/ reprocessed/ 
hg38 _ v7/ extra/ CAGE _ peaks/ ), which was identified by DPI 
(decomposition-based peak identification, Forrest et al 2014) 
across all the tissues in FANTOM5. The CAGE signal data 
were downloaded from the UCSC track in bigwig for- 
mat ( https:// hgdownload.soe.ucsc.edu/ gbdb/ hg38/ fantom5/ 
ctssTotalCounts.fwd.bw , https://hgdownload.soe.ucsc.edu/ 
gbdb/ hg38/ fantom5/ ctssTotalCounts.rev.bw ), which include 
the total reads count by strand across all tissues from FAN- 
TOM5. In the CAGE signal analysis, we defined forward 

signal as direction (strand) consistent between the CAGE sig- 
nal and genes and reverse signal as inconsistent. Epromoters 
were extended to 500-bp upstream and downstream of TSS 
to cover the forward and reverse signals around TSS. The 
stranded sense and antisense CAGE peaks were overlapped 

with the extended regions of Epromoters to address the 
directionality. The CAGE signal in bigwig was overlapped 

with the extended regions of Epromoters by strand separately 
to quantify the transcription initiation. The same analysis 
was performed for control promoters. 

https://public.hoffman2.idre.ucla.edu/ernst/2K9RS/full_stack/full_stack_annotation_public_release/hg38/
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/cactus241way/cactus241way.phyloP.bw
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/phastCons470way/hg38.phastCons470way.bw
https://kircherlab.bihealth.org/download/CADD/bigWig/CADD_GRCh38-v1.7.bw
https://genome.ucsc.edu/cgi-bin/hgTables?hgta_doMainPage=1&hgta_group=regulation&hgta_track=cpgIslandExt&hgta_table=cpgIslandExt&hgsid=1956573466_K6emxl9N7oynnWsuT8Zjnyk9XX6n
http://hgdownload.soe.ucsc.edu/gbdb/hg38/jaspar/JASPAR2022.bb
https://zenodo.org/records/10527088
https://fantom.gsc.riken.jp/5/datafiles/reprocessed/hg38_v7/extra/CAGE_peaks/
https://hgdownload.soe.ucsc.edu/gbdb/hg38/fantom5/ctssTotalCounts.fwd.bw
https://hgdownload.soe.ucsc.edu/gbdb/hg38/fantom5/ctssTotalCounts.rev.bw
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NAPII data analysis 

NAPII data were collected from de Langen et al. ( 52 ) ( https:
/ zenodo.org/ records/ 8091826 ), which include RNAPII con-
ensus peaks identified from 900 RNAPII ChIP-seq experi-
ents in normal tissues and cancer samples. The RNAPII con-

ensus peaks were overlapped with Epromoters to quantify
he RNAPII enrichment from different tissues and samples.
he same analysis was performed for control promoters. 

istal enhancer set 

he distal enhancers were defined by the intersection between
andidate Enhancers from ENCODE ( https://downloads.
englab.org/ cCREs/ GRCh38-ELS.bed ) ( 53 ) and STARR-seq
ataset in this study. First, the candidate distal enhancers
ere taken from STARR-seq dataset by excluding Epromot-

rs. Then, the ENCODE enhancers were overlapped with the
andidate distal enhancers by bedtools with at least 50% over-
apping rate. The center 500 bp of intersected enhancers from
NCODE were defined as the distal enhancers. In total, 350
7 distal enhancers were retrieved. 

ommon SNPs and rare SNPs collection 

he total single nucleotide polymorphisms (SNPs) (660
46 174 SNPs) were downloaded from SNPdb in VCF
ormat in hg38 ( https:// ftp.ncbi.nlm.nih.gov/ snp/ organisms/
uman _ 9606/ VCF/ 00-All.vcf.gz ). The common ( 37 ), 302
78) and rare ( 45 ), 894 070) SNPs were filtered by minor
llele frequency (MAF) of more or less than 1% according
o 1000 genomes allele frequency , respectively . The common
nd rare SNPs were overlapped with Epromoters and control
romoters by bedtools intersect. 

WAS analysis 

round 186 120 GWAS variants associated with 4138
WAS traits were collected from the NHGRI-EBI GWAS
atalog (v1.0.2) ( https:// www.ebi.ac.uk/ gwas/ api/ search/
ownloads/alternative ) ( 54 ). SNPs without rsID and ge-
omic coordinates were removed. The human common
NPs were downloaded from 1000 Genomes Project
v5a) in vcf format ( http:// ftp.ensembl.org/ pub/ data _ files/
omo _ sapiens/ GRCh38/ variation _ genotype/ ) ( 55 ), which
ere filtered by Plink (v1.9) ( 56 ) from 5 super popula-

ions (European, African, American, East Asian and South
sian) using the following parameters: the proportion of
issing genotypes 5%, MAE 1%, Hardy-Weinberg equi-

ibrium 1e-6. The lead SNPs from GWAS Catalog were
inked with common SNPs from 1000 Genomes Project by
link with parameters of –ld-window-kb 1000 –ld-window-
2 0.8, allowing to retrieve SNPs within 1 Mb in high
inkage disequilibrium (r2 > 0.8) of each lead SNP. Then
hese linkage disequilibrium SNPs associating with GWAS
GWAS-SNPs) were overlapped with Epromoters and con-
rol promoters. Each GWAS study was assigned a GWAS
rait with unique EFO (Experimental Factor Ontology) ID
 https:// www.ebi.ac.uk/ ols4/ ontologies/ efo )(57). Each GWAS
rait was mapped into a parent trait, including 17 categories
ccording to the EFO database. The number of GWAS traits
ssociated with each promoter was counted by the total
on-redundant GWAS traits of different SNPs at the same
romoter. The GWAS trait enrichment was calculated by
he ratio of SNPs associating each GWAS trait between
Epromoters or control promoters versus whole genome
(hypergeometric test). The GWAS trait enrichment was also
compared between Epromoters and control promoters (Chi-
Squared test). The GWAS category enrichment was calculated
in the same way as GWAS trait enrichment. The GWAS
results were additionally filtered by excluding ‘Biological
process’, ‘Body measurement’, ‘Other measurement’, ‘Other
trait’ from 17 categories, to take the remaining 14 categories
as disease-associated categories. Partitioned heritability was
calculated by LD score regression (LDSC) ( 58 ). We calculated
the partitioned heritability of 176 GWAS summary statistics
( https:// console.cloud.google.com/ storage/ browser/ broad- 
alkesgroup- public- requester- pays/LDSCORE?pageState ) 
in Epromoters and control promoters, also including the
partitioned regions Enhancer_Andersson, Promoter_UCSC,
Coding_UCSC annotated by the baseline model of LDSC. For
each GWAS study, the partitioned heritability described how
much genetic contribution by different partitioned regions. 

eQTL data analysis 

The eQTL data were downloaded from the fine-mapped cred-
ible sets in eQTL Catalogue ( 59 ) ( https:// www.ebi.ac.uk/ eqtl/
Data _ access/), which used the fine mapping model SuSiE ( 60 ).
The eQTL data include 9137260 eQTLs identified from 96
tissues or cell types. These eQTLs overlapped with Epromot-
ers and control promoters. The eQTLs associated with dif-
ferent target genes from different tissues were merged into a
non-redundant eQTL list. Then, the eQTLs were associated
with the GWAS traits by the coordinates overlapping between
eQTLs and GWAS-SNPs. We classified the merged eQTL list
into three categories by the distance between eQTLs and the
TSS of target genes, including proximal eQTLs, distal eQTLs,
and proximal and distal eQTLs. The proximal eQTLs were
defined as located less than 2 kb from the TSS of all target
genes. The distal eQTLs were defined as located more than 2
kb from the TSS of all target genes. The proximal and distal
eQTLs were defined as including both proximal and distal tar-
get genes. The eQTL heatmap in the Epromoter instances was
performed according to the z-score of effect genes associating
with each eQTL in different tissues from eQTL Catalogue. 

MPRA resource collection 

Massively parallel reporter assays (MPRA) data were col-
lected from 17 published studies ( 61–77 ), including 24 MPRA
datasets from 14 human cell lines ( Supplemental Table S7 ).
We collected the SNPs tested in MPRA from the supplemen-
tal data of each study. The assessed SNPs were filtered by
the allelic impact thresholds described in the original studies.
This resulted in 37 829 SNPs with significant allelic impact
overlapped. 

SNP-SELEX collection 

The SNP-SELEX data was collected from ( 78 ), which sys-
tematically assessed the binding of 270 human TFs to 95886
noncoding variants in the human genome using an ultra-high-
throughput multiplex protein–DNA binding assay. In the orig-
inal results, 11 079 SNPs exhibited significantly differential
binding to at least one TF. We collected these SNPs with
TF binding effect to overlap with Epromoters and control
promoters. 

https://zenodo.org/records/8091826
https://downloads.wenglab.org/cCREs/GRCh38-ELS.bed
https://ftp.ncbi.nlm.nih.gov/snp/organisms/human_9606/VCF/00-All.vcf.gz
https://www.ebi.ac.uk/gwas/api/search/downloads/alternative
http://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh38/variation_genotype/
https://www.ebi.ac.uk/ols4/ontologies/efo
https://console.cloud.google.com/storage/browser/broad-alkesgroup-public-requester-pays/LDSCORE?pageState
https://www.ebi.ac.uk/eqtl/Data_access/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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TF binding effect analysis 

The TF binding effect analysis of SNPs was analyzed by
ANANASTRA ( 79 ) ( https:// ananastra.autosome.org/ ), which
is based on allele-specific binding data from ChIP-Seq.
The SNPs at Epromoters and control promoters were
loaded into ANANASTRA for analysis by rsID. The pa-
rameter of ANANASTRA was the default on the web-
site. Additionally, we used SNP2TFBS ( 80 ) ( https://epd.
expasy.org/ snp2tfbs/ ) and FABIAN-variant ( 81 ) ( https://www.
genecascade.org/ fabian/ ), which based on position weight ma-
trix (PWM) to predict the TF binding effect. The parameters
of SNP2TFBS were used default in the websites. The results
of FABIAN-variant were filtered by the absolute value of the
prediction score over 0.5 for each motif. 

Luciferase reporter assays 

Luciferase vectors were generated by GeneCust, inserting the
726 bp OAS3 promoter region (hg38 chr12:112938128–
112938853) with the five minor alleles or the five major alle-
les into pGL4.12 luc2cp using KpnI-XhoI sites to assess pro-
moter activity, and into pGL4 sv40 luc2cp ( 9 ) using BamHI-
SalI sites to assess enhancer activity. Sequences of the plasmids
are available in Supplemental Table S8 . For K562, 3 × 10 

6

cells were spun down per plasmid transfection (3 replicates),
and cells were washed with PBS and resuspended in 30 μl
Buffer R of the Neon transfection kit (Thermo Fisher Scien-
tific). Around 1 ug of the plasmid to be tested, and 200 ng of
Renilla was transfected per 1 × 10 

6 cells in triplicate with the
10 ul NEON tip using the following settings; Voltage: 1450,
ms: 10, pulses: 3. 1 × 10 

6 transfected cells were transferred
to 2 mL prewarmed medium in a 12-well plate. After 18 h,
1 mL of each transfection was transferred to a new 12-well
plate, allowing 1 mL of cells as non-stimulated control, and
1 mL to be treated with human recombinant IFNa protein
(100 ng / mL) (Abcam ab9642) for 6 h. For A549, 0.25 × 10 

6

of cells were seeded in a 12-well plate 24 h before transfec-
tion. At 90% confluence, the following day, 1 ug of each of
the 4 plasmids (promoter and enhancer tests of major and mi-
nor OAS3 haplotype) and 200 ng Renilla were transfected in
six wells using the Lipofectamine 3000 (Thermo Fisher Scien-
tific, L3000008) protocol. Twenty-four hours after transfec-
tion, three wells were treated with IFNa (100 ng / mL) for 6 h,
leaving three wells per plasmid untreated as non-stimulated
controls. After 6 h of IFNa stimulation, the cells were washed
with 1X PBS, and resuspended in 350 ul lysis buffer of the
Dual-Glo Luciferase Assay kit (Promega E2920). After 15 min
of incubation in lysis buffer, cells were spun down and 20 ul
supernatant was transferred to the luminescence plate reader.
Luciferase signal was measured by the addition of 100 ul Lu-
ciferin, followed by Renilla signal measurement by the addi-
tion of 100 μl STOP&GLO (Promega E2920). The transfec-
tion of 3 replicates was repeated once in a separate experi-
ment (to give a total of six samples per construct). For data
analysis of the luciferase assays, luciferase values were normal-
ized to the Renilla luciferase activity to control for between-
well transfection efficiency. For each construct, readings from
different days were merged by normalizing the activity of re-
porters to the minor allele only vector (reference allele). 

Allelic-specific CapSTARR-seq analysis 

Using the BAM files of the CapSTARR-seq data from K562
and CCRF-CEM cell lines with and without IFNa stimulation,
the number of reads containing the minor (T) or major (C) al- 
lele of the rs1156361 SNP was quantified using the IGV web 

tool ( 82 ). Average read numbers from two replicates were cal- 
culated, and the reads were normalized to the no-stimulation 

condition for each allele. 

Results 

A comprehensive resource of human epromoters 

To recover active enhancer regions in different cell types we 
recovered whole genome ST ARR-seq, ChIP-ST ARR-seq and 

CapSTARR-seq experiments from 28 datasets comprising 11 

human cell lines and stimulatory conditions, including IFNa 
and multiple drug treatments ( Supplemental Table S1 ). We 
retrieved a total of 58 388 non-redundant STARR-seq en- 
hancers. We defined Epromoters as genomic regions of 500 

bp upstream of the TSS of any coding gene that overlapped 

an active enhancer as defined by the STARR-seq assays (Fig- 
ure 1 A). The percentage of active enhancers that were defined 

as Epromoters ranged from 2.3% to 35.0% depending on 

the STARR-seq dataset ( Supplemental Figure S1 A). This re- 
sulted in a non-redundant set of 5743 Epromoters, associated 

with 5546 genes, and representing 15.4% of total coding- 
gene promoters ( Supplemental Table S2 ). The percentage of 
Epromoters in each cell type / condition ranged from 0.3% to 

2.9% (Figure 1 B; Supplemental Table S3 ), with, on average,
1.5% of total coding gene promoters per experimental dataset 
(Figure 1 C). The differences in the proportion of Epromot- 
ers between the datasets are likely explained by the different 
types of STARR-seq approaches (whole-genome, ChIP-based 

or array-capture), as well as, the different thresholds applied 

by the independent studies. For the majority of cell lines, more 
than 50% of Epromoters were also an Epromoter in at least 
one other cell line (Figure 1 D). Overall, 36.2% of Epromoters 
were shared between at least two cell lines (Figure 1 E), sup- 
porting a physiologically diverse role of Epromoters. 

We compared the average expression and tissue-specificity 
between non-redundant Epromoter-associated genes and the 
total set of genes using a comprehensive RNA-seq dataset 
across 30 tissues ( 32 ). We observed that Epromoter-associated 

genes were significantly more expressed (Figure 1 F) and less 
tissue-specific (Figure 1 G) than genes not associated with 

Epromoters. In order to compare our model Epromoters with 

a relevant set of typical promoters, we retrieved, for each of 
the 5743 Epromoters, a typical promoter associated with a 
gene with a matching expression pattern to the Epromoter- 
associated gene across different tissues (hereafter termed ‘con- 
trol promoters”, n = 5743; Supplemental Figure S1 B and C 

and ‘Materials and methods’ section). As shown in Figures 
1 F–G, genes associated with control promoters displayed sim- 
ilar average expression and tissue-specificity as Epromoter- 
associated genes, justifying the use of this control set as a 
proxy for typical promoters with similar promoter activity as 
Epromoters. 

We assessed the transcriptional complexity of Epromoter- 
associated genes (i.e. number of TSS per gene) (Figure 1 H). We 
observed that Epromoters were associated with genes harbor- 
ing on average more TSS than other promoters (median value 
for Epromoters = 4). This suggests that in some cases, Epro- 
moters might regulate an alternative promoter of the same 
gene, as previously suggested ( 6 ). We then assessed the 3D 

interactions between Epromoters and other distal promoters.

https://ananastra.autosome.org/
https://epd.expasy.org/snp2tfbs/
https://www.genecascade.org/fabian/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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Figure 1. A comprehensive dataset of human Epromoters. ( A ) A schematic diagram illustrating the strategy to identify Epromoters from the 
(Cap)STARR-seq data. ( B ) The percentage and number of promoters identified as Epromoters identified in each (Cap)STARR-seq dataset are indicated. 
The legend at the bottom describes the source of the datasets. ( C ) The boxplot shows the percent distribution of promoters identified as Epromoters in 
each dataset. Each dot represents one dataset as indicated in the legend. ( D ) The bar plots show the percentage of Epromoters found in only one cell 
line or shared bet ween t wo or more cell lines. The number of Epromoters in each cell line is shown at the top of each bar. ( E ) The bars show the number 
of Epromoters found in the indicated number of cell lines. ( F–I ) Violin plots displaying the average gene expression level ( F ), tissue specificity score ( G ), 
the number of TSS per gene ( H ) and the P–P interactions ( I ) of all protein-coding (Total, 18351), Epromoter-associated (5331), and control genes (5331). 
T he e xpression f or each gene in ( F ) w as calculated b y the a v erage le v el across 30 human tissues from GTEx. P -v alues, represented b y the numbers in 
the graphs, were calculated by a Wilcoxon test (ns: not significant). ( J ) Two examples of consistent P–P interactions and CRISPRi-mediated regulation of 
distal genes by Epromoters. The plots show the circular visualization of Epromoters and interacting genes based on their genomic locations. 
Epromoter-associated genes are in blue, while the red bar represent the Epromoter. Genes in the outer circle are in the positive strand. Genes in the 
inner circle are in the negative strand. The blue curves are P–P interactions. The inset plots display the Z score values of the Perturb-seq experiments 
( 37 ). 
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We retrieved P–P interactions based on published promoter-
capture HiC ( 24 ,34 ) and ABC models ( 35 ) across a wide set of
tissues. We observed that Epromoters and control promoters
displayed a higher number of promoter interactions as com-
pared to typical promoters, and to a lesser extent, to control
promoters (Figure 1 I), supporting the idea that Epromoters
are more likely to be involved in distal gene regulation. 

Finally, we predicted that the inactivation of Epromoters
should affect the expression of neighboring genes. To as-
sess the impact of Epromoters on distal gene expression, we
analyzed a comprehensive Perturb-seq dataset in which all
coding-gene promoters had been repressed by CRISPRi fol-
lowed by single-cell RNA-seq analysis ( 37 ). We first identi-
fied a set of 5054 promoters that had been efficiently inac-
tivated (i.e. the associated gene is among the top 2 of re-
pressed genes). We then identified the promoters for which
CRISPRi resulted in the repression of cis -distal genes ( < 1 Mb)
( Supplemental Table S4 ). We found that Epromoters signifi-
cantly overlapped with the set of promoters associated with
distal-gene regulation, while the control promoters did not
(262 versus 205 for the Epromoters and control promoters, re-
spectively; P value = 0.02, hypergeometric test). For example,
CRISPRi repression of DNAJC9- and ATP5MC1 -associated
Epromoters resulted in the downregulation of P–P interacting
genes MRPS16 and UBE2Z , respectively (Figure 1 J). Similar
results were found using a CRISPRi screen with a more re-
stricted dataset ( 38 ) (18 versus 11 for the Epromoters and con-
trol promoters, respectively; P value = 0.01, hypergeometric
test). These results confirmed the potential regulation of distal
genes by the identified Epromoters. 

Overall, we have generated a comprehensive resource of
human Epromoters based on STARR-seq data and confirmed
their functional relevance as distal cis -regulatory elements. 

Epromoters display specific genomic and 

epigenomic features 

We then asked whether there are specific genomic features that
distinguish Epromoters from typical promoters. To make sure
that the observed differences are not due to intrinsic promoter
activity, but related to the enhancer activity, we further com-
pared the Epromoters to the set of control promoters defined
above. 

First, we investigated the chromatin state of Epromoters
and control promoters by using the full-stack ChromHMM
model integrating over 1000 epigenome datasets ( 40 ). We
found that Epromoters are relatively enriched for chromatin
states related to active enhancers compared to control pro-
moters (Figure 2 A and Supplemental Figure S2 A). Then we
looked at the sequence conservation of Epromoters and con-
trol promoters by using different methods to calculate con-
servation scores, including PhyloP ( 42 ), PhastCons ( 43 ) and
CADD scores ( 44 ). We found that Epromoters are signifi-
cantly more conserved than control promoters (Figure 2 B;
Supplemental Figure S2 B), potentially indicating that changes
to Epromoters are unfavorable, i.e., they are likely to have an
indispensable function. 

CGIs are an important component of mammalian promot-
ers. We found that 63% of Epromoters overlapped with CGIs
as compared with 57% of control promoters (Figure 2 C) (Chi-
squared test, P value = 3.5 × 10 

–12 ), in agreement with the
ubiquitous expression of Epromoter-associated genes. CGIs
are naturally enriched for G-quadruplexes (G4), which are
secondary DNA structures suggested to play an important 
role in defining the chromatin structure and regulatory activ- 
ity of cis -regulatory elements ( 83–85 ). We, therefore, assessed 

whether G4 predictions were enriched at Epromoters (Figure 
2 D), using the G4hunter tool ( 46 ). While G4s were not en- 
riched at Epromoters-overlapping CGIs, we found that non- 
CGI Epromoters harbor significantly more G4 as compared 

with control non-CGI promoters (Kolmogorov–Smirnov test).
Similar results were obtained using different G4 prediction 

metrics ( Supplemental Figure S2 C and D). This suggests that 
beyond the CpG content, the density of G4 might have an im- 
portant contribution to the Epromoter activity, reminiscent of 
a potential role of G4 structure at distal enhancers ( 86 ,87 ). 

To assess the complexity of transcription factor binding 
sites (TFBS) in Epromoters compared to the control promoter 
set we retrieved the overlap between the family of TFBS (non- 
redundant) based on the JASPAR database ( 47 ) and promoter 
elements. We found that Epromoters displayed higher den- 
sity (i.e. number of TFBS per promoter; Figure 2 E) and di- 
versity (i.e. number of different TFBS families per promoter; 
Figure 2 F) of TFBS as compared to control promoters. We 
then assessed the number of different TF binding peaks (non- 
redundant) per promoter, using the ChIP-seq catalog from 

ReMap ( 48 ). We found that Epromoters were bound by a 
higher number of TFs (Figure 2 G), and across a higher num- 
ber of biotypes (i.e. different cell types; (Figure 2 H) (Chi- 
squared test). These findings align with the understanding that 
Epromoters are more complex cis -regulatory elements and the 
broader expression of their associated genes. To assess how 

these properties are related to typical enhancers, we used a 
selection of enhancers based on the intersection between dis- 
tal STARR-seq peaks and enhancer regions defined by the 
SCREEN database from ENCODE ( 53 ). We then compared 

the TFBS density and diversity ( Supplementary Figure S3 A 

and B) and the TF binding ( Supplementary Figure S3 C) of 
several properties between typical enhancers, Epromoters and 

control promoters. Interestingly, Epromoters displayed similar 
TFBS diversity compared to typical enhancers while display- 
ing a significantly higher density of TFBS. In contrast, typical 
enhancers have relatively low TF binding compared to Epro- 
moters and control promoters, likely reflecting that the form- 
ers are more tissue-specific. 

To determine whether TF binding could distinguish be- 
tween Epromoters and typical promoters, we conducted a 
nonlinear dimensionality reduction using UMAP analysis us- 
ing the TF binding information from ReMap (Figure 2 I). We 
found that the primary dimension (UMAP1) was tightly as- 
sociated with TFBS density (Figure 2 I). Strikingly, three pro- 
moter groups could be identified based on the UMAP1 di- 
mension that roughly separated Epromoters from control pro- 
moters (Figure 2 J; P value = 1.1 × 10 

–45 ; Chi-Squared test 
comparing group 1 versus group 3; Supplemental Figure 
S2 E), with the Epromoter-enriched cluster (group 1) display- 
ing higher TF binding density. We then identified the TFs 
that were specifically enriched in Epromoters as compared 

to control promoters (Figure 2 K). Among the top 25 en- 
riched TFs, we found several inducible TFs such as the AP1 

family (JUN, JUND and FOS), NfkB (RELA), ST A T3 and 

ATF3. Strikingly, amongst the top 5 enriched TFs, we found 

three general co-factors associated with enhancer function 

( Supplemental Figure S2 F–H). These included the EP300 his- 
tone acetylase, which is a hallmark of active enhancers ( 88 ); 
the ATP-dependent chromatin remodeler SMARCA4, which is 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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Figure 2. Epromoters display specific genomic / epigenomic features. ( A ) The chromatin state enriched at Epromoter and control promoters. The Y -axis 
represents the L og2-transf ormed f old c hange of the ChromHMM state enric hment ratio bet ween Epromoter and control promoters (det ailed in 
Supplementary Figure S2 A). The bar colors at the bottom describes the group of ChromHMM states. ( B ) Conservation score of Epromoters and control 
promoters, which were retrieved from 470 mammalian species by PhastCons in UCSC genome browser. Statistical significance was assessed by a 
Wilco x on test, and is represented by the P -value in the graph. ( C ) CGIs enriched in Epromoters. The bar plots show the percentage and number of 
Epromoters and control promoters with CGIs and without CGIs. Statistical significance was assessed by a Chi-squared test. ( D ) G4 numbers per 
promoter of Epromoters and control promoters with or without CGI. The density means the distribution of Epromoters or control promoters, which 
display the enrichment of Epromoters or control promoters. Statistical significance, as represented by the P -value in the graphs, was assessed by a 
K olmogoro v–Smirno v test. ( E and F ) Violin plots displaying the number of TFBS families per promoter ( E ; i.e. density) and the number of different TFBS 
families per promoter ( F ; i.e. diversity) using the JASPAR database. Statistical significance was assessed by a Wilcoxon test, and is represented by the 
P -value in the graphs. ( G ) Violin plots displaying the number of TF binding peaks per promoter identified by ChIP-seq using the ReMap resource. 
Statistical significance is represented by the P -value in the graph, as assessed by a Wilco x on test. ( H ) Number of different tissues (Biotypes) of ChIP-seq 
peaks associated with Epromoters and control Epromoters as classified by ReMap. P -values are represented in the graph and were calculated by a 
Chi-squared test. ( I ) Dimension reduction by UMAP based on TF binding (ReMap) at each promoter. The color scale represents the TF binding density at 
each promoter. Three groups were manually separated based on the UMAP1 dimension. ( J ) Number of Epromoters and control promoters in each 
UMAP group defined in Figure 2 I. ( K ) Top 25 TFs enriched at Epromoters, compared with control promoters. The height of the lollipop represents the 
odds ratio of TFs binding frequency between Epromoters and control promoters. ( L ) The percentage of unidirectional and divergent promoters as 
assessed b y CAGE peaks. T he P -v alue, as calculated b y Chi-squared test, is represented in the graph. ( M ) Violin plots displaying the f orw ard and re v erse 
CAGE signal in function of the genomic orientation of the promoters. Statistical significance as assessed by a Wilco x on test is represented by the 
P -value in the graph. ( N ) Violin plots displaying the number of RNAPII ChIP-seq peaks overlapping Epromoters and control promoters. Statistical 
significance, as assessed by a Wilcoxon test, is represented by the P -value in the graph. 
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associated with accessibility landscape of tissue-unrestricted
enhancers ( 89 ) and the bromodomain-containing protein 2
(BRD2), which is associated with the chromatin insulator
CTCF and the cohesin complex to support cis- regulatory en-
hancer assembly for gene transcriptional activation ( 90 ). 

Finally, we investigated the association with transcription
initiation using the CAGE resource from FANTOM5 ( 49 ).
It has been previously shown that the strength of tran-
scription initiation correlated with enhancer activity at both
proximal and distal regulatory elements ( 6 , 16 , 91–93 ). We
observed that Epromoters were more frequently associated
with divergent transcription (Figure 2 L; Chi-squared test, P
value = 4.9 × 10 

–3 ), as well as with more forward and reverse
CAGE signals (Figure 2 M). This latter observation suggests
that Epromoters are associated with increased (bidirectional)
transcription initiation, potentially reflecting the enhancer ac-
tivity of Epromoters. Additionally, we assessed the recruitment
of RNA-Polymerase II (RNAPII) to Epromoters and controls
using a comprehensive RNAPII binding atlas ( 52 ). Consistent
with the CAGE results, we observed that Epromoters display
more RNAPII binding (Figure 2 N). This is reminiscent of a re-
cent study suggesting a prominent role of RNAPII binding on
the stabilization of distal interaction between cis -regulatory
elements ( 94 ). 

Overall, we found that Epromoters display specific ge-
nomics and chromatin features compared to control promot-
ers with similar transcriptional activity. 

Genetic variation associated with Epromoters. 

First, we overlapped Epromoters and control promoters with
both rare and common variants (SNP) from the SNPdb
(NCBI) database. Both common and rare variants were signif-
icantly enriched at Epromoters ( P values = 4.7 × 10 

–15 and
6.2 × 10 

–71 , respectively; Chi-Squared test). We then extracted
186120 variants associated with 4138 GWAS from the GWAS
catalog ( 54 ) and retrieved over 2.4 million common SNPs in
high linkage disequilibrium (LD; r 2 > 0.8; 1000 Genomes
project) with GWAS tag SNPs (Figure 3 B; hereafter, GWAS-
SNPs). We obtained 4330 and 4062 GWAS-SNPs overlap-
ping 2301 Epromoters and 2241 control promoters, respec-
tively ( Supplemental Table S5 ). In fact, 40% of Epromoters
and 39% of control promoters harbored at least one GWAS-
SNP (Figure 3 C). 

We further investigated the enrichment of GWAS in Epro-
moters. In total, 1251 GWAS traits are associated with 4330
SNPs at Epromoters ( Supplemental Table S5 ). We found that
184 GWAS traits were significantly enriched at Epromoters
compared to the genome background ( P value < 0.001; hy-
pergeometric test) while 12 GWAS traits were differentially
enriched as compared with control promoters (Figure 3 D; P
value < 0.05; Chi-squared test; Supplemental Table S6 ). We
classified the GWAS traits into 17 categories, as defined by the
EFO (Experimental Factor Ontology) database ( 57 ), and com-
pared the relative enrichment between Epromoters and con-
trol promoters (Figure 3 E). We found specific Epromoter en-
richment for certain categories, including disease-related cat-
egories such as neurological disorders, cancer, and metabolic
diseases, as well as response to drugs. To assess the heritabil-
ity of Epromoters for GWAS, we calculated the partitioned
heritability of 176 GWAS summary statistics using the LD
score regression model ( 58 ) for Epromoters, control promot-
ers, FANTOM-enhancers ( 49 ) and UCSC-defined promoters
and coding regions ( Supplemental Figure S4 ). We observed 

that certain GWAS traits displayed high heritability either in 

Epromoters, control promoters, or enhancers, but low heri- 
tability in total promoters and coding regions. Overall, we 
found that Epromoters were associated with specific physi- 
ological traits or diseases. 

Further analysis focused on the association of Epromoters 
with multiple GWAS traits. Epromoters exhibited significantly 
more GWAS traits per GWAS-SNP and per promoter than 

control promoters (Figure 3 F and G, respectively), although 

the effect size was relatively small. This observation suggested 

that Epromoters are associated with a broader range of traits,
possibly indicating pleiotropy, referred here as to a single 
cis -regulatory element affecting more than one trait indepen- 
dently ( 95 ). Additionally, we investigated whether pleiotropic 
GWAS-SNPs were associated with different GWAS categories.
Indeed, Epromoters and their associated GWAS-SNPs were 
found to be more frequently associated with different GWAS 
categories (Figure 3 H and I, respectively), supporting the hy- 
pothesis that Epromoters play a more pleiotropic role than 

typical promoters in influencing diverse traits. Similar anal- 
yses performed with only disease-associated categories also 

demonstrated a higher pleiotropy of Epromoters compared 

to control promoters ( Supplemental Figure S5 A–D), suggest- 
ing that our observation did not depend on potential bias in 

the choice of traits for GWAS. Pleiotropy has previously been 

linked to the breadth of gene expression ( 96 ). Although Epro- 
moters and control promoters are associated with genes with 

similar tissue-specificity (Figure 1 G), we assessed whether the 
observed pleiotropy might be associated with the degree of 
tissue-specificity. To this aim, we compared the extent of 
pleiotropy between three categories of promoters associated 

with different degrees of tissue specificity. As expected, ubiqui- 
tous promoters demonstrated higher levels of pleiotropy com- 
pared to tissue-specific promoters ( Supplemental Figure S5 E).
Interestingly, however, while the most ubiquitous and tissue- 
specific categories (specificity scores [0–0.25] and [0.75–1],
respectively) did not show significant differences between 

Epromoters and control promoters, the intermediate category 
(specificity scores [0.25–0.75]), representing genes of which 

the expression is regulated across multiple tissues, demon- 
strated a greater extent of pleiotropy in the case of Epro- 
moters, suggesting that the specific pleiotropic association of 
Epromoters depends on the breadth of gene expression. To 

assess whether the higher pleiotropy observed at Epromoters 
was sensitive to the window size used to define the promoter 
region, we performed a similar GWAS analysis using a win- 
dow of 250 bp (instead of 500 bp) and obtained consistent re- 
sults ( Supplementary Figure S5 F–I). To note, both Epromoters 
and control promoters displayed higher pleiotropy than distal 
enhancers, likely due to the more ubiquitous activity of these 
promoters ( Supplemental Figure S3 D and E). 

Finally, we aimed to validate our observations by analyz- 
ing a dataset linking pleiotropy with genetic architecture in 

complex traits ( 96 ). The study provided statistical associa- 
tion of individual SNPs with either single domains (i.e. as- 
sociated with one or more traits from a single domain) or 
multi-domain (i.e. associated with traits from multiple do- 
mains). Using this dataset, we observed that the Epromoter set 
was associated with a higher number of multi-domain SNPs 
( Supplemental Figure S6 ; P value = 0.03, Chi-squared test),
independently confirming the high level of pleiotropy found 

at Epromoters. Overall, our results suggested that Epromoters 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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Figure 3. Genetic variation associated with Epromoters. ( A ) Number of common and rare SNPs overlapped with Epromoters and control promoters. ( B ) 
Scheme to identify GWAS-SNPs in Epromoters. First, 186120 tag SNPs associated with 4138 GWAS traits were collected from the GWAS Cat alog . The 
SNPs from the GWAS Catalog were linked with common SNPs by a stringent linkage disequilibrium (LD) threshold (r2 > 0.8) within 1 Mb. Then the LD 

SNPs associated with GWAS (GWAS-SNPs) were overlapped with Epromoters. Finally, 4330 GWAS-SNPs were found in 2301 Epromoters. ( C ) 
Distribution of GWAS-SNPs per Epromoters or control promoters. ( D ) GWAS traits differentially enriched in Epromoters. The GWAS trait enrichment was 
calculated by the ratio of SNPs associating each GWAS trait between Epromoters or control promoters versus the whole genome. The P values for 
enrichment were calculated by the hypergeometric test. Only differentially enriched GWAS traits between Epromoters and control promoters and 
associated with a known GWAS category are shown in the plot. Statistical significance for the difference was assessed by the Chi-squared test. ( E ) 
GWAS categories enriched in Epromoter and control promoters. The GWAS category enrichment was calculated by the ratio of SNPs associating each 
GWAS category between Epromoters or control promoters versus the whole genome. The P values for enrichment were calculated by the 
hypergeometric test. ( F and G ) Violin plots displaying the number of GWAS traits per SNP ( F ) and promoter ( G ). Statistical significance, as assessed by a 
Wilco x on test, is represented by the P -value in the graph. (H and I) Violin plots displaying the number of GWAS categories per SNP ( H ) and per promoter 
( I ). Statistical significance, as assessed by a Wilco x on test, is represented by the P -value in the graph. 
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have a higher tendency to be associated with multiple GWAS
traits, and we hypothesized that this pleiotropy might be due
to the regulation of multiple genes by the Epromoters. 

Epromoter’s pleiotropy is associated with the 

regulation of multiple target genes 

To identify potential target genes associated with Epromoter
variation, we integrated expression eQTL datasets obtained
from the fine-mapped credible sets within the EBI eQTL
Catalog ( 59 ). From 9137260 fine-mapped eQTLs, we found
5843 associated with 2768 Epromoters and 5644 associated
with 2684 control promoters ( Supplemental Table S5 ). In
general, Epromoter and control promoter-associated GWAS-
SNPs were found to be enriched in eQTLs (Figure 4 A) ( P
values = 6.2 × 10 

–59 and 2.6 × 10 

–53 for Epromoter and
control sets, respectively; Chi-squared test), highlighting the
regulatory potential of these variants. Specifically, 48.2% and
47,7% of GWAS-associated Epromoters and control promot-
ers overlapped with at least one eQTL, respectively. Among
2768 Epromoters and 2684 control promoters with eQTLs,
approximately half exhibited at least two eQTLs. 

Furthermore, our analysis delved into the association of
eQTLs with proximal, distal, or both proximal and distal tar-
get genes (Figure 4 B). As expected, Epromoter eQTLs were
less associated with proximal genes as compared with con-
trol eQTLs (Figure 4 B) ( P value = 0.006 for all eQTLs,
P value = 0.05 for GWAS eQTLs, Chi-squared test). Sur-
prisingly, GWAS SNPs were depleted of proximal eQTLs ( P
value = 3.3 × 10 

–9 , Wilcoxon test) and enriched in proximal-
distal eQTLs ( P value = 1.4 × 10 

–9 , Wilcoxon test) for both
Epromoter and control promoters sets. However, this cate-
gory might represent a mixture of cis and trans effects ( 97–
99 ), likely combining a cis effect on the proximal gene and
trans effects on distal genes (see below). 

Next, we compared the pleiotropic impact on diseases of
eQTLs associated with either proximal, distal or proximal
and distal genes (Figure 4 C). On the one hand, both Epro-
moters and control eQTLs with both proximal and distal tar-
gets were highly pleiotropic, with no significant differences
between the two sets (median of GWAS traits = 3; Wilcoxon
test). As mentioned above, we believe most of these pleiotropic
eQTLs are associated with both cis and trans effects. On the
other hand, Epromoters with proximal- or distal-only eQTLs
demonstrated higher pleiotropy than corresponding control
eQTLs, suggesting a stronger role of Epromoter variants on
cis -regulatory functions. To confirm that the pleiotropy asso-
ciated with distal eQTLs from Epromoters was due to cis in-
teraction with distal targets (as opposed to trans effects), we
analyzed their consistency with P–P interactions (Figure 4 D).
Strikingly, Epromoters with consistent distal targets displayed
a significant increase in pleiotropy, affirming the link between
Epromoter variants and the actual regulation of distal genes.
Control promoters did not exhibit the same trend, emphasiz-
ing the unique regulatory role of Epromoters in distal gene
interactions. 

As we found that Epromoters are frequently associated
with genes harboring multiple TSSs (Figure 1 H), we wondered
whether the higher pleiotropy observed with proximal eQTLs
might be linked to distal regulation by alternative promot-
ers as previously suggested ( 6 ). Indeed, we observed a higher
pleiotropy only at Epromoters associated with multiple TSSs
(Figure 4 E). In fine, the higher pleiotropy observed at Epro-
moters appears to be linked to the actual regulation of distal 
targets, including either alternative promoters or distal genes.

A pleiotropic Epromoter variant associated with 

COVID-19 shows enhancer / promoter switch 

Among the promoters that contain disease-associated SNPs,
we identified six Epromoters that we previously demonstrated 

by CRISPR-Cas9 genetic deletion to regulate distal genes, in- 
cluding OAS3 , ISG15, IFIT3, IL15R, METTL21 and BAZ2B 

( 6 ,9 ) ( Supplemental Table S5 ). This supported a functional 
link between the genetic variants at these Epromoters and 

the regulation of distal genes. Among those, the OAS3 Epro- 
moter provided a remarkable example of a pleiotropic lo- 
cus. The OAS3 gene is embedded in a cluster that also in- 
cludes OAS1 and OAS2 (Figure 5 A), which all encode for the 
oligoadenylate synthetase (OAS) family of proteins and play 
an important role in antiviral immunity ( 100 ). The OAS1 / 2 / 3 

locus is a highly pleiotropic locus associated with several dis- 
eases, including asthma, blood protein measurement, chronic 
leukemia, systemic lupus erythematosus and severe COVID- 
19 ( Supplementary Table S5 ). Furthermore, the minor allele 
haplotype of the OAS1 / 2 / 3 locus is a Neanderthal haplo- 
type, first introduced into the modern human population by 
interbreeding with Neanderthals around 50 000 years ago 

( 101 ). This haplotype spans a 75-kb region, and variants of 
this haplotype have been associated with protection against 
West Nile Virus ( 102 ), increased resistance to hepatitis C infec- 
tion ( 103 ), and protection against S AR S-CoV (He at al 2006),
and most recently with reduced risk of becoming severely ill 
upon S AR S-CoV-2 infection ( 104 ,105 ). The OAS3 promoter 
showed IFNa-dependent enhancer activity in Hela, K562 and 

CCRF-CEM cell lines ( Supplementary Table S3 ). Strikingly,
we previously showed that deletion of the OAS3 Epromoter 
resulted in impaired induction of the entire OAS cluster after 
IFNa stimulation ( 9 ), suggesting this element is a master reg- 
ulator of the interferon response of the locus. Since there is no 

indication of other regulatory regions within the OAS1 / 2 / 3 

locus, except the promoters of the three genes ( 9 ), we as- 
sumed that cis -regulatory variants mainly reside in the OAS3 

Epromoter. 
We initially identified rs1156361 (located 352 bp upstream 

of the OAS3 TSS) as a GWAS-SNP within the OAS3 Epro- 
moter ( Supplementary Table S5 ). eQTL data of the GTEx 

database indicates that the minor allele of rs1156361 is as- 
sociated with lower expression of all three OAS genes in mul- 
tiple tissues (Figure 5 B), consistent with the role of this Epro- 
moter as a master regulator of the OAS locus. We realized 

that the promoter library used for the CapSTARR-seq exper- 
iments contains both alleles of the rs1156361 SNP. We there- 
fore assessed the allele-specific activity of this SNP in the K562 

and CCRF-CEM cell lines with or without IFNa stimulation 

(Figure 5 C). We observed that the OAS3 Epromoter harbor- 
ing the major allele (C) displayed a significantly higher en- 
hancer activity upon stimulation with IFNa. Upon closer in- 
spection of the OAS3 promoter [-500 bp; 250 bp], we found 

4 SNPs in high LD (r 2 > 0.97 in the European population) 
with rs1156361: rs3815178 and rs1859331 (5 

′ UTR vari- 
ants), rs1859330 (missense variant) and rs1859329 (synony- 
mous variant). These additional 4 SNPs are also in eQTLs 
with OAS1 / 2 / 3 with the same directionality as rs1156361 

( Supplemental Figure S7 ). To assess the contribution of 
the two haplotypes on the relative promoter and enhancer 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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Figure 4. The link between pleiotropy and target genes. ( A ) Percentages of Epromoters and control promoters according to the number of eQTLs per 
promoter and considering either all SNPs or only the GWAS-associated SNPs. ( B ) The eQTLs were classified into proximal, distal or proximal & distal 
eQTLs as indicated in the left panel. The right panels indicate the percentages of promoters associated with the different types of eQTLs. P-values were 
calculated by a Chi-Squared test. ( C–E ) Violin plots displaying the number of GWAS traits per eQTL in the function of the eQTL type ( C ), eQTLs with 
dist al t argets consistent or inconsistent with P–P interactions ( D ), and the number of TSS per gene associated with proximal eQTLs ( E ). St atistical 
significance between Epromoter and control sets was assessed by a Wilcoxon test, and is represented by the P -value in the graph. 
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ctivity of the OAS3 Epromoter, we performed luciferase re-
orter assays in K562 cells using a 726 bp genomic region
ontaining the five SNPs. We observed that the major hap-
otype confers both a stronger promoter and enhancer activ-
ty in K562 after IFNa stimulation (Figure 5 D). We also per-
ormed the luciferase reporter assays in A549 cells, a lung
pithelial cell line commonly used as a model for COVID-
9 ( 106–108 ). In this cell line, the major haplotype similarly
onferred stronger promoter activity, but the minor haplotype
isplayed stronger enhancer activity (Figure 5 E). Interestingly,
here was a higher absolute promoter activity in IFNa-treated
562 cells compared to the enhancer activity, while the oppo-

ite was observed in A549 cells. Overall, these results suggest
hat the pleiotropic association of the OAS1 / 2 / 3 locus with
ultiple diseases, including severe COVID-19, might be ex-
lained, at least partially, by transcriptional deregulation of
all three OAS genes by regulatory variants lying within the
OAS3 Epromoter. Our results also highlight the differential
impact of genetic variants on enhancer versus promoter activ-
ity of Epromoters. 

Functional assessment of pleiotropic Epromoter 
variants 

To globally assess the functional impact of Epromoter’s vari-
ants, we compiled the results from 24 published Massive Par-
alleled Reporter Assays (MPRA) experiments ( Supplemental 
Table S7 ), which have assessed the regulatory impact of
genetic variants. From 37829 SNPs with significant allelic
impact on regulatory activity (allelic-skewed SNPs), 292
and 209 overlapped with GWAS-SNPs from Epromoter
and control promoters, respectively (Figure 6 A). Strikingly,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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Figure 5. A pleiotropic Epromoter variant associated with COVID-19 shows enhancer / promoter switch ( A ) UCSC browser view of OAS1 / 2 / 3 locus, with 
lead COVID-19 SNP rs6489867 and SNPs in LD (r 2 > 0.8), as well as the location of the 726 bp region containing 5 SNPs in the OAS3 Epromoter 
analyzed in Figure 5 D and E. ( B ) eQTL (GTEx) of rs1156361, showing decreased expression of the OAS1 / 2 / 3 of the minor allele. ( C ) CapSTARR-seq 
activity of the OAS3 Epromoter containing the rs1156361 minor (Min T) or major (Maj C) alleles in the CCRF-CEM and K562 cell lines with no stimulation 
(NS) and with 6 h of IFNa stimulation showing increased regulatory activity of the major allele upon IFNa stimulation as compared to the minor allele in 
both cell lines. ( D and E ) Luciferase reporter assa y s assessing the promoter (left panel) or enhancer (right panel) activity of the OAS3 Epromoter 
harboring the minor or major haplotypes before and after IFNa stimulation for 6 h in the K562 ( D ) and A549 ( E ) cell lines. Luciferase experiments were 
performed in triplicate and statistical significance was assessed by Students’ t-test, as represented by the P -values in the graphs. 
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Epromoter GWAS-SNPs with MPRA-validated allelic impact
displayed significantly higher pleiotropy (Figure 6 B), while
control GWAS-SNPs did not. To further explore the functional
relevance of Epromoter GWAS-SNPs, we assessed the im-
pact on TF binding by interrogating the SNP-SELEX dataset
( 78 ), which systematically assessed the binding of 270 hu-
man TFs to 95886 noncoding variants in the human genome
using an ultra-high-throughput multiplex protein-DNA bind-
ing assay (Figure 6 C). We found that Epromoter GWAS-SNPs
that impact TF binding (skewed TF binding) displayed higher
pleiotropy than the remaining Epromoter GWAS-SNPs, while
there were no significant differences in the case of control pro-
moters. Similar results were observed when analyzing allelic-
specific TF binding in vivo using the ANANASTRA resource 
( 79 ) (Figure 6 D). Altogether, these results suggest that the ob- 
served pleiotropic effects are due to the functional impact of 
Epromoter’s variants in terms of skewed cis -regulatory activ- 
ity and TF binding. 

We next integrated the different levels of validation re- 
sources to retrieve a list of 156 Epromoter overlapping GWAS- 
SNPs with consistent distal eQTLs, P-P interactions, allelic- 
skewed MPRA activity and TF binding (Figure 6 E). From this 
list, 28 (18.4%) SNPs were associated with 2 traits and 95 

(62.5%) SNPs were associated with three or more traits, thus 
representing a resource of bona fide pleiotropic Epromoters 
(Figure 6 F; Supplemental Table S5 ). Figure 7 provides four 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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Figure 6. Functional validation of pleiotropic Epromoter SNPs. ( A ) Schematic strategy to identify GWAS-SNPs with allelic-skewed regulatory activity. 
First, 24 MPRA datasets in 14 cell lines were collected from published studies. Around 37 831 SNPs in total show a significant allelic impact on 
regulatory activity . Finally , 292 allelic-sk e w ed SNPs w ere o v erlapped within Epromoters. ( B ) Violin plots displa ying the number of GWAS traits per SNP in 
the function of whether the SNP had an allelic-sk e w ed regulatory activity or not (other SNPs) based on MPRA experiments. Statistical significance was 
assessed by a Wilcoxon test, and is represented by the P -values in the graph. ( C-D ) Violin plots displaying the number of GWAS traits per SNP in the 
function of whether the SNP had a sk e w ed TF binding based on SNP-SELEX assa y s ( C ) and ANANASTRA ( D ). Statistical significance was assessed by a 
Wilco x on test, and is represented by the P -values in the graphs. ( E ) The Venn diagram illustrates the intersections of SNPs located at Epromoters among 
four categories: eQTLs with distal eff ects, P –P interactions, allelic-skewed SNPs identified by MPRA, and SNPs exhibiting skewed TF binding. ( F ) The pie 
chart shows the number of non-pleiotropic (1 GWAS trait) and pleiotropic ( ≥2 GWAS traits) SNPs from the 156 intersected SNPs. 
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examples of pleiotropic Epromoters ( SETD1A, COASY, OR-
MDL3 and PPIL3 ) with consistent 3D interaction and eQTL
target genes (Figure 7 A and B), significant differences on al-
lelic regulatory activity (Figure 7 C) and predicted perturba-
tion of TF binding (Figure 7 D; Supplemental Table S5 ). Care-
ful examination of proximal and distal target genes suggested
that the association with multiple GWAS traits might be ex-
plained by the combination of the individual gene functions
(see Supplementary Information 1 for a detailed description
of each locus). For example, The SETD1A Epromoter is a
highly pleiotropic locus involved in over 30 diverse GWAS
traits, including immune-associated diseases (Graves, psoria-
sis, Crohn’s, eosinophil count), neurological diseases (Parkin-
son’s, epilepsy, anxiety) and heart disease risk factors (BMI,
blood and pulse pressure, triglycerides and LDL cholesterol
measurements). The associated rs4889599 SNP displayed
allelic-skewed MPRA activity (Figure 7 C, top panel) and is
predicted to affect the binding of the HT A TIP2 (Figure 7 D,
top panel; Supplementary Table S5 ). Interestingly, SETD1A
and the STX1B distal target are both associated with neuro-
logical disorders, while the HSD3DB7 and STX4 distal tar-
gets are associated with immune-related and cardiometabolic
diseases, respectively ( Supplementary Information 1 ). Overall,
we concluded that the pleiotropic association of Epromoters
with multiple diseases and traits is linked to the cis -regulatory
impact of the genetic variants and the combination of the
physiological functions of proximal and distal target genes. 

Discussion 

Genome-wide studies have become pivotal in unraveling the
genetic basis of complex traits through the identification of
SNPs associated with specific phenotypes. In this study, we
employed a comprehensive approach to investigate the ge-
netic landscape of Epromoters, an unconventional type of cis -
regulatory element harboring both enhancer and promoter
functions. We first demonstrated that Epromoters display dis-
tinct genomic and epigenomic features compared to typical
promoters that harbor similar promoter, but not enhancer, ac-
tivity. We then examined their association with genetic vari-
ants, particularly focusing on SNPs identified in GWAS. Our
comprehensive analysis provides novel insights into the ge-
netic variation within Epromoters, highlighting their poten-
tial roles in complex trait regulation. The enrichment of spe-
cific GWAS traits and the increased pleiotropy observed in
Epromoters, as compared with control promoters, highlighted
their importance in the genetic architecture of complex traits
and diseases. Although the overall pleiotropic effect of Epro-
moters is rather small compared to control promoters, we
observed that these differences are maintained when con-
sidering only disease-related traits or when accounting for
gene-expression breadth. Moreover, the consistency between
eQTLs and 3D interactions (Figure 4 D) or the experimen-
tally validated GWAS SNPs (Figure 7 B and C) demonstrated
a stronger and more specific pleiotropy at Epromoters, sup-
porting the hypothesis that the observed pleiotropic effects
are likely due to the functional impact of Epromoter variants
on distal genes. Our findings underscore the intricate relation-
ship between Epromoter-associated genetic variation, eQTLs,
and pleiotropy, unraveling the potential regulatory impact on
both proximal and distal target genes. The identified link be-
tween Epromoters and distal gene regulation provides valu-
able insights into the functional genomics of complex traits
and paves the way for a deeper understanding of the molecu- 
lar mechanisms underlying pleiotropy. 

A major paradigm in the field of gene regulation is to 

understand what are the molecular bases of proximal (pro- 
moter) v er sus distal (enhancer) functions ( 12 ). Although a 
unified model of cis -regulatory functions has been proposed 

( 16 ), several studies, including ours, have suggested that in- 
trinsic (binding sites, nucleotide composition, etc.) and extrin- 
sic (TFs, genomic context, etc.) features that drive enhancer 
and promoter activities are not the same ( 4 , 6 , 9 , 10 , 16 , 91–93 ).
Previous studies have shown that the type of TF that binds a 
cis -regulatory element might influence the relative enhancer or 
promoter activity ( 4 ,12 ). Similarly, we showed that interferon- 
response Epromoters have a higher density and better qual- 
ity of interferon-stimulated response elements, as compared 

with typically induced promoters, which, in turn, results in 

the Epromoter-specific recruitment of ST A T1 / 2 and IRF TFs 
and activation of neighbor genes ( 9 ). 

Here, we took advantage of the comprehensive Epromoter 
resource we have built to perform a thorough comparison 

of Epromoters against typical promoters displaying similar 
promoter activity. Our results revealed several intrinsic differ- 
ences between Epromoters and typical promoters. First, Epro- 
moters are associated with genes that are less tissue-specific 
and harbor multiple alternative promoters. Second, they are 
involved in a higher number of interactions with other pro- 
moters. Third, their sequences are more conserved and dis- 
play a higher number of G4 elements. Fourth, Epromoters 
have a higher density and diversity of TFBSs, which is re- 
flected by a high density of TF binding. Interestingly, the high 

diversity of TFBS is a common feature of Epromoters and 

distal enhancers, while the high density of TFBS appears to 

be a specific feature of Epromoters. Finally, Epromoters dis- 
play a higher level of sense and antisense transcription ini- 
tiation which is reflected by a higher overlap with RNAPII 
binding. Based on these findings, we speculate that Epromot- 
ers represent a combination of the two types of cis -regulatory 
elements, thus combining features associated with enhancer 
and promoter activities within an enhancer-promoter contin- 
uum of cis -regulatory elements. This intermediated position 

implies that Epromoters might display a higher density and 

complexity of TFBS because it has to accommodate the bind- 
ing of TFs for both enhancer and promoter functions. In this 
scenario, typical promoters are enriched in binding sites for 
TFs conferring promoter activity and enhancers enriched in 

binding sites for TFs conferring enhancer activity, while Epro- 
moters are enriched for both types of binding sites leading 
to a higher density of TFBS. Future works should system- 
atically assess the contribution of TFBS and associated TFs 
to the enhancer and promoter activity in order to better un- 
derstand the molecular features that determine the intrinsic 
promoter and enhancer potentials of cis -regulatory elements,
and in particular of Epromoters. This, in turn, might help to 

better predict the impact of mutations or natural variants of 
Epromoters that might affect either proximal or distal gene 
regulation. 

Several studies, including ours, have demonstrated that 
human genetic variation within Epromoters influences dis- 
tal gene expression ( 6 , 17 , 23–25 ). Moreover, specific exam- 
ples highlight the distal impact of disease-associated variants 
within Epromoters ( 10 , 26 , 109–114 ). The complex regulation 

by Epromoters might therefore have two predicted conse- 
quences. On the one hand, there might be a general under- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae1270#supplementary-data
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Figure 7. Examples of pleiotropic Epromoters ( A ) The circular visualization of Epromoters and interacting genes based on their genomic locations. The 
Epromoter-associated genes are displa y ed in blue, while the red bar represents the Epromoters. Genes in the outer circle are in the positive strand. 
Genes in the inner circle are in the negative strand. The selected SNP is indicated under the Epromoter-gene name. The curves are P–P interactions. ( B ) 
The heatmaps show the eQTLs effect of the selected SNPs on target genes in different tissues from the eQTL Catalogue. Each row in the heatmap 
represents the gene associated with the eQTL. Each column represents the tissue of eQTL. The color scale represents the z-score of the eQTL effect 
on target genes. ( C ) The bar plots show the allelic-skewed regulatory activity of the selected SNPs validated by MPRA. P -values or FDR according to 
original studies are shown at the top of the graphs. ( D ) Representative TFBSs affected by the selected SNPs. The predicted consequences of the SNPs 
(from reference to alternative alleles) are shown at the top. The sequences of reference and alternative alleles are shown at the bottom. The SNP is 
highlighted in red. The arrow indicates the sequence is in the reverse complement. 
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stimation of the impact of Epromoter variation in disease

ecause the causal gene might not be the closest one and
herefore the link between genotype and phenotype might be
issed in many case studies. On the other hand, as Epromot-

rs potentially control several genes at the same time and effi-
iently recruit key TFs, mutations in these regulatory elements
re expected to have a stronger pathological impact, as com-
ared to typical promoters. This might result from the regula-
tion of multiple genes either involved in the same (additive or
synergistic effects) or different (pleiotropy) pathways. Indeed,
our present work reveals that genetic variants within Epro-
moters linked to GWAS are significantly associated with mul-
tiple diseases as compared with typical promoters, supporting
the hypothesis whereby Epromoters might have a pleiotropic
effect in disease by perturbing the expression of several genes
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Pleiotropy, implying a single cis -regulatory element affect-
ing more than one trait independently, could be due to the per-
turbation of a single gene playing multiple functions in differ-
ent tissues ( 115 ,116 ) or the regulation of multiple genes in the
same or different tissues ( 117 ,118 ). Our results rather point
to the latter possibility. On the one hand, we observed that
pleiotropy is associated with an increased number of target
genes, as assessed by consistent eQTL and P–P interactions.
While it is difficult to ensure that all Epromoter variants are
bona fide distal regulators, we noticed that taking into con-
sideration functional assessment of allelic-specific activity by
MPRA allows for significant enrichment of pleiotropic Epro-
moters. On the other hand, a careful examination of several
pleiotropic Epromoters, reveals that the different target genes
play a role in different physiological functions that might ex-
plain the association with the different diseases. Future work
will require extensive functional studies of the target genes in
order to demonstrate their involvement in the context of each
associated disease. In line with our finding, a schizophrenia-
risk SNP within the promoter of the VSP45 gene was shown
to cis -regulate three genes via allele-specific chromatin loop-
ing. These genes act in a non-additive synergistic fashion to
enhance dendritic complexity and neuronal activity ( 119 ).
In conclusion, genetic alterations affecting Epromoters are
likely to have a stronger impact on the regulation of disease-
associated genes, as compared with typical promoters. 

The regulation of the OAS1 / 2 / 3 locus by the OAS3 Epro-
moter provides a detailed illustration of the link between
Epromoters and pleiotropic association with diseases. In par-
ticular, the expression of OAS1 / 2 / 3 has been associated with
severe COVID-9 ( 105 ,120–122 ). Previous studies have de-
scribed COVID-19-associated variants linked to either OAS1
( 123 ) or OAS2 ( 124 ) expression, but failed to explain the
global deregulation of the entire cluster. Although we cannot
exclude the existence of multiple causal variants working syn-
ergistically, our results provide a more straightforward mech-
anistic explanation for the deregulation of the entire cluster,
whereby the Neandertal inherited OAS3 Epromoter haplo-
type (minor allele) displays lower promoter and enhancer ac-
tivity, therefore resulting in decreased expression of the three
OAS genes. However, the relative enhancer / promoter switch
observed in the A549 cell line might indicate a more complex
regulatory network that will need to be explored in the future.

Genetic variation might impact the expression of neighbor-
ing genes in the same (e.g. enhancer and promoter activity
are equally affected) or opposite (e.g. the genetic variant in-
duces an enhancer / promoter switch) directions. For instance,
two studies demonstrated that an alternative variant associ-
ated with prostate cancer increases the enhancer activity of
the promoter leading to decreased expression of the proximal
transcript but increased expression of two distal transcripts
directly involved in cancer progression ( 113 ,114 ). Moreover,
the genetic variants might differently impact enhancer and / or
promoter activity in different tissues. For instance, Leung et
al. found frequent examples of dynamic epigenetic switches
where active promoters in one tissue displayed a histone mod-
ification signature of enhancers in other tissues / cell types ( 27 ).
Similarly, Chandra et al. found a substantial number of P–P in-
teractions involving transcriptionally inactive genes, suggest-
ing that non-transcribing promoters may function as active
enhancers for distal genes ( 26 ). An enlightening example is
provided by the OAS1 / 2 / 3 locus, where genetic variation at
the OAS3 Epromoter affects IFNa-dependent enhancer and
promoter activity in both K562 and A549 cell lines. How- 
ever, the relative impact on enhancer and promoter activities 
switches between the two cell lines. 

Overall, by leveraging extensive genomic and functional 
datasets, our study explores the intricate relationship between 

Epromoter variation, pleiotropy and target gene regulation,
shedding light on the complex regulatory mechanisms under- 
lying the genetic architecture of complex traits. 
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