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The Monniaux Problem in abstract interpretation asks, roughly speaking, whether the following question is decidable: given a program

𝑃 , a safety (e.g., non-reachability) specification 𝜑 , and an abstract domain of invariants D, does there exist an inductive invariant

I in D guaranteeing that program 𝑃 meets its specification 𝜑 . The Monniaux Problem is of course parameterised by the classes of

programs and invariant domains that one considers. In this paper, we show that the Monniaux Problem is undecidable for unguarded

affine programs and semilinear invariants (unions of polyhedra). Moreover, we show that decidability is recovered in the important

special case of simple linear loops.
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1 INTRODUCTION

Invariants are one of the most fundamental and useful notions in the quantitative sciences, appearing in a wide range

of contexts, from gauge theory, dynamical systems, and control theory in physics, mathematics, and engineering to

program verification, static analysis, abstract interpretation, and programming language semantics (among others) in

computer science. In spite of decades of scientific work and progress, automated invariant synthesis remains a topic

of active research, especially in the fields of program analysis and abstract interpretation, and plays a central role in
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2 Fijalkow et al.

methods and tools seeking to establish correctness properties of computer programs; see, e.g., [23], and particularly

Sec. 8 therein.

The focus of the present paper is theMonniaux Problem on the decidability of the existence of separating invariants,

which was formulated by David Monniaux in [28] and also raised by him in a series of personal communications with

various members of the theoretical computer science community over the past five years or so. There are in fact a

multitude of versions of the Monniaux Problem—indeed, it would be more appropriate to speak of a class of problems

rather than a single question—but at a high level the formulation below is one of the most general:

Consider a program 𝑃 operating over some numerical domain (such as the integers or rationals), and

assume that 𝑃 has an underlying finite control-flow graph over the set of nodes 𝑄 = {𝑞1, . . . , 𝑞𝑟 }. Let us
assume that 𝑃 makes use of 𝑑 numerical variables, and each transition 𝑞

𝑡−→ 𝑞′ comprises a function

𝑓𝑡 : R
𝑑 → R𝑑 as well as a guard 𝑔𝑡 ⊆ R𝑑 . Let 𝑥,𝑦 ∈ Q𝑑 be two points in the ambient space. By way of

intuition and motivation, we are interested in the reachability problem as to whether, starting in location

𝑞1 with variables having valuation 𝑥 , it is possible to reach location 𝑞𝑟 with variables having valuation 𝑦,

by following the available transitions and under the obvious interpretation of the various functions and

guards. Unfortunately, in most settings this problem is well-known to be undecidable.

A collection

{
I𝑞 | 𝑞 ∈ 𝑄

}
is called an (inductive

1
) invariant if for each transition 𝑞

𝑡−→ 𝑞′, we have that

𝑓𝑡 (I𝑞 ∩ 𝑔𝑡 ) ⊆ I𝑞′ . If it additionally satisfies that 𝑥 ∈ I𝑞1 and 𝑦 ∉ I𝑞𝑟 , then it is a separating invariant for

program 𝑃 . Clearly, the existence of a separating invariant constitutes a proof of non-reachability for 𝑃

with the given 𝑥 and 𝑦.

Let D ⊆ 2
R𝑑

be an ‘abstract domain’ for 𝑃 , i.e., a collection of subsets of R𝑑 . For example, D could be the

collection of all convex polyhedra in R𝑑 , or the collection of all closed semi-algebraic sets in R𝑑 , etc.

The Monniaux Problem can now be formulated as a decision question: is it possible to adorn each control

location 𝑞 with an element I𝑞 ∈ D such that the collection

{
I𝑞 | 𝑞 ∈ 𝑄

}
forms a separating invariant?

Associated with this decision problem, in positive instances one is also potentially interested in the

synthesis problem, i.e., the matter of algorithmically producing a suitable separating invariant {I𝑞 : 𝑞 ∈ 𝑄}.

The Monniaux Problem is therefore parameterised by a number of items, key of which are (i) the abstract domain D
under consideration, and (ii) the kind of functions and guards allowed in transitions.

Our main interest in this paper lies in the decidability of the existence of separating invariants for various instances

of the Monniaux Problem. We give below a cursory cross-sectional survey of existing work and results in this direction.

Arguably the earliest positive result in this area is due to Karr, who showed that strongest affine invariants (conjunc-

tions of affine equalities) for affine programs (no guards, and all transition functions are given by affine expressions)

could be computed algorithmically [22]. Note that the ability to synthesise strongest (i.e., smallest with respect to set

inclusion) invariants immediately entails the decidability of the Monniaux Problem instance, since the existence of

some separating invariant is clearly equivalent to whether the strongest invariant is separating. Müller-Olm and Seidl

later extended this work on affine programs to include the computation of strongest polynomial invariants of fixed

degree [30], and a randomised algorithm for discovering affine relations was proposed by Gulwani and Necula [31].

In [15], the least inductive invariant is computed by policy iteration for some families of abstract domains. More

recently, Hrushovski et al. showed how to compute a basis for all polynomial relations at every location of a given

affine program [19].

1
In the remainder of this paper, the term ‘invariant’ shall always refer to the inductive kind.
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The approaches described above all compute invariants consisting exclusively of conjunctions of equality relations.

By contrast, an early and highly influential paper by Cousot and Halbwachs considers the domain of convex closed

polyhedra [9], for programs having polynomial transition functions and guards. Whilst no decidability results appear in

that paper, much further work was devoted to the development of restricted polyhedral domains for which theoretical

guarantees could be obtained, leading (among others) to the octagon domain of Miné [27], the octahedron domain

of Clarisó and Cortadella [6], and the template polyhedra of Sankaranarayanan et al. [33]. In fact, as observed by

Monniaux [28], if one considers a domain of convex polynomial templates having a uniformly bounded number of faces

(therefore subsuming in particular the domains just described), then for any class of programs with polynomial transition

relations and guards, the existence of separating invariants becomes decidable, as the problem can equivalently be

phrased in the first-order theory of the reals.

One of the central motivating questions for the Monniaux Problem is whether one can always compute separating

invariants for the full domain of polyhedra. Unfortunately, on this matter very little is known at present. In recent

work, Monniaux showed undecidability for the domain of convex polyhedra and the class of programs having affine

transition functions and polynomial guards [28]. One of the main results of the present paper is to show undecidability

for the domain of semilinear sets2 and the class of affine programs (without any guards)—in fact, affine programs with

only a single control location and two transitions:

Theorem 1.1. Let 𝐴, 𝐵 ∈ Q𝑑×𝑑 be two rational square matrices of dimension 𝑑 , and let 𝑥,𝑦 be two points in Q𝑑 . Then

the existence of a semilinear set I ⊆ R𝑑 having the following properties:

(1) 𝑥 ∈ I;
(2) 𝐴I ⊆ I and 𝐵I ⊆ I; and
(3) 𝑦 ∉ I

is an undecidable problem.

It is worth pointing out that the theorem remains valid even for a fixed 𝑑 (our proof shows undecidability for 𝑑 = 96,

but this value could be improved). If moreover one requires I to be topologically closed, one can lower 𝑑 to having fixed

value 24. Finally, an examination of the proof reveals that the theorem also holds for the domain of semi-algebraic sets,

and in fact for any domain of o-minimal sets in the sense of [1]. The proof also carries through whether one considers

the domain of semilinear sets having rational, algebraic, or real coordinates.

Although the above is a negative (undecidability) result, it should be viewed in a positive light; as Monniaux writes

in [28], “We started this work hoping to vindicate forty years of research on heuristics by showing that the existence

of polyhedral inductive separating invariants in a system with transitions in linear arithmetic (integer or rational) is

undecidable.” Theorem 1.1 shows that, at least as regards non-convex invariants, the development and use of heuristics

is indeed vindicated and will continue to remain essential. Related questions of completeness of given abstraction scheme

have also been examined by Giacobazzi et al. in [17, 18]. We refer to [29] for a recent and personal point of view on the

Monniaux problem, by Monniaux himself.

It is important to note that our undecidability result requires at least two transitions. In fact, much research work has

been expended on the class of simple affine loops, i.e., one-location programs equipped with a single self-transition. In

terms of invariants, Fijalkow et al. establish in [13, 14] the decidability of the existence of semi-algebraic separating

invariants, and specifically state the question of the existence of separating semilinear invariants as an open problem.

2
A semilinear set consists of a finite union of polyhedra, or equivalently is defined as the solution set of a Boolean combination of linear inequalities.
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4 Fijalkow et al.

Almagor et al. extend this line of work in [1] to more complex targets (in lieu of the point 𝑦) and richer classes of

invariants. The second main result of the present paper is to settle the open question of [13, 14] in the affirmative:

Theorem 1.2. Let 𝐴 ∈ Q𝑑×𝑑 be a rational square matrix of dimension 𝑑 , and let 𝑥,𝑦 ∈ Q𝑑 be two points in Q𝑑 . It is

decidable whether there exists a closed semilinear set I ⊆ R𝑑 having algebraic coordinates such that:

(1) 𝑥 ∈ I;
(2) 𝐴I ⊆ I; and
(3) 𝑦 ∉ I.

The proof shows that, in fixed dimension 𝑑 , the decision procedure runs in polynomial time. It is worth noting that

one also has decidability if 𝐴, 𝑥 , and 𝑦 are taken to have real-algebraic (rather than rational) entries.

Let us conclude this section by briefly commenting on the important issue of convexity. At its inception, abstract

interpretation had a marked preference for domains of convex invariants, of which the interval domain, the octagon

domain, and of course the domain of convex polyhedra are prime examples. Convexity confers several distinct advantages,

including simplicity of representation, algorithmic tractability and scalability, ease of implementation, and better

termination heuristics (such as the use of widening). The central drawback of convexity, on the other hand, is its poor

expressive power. This has been noted time and again: “convex polyhedra [. . . ] are insufficient for expressing certain

invariants, and what is often needed is a disjunction of convex polyhedra.” [2]; “the ability to express non-convex properties

is sometimes required in order to achieve a precise analysis of some numerical properties” [16]. Abstract interpretation

can accommodate non-convexity either by introducing disjunctions (see, e.g., [2] and references therein), or via the

development of special-purpose domains of non-convex invariants such as donut domains [16]. The technology, data

structures, algorithms, and heuristics supporting the use of disjunctions in the leading abstract-interpretation tool

Astrée are presented in great detail in [8]. In the world of software verification, where predicate abstraction is the

dominant paradigm, disjunctions—and hence non-convexity—are nowadays native features of the landscape.

It is important to note that the two main results presented in this paper, Theorems 1.1 and 1.2, have only been

proven for families of invariants that are not necessarily convex. The Monniaux Problem restricted to families of convex

invariants remains open and challenging.

2 PRELIMINARIES

We start with necessary definitions and notations.

2.1 Real and complex numbers

We will mostly work in the field A ⊆ C of algebraic numbers, that is, roots of polynomials with coefficients in Z.

It is possible to represent and manipulate algebraic numbers effectively, by storing their minimal polynomial and a

sufficiently precise numerical approximation. An excellent reference in computational algebraic number theory is [7].

All standard algebraic operations such as sums, products, root-finding of polynomials, or computing Jordan normal

forms of matrices with algebraic entries can be performed effectively.

The set of complex numbers is C, and for a complex number 𝑧 its modulus is |𝑧 |, its real part is Re (𝑧), its imaginary

part is Im (𝑧) and its conjugate is 𝑧∗. Let C∗ denote the set of non-zero complex numbers. We write 𝑆1 for the complex

unit circle, i.e. the set of complex numbers of modulus 1. We let U denote the set of roots of unity, i.e. complex numbers
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On the Monniaux Problem in Abstract Interpretation 5

𝑧 ∈ 𝑆1 such that 𝑧𝑛 = 1 for some 𝑛 ∈ N. We write Diag(𝜆1, . . . , 𝜆𝑑 ) for
𝜆1

𝜆2

. . .

𝜆𝑑


.

When working in C𝑑 , the norm of a vector 𝑧 is | |𝑧 | |, defined as the maximum of the modulus of each complex

component 𝑧𝑖 for 𝑖 in {1, . . . , 𝑑}, where 𝑧𝑖 is the ith component of vector 𝑧. For 𝜀 > 0 and 𝑧 in C𝑑 , we write 𝐵(𝑧, 𝜀) for
the open ball centered in 𝑧 of radius 𝜀. The topological closure of a set I ⊆ C𝑑 is I, its interior Io, and its boundary

𝜕I, defined as I ∩ C𝑑 \ I.
For semilinear sets, defined below, we will need to view complex sets as real sets in twice the dimension. We introduce

some notations to clarify this part. For any 𝑑 ∈ N, we introduce the mapping

(·)R :

C𝑑 → R2𝑑

(𝑥1, . . . , 𝑥𝑑 ) ↦→ (Re (𝑥1) , Im (𝑥1) , · · · , Re (𝑥𝑑 ) , Im (𝑥𝑑 )) .

We naturally extend this mapping to matrices so that if 𝐴 ∈ C𝑑×𝑑 then 𝐴R ∈ R2𝑑×2𝑑 is such that for all 𝑥 ∈ C𝑑 ,
𝐴R𝑥R = (𝐴𝑥)R. Furthermore, the following relation exists between the determinant of 𝐴 and 𝐴R:

Lemma 2.1. For any 𝐴 ∈ C𝑑×𝑑 , det(𝐴R) = det(𝐴)det(𝐴)∗.

Proof. Recall that the determinant is invariant when corresponding rows and columns undergo permutation. It is

not hard to check that 𝐴R is the block matrix (𝑅(𝐴𝑖 𝑗 ))𝑖, 𝑗 where

𝑅(𝑧) =
[
Re (𝑧) −Im (𝑧)
Im (𝑧) Re (𝑧)

]
for all 𝑧 ∈ C. Therefore by permuting rows, we can write

𝐴R = 𝑃−1
[
Re (𝐴) −Im (𝐴)
Im (𝐴) Re (𝐴)

]
𝑃

where 𝑃 has determinant 1 and Re (𝐴) (resp. Im (𝐴)) is the matrix whose entries are the real (resp. imaginary) parts of

the entries of 𝐴. Now note that for any matrices 𝑋,𝑌 ∈ R𝑑×𝑑 ,[
𝑋 −𝑌
𝑌 𝑋

]
=

[
−𝑖𝐼𝑑 𝑖𝐼𝑑

𝐼𝑑 𝐼𝑑

] [
𝑋 − 𝑖𝑌 0

0 𝑋 + 𝑖𝑌

] [
𝑖
2
𝐼𝑑

1

2
𝐼𝑑

− 𝑖
2
𝐼𝑑

1

2
𝐼𝑑

]
,

where 𝐼𝑑 is the identity matrix of dimension 𝑑 .

Therefore, det(𝐴R) = det(Re (𝐴) − 𝑖Im (𝐴)) det(Re (𝐴) + 𝑖Im (𝐴)) = det(𝐴∗) det(𝐴) = det(𝐴)∗ det(𝐴). □

2.2 Linear dynamical systems

A dynamical system is given by a set of functions 𝑓𝑡 : R𝑑 → R𝑑 for 𝑡 ∈ [1, 𝑘]. Let 𝑥 be an initial vector, the set of

reachable points from 𝑥 is the smallest subset 𝑅 of R𝑑 containing 𝑥 and closed under the functions 𝑓𝑡 : if 𝑧 ∈ 𝑅 then

𝑓𝑡 (𝑧) ∈ 𝑅. If there is a single function (𝑘 = 1) the set of reachable points from 𝑥 is called the orbit of 𝑥 under 𝑓 . We say

that 𝑦 is reachable from 𝑥 if 𝑦 belongs to the set of reachable points from 𝑥 . The reachability problem is the following

decision problem: given a (dynamical) system 𝑆 = (𝑥, {𝑓𝑡 : 𝑡 ∈ [1, 𝑘]} , 𝑦), determine whether 𝑦 is reachable from 𝑥 .
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6 Fijalkow et al.

We are in this paper interested in linear dynamical systems, where the functions 𝑓𝑡 are linear: 𝑓𝑡 is induced by a

square matrix 𝐴𝑡 ∈ A𝑑×𝑑 with 𝑓𝑡 (𝑧) = 𝐴𝑡𝑧. We simply write 𝑆 = (𝑥, {𝐴𝑡 : 𝑡 ∈ [1, 𝑘]} , 𝑦) for a linear dynamical system.

The special case of a single matrix (𝑘 = 1) is called “simple linear loops”.

2.3 Invariants

Natural certificates that 𝑦 is not reachable from 𝑥 are separating invariants: an invariant is a set I ⊆ C𝑑 such that

𝑓𝑡 (I) ⊆ I for all 𝑡 ∈ [1, 𝑘]. It is separating for (𝑥,𝑦) if additionally 𝑥 ∈ I and 𝑦 ∉ I.
Note that for a linear function 𝑓𝑡 (𝑧) = 𝐴𝑡𝑧, the property 𝑓𝑡 (I) ⊆ I is equivalent to 𝐴𝑡I ⊆ I, and in that case we

say that I is invariant under 𝐴.

The following are equivalent:

• there exists a separating invariant.

• 𝑦 is not reachable from 𝑥 ,

It is clear that the existence of a separating invariant implies that 𝑦 is not reachable from 𝑥 . A stronger statement is: the

set 𝑅 of reachable points from 𝑥 is a separating invariant for (𝑥,𝑦) if and only if 𝑦 does not belong to 𝑅. However the

set 𝑅 may be very complicated, making it not so useful as a separating invariant. We therefore consider restrictions on

the class of invariants.

2.4 Semilinear sets

A set I ⊆ R𝑑 is semilinear if it is the set of (real) solutions of some finite Boolean combination of linear inequalities

with algebraic coefficients. We give an equivalent definition now using half-spaces and polyhedra. A half-spaceH is a

subset of R𝑑 of the form

H =

{
𝑧 ∈ R𝑑 : 𝑧 · 𝑢 ≻ 𝑎

}
,

for some 𝑢 in A𝑑 , 𝑎 in A ∩ R and ≻ ∈ {≥, >}. A polyhedron is a finite intersection of half-spaces, and a semilinear set a

finite union of polyhedra.

If I is a semilinear set, then 𝐼o, 𝐼 and 𝜕I are also semilinear sets. A classical (and non-trivial) result about semilinear

sets is their closure under projections as stated below. We will also need some effective bounds on sections of semilinear

sets.

Lemma 2.2 (Projections of semilinear sets). Let I be a semilinear set in R𝑑+𝑑
′
. Then the projection of I on the first

𝑑 coordinates defined by
{
𝑧 ∈ R𝑑 : ∃𝑡 ∈ R𝑑 ′ , (𝑧, 𝑡) ∈ I

}
is a semilinear set.

Lemma 2.3 (Sections of semilinear sets). Let I be a semilinear set in R𝑑+𝑑
′
and 𝑡 in R𝑑

′
. Then the section of I

along 𝑡 defined by
{
𝑧 ∈ R𝑑 : (𝑧, 𝑡) ∈ I

}
is a semilinear set. Furthermore, there exists a bound 𝐵 in R such that for all 𝑡 in

R𝑑
′
of norm at most 1, if the section is non-empty, then it contains some 𝑧 in R𝑑 of norm at most 𝐵.

Proofs for Lemmas 2.2 and 2.3. Lemma 2.2 is a reformulation of Fourier-Motzkin elimination, from which the first

part of Lemma 2.3 also follows. We now prove existence of the bound 𝐵. Let us first assume that I is closed and write

I = P1 ∪ · · · ∪ P𝑛 where the P𝑖 ’s are closed polyhedra.

For each 𝑖 , 𝑇𝑖 =

{
𝑡 ∈ R𝑑 ′ | | |𝑡 | | ≤ 1 and ∃𝑧, (𝑧, 𝑡) ∈ P𝑖

}
is a compact polyhedron, and the map 𝑓𝑖 : 𝑇𝑖 → R assigning

min{| |𝑧 | |, (𝑧, 𝑡) ∈ P𝑖 } to 𝑡 in𝑇𝑖 is continuous. Now since𝑇𝑖 is compact, 𝑓𝑖 admits a maximum 𝐵𝑖 over𝑇𝑖 . Then we simply

let 𝐵 be the maximal 𝐵𝑖 .
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On the Monniaux Problem in Abstract Interpretation 7

If I is not closed, apply the above to I′ = I which yields a bound 𝐵′. Then for each 𝑡 , the section of I along 𝑡

contains the interior of the section of I′ along 𝑡 ; therefore the bound 𝐵 = 𝐵′ + 1 applies to I. □

For the reader’s intuitions, note that the last part of this lemma does not hold for more expressive domains. For

instance, consider the hyperbola defined by I =
{
(𝑥,𝑦) ∈ R2 : 𝑥𝑦 = 1

}
. Choosing a small 𝑥 forces to choose a large 𝑦,

hence there exist no bound 𝐵 as stated in the lemma for I.
It will be convenient for the proofs to consider semilinear sets in C𝑑 , by identifying C𝑑 with R2𝑑 . Formally, I ⊆ C𝑑

is a complex semilinear set if IR is a (real) semilinear set. Note that this definition is consistent: I ⊆ R𝑑 is semilinear if

and only if IR is semilinear. We will refer to complex semilinear sets as simply semilinear sets when it is clear from the

context.

2.5 The semilinear invariant problem

The problem we study in this paper is the semilinear invariant problem, which asks whether given a linear dynamical

system there exists a semilinear separating invariant. The next section gives high level overviews of the proofs for our

two main results, namely Theorems 1.1 and 1.2.

3 MAIN RESULTS AND PROOF OVERVIEWS

3.1 Undecidability for two matrices

We sketch the proofs of two undecidability results; as an intermediate step and towards the (complicated) proof of

Theorem 1.1, we provide a simpler undecidability result regarding closed semilinear invariants. We will only sketch

proofs in this section and defer the full proofs to Section 4. As it will appear below, it is more convenient here to write

matrix-multiplication from the left, and vectors in row convention. We adopt this convention locally to this proof

overview (Subsection 3.1), as well as in the full proof (Section 4).

We will construct reductions from the 𝜔-Post Correspondence Problem (in short: 𝜔-PCP), an extension of the well-

known Post Correspondence Problem to infinite words. For a word𝑤 we let |𝑤 | denote its length, and for 𝑖 ∈ [1, |𝑤 |],
we write𝑤𝑖 for the letter of𝑤 in position 𝑖 , so𝑤 = 𝑤1𝑤2 . . . . We write𝑤1...𝑛 for the prefix of𝑤 of length 𝑛.

An instance of the 𝜔-PCP is given by a set of pairs of non-empty words (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] over some alphabet Σ. The

objective is to determine whether there exists an infinite word 𝑤 = 𝑤1𝑤2 . . . over the alphabet [1, 𝑝] such that the

following equality over infinite words holds: 𝑢𝑤1𝑢𝑤2 · · · = 𝑣𝑤1𝑣𝑤2 . . . , and in that case we say that𝑤 is a solution of

(𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] . A pair (𝑢𝑖 , 𝑣𝑖 ) is called a tile, see Figure 1 for a graphical representation.

This problem is known to be undecidable [10] even for a fixed 𝑝 and an alphabet of size 2. For the remainder of this

section, we let 𝑝 denote the smallest number such that the 𝜔-PCP is undecidable with a fixed number of tiles 𝑝 . The

latest improvement on this result shows that 𝑝 ≤ 8 [10].

A first undecidability result for closed semilinear invariants

The first undecidability result we prove is for (topologically) closed invariants: it does not yet imply Theorem 1.1; the

reduction will be further refined later on.

Theorem 3.1. The semilinear invariant problem is undecidable for closed invariants with 𝑝 matrices of dimension 3.

Let us consider an 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] . Without loss of generality the alphabet is Σ = {0, 2}: this way a

word 𝑢 = 𝑢1 . . . 𝑢𝑛 ∈ Σ∗ is encoded as the digits of some real number in [0, 1] in base 4 (with least significant digits to

Manuscript submitted to ACM



8 Fijalkow et al.

a b a b a b

a b a b a

a b a b a b a

a b a b a b a a

encode

add tile

0. a b a b a b - 0. a b a b a , 4−6, 4−5

encode

0. a b a b a b a - 0. a b a b a b a a , 4−7, 4−8

apply matrix

Fig. 1. Encoding using matrices: the partial solution consisting of 3 tiles on the left is encoded as three real numbers on the right
(here 𝑎 and 𝑏 are digits). For each tile we construct a matrix such that concatenating the tile on the left is equivalent to multiplying
this vector by the matrix corresponding to the tile.

the right):

[𝑢] =
𝑛∑︁
𝑖=1

𝑢𝑖4
−𝑖 .

The choice of base 4 and digits in {0, 2} instead of the more canonical base 2 is for having a sparse encoding, which will

be useful for defining invariants. A finite word𝑤 ∈ [1, 𝑝]∗ induces two finite words 𝑢𝑤 , 𝑣𝑤 ∈ Σ∗:

𝑢𝑤 = 𝑢𝑤1𝑢𝑤2 . . . 𝑢𝑤𝑛
; 𝑣𝑤 = 𝑣𝑤1𝑣𝑤2 . . . 𝑣𝑤𝑛 .

We say that𝑤 is a partial solution if either 𝑢𝑤 is a prefix of 𝑣𝑤 or 𝑣𝑤 a prefix of 𝑢𝑤 .

We encode𝑤 by the vector ( [𝑢𝑤] − [𝑣𝑤], 4−|𝑢𝑤 | , 4−|𝑣
𝑤 | ) of dimension 3. Figure 1 illustrates the encoding of 𝜔-PCP.

The remarkable property of this encoding is that adding the tile (𝑢𝑖 , 𝑣𝑖 ) to𝑤 , meaning considering𝑤𝑖 , corresponds to

multiplying the vector by a fixed matrix 𝐴𝑖 . Formally, for a tile (𝑢𝑖 , 𝑣𝑖 ), we construct a 3 × 3 matrix 𝐴𝑖 such that

( [𝑢𝑤] − [𝑣𝑤], 4−|𝑢
𝑤 | , 4−|𝑣

𝑤 | ) · 𝐴𝑖 = ( [𝑢𝑤𝑖 ] − [𝑣𝑤𝑖 ], 4−|𝑢
𝑤𝑖 | , 4−|𝑣

𝑤𝑖 | ).

For a word 𝑤 ∈ [1, 𝑝]∗ we define 𝐴𝑤 : it is obtained by multiplying the matrices 𝐴𝑖 following 𝑤 . For instance
3

𝐴13422 = 𝐴1𝐴3𝐴4𝐴2𝐴2. Note that the set of reachable points from 𝑥 is {𝑥 · 𝐴𝑤 : 𝑤 ∈ [1, 𝑝]∗}.
Let 𝑥 = (0, 1, 1), the equality above implies that

𝑥 · 𝐴𝑤 = ( [𝑢𝑤] − [𝑣𝑤], 4−|𝑢
𝑤 | , 4−|𝑣

𝑤 | ) .

Let 𝑦 = (0, 0, 0). Let us consider the system 𝑆 = ({𝐴𝑖 }𝑖∈[1,𝑝 ] , 𝑥,𝑦). We now argue the 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ]
does not have a solution if and only if there exists a closed separating semilinear invariant for 𝑆 .

We first show that the existence of a solution implies the non-existence of closed separating invariants. Considering

the prefixes of a solution of the 𝜔-PCP yields a sequence of vectors which converges to the zero vector. In other words,

in that case 𝑦 is in the topological closure of the reachable set from 𝑥 . This implies that there cannot exist a closed

separating invariant (semilinear or not).

Conversely, if there is no solution to the 𝜔-PCP instance then an application of König’s lemma implies that there

exists a bound 𝑁 ∈ N such that there are no partial solutions of length greater than 𝑁 . It follows that for any𝑤 ∈ [1, 𝑝]+

3
Here, it is convenient to use row-vectors and multiply from the left, otherwise the order would be reversed, e.g. 𝐴13422 = 𝐴2𝐴2𝐴4𝐴3𝐴1 . This is the

reason why we adopt this convention for undecidability proofs.
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the first coordinate of 𝑥 · 𝐴𝑤 , which is [𝑢𝑤] − [𝑣𝑤], is lower bounded in absolute value by 4
−𝑁

. From this observation

we can construct a closed separating semilinear invariant (we refer to the full proof for details).

The main undecidability result

The above reduction strongly relies on the fact that if the 𝜔-PCP instance has a solution then the target belongs to the

closure of the set of reachable points, since this property implies that there cannot exist a closed separating invariant.

To obtain the undecidability for the class of all semilinear invariants, we refine the reduction above.

Theorem 3.2. The semilinear invariant problem is undecidable with 𝑝 + 4 matrices in dimension 8.

Reducing to two matrices

In the reductions above we used 𝑝 matrices in dimension 3 × 3 and 𝑝 + 4 matrices in dimension 8 × 8. A standard

transformation reduces the number of matrices by combining all matrices into one large matrix 𝐴 and adding a shift

matrix 𝐴
shift

, yielding the following result strengthening of Theorem 1.1.

Corollary 3.3. The closed semilinear invariant problem is undecidable with 2 matrices of dimension 3𝑝 , and the

semilinear invariant problem is undecidable with 2 matrices of dimension 8(𝑝 + 4).

3.2 Decidability for simple linear loops

Our positive result concerns the case of a single matrix, classically called “simple linear loops”. In this case a system

is (𝑥,𝐴,𝑦) and called an Orbit instance, and the orbit of 𝐴 under 𝑥 is {𝐴𝑛𝑥 : 𝑛 ∈ N}. The objective is to determine

whether there exists a semilinear invariant, meaning a semilinear set I such that 𝑥 ∈ I, 𝐴I ⊆ I, and 𝑦 ∉ I. We say

that an Orbit instance (𝑥,𝐴,𝑦) is a reach-instance if 𝑦 = 𝐴𝑛𝑥 for some 𝑛; since it is decidable in polynomial time [20, 21]

whether (𝑥,𝐴,𝑦) is a reach-instance, we may always assume that the answer is negative. Our decidability results

are only concerned with closed invariants, which is crucial in several proofs. We might sometimes omit the adjective

“closed”, but it is understood that whenever we consider an invariant it is closed.

Theorem 1.2 There is an algorithm that decides whether an Orbit instance with real algebraic coefficients admits a closed

semilinear invariant. Furthermore, for instances with rational inputs it runs in polynomial time assuming the dimension 𝑑

is fixed.

Before giving an overview of the proof of Theorem 1.2, we highlight some of the difficulties that occur by discussing

a few examples.

Example 3.4. Consider the Orbit instance ℓ = (𝑥,𝐴,𝑦) in dimension 2 where

𝐴 =
1

2

[
1 −2
2 1

]
,

𝑥 = (0, 1) and 𝑦 = (− 3

2
, 0). The orbit is depicted on Figure 2 as the sequence of red dots.

The matrix𝐴 is a counterclockwise rotation around the origin with an expanding scaling factor. A suitable semilinear

invariant can be constructed by taking the complement of the convex hull of a large enough number of points of the

orbit, and adding the missing points. In this example, we can take

I = {𝑥,𝐴𝑥} ∪ Conv ({𝐴𝑛𝑥 : 𝑛 ≤ 7})c,
Manuscript submitted to ACM



10 Fijalkow et al.

Fig. 2. An invariant for example 3.4.

which corresponds to the shaded region in Figure 2.

Example 3.5. Let us remove the expanding factor from the previous example by considering instead the following

matrix:

𝐴1 =
1

√
5

[
1 −2
2 1

]
.

Now 𝐴1 being a rotation of an irrational angle, the orbit of 𝑥 is dense in the circle of radius 1. It is not too difficult to

prove that there are no closed semilinear invariants (except for the whole space R2) for this instance, for any value

of 𝑦. This gives a first instance of non-existence of a semilinear invariant. Many such examples exist, and we will next

describe a more subtle one. Note that natural (non-semilinear) invariants do exist, such as the unit circle, which is a

semi-algebraic set but not a semilinear one.

Example 3.6. Consider ℓ = (𝐴2, 𝑥,𝑦) in dimension 4 with

𝐴2 =

[
𝐴1 𝐼2

0 𝐴1

]
,

where 𝐴1 is the matrix from Example 3.5, 𝑥 = (0, 0, 1, 0) and 𝑦 is arbitrary. When repeatedly applying 𝐴1 to 𝑥 , the last

two coordinates describe a circle of radius 1 as in the previous example. However, the first two coordinates diverge: at

each step, they are rotated and the last two coordinates are added. Again, it is the case that there are no semilinear

invariants (except again for the whole space R4), but it is much harder to prove than for Example 3.5.

However, even in instances similar to the one above, it may be the case that some coarse information in the input

can still be captured by a semilinear invariant, for instance if two synchronized blocks have some identical components.

Let us illustrate this on an example.

Example 3.7. Consider the Orbit instance ℓ = (𝑥,𝐴,𝑦) in dimension 8 where

𝐴 =

[
𝐴2

𝐴2

]
,
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𝑥 = (0, 0, 1, 0, 0, 0, 1, 0) and 𝑦 = (0, 0, 0, 1, 0, 0, 0, 2). We know from the previous example that when projecting on each

block separately, there are only trivial semilinear invariants. However, there is indeed a semilinear invariant which

exploits the synchronous behavior between the two blocks:

I =
{
𝑧 ∈ R4 : 𝑧1 = 𝑧3 and 𝑧2 = 𝑧4

}
.

This invariant has the property of being “strongly minimal”: it is contained in any semilinear set J satisfying 𝐴J ⊆ J
and 𝐴𝑛𝑥 ∈ J for some 𝑛 (this will be defined more formally below).

Let us discuss two more examples having such strongly minimal semilinear invariants.

Example 3.8. Consider (𝐴, 𝑥) in dimension 3 with

𝐴 =

[
𝐴1 0

0 −1

]
,

where 𝐴1 is the matrix of Example 3.5 and 𝑥 = (1, 0, 1). As we iterate the matrix 𝐴, the two first coordinates describe a

circle, and the third coordinate alternates between 1 and −1: the orbit is dense in the union of two parallel circles (see

Figure 3). In this example, the strongly minimal semilinear invariant is the union of the two planes containing these

circles.

Fig. 3. The minimal semilinear invariant for Example 3.8.

Example 3.9. Consider (𝐴, 𝑥) in dimension 8 with

𝐴 =

[
𝐴2 0

0 −𝐴2

]
,

where 𝐴2 is the matrix from Example 3.6. This can be seen as two instances of Example 3.6 running in parallel.

Let 𝑥 = (0, 0, 1, 0, 0, 0,−7, 0), and note that both blocks of 𝑥 are initially related by a multiplicative factor, namely

−7(𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥5, 𝑥6, 𝑥7, 𝑥8). Moreover, as the first block is multiplied by the matrix 𝐴2 while the second one is
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12 Fijalkow et al.

multiplied by −𝐴2, the multiplicative factor relating the two blocks alternates between 7 and −7. Hence,

I =
{
𝑢 ∈ R8 : (𝑢1, 𝑢2, 𝑢3, 𝑢4) = ±7(𝑢5, 𝑢6, 𝑢7, 𝑢8)

}
,

is a semilinear invariant, which one can prove to be strongly minimal. Note that I has dimension 4. If however, we let

𝑥 = (0, 0, 1, 0, 0, 1,−7, 0), then the strongly minimal semilinear invariant becomes

I =
{
𝑢 ∈ R8 : (𝑢3, 𝑢4) = ±7(𝑢7, 𝑢8)

}
,

which has dimension 6. This shows that the strongly minimal semilinear invariant depends on 𝑥 . Intuitively, in the

second case no semilinear relation holds between (𝑢1, 𝑢2) and (𝑢5, 𝑢6).

Proof overview. To prove Theorem 1.2, we proceed in three steps.

1. Identify positive cases, such as the one in example 3.4, in which semilinear invariants always exist. These instances

are called “simple instances”.

2. Reduce a non-simple instance to a so called “core instance”.

3. Prove that core instances admit only trivial semilinear invariants.

We now provide more details for each step separately.

Positive cases. The positive cases we identify fall into three categories:

(i) There is a Jordan block 𝐽 whose eigenvalue has modulus > 1 and such that 𝑥 𝐽 ≠ 0 (this is just like example 3.4).

(ii) There is a Jordan block 𝐽 whose eigenvalue has modulus < 1 and such that 𝑦𝐽 ≠ 0.

(iii) There is a non-diagonal Jordan block 𝐽 whose eigenvalue is a root of unity and such that 𝑥 𝐽 ,>1 ≠ 0, which means

that 𝑥 has a non-zero coordinate on block 𝐽 which is not the first one.

We say that an instance is simple if it satisfies one of the three cases above, and that it is non-simple otherwise. In

each of these cases, we rely on the divergent behavior of the orbit to construct a semilinear invariant.

Theorem 3.10. Simple instances admit semilinear invariants.

While cases (i) and (iii) are fairly straightforward, (ii) is more involved. Details are presented in Section 5.2.

Core instances. We now explain the third step, which amounts to identifying a class of core instances for which no

non-trivial semilinear invariant exist. We say that a pair (𝑥,𝐴) defines a core pair4 if

• 𝐴 is in Jordan normal form.

• All eigenvalues of 𝐴 have modulus 1.

• No eigenvalue of 𝐴 is a root of unity.

• Two different Jordan blocks of 𝐴 are associated with different eigenvalues 𝜆 ≠ 𝜆′, and such that neither their

product nor their quotient is a root of unity.

• For all Jordan blocks 𝐽 , we have 𝑥 𝐽 ,𝑑 ( 𝐽 ) ≠ 0, meaning the last coordinate of 𝑥 on each block is non-zero.

Intuitively, in a core pair, no synchronization phenomena may occur, so that there exist only trivial invariants.

Theorem 3.11. Let (𝑥,𝐴) be a core pair of dimension 𝑑 . The only closed semilinear set stable under 𝐴 and containing 𝑥

is C𝑑 .

The proof of Theorem 3.11 is long and technical, it is the object of Section 6.

4
Here, 𝑦 is irrelevant, so we speak of pairs (𝑥,𝐴) rather that Orbit instances (𝑥,𝐴, 𝑦) .
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Reductions. The second step hence aims at reducing a non-simple orbit instance (𝑥,𝐴,𝑦) to a core pair (𝑥 ′, 𝐴′). Towards
this goal, we develop different reductions allowing for instance to remove Jordan blocks where 𝑥 is zero, or to identify

blocks 𝐽 and 𝐽 ′ when the associated eigenvalues 𝜆 and 𝜆′ satisfy some equations of the form (𝜆𝜆′)𝑛 = 1 or 𝜆𝑛 = 𝜆′𝑛 . In

essence, this allows to capture linear relations that may hold for 𝑥 among Jordan blocks with a synchronized behavior,

as in examples 3.6, or 3.9. Figure 4 displays our full pipeline of reductions; formal definitions for all classes of instances

we consider appear in Section 5.3.

non-simple conjugated 
instance (x,A,y)

non-simple conjugated 
aperiodic instance (x,A,y)

pre-normalized 
instance (x,A,y)

normalized pair (x,A)

core pair (x,A)

identifying conjugated blocks

removal of shrinking blocks

taking a large exponent
       (reduces to many
                instances)

removal of last zero coordinate

removal of identity blocks

reduction of equivalent blocks

strongly minimal invariant

can compute strongly
minimal invariant

can decide existence of semilinear
invariant and compute one if it exists

can decide existence of semilinear
invariant and compute one if it exists

can decide existence of semilinear
invariant and compute one if it exists

Fig. 4. The pipeline of reductions, from non-simple real orbit instances to core pairs.

This allows us to conclude with the implications on the right-hand-side of the figure. In the statement below,

conjugated instances refer to those instances in Jordan normal form which originate from real matrices; for formal

definition we refer to Section 5.3.

Theorem 3.12. Assuming Theorem 3.11, there is a polynomial time algorithm deciding whether a non-simple conjugated

Orbit instance admits a semilinear invariant.

Details about reductions and establishing Theorem 3.12 are given in Section 5.3.

4 UNDECIDABILITY PROOFS

The structure of this section follows the outline given in Section 3, we rely on the explanations given there but state

and prove all technical details here.
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4.1 Proof of Theorem 3.1

We start with proving Theorem 3.1: the semilinear invariant problem is undecidable for closed invariants with 𝑝 matrices

of dimension 3. We refer to Subsection 3.1 for the definition of 𝜔-PCP, a sketch of the proofs, and the statements. Recall

that 𝑝 is the smallest number such that the 𝜔-PCP is undecidable with a fixed number of tiles 𝑝 for an alphabet of size

2; we know that 𝑝 ≤ 8 [10].

Let us consider an 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] over some alphabet Σ of size 2. A finite word𝑤 ∈ [1, 𝑝]∗ induces
two finite words 𝑢𝑤 , 𝑣𝑤 ∈ Σ∗:

𝑢𝑤 = 𝑢𝑤1𝑢𝑤2 . . . 𝑢𝑤𝑛
; 𝑣𝑤 = 𝑣𝑤1𝑣𝑤2 . . . 𝑣𝑤𝑛 .

We say that𝑤 is a partial solution if either 𝑢𝑤 is a prefix of 𝑣𝑤 or 𝑣𝑤 a prefix of 𝑢𝑤 . We state (and prove for the sake of

completeness) a classical lemma on 𝜔-PCP.

Lemma 4.1. Let (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] be an 𝜔-PCP instance and𝑤 ∈ [1, 𝑝]𝜔 .

• The infinite word𝑤 ∈ [1, 𝑝]𝜔 is a solution if and only if all prefixes of𝑤 are partial solutions.

• If there are no solutions, then there exists a bound 𝑁 such that all partial solutions have length at most 𝑁 .

Proof. The first item is clear, so we focus on the second. We consider the infinite tree with branching [1, 𝑝]: the
set of nodes is [1, 𝑝]∗. We remove from the tree a node𝑤 if𝑤 is not a partial solution (note that we remove all of the

descendants of 𝑤 since they are also not partial solutions). Since the 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] does not have a
solution, there are no infinite paths in this tree. The tree is finitely branching, so König’s lemma implies that it is finite.

Let 𝑁 be the depth of this finite tree, then there are no partial solutions of length greater than 𝑁 . □

Let us write 0 and 2 for the two letters in Σ, meaning Σ = {0, 2}: this way a word 𝑢 = 𝑢1 . . . 𝑢𝑛 ∈ Σ∗ is encoded as the

digits of some real number in [0, 1] in base 4 (with least significant digit to the right):

[𝑢] =
𝑛∑︁
𝑖=1

𝑢𝑖4
−𝑖 .

The choice of base 4 and digits in {0, 2} instead of the more canonical base 2 is for having a “sparse” encoding as

explained later. We encode 𝑤 ∈ [1, 𝑝]∗ by the vector ( [𝑢𝑤] − [𝑣𝑤], 4−|𝑢𝑤 | , 4−|𝑣
𝑤 | ) of dimension 3. The remarkable

property of this encoding is that adding the tile (𝑢𝑖 , 𝑣𝑖 ) to𝑤 , meaning considering𝑤𝑖 , corresponds to multiplying the

vector by the following matrix 𝐴𝑖 :

𝐴𝑖 =


1 0 0

[𝑢𝑖 ] 4
−|𝑢𝑖 |

0

−[𝑣𝑖 ] 0 4
−|𝑣𝑖 |

 .
For 𝑤 ∈ [1, 𝑝]𝜔 , we write 𝑤1...𝑛 for the prefix of length 𝑛 of 𝑤 . For 𝑤 ∈ [1, 𝑝]∗ we define 𝐴𝑤 as follows: 𝐴𝑤 is

obtained by multiplying the matrices 𝐴𝑖 following𝑤 , for instance 𝐴13422 = 𝐴1𝐴3𝐴4𝐴2𝐴2.

Let 𝑥 = (0, 1, 1). We state in the following lemma the key properties of the encoding.

Lemma 4.2. Let (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] be an 𝜔-PCP instance.

(1) Let𝑤 ∈ [1, 𝑝]∗, we have 𝑥 · 𝐴𝑤 = ( [𝑢𝑤] − [𝑣𝑤], 4−|𝑢𝑤 | , 4−|𝑣
𝑤 | ).

(2) Let us write 𝑥 · 𝐴𝑤 = (𝑠, 𝑐, 𝑑). Then:
• If𝑤 is a partial solution then |𝑠 | ≤ 2

3
(𝑐 + 𝑑).

• If𝑤 is not a partial solution then |𝑠 | > 2

3
(𝑐 + 𝑑).
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(3) Let 𝑧 = (𝑠, 𝑐, 𝑑) and 𝛼 ≥ 0. Let us write 𝑧 · 𝐴𝑖 = (𝑠′, 𝑐′, 𝑑′) for some 𝑖 ∈ [1, 𝑝]. If |𝑠 | ≥ 2

3
(𝑐 + 𝑑) + 𝛼 , then

|𝑠′ | ≥ 2

3
(𝑐′ + 𝑑′) + 𝛼 .

Proof. We prove the three items.

(1) The calculation for 𝑥 · 𝐴𝑤 is done by induction on𝑤 , noting that:

( [𝑢𝑤] − [𝑣𝑤], 4−|𝑢
𝑤 | , 4−|𝑣

𝑤 | ) · 𝐴𝑖 = ( [𝑢𝑤𝑢𝑖 ] − [𝑣𝑤𝑣𝑖 ], 4−|𝑢
𝑤𝑢𝑖 | , 4−|𝑣

𝑤𝑣𝑖 | ),

since [𝑢𝑤𝑢𝑖 ] = [𝑢𝑤] + 4−|𝑢
𝑤 | [𝑢𝑖 ] and [𝑣𝑤𝑣𝑖 ] = [𝑣𝑤] + 4−|𝑣

𝑤 | [𝑣𝑖 ].
(2) Let 𝑥 · 𝐴𝑤 = (𝑠, 𝑐, 𝑑).
• Assume that𝑤 is a partial solution: either 𝑢𝑤 is a prefix of 𝑣𝑤 , or the other way around. Assume the former

holds: we have 𝑣𝑤 = 𝑢𝑤𝑢′ for some 𝑢′. This implies that [𝑣𝑤] = [𝑢𝑤] + 4−|𝑢𝑤 | [𝑢′]. Since [𝑢′] ≤ 1, we obtain

|𝑠 | = | [𝑣𝑤] − [𝑢𝑤] | ≤ 4
−|𝑢𝑤 | = 𝑐.

In the other case, the same reasoning yields |𝑠 | ≤ 𝑑 . Thus |𝑠 | ≤ 1

2
(𝑐 + 𝑑) ≤ 2

3
(𝑐 + 𝑑).

• Assume that𝑤 is not a partial solution, and let us write 𝑛 for the smallest position such that 𝑢𝑤𝑛 ≠ 𝑣𝑤𝑛 . Then

[𝑢𝑤] − [𝑣𝑤] =
(
𝑢𝑤𝑛 − 𝑣𝑤𝑛

) 1

4
𝑛
+

∑︁
𝑗≥𝑛+1

(
𝑢𝑤𝑗 − 𝑣

𝑤
𝑗

)
1

4
𝑗
.

The choice of base 4 and digits in {0, 2} is all contained in the following calculations. Since 𝑢𝑤𝑛 ≠ 𝑣𝑤𝑛 and they

are digits in {0, 2}, we have |𝑢𝑤𝑛 − 𝑣𝑤𝑛 | = 2. For 𝑗 ≥ 𝑛 + 1 we have |𝑢𝑤
𝑗
− 𝑣𝑤

𝑗
| ≤ 2 so������ ∑︁𝑗≥𝑛+1(𝑢𝑤𝑖

𝑗 − 𝑣
𝑤𝑖
𝑗 )

1

4
𝑗

������ < 2

4
𝑛+1 ·

∑︁
𝑗≥0

1

4
𝑗
=

2

3

· 1
4
𝑛
.

It follows that

|𝑠 | = | [𝑢𝑤] − [𝑣𝑤] | > 2 · 1
4
𝑛
− 2

3

· 1
4
𝑛

=
4

3

· 1
4
𝑛

≥ 2

3

(𝑐 + 𝑑) .

In the last inequality we use 𝑛 ≤ |𝑢𝑤 | and 𝑛 ≤ |𝑣𝑤 |.
(3) Let 𝑧 = (𝑠, 𝑐, 𝑑) and 𝑧 · 𝐴𝑖 = (𝑠′, 𝑐′, 𝑑′) for some 𝑖 ∈ [1, 𝑝]. Assume that |𝑠 | ≥ 2

3
(𝑐 + 𝑑) + 𝛼 .

|𝑠′ | = |𝑠 + 𝑐 [𝑢𝑖 ] − 𝑑 [𝑣𝑖 ] | ≥ |𝑠 | − 𝑐 [𝑢𝑖 ] − 𝑑 [𝑣𝑖 ]
≥ 2

3
(𝑐 + 𝑑) + 𝛼 − 𝑐 [𝑢𝑖 ] − 𝑑 [𝑣𝑖 ]

=

(
2

3

− [𝑢𝑖 ]
)

︸       ︷︷       ︸
≥ 2

3
·4−|𝑢𝑖 |

𝑐 +
(
2

3

− [𝑣𝑖 ]
)

︸       ︷︷       ︸
≥ 2

3
·4−|𝑣𝑖 |

𝑑 + 𝛼

≥ 2

3
(𝑐′ + 𝑑′) + 𝛼.

We have used the inequality
2

3
− [𝑢] ≥ 2

3
· 4−|𝑢 | , valid for |𝑢 | ≥ 1. Thus |𝑠′ | ≥ 2

3
(𝑐′ + 𝑑′) + 𝛼 .

□

Let 𝑦 = (0, 0, 0). We construct the linear dynamical system 𝑆 = ({𝐴𝑖 }𝑖∈[1,𝑝 ] , 𝑥,𝑦).
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Lemma 4.3. The 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] does not have a solution if and only if there exists a closed separating

semilinear invariant for 𝑆 .

Proof. We distinguish two cases.

• Either the 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] has a solution𝑤 ∈ [1, 𝑝]𝜔 . Thanks to Lemma 4.2 we have that for all

𝑛 ∈ N,
𝑥 · 𝐴𝑤1...𝑛

= ( [𝑢𝑤1...𝑛 ] − [𝑣𝑤1...𝑛 ], 4−|𝑢
𝑤
1...𝑛 | , 4−|𝑣

𝑤
1...𝑛 | ) .

Since𝑤 is a solution,𝑤1...𝑛 is a partial solution, so again thanks to Lemma 4.2:

| [𝑢𝑤1...𝑛 ] − [𝑣𝑤1...𝑛 ] | ≤ 2

3

(
4
−|𝑢𝑤

1...𝑛 | + 4−|𝑣
𝑤
1...𝑛 |

)
,

implying that lim𝑛 𝑥 ·𝐴𝑤1...𝑛
= (0, 0, 0) = 𝑦. In other words, 𝑦 ∈ {𝑥 · 𝐴𝑤 : 𝑤 ∈ [1, 𝑝]∗}, the topological closure of

the set of reachable points from 𝑥 .

Note that an invariant set I for 𝑆 containing 𝑥 also contains the set of reachable points from 𝑥 . If additionally I
is closed, then it contains its closure, hence it contains 𝑦. Thus there are no closed semilinear invariants for 𝑆 .

(Note that we did not use semilinarity here.)

• Or the 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] does not have a solution. Thanks to Lemma 4.1 there exists a bound 𝑁 such

that all partial solutions have length less than 𝑁 . Let

𝛼 = min

{
|𝑠 | − 2

3

(𝑐 + 𝑑) : 𝑥 · 𝐴𝑤 = (𝑠, 𝑐, 𝑑) and |𝑤 | = 𝑁
}
,

thanks to Lemma 4.2 we have 𝛼 > 0.

Let us define the sets

I1 = {𝑥 · 𝐴𝑤 : |𝑤 | < 𝑁 } ,
I2 =

{
(𝑠, 𝑐, 𝑑) : |𝑠 | ≥ 2

3
(𝑐 + 𝑑) + 𝛼

}
,

I = I1 ∪ I2 .
We argue that I is a separating closed semilinear invariant. It is easy to see that I is closed, semilinear, contains

𝑥 , and does not contain 𝑦. We show that I is indeed an invariant: let 𝑧 ∈ I, we show that 𝑧 · 𝐴𝑖 ∈ I. We

distinguish two cases.

– Either 𝑧 ∈ I1, meaning 𝑧 = 𝑥 · 𝐴𝑤 for |𝑤 | < 𝑁 . Then 𝑧 · 𝐴𝑖 = 𝑥 · 𝐴𝑤𝑖 . If |𝑤 | < 𝑁 − 1, then |𝑤𝑖 | < 𝑁 , so

𝑧 · 𝐴𝑖 = 𝑥 · 𝐴𝑤𝑖 ∈ I1. Otherwise |𝑤𝑖 | = 𝑁 , let us write 𝑧 · 𝐴𝑖 = (𝑠, 𝑐, 𝑑). Since there are no partial solutions of

length 𝑁 , thanks to Lemma 4.2 and the definition of 𝛼 we have |𝑠 | ≥ 2

3
(𝑐 + 𝑑) + 𝛼 . This shows that 𝑧 ·𝐴𝑖 ∈ I2.

– Or 𝑧 ∈ I2. Thanks to Lemma 4.2 we have 𝑧 · 𝐴𝑖 ∈ I2.

□

4.2 Proof of Theorem 3.2

For technical convenience it will be useful to use affine transitions instead of linear ones; an affine transition is of the

form 𝑧 ← 𝑧 · 𝐴 + 𝑎 for a matrix 𝐴 and a vector 𝑎. A classical transformation reduces affine transitions to linear ones by

adding a single dimension, as stated in the following lemma.

Lemma 4.4. Let 𝑆 be a dynamical system with affine transitions in dimension 𝑑 , we can construct a linear dynamical

system 𝑆 ′ in dimension 𝑑 + 1 such that there exists a (semilinear) separating invariant for 𝑆 if and only if there exists a

(semilinear) separating invariant for 𝑆 ′.
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We work in dimension 7, and divide a vector 𝑧 = (𝑠, 𝑐, 𝑑, 𝑛,𝑢, 𝑣,𝑚) in two blocks: (𝑠, 𝑐, 𝑑, 𝑛) and (𝑢, 𝑣,𝑚). Let us define
operations on each block:

• Resetting (𝑠, 𝑐, 𝑑, 𝑛) is to perform the following operations, abbreviated Reset(𝑠, 𝑐, 𝑑, 𝑛):

𝑠 ← 0 ; 𝑐 ← 1 ; 𝑑 ← 1 ; 𝑛 ← 0.

We say that (𝑠, 𝑐, 𝑑, 𝑛) is “reset” if (𝑠, 𝑐, 𝑑, 𝑛) = (0, 1, 1, 0).
• Simulating 𝑖 on (𝑠, 𝑐, 𝑑, 𝑛) is to perform the following operations, abbreviated Simulation𝑖 (𝑠, 𝑐, 𝑑, 𝑛), where
𝑚 = max( |𝑢𝑖 |, |𝑣𝑖 |):

𝑠 ← 4
𝑚 (𝑠 + [𝑢𝑖 ]𝑐 − [𝑣𝑖 ]𝑑) ; 𝑐 ← 4

𝑚−|𝑢𝑖 |𝑐 ; 𝑑 ← 4
𝑚−|𝑣𝑖 |𝑑 ; 𝑛 ← 𝑛 + 2.

• Resetting (𝑢, 𝑣,𝑚) is to perform the following operations, abbreviated Reset(𝑢, 𝑣,𝑚):

𝑢 ← 0 ; 𝑣 ← 0 ; 𝑚 ← 0.

We say that (𝑢, 𝑣,𝑚) is “reset” if (𝑢, 𝑣,𝑚) = (0, 0, 0).

We can now define the transitions.

• For each 𝑖 ∈ [1, 𝑝], the transition 𝑡𝑖 does the following: Simulation𝑖 (𝑠, 𝑐, 𝑑, 𝑛) ; Reset(𝑢, 𝑣,𝑚) .
• The transition 𝑡

transfer
does the following: 𝑢 ← 3𝑠 − 2𝑐 − 2𝑑 ; 𝑣 ← −3𝑠 − 2𝑐 − 2𝑑 ; 𝑚 ← 𝑛 ; Reset(𝑠, 𝑐, 𝑑, 𝑛) .

• The transition 𝑡
increase(𝑢 ) does the following: Reset(𝑠, 𝑐, 𝑑, 𝑛) ; 𝑢 ← 𝑢 + 1.

• The transition 𝑡
increase(𝑣) does the following: Reset(𝑠, 𝑐, 𝑑, 𝑛) ; 𝑣 ← 𝑣 + 1.

• The transition 𝑡
decrease(𝑚) does the following: Reset(𝑠, 𝑐, 𝑑, 𝑛) ; 𝑚 ←𝑚 − 2.

For a word𝑤 ∈ [1, 𝑝]∗ we write 𝑡𝑤 for the composition of the transitions 𝑡𝑖 following𝑤 : for instance 𝑡1423 = 𝑡1𝑡4𝑡2𝑡3.

Let 𝑥 = (0, 1, 1, 0, 0, 0, 0) and 𝑦 = (0, 1, 1, 0, 0, 0, 1). We consider the system

𝑆 =

(
{𝑡𝑖 : 𝑖 ∈ [1, 𝑝]} ∪

{
𝑡
transfer

, 𝑡
increase(𝑢 ) , 𝑡increase(𝑣) , 𝑡decrease(𝑚)

}
, 𝑥,𝑦

)
.

Lemma 4.5. The 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] does not have a solution if and only if there exists a separating semilinear

invariant for 𝑆 .

Since 𝑆 uses affine transitions in dimension 7, we obtain an equivalent system using linear transitions in dimension 8

using Lemma 4.4.

Proof. We distinguish two cases.

• Either the 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] has a solution𝑤 ∈ [1, 𝑝]𝜔 . Let us consider a semilinear invariant I for

𝑆 containing 𝑥 , and show that it necessarily contains 𝑦.

Let us consider the setI′ = {𝑚 ∈ R : (0, 1, 1, 0, 0, 0,𝑚) ∈ I}. It is semilinear by closure under sections (Lemma 2.3).

We argue that it contains all even natural numbers.

Let 𝑛 ∈ N. Starting from 𝑥 and applying the transitions 𝑡𝑤1
, 𝑡𝑤2

, . . . , 𝑡𝑤𝑛
we reach (𝑠𝑛, 𝑐𝑛, 𝑑𝑛, 2𝑛, 0, 0, 0) with

𝑠𝑛, 𝑐𝑛, 𝑑𝑛 ∈ Z satisfying |𝑠𝑛 | ≤ 2

3
(𝑐𝑛 + 𝑑𝑛). Then applying the transition 𝑡

transfer
we obtain (0, 1, 1, 0, 𝑢𝑛, 𝑣𝑛, 2𝑛)

with 𝑢𝑛, 𝑣𝑛 ∈ Z satisfying 𝑢𝑛 ≤ 0 and 𝑣𝑛 ≤ 0. From there applying the transitions 𝑡
increase(𝑢 ) exactly −𝑢𝑛 times

and 𝑡
increase(𝑣) exactly −𝑣𝑛 times yields (0, 1, 1, 0, 0, 0, 2𝑛). Since I is invariant and contains 𝑥 this implies that

(0, 1, 1, 0, 0, 0, 2𝑛) ∈ I, so 2𝑛 ∈ I′.
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Since any infinite semilinear set in dimension 1 over the reals must contain an odd natural number, it follows

that I contains (0, 1, 1, 0, 0, 0, 2𝑚 + 1) for some𝑚 ∈ N. Indeed, a semilinear set in dimension 1 is a finite union

of intervals, so if it contains all even natural numbers then it must contain at least one odd number. Applying

the transition 𝑡
decrease(𝑚) exactly𝑚 times this implies that I contains 𝑦 = (0, 1, 1, 0, 0, 0, 1). Thus there are no

separating semilinear invariants for 𝑆 .

• Or the 𝜔-PCP instance (𝑢𝑖 , 𝑣𝑖 )𝑖∈[1,𝑝 ] does not have a solution. Thanks to Lemma 4.1, there exists a bound 𝑁

such that all partial solutions have length less than 𝑁 . Let us define

I1 = {𝑡𝑤 (𝑥) : 𝑤 ∈ [1, 𝑝]∗ with |𝑤 | < 𝑁 , and (𝑢, 𝑣,𝑚) is reset} ,
I2 =

{
𝑧 : |𝑠 | > 2

3
(𝑐 + 𝑑) and (𝑢, 𝑣,𝑚) is reset

}
,

I3 = {𝑧 : (𝑚 ≤ 0 or𝑚 ∈ 2 · [0, 𝑁 ] or 𝑢 > 0 or 𝑣 > 0) , and (𝑠, 𝑐, 𝑑, 𝑛) is reset} ,
I = I1 ∪ I2 ∪ I3 .

We argue that I is a separating semilinear invariant for 𝑆 . First I is semilinear, contains 𝑥 (because I1 does) and
not 𝑦.

We show that I is invariant. Let 𝑧 = (𝑠, 𝑐, 𝑑, 𝑛,𝑢, 𝑣,𝑚) ∈ I, in the following case distinction we write 𝑡 (𝑧) =
(𝑠′, 𝑐′, 𝑑′, 𝑛′, 𝑢′, 𝑣 ′,𝑚′). We distinguish three cases, and for each consider all types of transitions:

– If 𝑧 ∈ I1, then 𝑧 = 𝑡𝑤 (𝑥) for some𝑤 ∈ [1, 𝑝]∗ with |𝑤 | < 𝑁 .

∗ For 𝑖 ∈ [1, 𝑝], we have 𝑡𝑖 (𝑧) ∈ I1 or 𝑡𝑖 (𝑧) ∈ I2: if |𝑤 | < 𝑁 − 1 then 𝑡𝑖 (𝑧) = 𝑡𝑤𝑖 (𝑥) ∈ I1 since |𝑤𝑖 | < 𝑁 ,

otherwise |𝑤𝑖 | = 𝑁 and since there are no partial solutions of length 𝑁 ,𝑤𝑖 is not a partial solution so thanks

to Lemma 4.2 we have |𝑠′ | > 2

3
(𝑐′ + 𝑑′), implying that 𝑡𝑖 (𝑧) ∈ I2.

∗ We have 𝑡
transfer

(𝑧) ∈ I3: since 𝑛 ∈ 2 · [0, 𝑁 ] we have𝑚′ = 𝑛 ∈ 2 · [0, 𝑁 ].
∗ We have 𝑡

increase(𝑢 ) (𝑧) ∈ I3: we have𝑚 = 0 so𝑚′ = 0.

∗ We have 𝑡
increase(𝑣) (𝑧) ∈ I3: we have𝑚 = 0 so𝑚′ = 0.

∗ We have 𝑡
decrease(𝑚) (𝑧) ∈ I3: we have𝑚 = 0 so𝑚′ = −2.

– If 𝑧 ∈ I2, then |𝑠 | > 2

3
(𝑐 + 𝑑).

∗ For 𝑖 ∈ [1, 𝑝], we have 𝑡𝑖 (𝑧) ∈ I2: thanks to Lemma 4.2 because (𝑢, 𝑣,𝑚) is reset.
∗ We have 𝑡

transfer
(𝑧) ∈ I3: either 𝑢′ > 0 or 𝑣 ′ > 0.

∗ We have 𝑡
increase(𝑢 ) (𝑧) ∈ I3: we have𝑚 = 0 so𝑚′ = 0.

∗ We have 𝑡
increase(𝑣) (𝑧) ∈ I3: we have𝑚 = 0 so𝑚′ = 0.

∗ We have 𝑡
decrease(𝑚) (𝑧) ∈ I3: we have𝑚 = 0 so𝑚′ = −2.

– If 𝑧 ∈ I3, then𝑚 ≤ 0 or (𝑚 ∈ 2 · [0, 𝑁 ]) or 𝑢 > 0 or 𝑣 > 0.

∗ For 𝑖 ∈ [1, 𝑝], we have 𝑡𝑖 (𝑧) ∈ I1: indeed 𝑡𝑖 (𝑧) = 𝑡𝑖 (𝑥).
∗ We have 𝑡

transfer
(𝑧) ∈ I3: indeed 𝑛 = 0 so𝑚′ = 0.

∗ We have 𝑡
increase(𝑢 ) (𝑧) ∈ I3: indeed 𝑚 ≤ 0 or𝑚 ∈ 2 · [0, 𝑁 ] or 𝑢 > 0 or 𝑣 > 0, so 𝑚′ ≤ 0 or𝑚′ ∈

2 · [0, 𝑁 ] or 𝑢′ > 0 or 𝑣 ′ > 0.

∗ We have 𝑡
increase(𝑣) (𝑧) ∈ I3: indeed 𝑚 ≤ 0 or𝑚 ∈ 2 · [0, 𝑁 ] or 𝑢 > 0 or 𝑣 > 0, so 𝑚′ ≤ 0 or𝑚′ ∈

2 · [0, 𝑁 ] or 𝑢′ > 0 or 𝑣 ′ > 0.

∗ We have 𝑡
decrease(𝑚) (𝑧) ∈ I3: indeed𝑚 ≤ 0 or𝑚 ∈ 2 · [0, 𝑁 ], so𝑚′ ≤ 0 or𝑚 ∈ 2 · [0, 𝑁 − 1].

It follows that I is a semilinear invariant for 𝑆 .

□
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4.3 Proof of Corollary 3.3

Consider a linear dynamical system 𝑆𝑑 = ({𝐴𝑖 }𝑖∈[1,𝑝 ] , 𝑥,𝑦) in dimension 𝑑 , we construct a second linear dynamical

system 𝑆𝑝𝑑 = ({𝐴,𝐴
shift
} , 𝑥 ′, 𝑦′) in dimension 𝑝𝑑 using only two matrices such that there exists a (closed, semilinear)

separating invariant for 𝑆𝑑 if and only if there exists a (closed, semilinear) separating invariant for 𝑆𝑝𝑑 .

We let 𝐼𝑑 denote the identity matrix of size 𝑑 × 𝑑 , 0𝑑,𝑑 ′ the zero matrix of size 𝑑 × 𝑑′, and 0𝑑 the zero vector of size 𝑑 .

In particular for 𝑑′ = 1 we write 0𝑑 for the zero vector of size 𝑑 . We now define 𝐴 and 𝐴
shift

:

𝐴 =



𝐴1 · · · 0

𝐴2

...

...
. . .

0 · · · 𝐴𝑝


, 𝐴

shift
=


0𝑑,𝑑 𝐼𝑑 0𝑑,𝑑

. . .

𝐼𝑑

𝐼𝑑 0𝑑,𝑑


.

For 𝑧 ∈ R𝑑 and 𝑖 ∈ [1, 𝑝], the 𝑖𝑡ℎ shift 𝑧↓𝑖 ∈ R𝑝𝑑 of 𝑧 is

𝑧↓𝑖 =


0𝑑 (𝑖−1)
𝑧

0𝑑 (𝑝−𝑖 )

 .
Note that 𝑧↓𝑖 · 𝐴

shift
= 𝑧↓(𝑖 mod 𝑝 )+1

, justifying the name “shift”.

We let 𝑥 ′ = 𝑥↓1 and 𝑦′ = 𝑦↓1.

Lemma 4.6. Let 𝑆𝑑 be a linear dynamical system using 𝑝 matrices, the linear dynamical system 𝑆𝑝𝑑 constructed above

satisfies the following: there exists a (closed, semilinear) separating invariant for 𝑆𝑑 if and only if there exists a (closed,

semilinear) separating invariant for 𝑆𝑝𝑑 .

Proof. Let I be a separating invariant for 𝑆𝑑 . Let

J =

𝑝⋃
𝑖=1

{
𝑧↓𝑖 ∈ R𝑝𝑑 : 𝑧 ∈ I

}
.

We argue that J is a separating invariant for 𝑆𝑝𝑑 Clearly 𝑥 ′ ∈ J and 𝑦′ ∉ J . Let 𝑧↓𝑖 ∈ J for 𝑖 ∈ [1, 𝑝], then
𝑧↓𝑖 · 𝐴

shift
= 𝑧↓(𝑖 mod 𝑝 )+1

, which is in J , and 𝑧↓𝑖 · 𝐴 = (𝑧 · 𝐴𝑖 )↓𝑖 ∈ J is also in J . Thus J is a separating invariant

for 𝑆𝑝𝑑 , and it is closed and semilinear if I is closed and semilinear.

Conversely, let J be a separating invariant for 𝑆𝑝𝑑 . Let

I =

{
𝑧 ∈ R𝑑 : 𝑧↓1 ∈ J

}
.

We argue that I is a separating invariant for 𝑆𝑑 . Clearly 𝑥 ∈ I and 𝑦 ∉ I. Let 𝑧 ∈ I and 𝑖 ∈ [1, 𝑝], we show that

𝑧 · 𝐴𝑖 ∈ J , i.e. (𝑧 · 𝐴𝑖 )↓1 ∈ I. We have

(𝑧 · 𝐴𝑖 )↓1 = 𝑧↓1 · 𝐴𝑖−1
shift
· 𝐴 · 𝐴𝑑−𝑖+1

shift
∈ J

since 𝑧↓1 and I is invariant under 𝐴 and 𝐴
shift

. Thus I is a separating invariant for 𝑆𝑑 , and it is closed and semilinear if

J is closed and semilinear. □

Corollary 3.3 directly follows:
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• Theorem 3.1 yields undecidability for 𝑝 matrices of dimension 3, and using Lemma 4.6 this implies undecidability

for 2 matrices of dimension 3𝑝 .

• Theorem 3.2 yields undecidability for closed invariants for 𝑝 + 4 matrices of dimension 8, and using Lemma 4.6

this implies undecidability for 2 matrices of dimension 8(𝑝 + 4).

5 DECIDABILITY PROOF: REDUCING TO CORE INSTANCES

This section details the two first steps in our proof of Theorem 1.2. Section 5.1 introduces some terminology about

reductions and Jordan normal form. Then in Section 5.2, we eliminates simple instances, thereby proving Theorem 3.10.

Last, in Section 5.3, we proceed to reduce from real non-simple instances to core pairs, establishing Theorem 3.12.

5.1 Reductions and Jordan normal form

Reductions between Orbit instances. Recall that an Orbit instance is (𝑥,𝐴,𝑦) where 𝑥 is the initial vector, 𝐴 is a matrix,

and 𝑦 the target vector.

A reduction from a class of Orbit instances 𝐶 to another class of Orbit instances 𝐶′ consists of the following:

• A function 𝑅 mapping an Orbit instance ℓ ∈ 𝐶 to an Orbit instance 𝑅(ℓ) ∈ 𝐶′.
• For each Orbit instance ℓ ∈ 𝐶 , a function 𝜙 mapping any semilinear invariant I of ℓ into a semilinear invariant

𝜙 (I) of 𝑅(ℓ).
• A function𝜓 mapping any semilinear invariant I′ of 𝑅(ℓ) into a semilinear invariant𝜓 (I′) of ℓ .

We say that the reduction is polynomial time is all involved functions are computable in polynomial time. Clearly, if 𝐶

reduces to𝐶′, then for all ℓ ∈ 𝐶 , we have that ℓ and 𝑅(ℓ) are equivalent: one admits a semilinear invariant if and only if

the other one does.

We will also consider reductions where we construct many Orbit instances instead of a single one; the definitions

above are easily adapted to this scenario.

From real to complex orbit instances. It is crucial in our proof to reduce a matrix to its Jordan normal (recalled below).

This requires working with complex semilinear invariants, which is not an issue thanks to the following Lemma.

Lemma 5.1. There exists a polynomial time reduction from real Orbit instances to complex Orbit instances using complex

semilinear invariants.

Proof. Let ℓ = (𝑥,𝐴,𝑦) be a real Orbit instance. We show that ℓ admits a real semilinear invariant if and only if

it admits a complex one. Let I be a real semilinear invariant for ℓ and let I′ =
{
𝑧 ∈ C𝑑 : Re (𝑧) ∈ I and Im (𝑧) = 0

}
.

Then I′ is a complex semilinear set, 𝑥 ∈ 𝐼 ′, 𝑦 ∉ 𝐼 ′ and 𝐴I′ ⊆ I′ so it is complex invariant for ℓ . Conversely, let I be a

complex semilinear invariant for ℓ and let I′ be the section of I along the real numbers:

I′ =
{
𝑣 ∈ R𝑑 : ∃𝑧 ∈ I, 𝑣 = Re (𝑧) and Im (𝑧) = 0

}
.

Then I′ is a (real) semilinear set by Lemma 2.3, 𝑥 ∈ I′ since 𝑥 is real, 𝑦 ∉ I′ for the same reason and 𝐴I′ ⊆ I′ since
𝐴 has real coefficients. Therefore I′ is a (real) semilinear invariant for ℓ . □

Jordan normal form. Recall that every matrix 𝐴 can be written in the form 𝐴 = 𝑄−1 𝐽𝑄 , where 𝑄 is invertible and 𝐽 is in

Jordan normal form (JNF), meaning that 𝐽 is a diagonal block matrix where the blocks (called Jordan blocks) are of the
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form: 

𝜆 1

𝜆
. . .

. . . 1

𝜆


The complex number 𝜆 is an eigenvalue of 𝐴. We will sometimes use notation J𝑑 (𝜆) for the Jordan block of size 𝑑 with

eigenvalue 𝜆. A Jordan block of dimension one is called diagonal, and 𝐴 is diagonalisable if and only if all Jordan blocks

are diagonal. Note that the transformation into the Jordan normal form can be performed in polynomial time [3, 4].

The following convenient lemma states that changes of bases define structured reductions.

Lemma 5.2. Consider a class of Orbit instances 𝐶 along with a fixed invertible matrix 𝑄ℓ for each ℓ = (𝑥,𝐴,𝑦) ∈ 𝐶 ,
computable in polynomial time. There is a polynomial time reduction from 𝐶 to 𝐶′ = {(𝑄−1

ℓ
𝑥,𝑄−1

ℓ
𝐴𝑄ℓ , 𝑄

−1
ℓ
𝑦) | ℓ =

(𝑥,𝐴,𝑦) ∈ 𝐶}.

Proof. Fix ℓ = (𝑥,𝐴,𝑦) ∈ 𝐶 and let 𝑄 denote 𝑄ℓ and ℓ
′ = (𝑄−1𝑥,𝑄−1𝐴𝑄,𝑄−1𝑦) = (𝑥 ′, 𝐴′, 𝑦′).

Let I be an semilinear invariant for ℓ : 𝑥 ∈ I, 𝐴I ⊆ I and 𝑦 ∉ I. Let I′ = 𝑄−1I. Then 𝑥 ′ = 𝑄−1𝑥 ∈ 𝑄−1I = I′,
likewise 𝑦′ = 𝑄−1𝑦 ∈ I′ and 𝐴′I′ = 𝑄−1𝐴𝑄𝑄−1I = 𝑄−1𝐴I ⊆ 𝑄−1I = I′. Therefore I′ is a semilinear invariant for

ℓ′. Conversely, given a semilinear invariant I′ for ℓ′, the proof that I = 𝑄I′ is a semilinear invariant for ℓ follows

exactly the same lines. □

Notations regarding coordinates and Jordan blocks. When 𝐴 is in JNF, we index the 𝑑 coordinates in the matrix 𝐴 by

pairs (𝐽 , 𝑘), where 𝐽 ranges over the Jordan blocks of 𝐴 and 𝑘 ∈ {1, . . . , 𝑑 (𝐽 )}, with 𝑑 (𝐽 ) being the dimension of the

Jordan block 𝐽 . For instance, if the matrix 𝐴 has two Jordan blocks, 𝐽1 of dimension 1 and 𝐽2 of dimension 2, then the

three dimensions of 𝐴 are (𝐽1, 1) and (𝐽2, 1), (𝐽2, 2).
For 𝑧 ∈ C𝑑 and a subset 𝑆 of dimensions, we let 𝑧𝑆 be the projection of 𝑧 on the dimensions in 𝑆 , and extend this

notation to matrices. For instance, 𝑧 𝐽 ∈ C𝐽 is the vector corresponding to the dimensions of the Jordan block 𝐽 , and

𝑧 𝐽 ,>𝑘 is its projection on the coordinates of the Jordan block 𝐽 whose indices are greater than 𝑘 . We write 𝑆c for the

dimensions which are not in 𝑆 . We also write 𝜋𝑆 : C𝑑 → C𝑆 , where 𝑆 is a set of coordinates, for the projection 𝑧 ↦→ 𝑧𝑆 .

Conjugated instances. We say that a matrix 𝐴 is conjugated if it is in JNF and there is an involution 𝐽 ↦→ 𝐽 ∗ between its

Jordan blocks such that for all blocks, 𝐴𝐽 ∗ = 𝐴
∗
𝐽
. We say that an orbit instance (𝑥,𝐴,𝑦) is conjugated if 𝐴 is conjugated

and moreover for all blocks 𝐽 we have 𝑥 𝐽 ∗ = 𝑥
∗
𝐽
and 𝑦𝐽 ∗ = 𝑦

∗
𝐽
.

The generalized eigenspace theorem states that for real matrices 𝐴, there is an invertible matrix 𝑄 such that

𝑄−1𝐴𝑄 =



J𝑑1 (𝜆1)
. . .

J𝑑𝑟 (𝜆𝑟 )
J𝑑 ′

1

(𝜆′
1
)
J𝑑 ′

1

(𝜆′
1

∗)
. . .

J𝑑 ′𝑠 (𝜆
′
𝑠 )
J𝑑 ′𝑠 (𝜆

′
𝑠
∗)



,
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where the 𝜆𝑖 ’s are real and the 𝜆′
𝑖
’s are non-real. Moreover, 𝑄 and 𝑄−1 are of the form

𝑄 =

[
𝑄1 . . . 𝑄𝑟 𝑄 ′

1
𝑄 ′
1

∗ . . . 𝑄 ′𝑠 𝑄 ′𝑠
∗
]
, 𝑄−1 =



𝑇1
...

𝑇𝑟

𝑇 ′
1

𝑇 ′
1

∗

...

𝑇 ′𝑠
𝑇 ′
𝑆
∗



,

where the 𝑄𝑖 ,𝑇𝑖 ’s are matrices and all above matrices can be computed in in polynomial time [3, 4]. We give a more

detailed proof of this fact in Appendix D. Now if 𝑥 and 𝑦 are taken to be real vectors, it follows that the Orbit instance

(𝑄−1𝑥,𝑄−1𝐴𝑄,𝑄−1𝑦) is conjugated. Combining this observation with Lemma 5.1 and 5.2 we obtain the following.

Corollary 5.3. There is a polynomial time reduction from real Orbit instances to complex conjugated instances in JNF.

5.2 Positive cases

We now eliminate some positive cases. Recall that an Orbit instance ℓ = (𝑥,𝐴,𝑦) is simple if either

• there is a Jordan block 𝐽 whose eigenvalue has modulus > 1 and such that 𝑥 𝐽 ≠ 0; or

• there is a Jordan block 𝐽 whose eigenvalue has modulus < 1 and such that 𝑦𝐽 ≠ 0; or

• there is a non-diagonal Jordan block 𝐽 whose eigenvalue is a root of unity and such that 𝑥 𝐽 ,>1 ≠ 0.

The goal of this section is to establish the following result.

Theorem 3.10. Simple instances admit semilinear invariants.

It is naturally broken into three parts which correspond to the three cases above.

5.2.1 Some eigenvalue has modulus greater than 1. We start with a simple technical lemma.

Lemma 5.4. Let 𝑥1, . . . , 𝑥𝑛 ∈ C and 𝜌1, . . . , 𝜌𝑛 ∈ (0,∞). If Conv ({𝑥1, . . . , 𝑥𝑛}) contains an open ball centered at 0 then

Conv ({𝜌1𝑥1, . . . , 𝜌𝑛𝑥𝑛}) contains an open ball centered at 0.

Proof. Let 𝐶 = Conv ({𝑥1, . . . , 𝑥𝑛}) and 𝐶′ = Conv ({𝜌1𝑥1, . . . , 𝜌𝑛𝑥𝑛}). Assume that 𝐵(0, 𝜀) ⊆ 𝐶 and let 𝑧 ∈ 𝐵(0, 𝜀).
Then there exists 𝛼1, . . . , 𝛼𝑛 ∈ [0, 1], such that

∑𝑛
𝑖=1 𝛼𝑖𝑥𝑖 = 𝑧 and

∑𝑛
𝑖=1 𝛼𝑖 = 1. Let 𝛾𝑖 =

𝛼𝑖
𝜌𝑖

and Γ =
∑𝑛
𝑖=1 𝛾𝑖 . Let 𝛼

′
𝑖
=

𝛾𝑖
Γ ,

then 𝛼 ′
𝑖
∈ [0, 1] and ∑𝑛

𝑖=1 𝛼
′
𝑖
= 1 by definition. Therefore

∑𝑛
𝑖=1 𝛼

′
𝑖
𝜌𝑖𝑥𝑖 ∈ 𝐶′ but

∑𝑛
𝑖=1 𝛼

′
𝑖
𝜌𝑖𝑥𝑖 =

1

Γ

∑𝑛
𝑖=1 𝛼𝑖𝑥𝑖 =

𝑧
Γ . This

shows that 𝐵(0, 𝜀Γ ) =
1

Γ𝐵(0, 𝜀) ⊆ 𝐶
′
. □

Lemma 5.5. Let 𝜆 be a complex non-real number and 𝑥 be a non-zero complex number. Then there exists 𝑛 ∈ N such that

Conv
({
𝜆𝑖𝑥 : 𝑖 ∈ [0, 𝑛]

})
contains an open ball centered at 0.

Proof. Let 𝛼 = 𝜆
|𝜆 | which is also non-real. We claim that there exists 𝑛 such that 𝐶𝑛 := Conv

({
𝛼𝑖 : 𝑖 ∈ [0, 𝑛]

})
contains an open ball 𝐵(0, 𝜀) for some 𝜀 > 0. Indeed, let 𝜃 = Arg (𝛼) where Arg (·) ∈ (−𝜋, 𝜋] denotes the principal
argument. Then 𝜃 ∉ {0, 𝜋} since 𝛼 is not real.
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• If 𝜃 ∉ 𝜋Q then

{
𝛼𝑖 : 𝑖 ∈ N

}
is dense in the unit circle. Therefore for sufficiently large 𝑛, 𝐶𝑛 contains four points

at distance at most
1

2
from 1, 𝑖 , −1 and −𝑖 . The resulting four points will then form a polygon that contains the

open ball 𝐵(0, 1√
2

).
• Otherwise, the set

{
𝛼𝑖 : 𝑖 ∈ N

}
is finite and equal to the group of the 𝑛𝑡ℎ roots of unity for some 𝑛 ⩾ 3 (𝑛 ≠ 1, 2

for otherwise 𝜃 ∈ {0, 𝜋}). Therefore, 𝐶𝑛 is a regular polygon with 𝑛 faces, centered at the origin, so it contains

an open ball of radius 1/2, centered at the origin.

It follows by Lemma 5.4, for 𝜌𝑖 = |𝜆𝑖 | > 0, that 𝐶′𝑛 := Conv

({
𝜆𝑖 : 𝑖 ∈ [0, 𝑛]

})
contains an open ball 𝐵(0, 𝜀′) for some

𝜀′ > 0. But then, Conv

({
𝜆𝑖𝑥 : 𝑖 ∈ [0, 𝑛]

})
= 𝐶′𝑛𝑥 ⊃ 𝐵(0, 𝜀′)𝑥 = 𝐵(0, 𝜀′ |𝑥 |) which is open since 𝑥 ≠ 0. □

Lemma 5.6. Let 𝜆 be a complex non-real number of modulus greater than 1 and 𝑥 be a non-zero complex number. Then

the sequence of polyhedra
(
Conv

({
𝜆𝑖𝑥 : 𝑖 ∈ [0, 𝑛]

}) )
𝑛∈N is strictly increasing and its union is C.

Proof. Let 𝐶𝑛 = Conv

({
𝜆𝑖𝑥 : 𝑖 ∈ [0, 𝑛]

})
for all 𝑛 ∈ N. To see that the sequence is strictly increasing, observe that

for all 𝑛 in N, we have𝐶𝑛 ⊆ 𝐵(0, |𝜆 |𝑛 · |𝑥 |). It follows that 𝜆𝑛+1𝑥 is not in𝐶𝑛 . To see that its union is C, apply Lemma 5.5

to get 𝑛0 such that 𝐶𝑛0
contains an open ball 𝐵(0, 𝜀) for some 𝜀 > 0. Then note that for any 𝑛 ∈ N,

𝐶𝑛0+𝑛 ⊇ Conv

({
𝜆𝑛0+𝑖𝑥 : 𝑖 ∈ [0, 𝑛]

})
= 𝜆𝑘𝐶𝑛0

⊃ 𝜆𝑘𝐵(0, 𝜀) = 𝐵(0, |𝜆 |𝑘𝜀).

This concludes because the union of all such balls for 𝑛 ∈ N is C since |𝜆 | > 1. □

Theorem 5.7. Let ℓ = (𝑥,𝐴,𝑦) be a non-reach Orbit instance in JNF. If there exists a Jordan block 𝐽 associated with an

eigenvalue whose modulus is greater than 1 and such that 𝑥 𝐽 ≠ 0, then there exists a semilinear invariant for ℓ .

On an intuitive level first: some coordinate of (𝐴𝑛𝑥)𝑛∈N diverges to infinity, so eventually gets larger in absolute

value than the corresponding coordinate in 𝑦. This allows us to construct an invariant for ℓ by taking the first points

and then all points having a large coordinate in the diverging dimension. For the invariant to be semilinear we consider

the complement of the convex envelope of an initial segment of points.

Proof. We distinguish two cases. Let (𝐽 , 𝑠) denote the last coordinate of the Jordan block 𝐽 such that 𝑥 𝐽 ,𝑠 ≠ 0;

observe that (𝐴𝑛𝑥)𝐽 ,𝑠 = 𝜆𝑛𝑥 𝐽 ,𝑠 .

• Suppose that 𝜆 is a real number.

For all 𝑛 ∈ N, we have (𝐴𝑛𝑥)𝐽 ,𝑠 = 𝜆𝑛𝑥 𝐽 ,𝑠 , so it diverges to infinity in modulus. It follows that there exists 𝑛0 in N

such that | (𝐴𝑛0𝑥)𝐽 ,𝑠 | ≥ 2

√
2 · |𝑦𝐽 ,𝑠 |. Let

I =
{
𝑥,𝐴𝑥, . . . , 𝐴𝑛0−1𝑥

}
∪
{
𝑧 ∈ C𝑑 : |Re

(
𝑧 𝐽 ,𝑠

)
| + |Im

(
𝑧 𝐽 ,𝑠

)
| ≥ 2|𝑦𝐽 ,𝑠 |

}
.

We argue that I is a semilinear invariant for ℓ . The non-trivial point is that I is invariant under 𝐴. First, 𝐴𝑛0𝑥 is

in I because ��
Re

(
(𝐴𝑛0𝑥)𝐽 ,𝑠

) �� + ��Im (
(𝐴𝑛0𝑥)𝐽 ,𝑠

) �� ≥ 1

√
2

· | (𝐴𝑛0𝑥)𝐽 ,𝑠 | ≥ 2|𝑦𝐽 ,𝑠 |.

Then, let 𝑧 ∈ C𝑑 such that

��
Re

(
𝑧 𝐽 ,𝑠

) �� + ��Im (
𝑧 𝐽 ,𝑠

) �� ≥ 2|𝑦𝐽 ,𝑠 |, we have that (𝐴𝑧)𝐽 ,𝑠 = 𝜆𝑧 𝐽 ,𝑠 , so since 𝜆 is real,��
Re

(
(𝐴𝑧)𝐽 ,𝑠

) �� + ��Im (
(𝐴𝑧)𝐽 ,𝑠

) �� = |𝜆 | (��Re (𝑧 𝐽 ,𝑠 ) �� + ��Im (
𝑧 𝐽 ,𝑠

) ��) ≥ 2|𝑦𝐽 ,𝑠 |,

thus 𝐴𝑧 is in I.
• Suppose that 𝜆 is not a real number.
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For any 𝑛 ∈ N, let 𝐶𝑛 = Conv

({
𝜆𝑖𝑥 𝐽 ,𝑠 : 𝑖 ∈ [1, 𝑛]

})
. By Lemma 5.6, the sequence (𝐶𝑛)𝑛∈N of polyhedra in C is

strictly increasing and its union is C. Let 𝑛0 in N be such that 𝑦𝐽 ,𝑠 is in the interior of 𝐶𝑛0
. Finally, let

I =
{
𝑥,𝐴𝑥, . . . , 𝐴𝑛0𝑥

}
∪ 𝑃, where 𝑃 =

{
𝑧 ∈ C𝑑 : 𝑧 𝐽 ,𝑠 ∉ 𝐶𝑛0

}
.

Note that I is a closed semilinear set. We argue that I is a semilinear invariant for ℓ . The non-trivial point is

that I is invariant under 𝐴.

We first need to prove that 𝐴𝑛0+1𝑥 is in I. We have (𝐴𝑛0+1𝑥)𝐽 ,𝑠 = 𝜆𝑛0+1𝑥 𝐽 ,𝑠 , which is not in 𝐶𝑛0
because

𝐶𝑛0+1 = Conv

({
𝜆𝑛0+1𝑥 𝐽 ,𝑠

}
∪𝐶𝑛0

)
and we have argued that the sequence (𝐶𝑛)𝑛∈N is strictly increasing. Thus

𝐴𝑛0+1𝑥 ∈ 𝑃 ⊆ 𝑃 ⊆ I.
Second, we will show that 𝐴𝑃 ⊆ 𝑃 ; by continuity of matrix multiplication, it is sufficient to show that 𝐴𝑃 ⊆ 𝑃 .
Let 𝑧 ∈ 𝑃 , i.e. 𝑧 𝐽 ,𝑠 ∉ 𝐶𝑛0

and assume towards contradiction that 𝐴𝑧 ∉ 𝑃 , i.e. (𝐴𝑧)𝐽 ,𝑠 ∈ 𝐶𝑛0
. But note that

(𝐴𝑧)𝐽 ,𝑠 = 𝜆𝑧 𝐽 ,𝑠 so 𝑧 𝐽 ,𝑠 ⊆ 𝜆−1𝐶𝑛0
. However,

𝜆−1𝐶𝑛0
= Conv

({
𝜆𝑖𝑥 𝐽 ,𝑠 : 𝑖 ∈ [0, 𝑛0]

})
= Conv

({
𝑥 𝐽 ,𝑠

}
∪𝐶𝑛0−1

)
⊆ 𝐶𝑛0

by convexity, since 𝑥 𝐽 ,𝑠 ∈ 𝐶𝑛0
and the sequence (𝐶𝑛)𝑛 is increasing. Hence, 𝑧 𝐽 ,𝑠 ∈ 𝐶𝑛0

, a contradiction. □

5.2.2 Some eigenvalue has modulus less than 1. We now move on to the second case, which is the most involved of the

three. We start with a simple lemma.

Lemma 5.8. Let 𝜆 be a complex non-real number of modulus less than 1 and 𝑥 be a non-zero complex number. Then

the sequence
(
Conv

({
𝜆𝑖𝑥 : 𝑖 ∈ [0, 𝑛]

}) )
𝑛∈N of polyhedra in C is ultimately constant, and its union contains an open

neighbourhood of 0.

Proof. Let 𝐶𝑛 = Conv

({
𝜆𝑖𝑥 : 𝑖 ∈ [0, 𝑛]

})
for all 𝑛 ∈ N. Apply Lemma 5.5 to get 𝑛0 such that 𝐶𝑛0

contains an open

ball 𝐵(0, 𝜀) for some 𝜀 > 0. Since |𝜆 | < 1, there exists 𝑛1 ≥ 𝑛0 such that |𝜆 |𝑛1 · |𝑥 | < 𝜀. Note that 𝐶𝑛 ⊆ 𝐵(0, |𝑥 |) for all 𝑛
since |𝜆 | < 1. Therefore,

𝜆𝑛1𝐶𝑛 ⊆ 𝜆𝑛1𝐵(0, |𝑥 |) = 𝐵(0, |𝜆𝑛1 | · |𝑥 |) ⊆ 𝐵(0, 𝜀) ⊆ 𝐶𝑛0
.

It follows that for any 𝑛 ≥ 𝑛1,

𝐶𝑛1
⊆ 𝐶𝑛 = Conv

(
𝐶𝑛1
∪ 𝜆𝑛1𝐶𝑛−𝑛1

)
⊆ Conv

(
𝐶𝑛1
∪𝐶𝑛0

)
= 𝐶𝑛1

. □

The following lemma is the cornerstone for this section.

Lemma 5.9. Let 𝜀 > 0 and 𝜆 ∈ C with |𝜆 | < 1. There exists a convex closed semilinear set I ⊆ 𝐵(0, 𝜀) ⊆ C𝑑 which is

invariant under the Jordan block J𝑑 (𝜆) and contains 𝐵(0, 𝜀′) for some 0 < 𝜀′ < 𝜀.

Proof. We let 𝐽 denote J𝑑 (𝜆). Note that |𝑧 | ≤ |Re (𝑧) | + |Im (𝑧) | ≤
√
2|𝑧 | for any 𝑧 ∈ C. We first treat the case

where 𝜆 ∈ R. Let
I =

{
𝑧 ∈ C𝑑 : ∀𝑖 ∈ [1, 𝑑], |Re (𝑧𝑖 ) | + |Im (𝑧𝑖 ) | ≤ 𝜀 (1 − |𝜆 |)𝑖

}
⊆ 𝐵(0, 𝜀) .

Then 𝐵(0, 𝜀 (1 − |𝜆 |)𝑑/
√
2) ⊆ I. We show that 𝐽I ⊆ I. Let 𝑧 ∈ I. Then (𝐽𝑧)𝑑 = 𝜆𝑧𝑑 , so since 𝜆 is real |Re ((𝐽𝑧)𝑑 ) | +

|Im ((𝐽𝑧)𝑑 ) | ≤ |𝜆 | ( |Re (𝑧𝑑 ) | + |Im (𝑧𝑑 ) |) ≤ 𝜀 (1 − |𝜆 |)𝑑 . Now if 𝑖 < 𝑑 , (𝐽𝑧)𝑖 = 𝜆𝑧𝑖 + 𝑧𝑖+1, so

|Re ((𝐽𝑧)𝑖 ) | + |Im ((𝐽𝑧)𝑖 ) | = |𝜆Re (𝑧𝑖 ) + Re (𝑧𝑖+1) | + |𝜆Im (𝑧𝑖 ) + Im (𝑧𝑖+1) |

≤ |𝜆 | ( |Re (𝑧𝑖 ) | + |Im (𝑧𝑖 ) |) + (|Re (𝑧𝑖+1) | + |Im (𝑧𝑖+1) |)

≤ |𝜆 |𝜀 (1 − |𝜆 |)𝑖 + 𝜀 (1 − |𝜆 |)𝑖+1 = 𝜀 (1 − |𝜆 |)𝑖 .
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Hence I is invariant under 𝐽 , which concludes this first case.

We now assume that 𝜆 ∉ R, and prove the result by induction on 𝑑 . We start with the base case 𝑑 = 1. Fix 𝑢 ∈ C of

modulus 𝜀, for instance 𝑢 = 𝜀. By Lemma 5.8, there exists 𝑛 such that I := Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0, 𝑛]

})
contains an open

ball centered at 0 and Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0,𝑚]

})
= I for all𝑚 ≥ 𝑛. Since the extremal points of I are of the form 𝜆𝑖𝑢, of

modulus |𝜆 |𝑖𝜀 < 𝜀, it holds that I ⊆ 𝐵(0, 𝜀). Finally,

𝐽I = Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [1, 𝑛 + 1]

})
⊆ Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0, 𝑛 + 1]

})
= I .

For 𝑑 > 1, let 𝜀′ > 0 to be fixed later on. By induction, there exists a convex closed semilinear subset I′ of C𝑑−1,
invariant under J𝑑−1 (𝜆), and such that

𝐵(0, 𝜀′′) ⊆ I′ ⊆ 𝐵(0, 𝜀′) ⊆ C𝑑−1, (1)

for some 𝜀′′ > 0. Intuitively, we want to define I of the form I = 𝐶 × I′ for some semilinear set 𝐶 ⊆ C. Note that the
action of 𝐽 on such a set satisfies

𝐽 (𝐶 × I′) ⊆ (𝜆𝐶 + 𝜋1 (I′)) × J𝑑−1 (𝜆)I′ ⊆ (𝜆𝐶 + 𝜋1 (I′)) × I′ .

Therefore we want to find 𝐶 such that 𝐶 ⊆ 𝜆𝐶 + 𝜋1 (I′). The idea to find 𝐶 is to start from an arbitrary point 𝑢 and

then add what we need until the set is stable. We will then see that this process converges (after infinitely many steps)

so, that eventually (after 𝑛 steps), all those sets are contained in a small ball. We then define 𝐶 to be the convex hull of

the first 𝑛 sets: the first 𝑛 − 1 sets will be stable by construction, and the the last element will be contained in the small

ball, itself contained in Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0, 𝑛]

})
thanks to Lemma 5.8.

Formally, let 𝑢 be a complex number of modulus 𝜀/2, for instance, 𝑢 = 𝜀/2 ∈ C. By Lemma 5.8, there exists 𝑛0 such

that Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0, 𝑛0]

})
contains an open ball 𝐵(0, 𝛿) for some 𝛿 > 0. Let 𝜀′ = |1 − 𝜆 |𝛿/4 and I′ defined as in (1).

Note that 𝐵(0, 𝛿) ⊆ Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0, 𝑛0]

})
⊆ 𝐵(0, |𝑢 |) = 𝐵(0, 𝜀/2) so 𝛿 ≤ 𝜀/2, and 𝜀′ ≤ 𝛿/2 ≤ 𝜀. We then let

𝐶0 = {𝑢} , and 𝐶𝑛+1 = 𝜆𝐶𝑛 + 𝜋1 (I′)

for all 𝑛 ∈ N. Since for convex sets 𝑆 and reals 𝑎, 𝑏 it holds that 𝑎𝑆 + 𝑏𝑆 = (𝑎 + 𝑏)𝑆 , it follows from convexity of 𝜋1 (I′)
that for all 𝑛 ∈ N,

𝐶𝑛 = 𝜆𝑛𝐶0 +
1 − 𝜆𝑛
1 − 𝜆 𝜋1 (I

′).

Recall that I′ ⊆ 𝐵(0, 𝜀′) so 𝜋1 (I′) ⊆ 𝐵(0, 𝜀′) and therefore

𝐶𝑛 ⊆ |𝜆 |𝑛𝐵(0, |𝑢 |) +
����1 − 𝜆𝑛
1 − 𝜆

����𝐵(0, 𝜀′) ⊆ 𝐵 (
0, |𝜆 |𝑛 |𝑢 | +

����1 − 𝜆𝑛
1 − 𝜆

���� 𝜀′) . (2)

Since |𝜆 |𝑛 |𝑢 | +
��� 1−𝜆𝑛
1−𝜆

��� 𝜀′ → 𝜀′

|1−𝜆 | as 𝑛 →∞, there exists 𝑛1 ≥ 𝑛0 such that 𝐶𝑛 ⊆ 𝐵
(
0, 2𝜀′

|1−𝜆 |

)
= 𝐵(0, 𝛿/2) for all 𝑛 ≥ 𝑛1.

We now define

I = 𝐶 × I′, where 𝐶 = Conv

(
𝐶0 ∪ · · · ∪𝐶𝑛1

)
.

It is clear that I is a convex closed semilinear set. We now claim that:

• I ⊆ 𝐵(0, 𝜀): we have that I′ ⊆ 𝐵(0, 𝜀′) ⊆ 𝐵(0, 𝜀) by construction, and 𝐶 ⊆ 𝐵(0, 𝜀) by (2) since for all 𝑛 ∈ N,

|𝜆 |𝑛 |𝑢 | +
����1 − 𝜆𝑛
1 − 𝜆

���� 𝜀′ ≤ |𝑢 | + 2 𝜀′

|1 − 𝜆 | ≤
𝜀

2

+ 𝛿
2

≤ 𝜀

since 𝛿 ≤ 𝜀/2 as argued above. This concludes because 𝐵(0, 𝜀) × 𝐵(0, 𝜀) = 𝐵(0, 𝜀) for the infinity norm.
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• I contains the open ball 𝐵(0, 𝛿): we have that 𝐵(0, 𝛿) ⊆ Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0, 𝑛0]

})
by construction. Furthermore,

𝜆𝑛𝑢 ∈ 𝐶𝑛 because 0 ∈ I′ hence 0 ∈ 𝜋 (𝐼 ′) therefore 𝐶𝑛+1 = 𝜆𝐶𝑛 + 𝜋 (I′) ⊇ 𝜆𝐶𝑛 for all 𝑛. It follows that 𝐶

contains

{
𝜆 𝑗𝑢 : 𝑗 ∈ [0, 𝑛1]

}
and this concludes because 𝑛1 ≥ 𝑛0 and 𝐶 is convex.

• I is stable under 𝐽 : recall that

𝐽I = 𝐽 (𝐶 × I′) ⊆ (𝜆𝐶 + 𝜋1 (I′)) × J𝑑−1 (𝜆)I′ ⊆ (𝜆𝐶 + 𝜋1 (I′)) × I′

since I′ is stable under J𝑑−1 (𝜆). Therefore it suffices to show that 𝜆𝐶 + 𝜋1 (I′) ⊆ 𝐶 . We first claim that

𝜆𝐶𝑛 + 𝜋1 (I′) ⊆ 𝐶 for all 𝑛 ∈ [0, 𝑛1]. Indeed, for 𝑛 ∈ [0, 𝑛1 − 1], we have 𝜆𝐶𝑛 + 𝜋1 (I′) = 𝐶𝑛+1 ⊆ 𝐶 since

𝑛 + 1 ≤ 𝑛1. And for 𝐶𝑛1
, we have

𝜆𝐶𝑛1
+ 𝜋1 (I′) ⊆ 𝐵(0, |𝜆 |𝛿/2) + 𝐵(0, 𝜀′) ⊆ 𝐵(0, 𝛿/2 + 𝜀′) ⊆ 𝐵(0, 𝛿) ⊆ Conv

({
𝜆𝑖𝑢 : 𝑖 ∈ [0, 𝑛0]

})
⊆ 𝐶

by (1), (2) and the definition of 𝑛1, the convexity of 𝐶 and the fact that 𝑛1 ≥ 𝑛0.
Now let 𝑥 ∈ 𝜆𝐶 + 𝜋1 (I′) and write 𝑥 = 𝜆

∑𝑛1

𝑖=0
𝛼𝑖𝑥𝑖 + 𝑦 where

∑𝑛1

𝑖=0
= 1, 𝑥𝑖 ∈ 𝐶0 ∪ · · · ∪𝐶𝑛1

and 𝑦 ∈ 𝜋1 (I′). We

can rewrite 𝑥 as 𝑥 =
∑𝑛1

𝑖=1
𝛼𝑖 (𝜆𝑥𝑖 + 𝑦). Observe that for each 𝑖 , 𝑥𝑖 ∈ 𝐶 𝑗 for some 𝑗 so 𝜆𝑥𝑖 + 𝑦 ∈ 𝜆𝐶 𝑗 + 𝜋1 (I′) ⊆ 𝐶

by the above. Therefore, 𝑥 ∈ Conv (𝐶) = 𝐶 . □

We may now prove the following theorem.

Theorem 5.10. Let ℓ = (𝑥,𝐴,𝑦) be a non-reach Orbit instance in JNF. If 𝐴 has a Jordan block 𝐽 associated with an

eigenvalue whose modulus is less than 1 and such that 𝑦𝐽 ≠ 0, then there exists a semilinear invariant for ℓ .

Proof. Let 𝜀 = ∥𝑦𝐽 ∥/2. Thanks to Lemma 5.9, there exist 𝜀′ > 0 and a closed semilinear set I ⊆ C𝑑 ( 𝐽 ) such that

𝐽I ⊆ I and 𝐵(0, 𝜀′) ⊆ I ⊆ 𝐵(0, 𝜀). Now (𝐴𝑛𝑥)𝐽 → 0, so there exists 𝑛0 such that (𝐴𝑛0𝑥)𝐽 ∈ 𝐵(0, 𝜀′) ⊆ I. Hence,{
𝑥,𝐴𝑥, . . . , 𝐴𝑛0−1𝑥

}
∪
{
𝑧 ∈ C𝑑 : 𝑧 𝐽 ∈ I

}
is a semilinear invariant for ℓ . □

5.2.3 Some non-diagonalisable eigenvalue is a root of unity. We now move on to the third positive case.

Theorem 5.11. Let ℓ = (𝑥,𝐴,𝑦) be a non-reach Orbit instance in JNF. If there exists a non-diagonal Jordan block 𝐽

associated with an eigenvalue which is a root of unity and such that 𝑥 𝐽 ,>1 ≠ 0, then there exists a semilinear invariant for ℓ .

Proof. Let𝑚 be such that 𝜆𝑚 = 1, and let (𝐽 , 𝑠) be the maximal coordinate such that 𝑥 𝐽 ,𝑠 is non-zero. We rely on the

divergence of the coordinate (𝐽 , 𝑠−1) to construct an invariant. For any𝑛 ∈ N, we have (𝐴𝑛𝑥)𝐽 ,𝑠−1 = 𝜆𝑛𝑥 𝐽 ,𝑠−1+𝑛𝜆𝑛−1𝑥 𝐽 ,𝑠
and (𝐴𝑛𝑥)𝐽 ,𝑠 = 𝜆𝑛𝑥 𝐽 ,𝑠 . Recall that 𝑧∗ denotes the complex conjugate of 𝑧 ∈ C. Hence,

Re

(
𝜆(𝐴𝑛𝑥)𝐽 ,𝑠−1 (𝐴𝑛𝑥)𝐽 ,𝑠 ∗

)
= Re

(
𝜆𝑥 𝐽 ,𝑠−1𝑥 𝐽 ,𝑠

∗) + 𝑛 |𝑥 𝐽 ,𝑠 |2,
which goes to infinity when 𝑛 grows. Note that this condition is quadratic, however since (𝐴𝑛𝑥)𝐽 ,𝑠 = 𝜆𝑛𝑥 𝐽 ,𝑠 only takes

a finite number of values, we will be able to construct a semilinear set from it. Let 𝑛0 be such that

𝑀 := Re

(
𝜆(𝐴𝑛0𝑥)𝐽 ,𝑠−1 (𝐴𝑛0𝑥)𝐽 ,𝑠∗

)
> Re

(
𝜆𝑦𝐽 ,𝑠−1𝑦𝐽 ,𝑠

∗) .
Finally, let

I =
{
𝑥,𝐴𝑥, . . . , 𝐴𝑛0−1𝑥

}
∪

𝑚−1⋃
𝑖=0

I𝑖 , where I𝑖 =
{
𝑧 ∈ C𝑑 : 𝑧 𝐽 ,𝑠 = 𝜆

𝑖𝑥 𝐽 ,𝑠 and Re

(
𝜆𝑧 𝐽 ,𝑠−1𝑧 𝐽 ,𝑠

∗) ≥ 𝑀}
.
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It is clear that 𝑥 ∈ I and 𝑦 ∉ I. Each I𝑖 is semilinear because the second condition is actually semilinear assuming

𝑧 𝐽 ,𝑠 = 𝜆𝑖𝑥 𝐽 ,𝑠 . There remains to see that 𝐴𝑛0𝑥 ∈ I𝑛0 mod𝑚 . Indeed, (𝐴𝑛0𝑥)𝐽 ,𝑠 = 𝜆𝑛0𝑥 𝐽 ,𝑠 = 𝜆𝑛0 mod𝑚𝑥 𝐽 ,𝑠 and we have

defined 𝑀 above so that Re

(
𝜆𝑧 𝐽 ,𝑠−1𝑧 𝐽 ,𝑠 ∗

)
≥ 𝑀 for 𝑧 = 𝐴𝑛0𝑥 . Now if 𝑧 ∈ I𝑖 , we obtain that (𝐴𝑧)𝐽 ,𝑠 = 𝜆𝑧 𝐽 ,𝑠 = 𝜆𝑖+1𝑥 𝐽 ,𝑠 ,

and

Re

(
𝜆(𝐴𝑧)𝐽 ,𝑠−1 (𝐴𝑧)𝐽 ,𝑠 ∗

)
= Re

(
𝜆𝑧 𝐽 ,𝑠−1𝑧 𝐽 ,𝑠

∗) + |𝑧 𝐽 ,𝑠 |2 ≥ 𝑀 + |𝑧 𝐽 ,𝑠 |2 ≥ 𝑀
so 𝐴𝑧 ∈ I𝑖+1 if 𝑖 < 𝑚, and 𝐴𝑧 ∈ I0 if 𝑖 =𝑚 (since 𝜆𝑚 = 1). Hence I is invariant under 𝐴. □

We conclude with Theorem 3.10 by combining Theorems 5.7, 5.10 and 5.11.

5.3 From non-simple real instances to core pairs

We now present our sequence of reductions moving from non-simple real Orbit instances to core pairs. The goal of this

section is to establish the following result, which assumes that the only semilinear invariant for a core instances of

dimension 𝑑 is C𝑑 .

Theorem 3.12. Assuming Theorem 3.11, there is a polynomial time algorithm deciding whether a non-simple conjugated

Orbit instance admits a semilinear invariant.

Figure 5 recalls our pipeline of reductions; we now include detailed definitions of the classes of instances (and pairs)

that we consider.

This section is broken into four parts which correspond to the four downwards arrows in Figure 5.

Ensuring aperiodicity. We say that two complex numbers are equivalent if their quotient or their product is a root of

unity. We say that a matrix 𝐴 is aperiodic if any two equivalent eigenvalues are in fact equal, and if any eigenvalue

which is a root of unity is in fact 1. Note that choosing𝑚 to be a common multiple to all orders of roots of unity that

occur as eigenvalues or quotients or products of eigenvalues, we get that 𝐴𝑚 is aperiodic.

We obtain the following reduction.

Lemma 5.12. There is a polynomial time reduction from a non-simple conjugated Orbit instance to many non-simple

conjugated Orbit instances which are aperiodic.

Proof. Let (𝑥,𝐴,𝑦) be a non-simple conjugated Orbit instance, and let𝑚 be such that 𝐴𝑚 is aperiodic. For each

𝑘 ∈ {0, . . . ,𝑚 − 1}, set (𝑥 ′
𝑘
, 𝐴′

𝑘
, 𝑦′

𝑘
) = (𝐴𝑘𝑥,𝐴𝑚, 𝑦). By Lemma A.2 proved in Appendix A,𝑚 is indeed polynomial. We

now prove that (𝑥,𝐴,𝑦) admits a semilinear invariant if and only if for all 𝑘 , (𝑥 ′
𝑘
, 𝐴′

𝑘
, 𝑦′

𝑘
) does.

Let I be a semilinear invariant for (𝑥,𝐴,𝑦). Then by an easy induction, 𝐴𝑚I ⊆ I, and clearly 𝐴𝑘𝑥 ∈ I for all 𝑘 and

𝑦 ∉ I by assumption. Hence, for all 0 ≤ 𝑘 ≤ 𝑚 − 1, it holds that I defines a semilinear invariant for (𝑥 ′
𝑘
, 𝐴′

𝑘
, 𝑦′

𝑘
).

Conversely, consider a family of respective semilinear invariants (I′
𝑘
)
0≤𝑘≤𝑚−1 for (𝑥 ′𝑘 , 𝐴

′
𝑘
, 𝑦′

𝑘
)
0≤𝑘≤𝑚−1. Then for

all 𝑘 , let

˜I𝑘 = {𝑧 | 𝐴𝑘𝑧 ∈ I′
𝑘
}.

Note that for any element 𝑧 ∈ ˜I𝑘 we have 𝐴𝑘𝑧 ∈ I′
𝑘
thus 𝐴𝑚+𝑘𝑧 ∈ 𝐴𝑚I′

𝑘
⊆ I′𝑘 and therefore 𝐴𝑚𝑧 ∈ ˜I𝑘 . Hence, 𝐼𝑘 is

stable under 𝐴𝑚 , and so the same holds for

˜I =

𝑚−1⋂
𝑘=0

˜I𝑘 .
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non-simple conjugated 
instance (x,A,y)

non-simple conjugated 
aperiodic instance (x,A,y)

pre-normalized 
instance (x,A,y)

normalized pair (x,A)

core pair (x,A)

identifying conjugated blocks

removal of shrinking blocks

taking a large exponent
       (reduces to many
                instances)

removal of last zero coordinate

removal of identity blocks

reduction of equivalent blocks

strongly minimal invariant

can compute strongly
minimal invariant

can decide existence of semilinear
invariant and compute one if it exists

can decide existence of semilinear
invariant and compute one if it exists

can decide existence of semilinear
invariant and compute one if it exists

Fig. 5. Pipeline of reductions with detailed definitions.

Finally, we let

I =

𝑚−1⋃
𝑘=0

𝐴𝑘 ˜I,

which we claim to be a semilinear invariant for ℓ . First, we have 𝑥 ∈ ˜I𝑘 for each 𝑘 and thus 𝑥 ∈ I. Second, the fact that
I is invariant under 𝐴 follows directly from the fact that

˜I is invariant under 𝐴𝑚 . Third, assume for contradiction

that 𝑦 ∈ I: there is 𝑘 such that 𝑦 ∈ 𝐴𝑘 ˜I ⊆ 𝐴𝑘 ˜I𝑘 . Then 𝑦 = 𝐴𝑘𝑧 for some 𝑧 such that 𝐴𝑘𝑧 ∈ I′
𝑘
and thus 𝑦 ∈ I′

𝑘
, a

contradiction.

To conclude the proof of the lemma, we should argue that the resulting instances (𝐴𝑘𝑥,𝐴𝑚, 𝑦) are non-simple and

conjugated. This requires an additional base change since 𝐴𝑚 is no longer in JNF; however this base change preserves

respective Jordan blocks and does not affect being non-simple or conjugated. We conclude by applying Lemma 5.2. □

5.3.1 From aperiodic conjugated to pre-normalized. We say that an orbit instance is pre-normalized if it is non-simple,

equivalent eigenvalues are in fact equal, and eigenvalues which are roots of unity are in fact 1.

We proceed with the following reduction, which identifies synchronized conjugated Jordan blocks.
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Lemma 5.13. There exists a polynomial time reduction from non-simple aperiodic conjugated Orbit instances to pre-

normalized ones.

Proof. Consider a non-simple aperiodic conjugated Orbit instance ℓ = (𝑥,𝐴,𝑦). Let 𝑆 be the union of all Jordan

blocks whose eigenvalues are either real or have positive imaginary part, and put ℓ′ = (𝑥 ′, 𝐴′, 𝑦′) = (𝑥𝑆 , 𝐴𝑆 , 𝑦𝑆 ). Note
that ℓ′ is non-simple, aperiodic, and such that no two different eigenvalues are conjugate; it is thus pre-normalized.

Let I be a semilinear invariant for ℓ . Consider the semilinear set

I′ =
{
𝑧′ ∈ C𝑆 | 𝑧 ∈ I where 𝑧 is such that for all block 𝐽 , 𝜋 𝐽 ∗ (𝑧) = 𝜋 𝐽 (𝑧)∗

}
.

Since (𝑥,𝐴,𝑦) is conjugated, we have 𝑥 ′ ∈ I′, and 𝑦′ ∉ I′ otherwise we would have 𝑦 ∈ I. Now if 𝑧′ ∈ I′ then the

vector 𝑧 as in the definition belongs to I, therefore 𝐴𝑧 ∈ I, and since 𝐴 is conjugated it follows that (𝐴𝑧)𝑆 = 𝐴′𝑧′

belongs to I′.
Conversely, let I′ be a semilinear invariant for ℓ′ and consider the semilinear set

I =

{
𝑧 ∈ C𝑑 | 𝑧𝑆 ∈ I′ and for all block 𝐽 , 𝜋 𝐽 ∗ (𝑧) = 𝜋 𝐽 (𝑧)∗

}
.

Since ℓ is conjugated we have 𝑥 ∈ I, 𝑦 ∉ I and 𝐴I ⊆ I. □

From pre-normalized instances to normalized pairs. We say that a pair (𝑥,𝐴) is normalized if

• all eigenvalues have modulus ≥ 1;

• blocks 𝐽 such that |𝜆𝐽 | > 1 satisfy 𝑥 𝐽 = 0;

• blocks 𝐽 such that 𝜆𝐽 is a root of unity satisfy 𝑥 𝐽 ,>1 = 0;

• equivalent eigenvalues are equal; and

• eigenvalues which are roots of unity are in fact 1.

Thus, turning a pre-normalized Orbit instance (𝑥,𝐴,𝑦) to a normalized pair (𝑥 ′, 𝐴′) amounts to removing blocks

whose eigenvalues have modulus < 1; we call these blocks shrinking. It turns out that normalized pairs admit strongly

minimal invariants, which we now define.

Say that J is a weak invariant for a pair ℓ = (𝑥,𝐴) if 𝐴J ⊆ J and there exists 𝑛 such that 𝐴𝑛𝑥 ∈ J . A strongly

minimal invariant I for a pair ℓ = (𝑥,𝐴) is a semilinear invariant for ℓ (that is, 𝑥 ∈ I and 𝐴I ⊆ I), which is contained

in any semilinear weak invariants J for ℓ . Note that strongly minimal invariants are always assumed to be semilinear.

Note also that when such an invariant exist, it is unique.

The following lemma states the existence of a weak kind of reductions, which will turn out to be sufficient for our

needs.

Lemma 5.14. Let (𝑥,𝐴,𝑦) be a pre-normalized Orbit instance in JNF. There exists a normalized pair (𝑥 ′, 𝐴′), computable

in polynomial time from (𝑥,𝐴,𝑦), such that given a strongly minimal invariant I′ for (𝑥 ′, 𝐴′), one may decide whether

(𝑥,𝐴,𝑦) has a semilinear invariant in polynomial time, and in this case, compute one in polynomial time.

Note that Lemma 5.14 does not assert existence of strongly minimal invariants for normalized pairs; this will however

follow from the rest of the proof. The proof makes use of Lemma 5.9 from the previous section.

Proof. Let 𝑆 be the union of all coordinates from shrinking blocks of 𝐴. Since (𝑥,𝐴,𝑦) is non-simple, it holds that

𝑦𝑆 = 0. We distinguish two cases. First, if 𝐴𝑛
𝑆c
𝑥 = 𝑦 for infinitely many 𝑛’s, then since 𝑦𝑆 = 0, it follows that 𝑦 belongs

to the topological closure of the orbit {𝐴𝑛𝑥, 𝑛 ∈ N} and therefore there exists no closed semilinear invariant. Note that
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this can be tested in polynomial time: first test if 𝑦 belongs to the orbit of 𝑥𝑆c under 𝐴𝑆c , and then test if some power of

𝐴𝑆c is the identity matrix, which amounts to testing whether all eigenvalues of 𝐴𝑆c are roots of unity.

So we now assume that there is 𝑛0 such that 𝑦𝑆c ∉ {𝐴𝑛
𝑆c
𝑥𝑆c , 𝑛 ≥ 𝑛0}. First, we claim that 𝐴

𝑛0

𝑆c
𝑥𝑆c , for some 𝑛0 as

above, can be computed in polynomial time. Indeed, if 𝑦𝑆c does not belong to the orbit of 𝑥𝑆c under 𝐴𝑆c , then we may

pick 𝑛0 = 0, and if 𝑦𝑆c = 𝐴
𝑛
𝑆c
𝑥𝑆c then we take 𝑛0 = 𝑛 + 1 and compute 𝐴

𝑛0

𝑆c
𝑥𝑆c = 𝐴𝑆c𝑦.

We let (𝑥 ′, 𝐴′) = (𝐴𝑛0

𝑆c
𝑥𝑆c , 𝐴𝑆c ); it is a pre-normalized pair. Let I′ be a strongly minimal invariant for (𝑥 ′, 𝐴′).

If 𝑦𝑆c ∉ I′, is is a direct check that {𝑥,𝐴𝑥, . . . , 𝐴𝑛0−1𝑥} ∪ 𝜋−1
𝑆c
(I′) is a semilinear invariant for (𝑥,𝐴,𝑦).

Otherwise, 𝑦𝑆c ∈ I′, and we claim that in this case there exist no semilinear invariant for (𝑥,𝐴,𝑦). Towards a
contradiction, consider such an invariant I: 𝑥 ∈ I, 𝑦 ∉ I and 𝐴I ⊆ I. Let 𝜖 = 1

2
dist(𝑦,I) (recall that we compute

distances with respect to the infinity norm).

For each shrinking block 𝐽 , apply Lemma 5.9 to obtain a closed semilinear 𝑃 𝐽 satisfying 𝐴𝐽 𝑃 𝐽 ⊆ 𝑃 𝐽 and 𝐵(0, 𝜖2 ) ⊆
𝑃 𝐽 ⊆ 𝐵(0, 𝜖) ⊆ C𝐽 . Let 𝑃𝑆 be the Cartesian product of the 𝑃 𝐽 ’s over shrinking blocks; we have 𝐴𝑆𝑃𝑆 ⊆ 𝑃𝑆 and

𝐵(0, 𝜖
2
) ⊆ 𝑃𝑆 ⊆ 𝐵(0, 𝜖). Take 𝑛 ≥ 𝑛0 large enough so that | |𝐴𝑛

𝑆
𝑥𝑆 | | ≤ 𝜖

2
, and hence 𝐴𝑛

𝑆
𝑥𝑆 ∈ 𝑃𝑆 .

Let

J = {𝑠 ∈ I | 𝑧𝑆 ∈ 𝑃𝑆 }.

By construction, 𝐴𝑛𝑥 ∈ J , 𝐴J ⊆ J and 𝑦 ∉ J . Now let J ′ = 𝜋𝑆c (J). It holds that 𝐴𝑛𝑆c𝑥𝑆c ∈ J
′
and 𝐴𝑆cJ ′ ⊆ J ′:

J ′ is a weak invariant for (𝑥 ′, 𝐴′). Hence since I′ is strongly minimal, it holds that I′ ⊆ J ′, and thus 𝑦𝑆c ∈ J ′.
By definition, this means that there exists 𝑧𝑆 ∈ C𝑆 such that 𝑧 = (𝑧𝑆 , 𝑦𝑆c ) ∈ J , meaning that 𝑧 ∈ I and 𝑧𝑆 ∈ 𝑃 ,

which implies | |𝑧𝑆 | | ≤ 𝜖 . But then since 𝑦𝑆 = 0, we get

2𝜖 = dist(𝐼 , 𝑦) ≤ ||𝑧 − 𝑦 | | = | |𝑧𝑆 | | ≤ 𝜖,

a contradiction. □

Before reducing normalized pairs to core instances, we introduce structured reductions.

Structured reductions. Define complex affine maps to be function 𝑓 : C𝑑 → C𝑑 ′ of the form 𝑓 : 𝑧 ↦→ 𝐴𝑧 + 𝑢, where
𝐴 ∈ C𝑑 ′×𝑑 and 𝑢 ∈ 𝐶𝑑 ′ . Let𝐶 be a class of pairs (𝑥,𝐴) in dimension 𝑑 and𝐶′ be a class of pairs (𝑥 ′, 𝐴′) in dimension 𝑑′.

A structured reduction from𝐶 to𝐶′ is given by a function 𝑅 : 𝐶 → 𝐶′ mapping a pair (𝑥,𝐴) to a pair 𝑅(𝑥,𝐴) = (𝑥 ′, 𝐴′),
and for each pair (𝑥,𝐴) ∈ 𝐶 , two complex affine maps 𝑓 : C𝑑

′ → C𝑑 and 𝑔 : C𝑑 → C𝑑 ′ satisfying that

• 𝑓 (𝑥 ′) = 𝑥 ;
• for all 𝑧′ ∈ C𝑑 ′ , it holds that 𝑔(𝑓 (𝑧′)) = 𝑧′;
• for all 𝑧′ ∈ C𝑑 ′ , it holds that 𝑓 (𝐴′𝑧′) = 𝐴𝑓 (𝑧′).

It is easy to see that the compositions of structured reductions are structured reductions.

Note that for a complex affine map 𝑓 and a semilinear I, both 𝑓 (I) and 𝑓 −1 (I) are semilinear. We now prove that

structured reductions indeed give rise to reductions (as defined in Section 5.1), and that moreover, they reflect strongly

minimal invariants.

Lemma 5.15. Consider a structured reduction between classes of pairs 𝐶 and 𝐶′. Then the following properties hold for

all pair (𝑥,𝐴) ∈ 𝐶 :

• For all semilinear invariants I for (𝑥,𝐴), it holds that 𝑓 −1 (I) is a semilinear invariant for 𝑅(𝑥,𝐴).
• For all semilinear invariants I′ for 𝑅(𝑥,𝐴), it holds that 𝑓 (I′) is a semilinear invariant for (𝑥,𝐴).
• If I′ is a strongly minimal invariant for 𝑅(𝑥,𝐴), then 𝑓 (I′) is a strongly minimal invariant for (𝑥,𝐴).
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Stated differently, if there is a structured reduction from 𝐶 to 𝐶′, then for all (𝑥,𝐴) ∈ 𝐶 , (𝑥,𝐴) admits a semilinear

invariant if and only if 𝑅(𝑥,𝐴) does. Moreover, if 𝑅(𝑥,𝐴) admits a strongly minimal invariant then so does (𝑥,𝐴). We

now prove Lemma 5.15.

Proof. Let us consider a pair (𝑥,𝐴) ∈ 𝐶 and let us write (𝑥 ′, 𝐴′) = 𝑅(𝑥,𝐴) ∈ 𝐶′.
Let I be a semilinear invariant for (𝑥,𝐴), we show that 𝑓 −1 (I) is a semilinear invariant for (𝑥 ′, 𝐴′). First, 𝑓 (𝑥 ′) =

𝑥 ∈ I so 𝑥 ′ ∈ 𝑓 −1 (I). Second, let 𝑧′ ∈ 𝑓 −1 (I), meaning 𝑓 (𝑧′) ∈ I. We want to show that 𝐴′𝑧′ ∈ 𝑓 −1 (I). By
assumption 𝑓 (𝐴′𝑧′) = 𝐴𝑓 (𝑧′), and because I is stable under 𝐴 this implies that 𝑓 (𝐴′𝑧′) ∈ I thus 𝐴′𝑧′ ∈ 𝑓 −1 (𝐼 ).

Let I′ be a semilinear invariant for (𝑥 ′, 𝐴′), we show that 𝑓 (I′) is a semilinear invariant for (𝑥,𝐴). First, 𝑓 (𝑥 ′) = 𝑥
and 𝑥 ′ ∈ I′, so 𝑥 ∈ 𝑓 (I′). Second, let 𝑧 ∈ 𝑓 (I′), meaning 𝑓 (𝑧′) = 𝑧 for some 𝑧′ ∈ I′. We want to show that

𝐴𝑧 ∈ 𝑓 (I′). By assumption 𝑓 (𝐴′𝑧′) = 𝐴𝑓 (𝑧′) = 𝐴𝑧, and because I′ is stable under 𝐴′ we have 𝐴′𝑧′ ∈ I′, implying

that 𝐴𝑧 ∈ 𝑓 (I′).
Let I′ be a strongly minimal semilinear invariant for (𝑥 ′, 𝐴′), we claim that 𝑓 (I′) is a strongly minimal semilinear

invariant for (𝑥,𝐴). Let J be a semilinear weak invariant for (𝑥,𝐴). As we proved above 𝑓 −1 (J) is stable under
𝐴′, and we obtain by an easy induction on 𝑛 that 𝑓 (𝐴′𝑛𝑥 ′) = 𝐴𝑛𝑥 . Thus, since 𝐴𝑛𝑥 ∈ J for some 𝑛, it holds that

𝐴′𝑛𝑥 ′ ∈ 𝑓 −1 (J) for the same 𝑛. Hence 𝑓 −1 (J) is a semilinear weak invariant for (𝑥 ′, 𝐴′). By minimality of I′ we
have I′ ⊆ 𝑓 −1 (J). This implies that 𝑓 (I′) ⊆ 𝑓 (𝑓 −1 (J)) = J , as required. □

From normalized to core pairs. Recall that (𝑥,𝐴) is a core pair if:

• all eigenvalues have modulus 1;

• no eigenvalue is a root of unity;

• two different blocks have non-equivalent eigenvalues;

• the last coordinate 𝑥 𝐽 ,𝑑 ( 𝐽 ) of 𝑥 on each block is ≠ 0.

To reduce from normalized pairs to core pairs, we will use three structured reductions:

1. removal of the last coordinate (𝐽 , 𝑑 (𝐽 )) of a block 𝐽 assuming 𝑥 𝐽 ,𝑑 ( 𝐽 ) = 0;

2. removal of diagonal blocks with eigenvalue one (called identity blocks);

3. removal of a coordinate assuming there exists two different block 𝐽1, 𝐽2 associated with the same eigenvalue and

𝑥 𝐽2,𝑑 ( 𝐽2 ) ≠ 0.

These reductions are detailed below. To obtain a core pair, we proceed as follows.

• We start by applying the first reduction repeatedly to remove all blocks 𝐽 associated with eigenvalues of modulus

> 1; this is possible since in normalized pairs, such blocks satisfy 𝑥 𝐽 = 0.

• Then for each non-diagonal block with eigenvalue 1, we apply the first reduction repeatedly to remove the last

dimension until obtaining an identity block; this is possible since in normalized pairs, blocks with eigenvalue

one satisfy 𝑥 𝐽 ,>1 = 0. We then apply the second reduction to remove the identity block.

• At this stage, all blocks have eigenvalue ≠ 1 and with modulus 1, and equivalent eigenvalues are in fact equal:

we say that an instance (𝑥,𝐴) with this property is strongly normalized. Now while there exist two blocks 𝐽1, 𝐽2

with the same eigenvalue, we apply either the first reduction (if 𝑥 𝐽2,𝑑 ( 𝐽2 ) = 0) or the third one (if 𝑥 𝐽2,𝑑 ( 𝐽2 ) ≠ 0) to

reduce the dimension.

This process terminates (after applying reductions at most𝑑 times) with a core pair. We now detail the three structured

reductions.
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Lemma 5.16. There exists a structured reduction mapping pairs (𝑥,𝐴) where 𝑥 𝐽 ,𝑑 ( 𝐽 ) = 0 to (𝑥 ( 𝐽 ,𝑑 ( 𝐽 ) )c , 𝐴( 𝐽 ,𝑑 ( 𝐽 ) )c ) .

Proof. Write 𝑝 for the dimension (𝐽 , 𝑑 (𝐽 )). Define the affine maps 𝑓 : C𝑝
c → C𝑑 by 𝑓 (𝑧) = (𝑧, 0) and 𝑔 : C𝑑 → C𝑝c

by 𝑔(𝑧) = 𝑧𝑝c . Then we have 𝑓 (𝑥𝑝c ) = 𝑥 , and for all 𝑧′ ∈ C𝑝c
, 𝑔(𝑓 (𝑧′)) = 𝑧 and 𝑓 (𝐴𝑝c𝑧′) = 𝐴𝑓 (𝑧′), as required. □

Lemma 5.17. There exists a structured reduction mapping pairs (𝑥,𝐴) where 𝐽 is an identity block to (𝑥 𝐽 c , 𝐴𝐽 c ).

Proof. Define the affine maps 𝑓 : C𝐽
c → C𝑑 by 𝑓 (𝑧) = (𝑧, 𝑥 𝐽 ) and 𝑔 : C𝑑 → C𝐽 c by 𝑔(𝑧) = 𝑧 𝐽 c . Then we have

𝑓 (𝑥 𝐽 c ) = 𝑥 , and for all 𝑧′ ∈ C𝐽 c , 𝑔(𝑓 (𝑧′)) = 𝑧 and 𝑓 (𝐴𝐽 c𝑧
′) = 𝐴𝑓 (𝑧′), as required. □

The third reduction is a bit more involved technically but the intuition is simple: the last coordinates of block 𝐽1 and

𝐽2 stay proportional throughout the iteration and can thus be compressed in a single dimension.

Lemma 5.18. There exists a structured reduction mapping strongly normalized pairs (𝑥,𝐴) with blocks 𝐽1, 𝐽2 associated

to the same eigenvalue and 𝑥 𝐽2,𝑑 ( 𝐽2 ) ≠ 0, to strongly normalized pairs of dimension 1 less.

Proof. Write 𝑑1 = 𝑑 (𝐽1) and 𝑑2 = 𝑑 (𝐽2) and let 𝑝 = (𝐽1, 𝑑1). Let 𝐴′ be obtained from 𝐴𝑝c by adding a 1 in position

((𝐽1, (𝑑1 − 1)), (𝐽2, 𝑑2)). For example, if

𝐴 =

[
𝐽1

𝐽2

]
=



𝜆 1

𝜆 1

𝜆

𝜆 1

𝜆


, then 𝐴′ =


𝜆 1

𝜆 1

𝜆 1

𝜆


.

Let 𝑥 ′ = 𝑥𝑝c and 𝜇 =
𝑥 𝐽

1
,𝑑
1

𝑥 𝐽
2
,𝑑
2

∈ C. We define a structured reduction from (𝑥,𝐴) to (𝑥 ′, 𝐴′) by letting 𝑓 : C𝑝
c → C𝑑 be

given by 𝑓 (𝑧′)𝑝 = 𝜇𝑧′
𝐽2,𝑑2

and 𝑓 (𝑧′)𝑝c = 𝑧′
𝑝c and 𝑔 : C𝑑 → C𝑝c

by 𝑔(𝑧) = 𝑧𝑝c .

Clearly 𝑓 (𝑥 ′) = 𝑥 and for all 𝑧′ ∈ C𝑝c
we have 𝑔(𝑓 (𝑧′)) = 𝑧′. We now prove that 𝑓 (𝐴′𝑧′) = 𝐴𝑓 (𝑧′). For coordinates

out of 𝐽1 or 𝐽2, the equality is clear. Armed with patience we verify that for 𝑧′ ∈ C𝑝𝑐 :

for 𝑖 < 𝑑1 − 1, (𝐴′𝑧′)𝐽1,𝑖 = 𝜆𝑧′
𝐽1,𝑖
+ 𝑧′

𝐽1,𝑖+1,

(𝐴′𝑧′)𝐽1,𝑑1−1 = 𝜆𝑧′
𝐽1,𝑑1−1 + 𝑧

′
𝐽2,𝑑2

,

for 𝑖 < 𝑑2, (𝐴′𝑧′)𝐽2,𝑖 = 𝜆𝑧′
𝐽2,𝑖
+ 𝑧′

𝐽2,𝑖+1,

(𝐴′𝑧′)𝐽2,𝑑2 = 𝜆𝑧′
𝐽2,𝑑2

.

Calculating 𝐴𝑓 (𝑧′) we obtain the same results as for 𝑓 (𝐴′𝑧′):

for 𝑖 < 𝑑1 − 1 (𝑓 (𝐴′𝑧′))𝐽1,𝑖 = 𝜆𝑧′
𝐽1,𝑖
+ 𝑧′

𝐽1,𝑖+1 = (𝐴𝑓 (𝑧′))𝐽1,𝑖 ,
(𝑓 (𝐴′𝑧′))𝐽1,𝑑1−1 = 𝜆𝑧′

𝐽1,𝑑1−1 + 𝑧
′
𝐽2,𝑑2

= (𝐴𝑓 (𝑧′))𝐽1,𝑑1−1,
(𝑓 (𝐴′𝑧′))𝐽1,𝑑1 = 𝜇𝜆𝑧′

𝐽2,𝑑2
= (𝐴𝑓 (𝑧′))𝐽1,𝑑1 ,

for 𝑖 < 𝑑2 (𝑓 (𝐴′𝑧′))𝐽2,𝑖 = 𝜆𝑧′
𝐽2,𝑖
+ 𝑧′

𝐽2,𝑖+1 = (𝐴𝑓 (𝑧′))𝐽2,𝑖 ,
(𝑓 (𝐴′𝑧′))𝐽2,𝑑2 = 𝜆𝑧′

𝐽2,𝑑2
= (𝐴𝑓 (𝑧′))𝐽2,𝑑2 .

Note that the obtained matrix 𝐴′ is indeed one dimension lower, but it is not in JNF. To prove the lemma, there remains

to apply a base change and reduce once more, to (𝑥 ′′, 𝐴′′) = (𝑄−1𝑥 ′, 𝑄−1𝐴′𝑄). It is a direct check that this defines a

structural reduction, with affine maps 𝑓 : 𝑧 ↦→ 𝑄𝑧 and 𝑔 : 𝑧 ↦→ 𝑄−1𝑧. Last, we should argue that (𝑥 ′′, 𝐴′′) is strongly
normalized: this simply follows from the facts that strong normality depends only on the set of eigenvalues of 𝐴

(without multiplicity) and that 𝐴, 𝐴′ and 𝐴′′ have the same set of eigenvalues. □
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Combining Lemmas 5.16, 5.17 and 5.18, as explained above, we obtain the following result.

Lemma 5.19. There exists a structured reduction from normalized pairs to core pairs.

5.3.2 Proof of Theorem 3.12. We are finally ready to prove Theorem 3.12, which we first recall for convenience.

Theorem 3.12. Assuming Theorem 3.11, there is a polynomial time algorithm deciding whether a non-simple conjugated

Orbit instance admits a semilinear invariant.

Proof. Consider given a non-simple conjugate Orbit instance (𝑥,𝐴,𝑦). Apply the following reductions:

(𝑥,𝐴,𝑦) Lemma 5.12−−−−−−−−−−→ (𝑥1, 𝐴1, 𝑦1)
Lemma 5.13−−−−−−−−−−→ (𝑥2, 𝐴2, 𝑦2)

Lemma 5.14−−−−−−−−−−→ (𝑥3, 𝐴3)
Lemma 5.19−−−−−−−−−−→ (𝑥4, 𝐴4).

By Theorem 3.11, the only semilinear invariant for the core pair (𝑥4, 𝐴4) is𝐶𝑑4 ; it is a strongly minimal invariant. Since

Lemma 5.19 provides a structured reduction, this gives a strongly minimal invariant I3 for the normalized pair (𝑥3, 𝑦3).
At this point, Lemma 5.14 allows to decide whether (𝑥2, 𝐴2, 𝑦2) admits a semilinear invariant, and if it does, construct

such an invariant I2. Then Lemma 5.13 gives the same conclusion for (𝑥1, 𝐴1, 𝑦1), and then Lemma 5.12 concludes. □

6 DECIDABILITY PROOF: CORE INSTANCES

A matrix 𝐴 ∈ C𝑑×𝑑 is a core matrix if it is in Jordan normal form, eigenvalues of 𝐴 have modulus 1, are not roots of

unity and eigenvalues associated to different Jordan blocks are non-equivalent. Recall that a pair (𝑥,𝐴) is a core pair if
𝐴 is a core matrix and the last coordinate of 𝑥 on each Jordan block is non-zero.

Fix a core matrix 𝐴. Say that a set is a basic invariant if it is of the form∏
𝐽 ∈J
C𝑝 𝐽 × {0}𝑑 ( 𝐽 )−𝑝 𝐽 ,

where J stands for the set of Jordan blocks of 𝐴, and for each 𝐽 ∈ J , 𝑝 𝐽 is an integer in [0, 𝑑 (𝐽 )]. Note that basic
invariants are indeed invariant under 𝐴, closed, and semilinear.

The goal of this section is to prove that they are the only possible invariants.

Theorem 6.1. Let 𝐴 be a core matrix. Then all closed semilinear sets that are invariant under 𝐴 are unions of basic

invariants.

Observe that if (𝑥,𝐴) is a core pair, then the last coordinate of 𝑥 on each block is non-zero hence the only basic

invariant containing 𝑥 is C𝑑 . Thus Theorem 3.11 follows from Theorem 6.1.

6.1 Dimension of invariants for core pairs

We start by establishing that invariants for core pairs have full dimension (Lemma 6.8 below). First, some definitions,

and some technical results.

The dimension of a set 𝑋 of R𝑑 , which we denote by dim(𝑋 ), is the minimal 𝑘 in N such that 𝑋 is included in a finite

union of affine subspaces of dimension at most 𝑘 . The dimension of a set 𝑋 in C𝑑 , which we denote by dimR (𝑋 ), is the
dimension of 𝑋R. The following lemma is a standard result about semilinear sets.

Lemma 6.2 (Dimension of Semilinear Sets). Let I be a semilinear set in R𝑑 . If it has empty interior, meaning Io = ∅,
then I has dimension at most 𝑑 − 1.

Corollary 6.3. For any semilinear set I in R𝑑 , 𝜕I has dimension at most 𝑑 − 1.
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We will make use of the following powerful theorem about linear recurrence sequences. This result is due to

Skolem [34], and more general versions were subsequently obtained by Mahler [25, 26] and Lech [24]. This result can

also be found in the recent monograph of Everest et al. [11, Theorem 2.1 and subsequent discussion]. Recall that U

denotes the set of roots of unity and 𝑆1 the complex unit circle. Recall that a linear recurrence sequence is degenerate if

some quotient of two distinct roots of its characteristic polynomial is a root of unity.

Theorem 6.4 (Skolem, Mahler, Lech). Let (𝑢𝑛)𝑛∈N be a real non-degenerate linear recurrence sequence. Then

{𝑛 ∈ N : 𝑢𝑛 = 0} is either finite or all of N.

We will also require the following technical lemmas.

Lemma 6.5. Let 𝐴 ∈ C𝑑×𝑑 be in Jordan normal form, J its Jordan blocks and let 𝜆𝐽 denote the eigenvalue of each

Jordan block 𝐽 ∈ J . Let 𝑥 ∈ C𝑑 and𝑀 =

[
𝑥R (𝐴𝑥)R · · · (𝐴2𝑑−1𝑥)R

]
. If all the eigenvalues of 𝐴R are distinct and

𝑥 𝐽 ,𝑑 ( 𝐽 ) ≠ 0 for all 𝐽 ∈ J then det(𝑀) ≠ 0.

Proof. See Appendix B. □

Lemma 6.6. Let 𝐴 ∈ C𝑑×𝑑 be a core matrix and J range over its Jordan blocks. There exists a change of basis 𝑃 that

stabilizes any basic invariant, and such that 𝑃𝐴−1𝑃−1 = Diag(J𝑑 ( 𝐽 ) (𝜆−1𝐽 ), 𝐽 ∈ J).

Proof. See Appendix C. □

Lemma 6.7. Let (𝑥,𝐴) be a core pair. Then for any vector 𝑣 ∈ R2𝑑 \ {0}, 𝑣𝑇 (𝐴𝑛𝑥)R is zero for finitely many 𝑛.

Proof. Let 𝑢𝑛 = 𝑣𝑇 (𝐴𝑛𝑥)R which is a real linear recurrence sequence. Furthermore, the roots of the characteristic

polynomial of (𝑢𝑛)𝑛 are the eigenvalues of𝐴R. It is not hard to see that the eigenvalues of𝐴R are 𝜆1, . . . , 𝜆𝑠 , 𝜆1
∗, . . . , 𝜆𝑠∗

so in particular the quotients of any two distinct such eigenvalues are of the forms

𝜆𝑖

𝜆 𝑗
,

𝜆𝑖

𝜆 𝑗
∗ = 𝜆𝑖𝜆 𝑗 ,

𝜆𝑖
∗

𝜆 𝑗
=

1

𝜆𝑖𝜆 𝑗
,

𝜆𝑖
∗

𝜆 𝑗
∗ =

𝜆 𝑗

𝜆𝑖
∗ ,

none of which are roots of unity by our assumptions (recall that for complex number 𝑧 of modulus 1, 𝑧∗ = 𝑧−1). We can

now apply Theorem 6.4 to conclude that either 𝑢𝑛 = 0 for all 𝑛, or there are only finitely many 𝑛 such that 𝑢𝑛 = 0. We

will show that the former case implies that 𝑣 = 0 which is excluded.

Assume that 𝑢𝑛 = 0 for all 𝑛. In particular, 𝑣𝑇 (𝐴𝑛𝑥)R = 0 for all 𝑛 ∈ {0, 1, . . . , 2𝑑 − 1}. Hence, 𝑣 is in the kernel

of 𝑀 =

[
𝑥R (𝐴𝑥)R · · · (𝐴2𝑑−1𝑥)R

]
. But by our assumptions, the eigenvalues of 𝐴 and their conjugates are all

distinct (if two were equal, their product or quotient would be 1, hence a root of unity). Furthermore, 𝑥 𝐽 ,𝑑 ( 𝐽 ) ≠ 0 for all

𝐽 . It follows by Lemma 6.5 that𝑀 is invertible so 𝑣 = 0. □

We now prove that invariants for core pairs have full dimension.

Lemma 6.8. Let I be a non-empty closed semilinear invariant for a core pair (𝑥,𝐴). Then I has full-dimension, i.e. IR
has dimension 2𝑑 .

Proof. Let𝑚 = dimR (I) and assume, toward contradiction, that𝑚 < 2𝑑 . Then I is contained into the union of

finitely many affine subspaces of dimension𝑚:

IR ⊆
𝑝⋃
𝑗=1

𝐹 𝑗 ,
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where for all 𝑗 , 𝐹 𝑗 ⊆ R2𝑑 is a real affine subspace of dimension𝑚. For all 𝑛 ∈ N, (𝐴𝑛𝑥)R ∈ IR, since I is invariant under

𝐴, so there exists 𝑗𝑛 ∈ [1, 𝑝] such that (𝐴𝑛𝑥)R ∈ 𝐹 𝑗𝑛 . Hence, there must be some 𝑗∞ such that 𝐹 𝑗∞ contains (𝐴𝑛𝑥)R for

infinitely many values of𝑛. Since 𝐹 𝑗∞ has dimension𝑚 < 2𝑑 , it is contained is some hyperplane𝐻 =

{
𝑦 ∈ R2𝑑 : 𝑦𝑇 𝑣 = 0

}
of normal 𝑣 ∈ R2𝑑 \ {0}. Therefore 𝑣𝑇 (𝐴𝑛𝑥)R = 0 for infinitely many 𝑛’s, contradicting Lemma 6.7. □

6.2 The diagonal case

We now deal with the case where the matrix 𝐴 is diagonal. This case is important for two reasons. First, it plays the role

of the base case in our general induction. Second, it is also used as a technical tool in the general case to rule out certain

scenarios.

Lemma 6.9. Let 𝐴 be a diagonal core matrix, and let I be a non-empty closed semilinear set invariant under 𝐴, which

moreover contains a point 𝑥 ∈ I which is nonzero on each coordinate. Then I = C𝑑 .

Proof. We show a few facts:

(i) I must have full dimension (i.e. real dimension 2𝑑),

(ii) 𝜕I is invariant under 𝐴,

(iii) if 𝜕I is non-empty (that is, if I ≠ C𝑑 ), then it contains a point which is nonzero on each coordinate.

This implies the desired result: if towards contradiction we had that I ≠ C𝑑 , then I′ := 𝜕I would be a non-empty

closed semilinear set invariant under 𝐴 thanks to (ii) and it would contain a point which is nonzero on each coordinate

thanks to (iii). Therefore we could apply the same reasoning to I′ which would satisfy the above points as well and

have full dimension thanks to (i), which contradicts Corollary 6.3.

(i) This is proved by Lemma 6.8.

(ii) Since multiplication is continuous, 𝐴Ic ⊆ Ic implies 𝐴Ic ⊆ Ic. Now since I is closed we have 𝜕I = I ∩ Ic

and therefore since I is invariant under 𝐴, it suffices to show that Ic is invariant under 𝐴.
We now show that Ic is invariant under 𝐴. This amounts to proving that I is invariant under 𝐴−1. Let 𝑥 in I
and

𝐿𝐴 =

{
𝑣 ∈ Z𝑑 : 𝜆

𝑣1
1
· · · 𝜆𝑣𝑑

𝑑
= 1

}
be the set of all multiplicative relations holding among 𝜆1, . . . , 𝜆𝑑 . Notice that 𝐿𝐴 is an additive subgroup of Z𝑑 .

Consider the set of diagonal 𝑑 × 𝑑 matrices

𝑇𝐴 =

{
Diag(𝜇1, . . . , 𝜇𝑑 ) : 𝜇 ∈ 𝑆𝑑 and ∀𝑣 ∈ 𝐿𝐴 (𝜇𝑣1

1
· · · 𝜇𝑣𝑑

𝑑
= 1)

}
whose diagonal entries satisfy the multiplicative relations in 𝐿𝐴 . Using Kronecker’s Theorem on inhomogeneous

simultaneous Diophantine approximation [5], it is shown in [32, Proposition 3.5] that {𝐴𝑛 : 𝑛 ∈ N} is a dense
subset of 𝑇𝐴 . This implies that

{𝐴𝑛𝑥 : 𝑛 ∈ N} = {𝑀𝑥 : 𝑀 ∈ 𝑇𝐴} .

Since 𝑥 is in I and I is invariant under 𝐴, we have that {𝐴𝑛𝑥 : 𝑛 ∈ N} ⊆ I = I. Now observe that 𝐴−1 =

Diag(𝜆−1
1
, . . . , 𝜆−1

𝑑
) is in 𝑇𝐴 , and thus 𝐴−1𝑥 is in I.

(iii) Assume that 𝜕I ≠ ∅. Let Q =
⋃𝑑

𝑖=1 C
𝑖−1 × {0} ×C𝑑−𝑖 be the set of points with at least one zero coordinate. Note

that Q is closed. Observe that Qc is path-connected (this follows from applying coordinate-wise the fact that
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C \ {0} is path-connected). Note that since I is closed, C𝑑 = Io ∪ 𝜕I ∪ Ic where the union is disjoint. Assume

for contradiction that 𝜕I ⊆ Q. Then

Qc = C𝑑 \ Q = (C𝑑 \ 𝜕I) \ Q = (Io ∪ Ic) \ Q = (Io \ Q) ∪ (Ic \ Q) .

Now Io \ Q is open and it is non-empty because I contains a point 𝑥 ∉ Q by assumption so 𝑥 ∈ I \ Q = Io \ Q
since 𝜕I ⊆ Q. Similarly, Ic \ Q is open (I is closed) and non-empty because otherwise Ic ⊆ Q so Qc ⊆ I
hence C𝑑 = Qc ⊆ I = I which implies that 𝜕I = ∅ contrary to our assumption. Therefore Qc is the disjoint
union of two non-empty open sets, hence disconnected, a contradiction. □

We may easily deduce that Theorem 6.1 holds in the diagonal case (which corresponds to having Jordan blocks of

size 1).

Theorem 6.10. Let 𝐴 ∈ C𝑑×𝑑 be a diagonal core matrix. Closed semilinear invariants sets which are invariant for 𝐴 are

of the form
∏𝑑

𝑖=1 𝜀𝑖 , where 𝜀𝑖 ∈ {{0},C}.

Proof. We show that for any 𝑥 ∈ I, I must contain

∏
𝑖 𝜀𝑖 , with 𝜀𝑖 =


{0} if 𝑥𝑖 = 0

C otherwise

, which implies the result.

This follows directly from applying Lemma 6.9 to the projection of I ∩∏𝑖 𝜀𝑖 on coordinates {𝑖 ∈ [1, 𝑑] : 𝑥𝑖 ≠ 0}. □

6.3 General case

We now work with a general (not necessarily diagonal) core matrix 𝐴; as usual we let J range over the Jordan blocks

of 𝐴 and let 𝑠 = |J |. The proof of Theorem 6.1 will proceed by induction on 𝑑 . Since it involves several nontrivial steps,

we explicitly spell out the induction hypothesis.

(𝐻𝑅𝑑 ) The only closed semilinear invariants for core matrices of dimension 𝑑 are unions of basic invariants.

We let last denote the set of last coordinates of Jordan blocks of 𝐴:

last = {(𝐽 , 𝑑 (𝐽 )) | 𝐽 ∈ J}.

Recall that 𝜋𝑆 : C𝑑 → C𝑆 denotes the projection on a given set of coordinates 𝑆 .

We start with the intuition. Let I be a semilinear set that is invariant under𝐴. We will project I on the last coordinate

of each block (using 𝜋
last

). Since 𝐴 acts diagonally on these coordinates, this projection is invariant under a diagonal

matrix so that we may apply Theorem 6.10 and decompose 𝜋
last
(I) as above. Assuming that 𝜋

last
(I) is not the whole

set C𝑠 , then some of its components are identically zero which allows us to reduce the dimension and conclude by

induction.

Lemma 6.11. Let I be a closed semilinear set that is invariant under a core matrix 𝐴 of dimension 𝑑 . If (𝐻𝑅𝑑 ′ ) holds for
all 𝑑′ < 𝑑 then either I is a union of basic invariants or 𝜋last (I) = C𝑠 .

Note that the only basic invariant which has full dimension is C𝑑 ; therefore, the conclusion of the lemma implies

that if I has full dimension, then 𝜋
last
(I) = C𝑠 .

Proof. Let 𝜆1, . . . , 𝜆𝑠 be the eigenvalues of 𝐴 associated with the Jordan blocks 𝐽1, . . . , 𝐽𝑠 . Let I be a semilinear set

invariant under 𝐴 and consider I′ = 𝜋
last
(I) ⊆ Clast, the projection of I on the last coordinate of each block. We

identify Clast with C𝑠 by identifying the coordinate (𝐽𝑖 , 𝑑 (𝐽𝑖 )) with 𝑖 . Since (𝐴𝑥)𝐽𝑖 ,𝑑 ( 𝐽𝑖 ) = 𝜆𝑖𝑥 𝐽𝑖 ,𝑑 ( 𝐽𝑖 ) and I is invariant

under 𝐴, I′ is invariant under 𝐵 = Diag(𝜆1, . . . , 𝜆𝑠 ).
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Observe that 𝐵 is a core matrix therefore we may apply Theorem 6.10 to I′ and 𝐵; it follows that I′ = ⋃𝑘
ℓ=1 I′ℓ

for some 𝑘 , where I′
ℓ
=
∏

𝐽 ∈J 𝜀ℓ,𝐽 and 𝜀ℓ,𝐽 ∈ {{0} ,C}. Therefore we have I =
⋃𝑘

ℓ=1 Iℓ where Iℓ = I ∩ 𝜋−1
last
(I′

ℓ
).

Furthermore, it is not hard to check that 𝐴𝜋−1
last
(I′

ℓ
) = 𝜋−1

last
(I′

ℓ
) given the special form of I′

ℓ
. It follows that I and

𝜋−1
last
(I′

ℓ
) are invariant under 𝐴 so Iℓ is invariant under 𝐴. Also note that since I′ℓ ⊆ I

′
, we have that 𝜋

last
(Iℓ ) = I′ℓ .

Therefore, it now suffices to prove the result for each Iℓ to prove (𝐻𝑅𝑑 ). Hence we now assume that 𝜋
last
(I) = 𝑋 for

some set 𝑋 =
∏

𝐽 ∈J 𝜀ℓ,𝐽 as above. If 𝑋 = C𝑠 then the lemma holds.

Now assume that𝑋 ≠ C𝑠 . This means that there exists 𝐽 such that 𝜀ℓ,𝐽 = {0}. In particular,𝑋 ⊆
{
𝑧 ∈ C𝑠 : 𝑧 𝐽 ,𝑑 ( 𝐽 ) = 0

}
and therefore I ⊆ 𝜋−1

last
(𝑋 ) ⊆

{
𝑧 ∈ C𝑑 : 𝑧 𝐽 ,𝑑 ( 𝐽 ) = 0

}
=: 𝑃 𝐽 . Let 𝑝 = 𝜋 ( 𝐽 ,𝑑 ( 𝐽 ) )c be the projection on all coordinates but

(𝐽 , 𝑑 (𝐽 )). Intuitively, I is identically 0 on the coordinate (𝐽 , 𝑑 (𝐽 )) so projecting it away (via 𝑝) and then pulling-back

(via 𝑝−1) and setting (𝐽 , 𝑑 (𝐽 )) to zero (i.e. intersect with 𝑃 𝐽 ) yields the same set. Formally, since I ⊆ 𝑃 𝐽 , we have that
𝑝−1 (𝑝 (I)) ∩ 𝑃 𝐽 = I. Furthermore, 𝑃 𝐽 is invariant under 𝐴 (since (𝐽 , 𝑑 (𝐽 )) is the last coordinate of the block and it is

zero) so for any set 𝑋 ⊆ 𝑃 𝐽 , 𝑝 (𝐴𝑋 ) = 𝐵𝑝 (𝑋 ) where 𝐵 := 𝐴( 𝐽 ,𝑑 ( 𝐽 ) )c . Hence, 𝐵𝑝 (I) = 𝑝 (𝐴I) = 𝑝 (I) so 𝑝 (I) is invariant
under 𝐵. But now, 𝐵 has dimension 𝑑 − 1, is a core matrix and 𝑝 (I) is a semilinear set invariant under 𝐵. Hence, by

(𝐻𝑅𝑑−1), 𝑝 (I) is a union of sets of the form

∏
𝐽 ′∈J′ C

𝑝 𝐽 ′ × {0}𝑑 ( 𝐽 ′ )−𝑝 𝐽 ′ where J ′ is the set of Jordan blocks of 𝐴 and

𝑝 𝐽 are some integers. By pulling back through 𝑝−1 as explained above, we get that I is a union of sets of the form

𝑝−1 ©«
∏

𝐽 ′∈J′
C𝑝 𝐽 ′ × {0}𝑑 ( 𝐽

′ )−𝑝 𝐽 ′ ª®¬ ∩ 𝑃 𝐽 = ©«
∏

𝐽 ′∈J\{ 𝐽 }
C𝑝 𝐽 ′ × {0}𝑑 ( 𝐽

′ )−𝑝 𝐽 ′ ª®¬ ×
(
C𝑝 𝐽 × {0}𝑑 ( 𝐽 )−1−𝑝 𝐽 × {0}

)
since 𝑝−1 (·) ∩ 𝑃 𝐽 leaves all Jordan block unchanged except for 𝐽 where it adds one component which is 0. This shows

that (𝐻𝑅𝑑 ) hold for I. □

Overview of the remainder of the proof. We now focus on the case where 𝜋
last
(I) = Clast, which is the difficult case.

The remainder of the proof proceeds in two steps, which we now roughly describe.

• First, we establish that I contains the set Q of points which are zero on the last coordinate of each block (Lemma

6.11). This goes through a careful examination of the behavior of the second-to-last coordinate (Lemma 6.12).

• Then we will describe the structure of I in the close neighborhood of Q. Assuming that I ≠ C𝑑 and applying

the previous point yields that Q ⊆ I and also Q ⊆ Ic. This will allow us to obtain a precise understanding of

the shape of I in the neighborhood of Q, which eventually leads to a contradiction.

We now proceed with the first step. Lemma 6.12 shows that if each block has size 1 or 2 then I contains an element

that is 0 on the last coordinate of each block but nonzero on the second last coordinate (of each block of size 2). The

intuition is as follows: let 𝐽 be a block such that 𝑑 (𝐽 ) = 2 and let 𝜆 be its eigenvalue. If 𝑧 ∈ I is such that 𝑧 𝐽 ,2 ≠ 0, then

for all 𝑘 ∈ N,
(𝐴𝑘𝑧)𝐽 ,1 = 𝜆𝑘𝑧 𝐽 ,1 + 𝑘𝜆𝑘−1𝑧 𝐽 ,2 .

Now recall that |𝜆 | = 1 so 𝜆𝑘𝑧 𝐽 ,1 has constant modulus while 𝑘𝜆𝑘−1𝑧 𝐽 ,2 diverges to infinity in norm since we took

𝑧 𝐽 ,2 ≠ 0. Essentially, this means that by carefully choosing 𝑘 , we can ensure that (𝐴𝑘𝑧)𝐽 ,1 belongs to some “donut”, that

is bounded away from 0 but not too far away from the origin either. In other words, the orbit of 𝑧 under 𝐴 (which is

contained in I) always intersects a set 𝐾 which is essentially a donut on the second last coordinates of each block.

If we now consider a sequence of points 𝑧𝑛 as above and make sure 𝑧𝑛 → 0 with nonzero last coordinates (which is

possible since 𝜋
last
(I) contains a ball around 0), then we can make sure that the orbit of each 𝑧𝑛 intersects the same set

𝐾 . Since the donut is compact, this means that we can find a converging subsequence and since 𝑧𝑛 → 0, this limit will
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be 0 on the last coordinate of each block but nonzero on the second last of each block because of the definition of the 𝐾 .

The technical aspects of the proof lies in how we choose 𝑧𝑛 and how we ensure that the set 𝐾 is the same for all 𝑛.

Lemma 6.12. Let 𝐴 be a core matrix of dimension 𝑑 with 𝑑 (𝐽 ) ∈ {1, 2} for all 𝐽 ∈ J and let I be a closed semilinear set

that is invariant under 𝐴 and such that 𝜋last (I) = C𝑠 . Then there exists 𝑧 ∈ I such that 𝜋last (𝑧) = 0 and for all 𝐽 ∈ J , if

𝑑 (𝐽 ) = 2 then 𝑧 𝐽 ,1 ≠ 0.

Proof. Let 𝑥𝑛 be a sequence of non-zero complex numbers of modulus at most 1, that is a decreasing (in modulus)

and converges to 0. Let 𝑦 (𝑛) = (𝑥𝑛, . . . , 𝑥𝑛) ∈ C𝑠 . Since 𝜋last (I) = C𝑠 , 𝑦 (𝑛) ∈ 𝜋
last
(I) for all 𝑛, so the section{

𝑥 ∈ I : 𝜋
last
(𝑥) = 𝑦 (𝑛)

}
is non-empty. By Lemma 2.3, since 𝑦 (𝑛) has norm less than 1, there is some 𝐵 such that for

all 𝑛, there exists 𝑧 (𝑛) ∈ I of norm at most 𝐵 such that 𝜋
last
(𝑧 (𝑛) ) = 𝑦 (𝑛) for all 𝑛. Since the 𝑧 (𝑛) are bounded in

norm, without loss of generality, we can assume that they converge to some 𝑧 (∞) by extracting a subsequence. Since

I is closed, it is the case that 𝑧 (∞) ∈ I and by continuity, 𝜋
last
(𝑧 (∞) ) = lim𝑛→∞ 𝜋last (𝑧 (𝑛) ) = lim𝑛→∞ 𝑦 (𝑛) = 0. Let

J2 = {𝐽 ∈ J : 𝑑 (𝐽 ) = 2} and J ′ =
{
𝐽 ∈ J2 : 𝑧 (∞)𝐽 ,1

≠ 0

}
. Now let

𝛿 = min

(
1,min

{���𝑧 (∞)
𝐽 ,1

��� : 𝐽 ∈ J ′}) > 0.

(In the case where J ′ = ∅, we have 𝛿 = 1.)

Let 𝑛 be large enough so that ∥𝑧 (𝑛) − 𝑧 (∞) ∥ ≤ 𝛿/4. Since 𝜋
last
(𝑧 (∞) ) = 0 we have |𝑥𝑛 | = ∥𝑦𝑛 ∥ = ∥𝜋last (𝑧 (𝑛) )∥ ⩽ 𝛿/4.

Then for any 𝐽 ∈ J , and 𝑘 ∈ N, using that the eigenvalue 𝜆𝐽 of 𝐽 has modulus 1,����(𝐴𝑘𝑧 (𝑛) ) 𝐽 ,𝑑 ( 𝐽 ) ���� = ���𝜆𝑘𝐽 𝑧 (𝑛)𝐽 ,𝑑 ( 𝐽 )

��� = |𝑥𝑛 | ⩽ 𝛿
4

. (3)

Let 𝑘 ∈ N and 𝐽 ∈ J2, then (
𝐴𝑘𝑧 (𝑛)

)
𝐽 ,1

= 𝜆𝑘𝐽

(
𝑧
(𝑛)
𝐽 ,1
+ 𝑘𝜆−1𝐽 𝑧

(𝑛)
𝐽 ,2

)
= 𝜆𝑘𝐽

(
𝑧
(𝑛)
𝐽 ,1
+ 𝑘𝜆−1𝐽 𝑥𝑛

)
.

Let 𝑘 (𝑛) =
⌈

𝛿
2 |𝑥𝑛 |

⌉
. Then for all 𝐽 ∈ J ,����(𝐴𝑘 (𝑛)𝑧 (𝑛) ) 𝐽 ,1���� ⩽ ���𝑧 (𝑛)

𝐽 ,1

��� + 𝑘 (𝑛) |𝑥𝑛 | ⩽ ���𝑧 (∞)
𝐽 ,1

��� + 𝛿
4

+
(
𝛿

2|𝑥𝑛 |
+ 1

)
|𝑥𝑛 | ⩽ 𝛿 +

���𝑧 (∞)
𝐽 ,1

��� . (4)

We now make a case analysis on 𝐽 ∈ J2:

• If 𝐽 ∈ J ′ then ����(𝐴𝑘 (𝑛)𝑧 (𝑛) ) 𝐽,1
���� ⩾ ���𝑧 (𝑛)

𝐽 ,1

��� − 𝑘 (𝑛) |𝑥𝑛 | ⩾ 𝛿 − (
𝛿

2|𝑥𝑛 |
+ 1

)
|𝑥𝑛 | ⩾

𝛿

4

(5)

by the definition of 𝛿 .

• If 𝐽 ∈ J2 \ J ′ then 𝑧 (∞)𝐽 ,1
= 0 so

���𝑧 (𝑛)
𝐽 ,1

��� ⩽ 𝛿/4 and����(𝐴𝑘 (𝑛)𝑧 (𝑛) ) 𝐽,1
���� ⩾ 𝑘 (𝑛) |𝑥𝑛 | − ���𝑧 (𝑛)𝐽 ,1

��� ⩾ 𝛿

2|𝑥𝑛 |
|𝑥𝑛 | −

𝛿

4

⩾
𝛿

2

. (6)

Now, I being invariant under𝐴, the sequence (𝐴𝑘 (𝑛)𝑧 (𝑛) )𝑛 has its elements in I, and ultimately lies in the compact set

𝐾 =

{
𝑢 ∈ C𝑑 : ∀𝐽 ∈ J ,

��𝑢 𝐽 ,𝑑 ( 𝐽 ) �� ⩽ 𝛿
4

and ∀𝐽 ∈ J2,
𝛿

4

⩽ |𝑢 𝐽 ,1 | ⩽
���𝑧 (∞)
𝐽 ,1

��� + 𝛿}
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thanks to (3),(4), (5) and (6). We may then extract a converging subsequence in 𝐾 , with its limit 𝑢 (∞) in I ∩ 𝐾 . Clearly,
𝜋
last
(𝑢 (∞) ) = 0 since lim𝑛→∞ 𝜋last (𝑧 (𝑛) ) = 0. Furthermore, for all 𝐽 ∈ J2, 𝛿

4
⩽ |𝑢 (∞)

𝐽 ,1
| so 𝑢 (∞)

𝐽 ,1
≠ 0. This shows the

result. □

We now extend this result to the case where the blocks do not necessarily have size 2. We first project the invariant

I on the last two coordinates of each block to obtain I′. It is easy to see that I′ is invariant under the suitable

restriction of 𝐴 to those coordinates. Hence, by Lemma 6.12 we can find a point that is zero on the last coordinate

but nonzero on the second last coordinate of each block. We can then pull back this point through the projection

and obtain a point 𝑥 ∈ I with the same property. We next argue that the existence of 𝑥 implies that I must contain

Q := 𝜋−1
last
({0}) = ∏

𝐽 ∈J C
𝑑 ( 𝐽 )−1 × {0}. Indeed, if we project I ∩ Q on all coordinates except the last one of each block,

we obtain an invariant set again and so by applying (𝐻𝑅𝑑−𝑠 ) we conclude that it is a union of basic invariants. Now

since 𝑥 ∈ I ∩ Q, it follows that I ∩ Q = C𝑑−𝑠 . We now formalize this proof.

Lemma 6.13. Let 𝐴 ∈ C𝑑×𝑑 be a core matrix and I be a closed semilinear set that is invariant under 𝐴 and such that

𝜋last (I) = C𝑠 . If (𝐻𝑅𝑑 ′ ) holds for all 𝑑′ < 𝑑 then Q ⊆ I where Q := 𝜋−1last ({0}) =
∏

𝐽 ∈J C
𝑑 ( 𝐽 )−1 × {0}.

Proof. In this proof, we will need to refer to coordinates with respect to both the original matrix 𝐴 and some

sub-matrices 𝐴𝑆 with 𝑆 a subset of the coordinates. To avoid confusing notations, we view the coordinates of 𝐴𝑆 as a

subset of that of 𝐴, so that 𝑑 (𝐽 ) still refers to the size of the Jordan block 𝐽 in 𝐴. We will also write projection 𝜋𝑋 with

different domains, i.e. 𝜋𝑋 : C𝑑 → C𝑋 and 𝜋𝑋 : C𝑆 → C𝑋 , it should be clear from the context what the domain of each

projection is.

First note that if last
c = ∅ (which corresponds to the diagonal case) then I = 𝜋

last
(I) = C𝑠 so the result is trivially

true. Hence, we now assume that last
c ≠ ∅. In particular, 𝐴 has at least one Jordan block of size at least 2.

Note that Q ⊆ I is equivalent to 𝜋
last

c (I) = C𝑑−𝑠 . Let 𝑝 = 𝜋
last

c , let I′ = 𝑝 (I ∩ Q) and let 𝐴′ = 𝐴
last

c . The last

coordinate on each block in I ∩ Q is zero, therefore I ∩ Q = 𝑝−1 (𝑝 (I ∩ Q)) ∩ Q and 𝑝 (𝐴(I ∩ Q)) = 𝐴′𝑝 (I ∩ Q).
It follows that I′ is invariant under 𝐴′ and of dimension 𝑑 − 𝑠 < 𝑑 . By (𝐻𝑅𝑑−𝑠 ), it holds that I′ is a union of basic

invariants. If I′ = C𝑑−𝑠 then the lemma holds. Therefore we assume, toward a contradiction that I′ ≠ C𝑑−𝑠 .
Basic invariants corresponding to 𝐴′ are those of the form∏

𝐽 ∈J≥2
C𝑝 𝐽 × {0}𝑑 ( 𝐽 )−1−𝑝 𝐽 ,

where J≥2 = {𝐽 ∈ J | 𝑑 (𝐽 ) ≥ 2}, and note that each such set which is not C𝑑−𝑠 is identically zero on at least one

coordinate (𝐽 , 𝑑 (𝐽 ) − 1) for some 𝐽 ∈ J≥2. It follows that

I′ ⊆
⋃

𝐽 ∈J⩾2
𝜋−1( 𝐽 ,𝑑 ( 𝐽 )−1) ({0});

in words, for each 𝑧′ ∈ I′, there is a block 𝐽 ∈ J≥2 such that the last coordinate of 𝑧′ on 𝐽 is zero. But since

I ∩ Q = 𝑝−1 (I′) ∩ Q, we have

I ∩ Q ⊆
⋃

𝐽 ∈J⩾2

(
𝜋−1( 𝐽 ,𝑑 ( 𝐽 )−1) ({0}) ∩ Q

)
=

⋃
𝐽 ∈J⩾2

𝜋−1
last ∪ { ( 𝐽 ,𝑑 ( 𝐽 )−1) } ({0}); (7)
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in words, all vectors of I ∩ Q have a second-to-last coordinate which is zero on some block. We will now project on

the last two coordinates of each block. Formally, let

last-two = {(𝐽 , 1) : 𝐽 ∈ J , 𝑑 (𝐽 ) = 1} ∪
⋃

𝐽 ∈J⩾2
{(𝐽 , 𝑑 (𝐽 ) − 1), (𝐽 , 𝑑 (𝐽 ))}

and consider I′′ = 𝜋
last-two

(I). We claim that I′′ is invariant under 𝐴′′ := 𝐴
last-two

since the last two coordinates of

each block do not depend on the other coordinates when applying 𝐴. Furthermore, since last ⊆ last-two, we have that

𝜋
last
(I′′) = 𝜋

last
(𝜋

last-two
(I)) = 𝜋

last
(I) = C𝑠 . Therefore we may apply Lemma 6.12 to I′′ and 𝐴′′ and get that there

exists 𝑧 ∈ I′′ such that 𝜋
last
(𝑧) = 0 and for all 𝐽 ∈ J , if 𝑑 (𝐽 ) ⩾ 2 then 𝑧 𝐽 ,𝑑 ( 𝐽 )−1 ≠ 0. But this contradicts (7) because

𝑧′ = 𝜋−1
last-two

(𝑧) is now such that 𝑧′ ∈ Q but 𝑧′
𝐽 ,𝑑 ( 𝐽 )−1 ≠ 0 for all 𝐽 ∈ J⩾2. □

At this stage, we may thus assume that the invariant I satisfies 𝜋
last
(I) = C𝑠 and contains Q := 𝜋−1

last
({0}). We now

aim to show that this implies that I = C𝑑 , and in particular I is a basic set.

Lemma 6.14. Let 𝐴 be a core matrix of dimension 𝑑 and I be a closed semilinear set that is invariant under 𝐴 and such

that 𝜋last (I) = C𝑠 . If (𝐻𝑅𝑑 ′ ) holds for all 𝑑′ < 𝑑 then I = C𝑑 .

The rest of the section establishes Lemma 6.14; together with Lemma 6.11, this concludes our inductive proof of

Theorem 6.1.

Let 𝐴 be a core matrix of dimension 𝑑 and I be a semilinear set invariant under 𝐴 such that 𝜋
last
(I) = C𝑠 , and

assume that (𝐻𝑅𝑑 ′ ) holds for all 𝑑′ < 𝑑 . Since I is a closed semilinear set, we have

I =
⋃
P∈𝑃
P, P =

⋂
H∈𝐻P

H ,

where 𝑃 is a finite set of polyhedra P, and each P is the intersection of a set 𝐻P of finitely many closed half-spaces.

We let 𝐻 =
⋃
P∈𝑃 𝐻P denote the set of all half-spaces that appear in the definition of I.

We let 𝑃𝑓 = {P ∈ 𝑃 | dimR P = 2𝑑} denote the set of fully-dimensional polyhedra appearing in the definition of I.
By Lemma 6.8, I has full dimension 2𝑑 therefore 𝑃𝑓 is non-empty. We will now show that we may, without loss of

generality, ignore polyhedra which do not have full dimension.

Lemma 6.15. The semilinear set 𝐼 ′ =
⋃
P∈𝑃𝑓

P is invariant under 𝐴.

Proof. Since all polyhedra in I′ are closed and of full dimension, we have I′o = I′. Thus it suffices to prove that

𝐴(I′o) ⊆ I′, and conclude by continuity.

Let 𝑧 ∈ I′o and let 𝜀 > 0 such that 𝐵(𝑧, 𝜀) ⊆ I′. Then 𝐴𝐵(𝑧, 𝜀) ⊆ 𝐴I ⊆ I. Note that for some small enough 𝜀′, we

have 𝐵(𝐴𝑧, 𝜀′) ⊆ 𝐴𝐵(𝑧, 𝜀) thus 𝐵(𝐴𝑧, 𝜀′) ⊆ I. It follows that 𝐴𝑧 ∈ I′, since I \ I′ has empty interior. □

Now by Lemma 6.11, either 𝜋
last
(I′) = C𝑠 or I′ is a union of basic invariants ⊊ C𝑑 . But the latter case is excluded

since such basic invariants do not have full dimension. Thus 𝜋
last
(I′) = C𝑠 . Therefore in the remainder of the proof,

we now assume without loss of generality that 𝑃𝑓 = 𝑃 : all polyhedra have full dimension.

By Lemma 6.13, I contains Q := 𝜋−1
last
({0}) = ∏

𝐽 ∈J C
𝑑 ( 𝐽 )−1 × {0}. Let 𝑃

full
denote the set of polyhedra P in 𝑃 such

that P ∩ Q has dimension 2(𝑑 − 𝑠). Since Q ⊆ I and Q has dimension 2(𝑑 − 𝑠), we have 𝑃
full

≠ ∅. We now exclude the

case where all polyhedra in 𝑃
full

are included in Q.

Lemma 6.16. There is P0 ∈ 𝑃full such that P0 ⊈ Q.
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Proof. Assume towards a contradiction that for all P ∈ 𝑃
full

it holds that P ⊆ Q. Let I′ be the closed semilinear

set defined by

I′ =
⋃

P∈𝑃\𝑃full
P .

First, note that I′ is non-empty, otherwise we would have I ⊆ Q which implies 𝜋
last
(I) = {0}, however 𝜋

last
(I) = C𝑠 .

We now prove that I′ is stable under 𝐴. Again, since all polyhedra have full dimension, it suffices to prove that

𝐴(I′o) ⊆ I′. Let 𝑧 ∈ I′o. There exists P ∉ 𝑃
full

and 𝜀 > 0 such that 𝐵(𝑧, 𝜀) ⊆ P ⊆ I′. But then it cannot be that 𝑧 ∈ 𝑄 ,
otherwise it would hold that P ∈ 𝑃

full
. Since𝑄c ⊆ 𝑄c

, we get 𝐴𝑧 ∈ I ∩𝑄c
which is contained in I′ by our assumption.

Hence I′ is stable under 𝐴.
Now since I′ is stable under 𝐴 and full dimension, it contains Q by Lemma 6.11. However, I′ is a finite union of

polyhedra whose intersections with Q have dimension < 2(𝑑 − 𝑠) = dimR Q; thus I cannot contain Q. □

Therefore there exists P0 ∈ 𝑃full which is not contained in Q. Let 𝐻
general

be the family of half-spaces in 𝐻 that

do not contain Q in their boundary. Now ifH ∈ 𝐻
general

then 𝜕H ∩ Q has dimension < 2(𝑑 − 𝑠). It follows that the
countable union

𝑋 :=
⋃

H∈𝐻general

⋃
𝑘∈N

𝐴−𝑘 (𝜕H ∩ Q)

has dimension < 2(𝑑 − 𝑠), so it may not cover P0 ∩ Q. Let 𝑧 ∈ (P0 ∩ Q) \ 𝑋 .

Lemma 6.17. For allH ∉ 𝐻general it holds that 𝜋last (H) is a closed half-space of C𝑠 satisfyingH = 𝜋−1last (𝜋last (H)) and
0 ∈ 𝜕𝜋last (H).

Proof. By definition ifH ∉ 𝐻
general

then Q ⊆ 𝜕H ⊆ H . Since Q is a linear subspace of C𝑑 , this impliesH +Q = H .

Now Q = ker(𝜋
last
) therefore 𝜋−1

last
(𝜋

last
(H)) = H + ker(𝜋

last
) = H . Finally, we have 0 ∈ 𝐹 ⊆ 𝜕H and thus

0 ∈ 𝜋
last
(H). □

We proceed with another technical lemma which prepares for our final construction.

Lemma 6.18. For all 𝑘 ∈ N, there exists 𝜀𝑘 > 0 such that for allH ∈ 𝐻general, the set 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ H is either empty or

the whole ball 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ).

Proof. We distinguish three cases.

• If 𝐴𝑘𝑧 ∈ Ho, then there exists 𝜀𝑘,H > 0 such that 𝐵(𝐴𝑘𝑧, 𝜀) ∩ H = 𝐵(𝐴𝑘𝑧, 𝜀) for all 𝜀 ⩽ 𝜀𝑘,H .
• If 𝐴𝑘𝑧 ∈ 𝜕H then 𝑧 = 𝐴−𝑘𝐴𝑘𝑧 ∈ 𝐴−𝑘 𝜕H and 𝑧 ∈ Q = 𝐴−𝑘Q. But sinceH ∈ 𝐻

general
this implies 𝑧 ∈ 𝑋 which

is not possible.

• If 𝐴𝑘𝑧 ∉ H , then there exists 𝜀𝑘,H > 0 such that 𝐵(𝐴𝑘𝑧, 𝜀) ∩ H = ∅ for all 𝜀 ⩽ 𝜀𝑘,H sinceH is closed.

Since the set 𝐻
general

is finite, we conclude by taking 𝜀𝑘 to be the smallest 𝜀𝑘,H for allH ∈ 𝐻
general

. □

We then pick a sequence (𝜀𝑘 )𝑘∈N as above, and take it to be non-increasing and converging to 0 without loss of

generality. For each P ∈ 𝑃 we then have

𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩
⋂

H∈𝐻P∩𝐻general

H = 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ 𝐸𝑘,P (8)

where 𝐸𝑘,P is either empty or C𝑑 . Now that 𝑧 ∈ I so for all 𝑘 , 𝐴𝑘𝑧 ∈ I so there exists P ∈ 𝑃 such that 𝐴𝑘𝑧 ∈ P and

then 𝐴𝑘𝑧 ∈ H for allH ∈ 𝐻P , by definition. Hence for all 𝑘 , there exists P ∈ 𝑃 such that 𝐸𝑘,P = C𝑑 .
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It follows that for all 𝑘 and P,

𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ P = 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ 𝐸𝑘,P ∩
⋂

H∈𝐻P\𝐻general

H

= 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ 𝐸𝑘,P ∩
⋂

H∈𝐻P\𝐻general

𝜋−1
last
(𝜋

last
(H))

= 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ 𝐸𝑘,P ∩ 𝜋−1last

©«
⋂

H∈𝐻P\𝐻general

𝜋
last
(H)ª®¬

= 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ 𝜋−1last

(
𝐶𝑘,P

)
where 𝐶𝑘,P =

⋂
H′∈𝐻𝑘,P H

′
with

𝐻𝑘,P =


{
𝜋
last
(H) : H ∈ 𝐻P \ 𝐻general

}
if 𝐸𝑘,P = C𝑑

∅ if 𝐸𝑘,P = ∅
. (9)

Note that by Lemma 6.17, 𝐻𝑘,P is a finite set of closed half-spaces H ′ of C𝑠 such that 0 ∈ 𝜕H ′. We further let

𝐶𝑘 =
⋃
P∈𝑃 𝐶𝑘,P . Since I =

⋃
P∈𝑃 P, it follows that for all 𝑘 ∈ N,

𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ I = 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ 𝜋−1last
(𝐶𝑘 ) . (10)

We now establish further properties of the 𝐶𝑘 ’s.

Lemma 6.19. For all 𝑘 ∈ N, it holds that 𝐶𝑘 has full dimension 2𝑠 , that 𝐶𝑘 ≠ C𝑠 and that 𝐶𝑘 is a union of convex cones.

Moreover, there are finitely many different sets 𝐶𝑘 when 𝑘 ranges over N.

Proof. We prove the properties one by one.

• 𝐶𝑘 has full dimension 2𝑠 . For this we argue that 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩I has full dimension and therefore by (10), 𝜋−1
last
(𝐶𝑘 )

also has full dimension which concludes. To show that 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ I has full dimension, it suffices to observe

that 𝐴𝑘𝑧 ∈ I so 𝐴𝑘𝑧 ∈ P for some P ∈ 𝑃 , all of which are fully-dimensional.

• 𝐶𝑘 ≠ C2𝑠 . For this, let us consider Ic, a closed semilinear set which is invariant under 𝐴−1. Using Lemma 6.6,

𝐴−1 rewrites as Diag(J𝑑 ( 𝐽 ) (𝜆−1𝐽 ), 𝐽 ∈ J) under an appropriate change of basis which preserves basic invariants.

Hence we may apply Lemma 6.11 applies to Ic which yields that either Ic is a basic invariant or 𝜋
last
(Ic) = C𝑠 .

But since I is closed and ≠ C𝑑 , it holds that Ic is fully-dimensional, hence 𝜋
last
(Ic) = C𝑠 . It follows from

Lemma 6.13 that Q ⊆ Ic.
Now recall that 𝐴𝑘𝑧 ∈ Q so there exists 𝑥 ∈ Ic ∩ 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ). In particular, it follows that 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ I ≠

𝐵(𝐴𝑘𝑧, 𝜀𝑘 ). By (10), this implies that 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) ∩ 𝜋−1
last
(𝐶𝑘 ) ≠ 𝐵(𝐴𝑘𝑧, 𝜀𝑘 ) and therefore 𝐶𝑘 ≠ C𝑠 .

• 𝐶𝑘 is a union of convex cones: it suffices to show that each 𝐶𝑘,P is a convex cone. To show this, recall that

𝐶𝑘,P =
⋂
H′∈𝐻𝑘,P H

′
which are such that 0 ∈ 𝜕H ′ andH ′ is a closed half-space.contain a line, if the intersection

consists of just one half-space.

• There are finitely many different sets 𝐶𝑘 for 𝑘 in N. Indeed, by (9), 𝐻𝑘,P , and thus 𝐶𝑘 , is determined only by

whether 𝐸𝑘,P = R2𝑑 or ∅, so there are only 2
|𝑃 |

possible values. Note that on the other hand, 𝜀𝑘 does depend on

𝑘 , and may take arbitrarily small values if 𝐴𝑘𝑧 gets arbitrarily close to someH in 𝐻 when 𝑘 ranges over N. □

We are now finally in a position to present the final step of our proof.
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As we have seen in the proof of Lemma 6.9, {(𝜆𝑘
1
, . . . , 𝜆𝑘𝑠 ), 𝑘 ∈ N} is dense in {(𝜆𝑡1, . . . , 𝜆

𝑡
𝑠 ), 𝑡 ∈ R}. Hence, there exists

an increasing sequence 𝜑 : N→ N and 𝜀𝑘/2 ≤ 𝜇𝑘 ≤ 𝜀𝑘 such that for all 𝑘 , (𝜆𝜑 (𝑘 )
1

, . . . , 𝜆
𝜑 (𝑘 )
𝑠 ) = (𝜆𝜇𝑘

1
, . . . , 𝜆

𝜇𝑘
𝑠 ). Let 𝐶

be such that 𝐶 = 𝐶𝜑 (𝑘 ) for infinitely many 𝑘 . Since 𝐶 has full dimension by Lemma 6.19 it contains a point which is

nonzero on every coordinate. Therefore, 𝐶 cannot be stable under𝑀 = Diag(𝜆1, . . . , 𝜆𝑠 ), otherwise Lemma 6.9 would

conclude that 𝐶 = C𝑠 , contradicting Lemma 6.19. In particular, there is �̃� ∈ 𝐶 such that𝑀�̃� ∉ 𝐶 .

Let 𝑡0 = sup{𝑡 ∈ [0, 1] | 𝑀𝑡�̃� ∈ 𝐶} where 𝑀𝑡
:= Diag(𝜆𝑡

1
, . . . , 𝜆𝑡𝑠 ). Since 𝑡 ↦→ 𝑀𝑡�̃� is continuous and 𝐶 is closed,

it holds that 𝑀𝑡0�̃� ∈ 𝐶 , hence 𝑡0 < 1. Now let 𝑢 = 𝑀𝑡0�̃�. Then, for all sufficiently small 𝜀 > 0, we have 𝑀𝜀𝑢 ∉ 𝐶 by

definition of the supremum.

We let 𝑁 ∈ N be such that for 𝑛 ≥ 𝑁 , 𝜀𝑛 is small enough in this sense, and 𝑁 ′ be such that 𝜑 (𝑁 ′) −𝜑 (0) ≥ 𝑁 . Recall

that 𝐶 is a cone so we may re-scale 𝑢 so that ∥𝑢∥ ⩽ 2
−𝜑 (𝑁 ′ )𝜀𝜑 (𝑁 ′ ) and everything proved above about 𝑢 remains true.

Let 𝑣 = 𝐴𝜑 (0)𝑧 + 𝑢. Recall that 𝑧 ∈ Q, that 𝜋
last
(Q) = {0} and Q is stable under 𝐴 so 𝐴𝜑 (0)𝑧 ∈ Q, hence 𝜋

last
(𝑣) = 𝑢.

Therefore,

𝑣 ∈
[
𝐵(𝐴𝜑 (0)𝑧, 2−𝜑 (𝑁

′ )𝜀𝜑 (𝑁 ′ ) ) ∩ 𝜋−1last
({𝑢})

]
⊆

[
𝐵(𝐴𝜑 (0)𝑧, 𝜀𝜑 (0) ) ∩ 𝜋−1last

(𝐶)
]
⊆ I

where the last inclusion holds by (10). We argue that 𝐴𝜑 (𝑁
′ )−𝜑 (0)𝑣 ∈ 𝐵(𝐴𝜑 (𝑁 ′ )𝑧, 𝜀𝜑 (𝑁 ′ ) ). Indeed, 𝐴 is 2-lipschitzian,

so 𝐴𝜑 (𝑁
′ )−𝜑 (0)

is 2
𝜑 (𝑁 ′ )

-lipschitzian (for the infinity norm ∥ · ∥), so

∥𝐴𝜑 (𝑁
′ )−𝜑 (0)𝑣 −𝐴𝜑 (𝑁

′ )𝑧∥ ≤ 2
𝜑 (𝑁 ′ ) ∥𝑣 −𝐴𝜑 (0)𝑧∥ ≤ 𝜀𝜑 (𝑁 ′ ) .

Hence, since I is stable under 𝐴, and by (10),

𝐴𝜑 (𝑁
′ )−𝜑 (0)𝑣 ∈ 𝐵(𝐴𝜑 (𝑁

′ )𝑧, 𝜀𝜑 (𝑁 ′ ) ) ∩ I = 𝐵(𝐴𝜑 (𝑁
′ )𝑧, 𝜀𝜑 (𝑁 ′ ) ) ∩ 𝜋−1last

(𝐶) . (11)

On the other hand,

𝜋
last
(𝐴𝜑 (𝑁

′ )−𝜑 (0)𝑣) = Diag(𝜆𝜑 (𝑁
′ )

1
, . . . , 𝜆

𝜑 (𝑁 ′ )
𝑠 )𝑢 = Diag(𝜆𝜇𝑁 ′

1
, . . . , 𝜆

𝜇𝑁 ′
𝑠 )𝑢 = 𝑀𝜇𝑁 ′𝑢.

Since 𝜇𝑁 ′ ≤ 𝜀𝑁 ′ ≤ 𝜀𝑁 and we chose 𝑁 such that𝑀𝛼𝑢 ∉ 𝐶 for any 0 < 𝛼 ⩽ 𝜀𝑁 , this shows that 𝜋
last
(𝐴𝜑 (𝑁 ′ )−𝜑 (0)𝑣) ∉ 𝐶 ,

contradicting (11) and concluding the proof.

7 CONCLUSIONS

In this paper, we have proved that the Monniaux problem is undecidable already in a very restricted setting: using

semilinear invariants for affine programs (without guards), and in fact using only a single control location and two

transitions. This very foundational undecidability result shows that there is little hope for decidability for the Monniaux

problem, as most natural classes will include them. What we leave as an open question is whether convex invariants can

help recover decidability. This is a very exciting perspective, since as pointed out in the introduction, convex invariants

appear naturally in many practical scenarios.

Our decidability result considers the case of a single transition. On a technical level, the proof helps us understand

what exactly semilinear invariants can be used for in the context of affine programs. This surprising positive result

opens several perspectives. First, going beyond semilinear invariants: it is already known that the Monniaux problem is

decidable for semialgebraic invariants [13, 14], but it remains open for other natural classes of invariants. Second, this

decidability result implies a complexity result, but not yet an efficient algorithm. We leave open whether the problem

can be efficiently solved and what consequences are there for static analysis of programs.
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A UPPER BOUND ON APERIODICITY INDEX

In this section, we give an polynomial (when the dimension 𝑑 is fixed) upper bound on the smallest number 𝑛 such that

𝐴𝑛 is aperiodic. We start with the following lemma.

Lemma A.1. If 𝜆 is an𝑚-th root of unity and an algebraic number of degree 𝑑 then𝑚 ⩽ 2𝑑2.

Proof. Let𝑚 > 1 be the smallest integer such that 𝜆𝑚 = 1 and let Φ𝑚 be the𝑚-th cyclotomic polynomial. Then Φ𝑚

is the minimal polynomial of 𝜆 by definition of𝑚. Furthermore, recall that the degree of Φ𝑚 is 𝜙 (𝑚) where 𝜙 is Euler’s

totient function. But since Φ𝑚 is the minimal polynomial of 𝜆, its degree is exactly 𝑑 , hence 𝑑 = 𝜙 (𝑚). It is well-known
that 𝜙 (𝑚) ⩾

√︁
𝑚/2, therefore𝑚 ⩽ 2𝑑2. □

Lemma A.2. Let 𝐴 be a rational matrix whose eigenvalues 𝜆1, . . . , 𝜆𝑠 have modulus 1. Any number of the form 𝜆𝑖 , 𝜆𝑖/𝜆 𝑗
or 𝜆𝑖𝜆 𝑗 , if it is a root of unity, has order bounded by a polynomial in the dimension of 𝐴.

If follows that 𝐴𝑛 is aperiodic for some 𝑛 which is at most polynomial.

Proof. We first consider the case where 𝜆 is an eigenvalue of𝐴 that is a root of unity. Since𝐴 has rational coefficients,

its minimal polynomial 𝑝𝐴 also has rational coefficients. Furthermore, 𝑝𝐴 (𝜆) = 0 since 𝜆 is an eigenvalue. Therefore 𝜆 is

an algebraic number of degree at most 𝑛, the dimension of 𝐴. It follows by Lemma A.1 that the order of 𝜆 is polynomial

in 𝑛. Now assume that 𝜆 and 𝜇 are two eigenvalues of 𝐴 such that 𝜆𝜇 is a root of unity. Since 𝜆 and 𝜇 are algebraic

numbers of degree at most 𝑛, 𝜆𝜇 and 𝜆/𝑚𝑢 are algebraic of degree at most 𝑛2. Therefore, by the same argument, the

order of 𝜆𝜇 and 𝜆/𝑚𝑢 is polynomial in 𝑛2, hence in 𝑛. □

B COMPUTING SOME DETERMINANTS

In this appendix, we prove Lemma 6.5, which we first restate for convenience.

Lemma 6.5. Let 𝐴 ∈ C𝑑×𝑑 be in Jordan normal form, J its Jordan blocks and let 𝜆𝐽 denote the eigenvalue of each

Jordan block 𝐽 ∈ J . Let 𝑥 ∈ C𝑑 and𝑀 =

[
𝑥R (𝐴𝑥)R · · · (𝐴2𝑑−1𝑥)R

]
. If all the eigenvalues of 𝐴R are distinct and

𝑥 𝐽 ,𝑑 ( 𝐽 ) ≠ 0 for all 𝐽 ∈ J then det(𝑀) ≠ 0.

Towards proving 6.5, we first compute a similar determinant in a complex setting.
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Lemma B.1. Let 𝐴 ∈ C𝑑×𝑑 be in Jordan normal form, J its Jordan blocks and let 𝜆𝐽 denote the eigenvalue of each

Jordan block 𝐽 ∈ J . Let 𝑥 ∈ C𝑑 and𝑀 =

[
𝑥 𝐴1𝑥 · · · 𝐴𝑑−1𝑥

]
. Then

det(𝑀) =
∏
𝐽 ∈J
(−𝑥 𝐽 ,𝑑 ( 𝐽 ) )𝑑 ( 𝐽 ) ·

∏
𝐽 ,𝐻 ∈J,𝐽 ≠𝐻

(𝜆𝐽 − 𝜆𝐻 )𝑑 ( 𝐽 )𝑑 (𝐻 ) .

Proof of Lemma B.1. We let 𝑀 (𝐴, 𝑥, 𝑛) =
[
𝐴0𝑥 𝐴1𝑥 · · · 𝐴𝑛−1𝑥

]
for any 𝐴 ∈ C𝑑×𝑑 , which is a rectangular

matrix, and 𝑀 (𝐴, 𝑥) = 𝑀 (𝐴, 𝑥, 𝑑) which is a square matrix. First check, by an easy induction, that for any integer 𝑛,

Jordan block 𝐽 ∈ J and 𝑖 ∈ [1, 𝑑 (𝐽 )],

(𝐴𝑛𝑥)𝐽 ,𝑖 =
𝑑 ( 𝐽 )∑︁
𝑗=𝑖

(
𝑛

𝑗 − 𝑖

)
𝜆
𝑛+𝑖− 𝑗
𝐽

𝑥 𝐽 , 𝑗 .

We now proceed by induction on the number of blocks. If 𝑑 = 0 then det(𝑀 (𝐴)) = 1 so the formula is true. Let

𝐴 ∈ C𝑑×𝑑 with 𝑠 > 0 blocks. Fix a Jordan block 𝐽0 ∈ J . To avoid any confusion, let 𝜇 = 𝜆𝐽0 . By performing linear

combination of the columns, we can transform𝑀 (𝐴, 𝑥) into

𝐵 =

[
𝐶0 · · · 𝐶𝑑−1

]
where 𝐶𝑛 = 𝐴𝑛𝑥 +

𝑛−1∑︁
𝑘=0

(−𝜇)𝑛−𝑘
(
𝑛

𝑘

)
𝐴𝑘𝑥 .

Note that these linear transformations are all of the form “add a multiple of a column to another one”, hence it does not

affect the determinant. Let 𝐽 ∈ J and 𝑖 ∈ [1, 𝑑 (𝐽 )], then

𝐶𝑛𝐽 ,𝑖 = (𝐴
𝑛𝑥)𝐽 ,𝑖 +

𝑛−1∑︁
𝑘=0

(−𝜇)𝑛−𝑘
(
𝑛

𝑘

)
(𝐴𝑘𝑥)𝐽 ,𝑖

=

𝑑 ( 𝐽 )∑︁
𝑗=𝑖

(
𝑛

𝑗 − 𝑖

)
𝜆
𝑛+𝑖− 𝑗
𝐽

𝑥 𝐽 , 𝑗 +
𝑛−1∑︁
𝑘=0

(−𝜇)𝑛−𝑘
(
𝑛

𝑘

) 𝑑 ( 𝐽 )∑︁
𝑗=𝑖

(
𝑘

𝑗 − 𝑖

)
𝜆
𝑘+𝑖− 𝑗
𝐽

𝑥 𝐽 , 𝑗

=

𝑑 ( 𝐽 )∑︁
𝑗=𝑖

[(
𝑛

𝑗 − 𝑖

)
𝜆
𝑛+𝑖− 𝑗
𝐽

+
𝑛−1∑︁
𝑘=0

(−𝜇)𝑛−𝑘𝜆𝑘+𝑖− 𝑗
𝐽

(
𝑛

𝑘

) (
𝑘

𝑗 − 𝑖

)]
𝑥 𝐽 , 𝑗

=

𝑑 ( 𝐽 )∑︁
𝑗=𝑖

[
𝑛∑︁

𝑘=0

(−𝜇)𝑛−𝑘𝜆𝑘+𝑖− 𝑗
𝐽

(
𝑛

𝑘

) (
𝑘

𝑗 − 𝑖

)]
𝑥 𝐽 , 𝑗 .

Now observe that

𝑛∑︁
𝑘=0

(−𝜇)𝑛−𝑘𝜆𝑘+𝑖− 𝑗
𝐽

(
𝑛

𝑘

) (
𝑘

𝑗 − 𝑖

)
=

𝑛∑︁
𝑘=𝑗−𝑖

(−𝜇)𝑛−𝑘𝜆𝑘+𝑖− 𝑗
𝐽

(
𝑛

𝑘

) (
𝑘

𝑗 − 𝑖

)
since

(
𝑘

𝑗 − 𝑖

)
= 0 for 𝑘 ⩽ 𝑗 − 𝑖

=

𝑛− 𝑗+𝑖∑︁
𝑘=0

(−𝜇)𝑛−𝑘− 𝑗+𝑖𝜆𝑘𝐽
(

𝑛

𝑘 + 𝑗 − 𝑖

) (
𝑘 + 𝑗 − 𝑖
𝑗 − 𝑖

)
by re-indexing

=

𝑛− 𝑗+𝑖∑︁
𝑘=0

(−𝜇)𝑛− 𝑗+𝑖−𝑘𝜆𝑘𝐽
(
𝑛

𝑗 − 𝑖

) (
𝑛 − 𝑗 + 𝑖

𝑘

)
by the identity

(
𝑛

𝑘 + ℎ

) (
𝑘 + ℎ
ℎ

)
=

(
𝑛

ℎ

) (
𝑛 − ℎ
𝑘

)
=

(
𝑛

𝑗 − 𝑖

) 𝑛− 𝑗+𝑖∑︁
𝑘=0

(−𝜇)𝑛− 𝑗+𝑖−𝑘𝜆𝑘𝐽
(
𝑛 − 𝑗 + 𝑖

𝑘

)
=

(
𝑛

𝑗 − 𝑖

)
(𝜆 − 𝜇)𝑛− 𝑗+𝑖 by the binomial theorem.
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Therefore,

𝐶𝑛𝐽 ,𝑖 =

𝑑 ( 𝐽 )∑︁
𝑗=𝑖

(
𝑛

𝑗 − 𝑖

)
(𝜆 − 𝜇)𝑛− 𝑗+𝑖𝑥 𝐽 ,𝑖 .

Note that this is exactly the expression for a Jordan block with eigenvalue 𝜆 − 𝜇. In other words, det(𝑀 (𝐴, 𝑥)) =
det(𝑀 (�̃�, 𝑥)), where �̃� = 𝐴 − 𝜇𝐼𝑑 has the same Jordan blocks as 𝐴 but different eigenvalues. In particular, the block 𝐽0

has eigenvalue 𝜆𝐽0 − 𝜇 = 0 in �̃� so it is a nilpotent block. Thus �̃�
𝑑 ( 𝐽0 )
𝐽0

= 0 so

𝑀 (�̃�, 𝑥) =

𝑀 (�̃�𝐽0 , 𝑥 𝐽0 , 𝑑 (𝐽0)) �̃�

𝑑 ( 𝐽0 )
𝐽0

𝑀 (�̃�𝐽0 , 𝑥 𝐽0 , 𝑑 − 𝑑 (𝐽0))
𝑀 (�̃�𝐽 c

0

, 𝑥 𝐽 c
0

, 𝑑 (𝐽0)) �̃�
𝑑 ( 𝐽0 )
𝐽 c
0

𝑀 (�̃�𝐽 c
0

, 𝑥 𝐽 c
0

, 𝑑 − 𝑑 (𝐽0))

 =
[
𝑀 (�̃�𝐽0 , 𝑥 𝐽0 ) 0

∗ �̃�
𝑑 ( 𝐽0 )
𝐽 c
0

𝑀 (�̃�𝐽 c
0

, 𝑥 𝐽 c
0

)

]
.

In particular,

det(𝑀 (𝐴, 𝑥)) = det(𝑀 (�̃�, 𝑥)) = det(𝑀 (�̃�𝐽0 , 𝑥 𝐽0 )) det(�̃�𝐽 c
0

)𝑑 ( 𝐽0 ) det(𝑀 (�̃�𝐽 c
0

, 𝑥 𝐽 c
0

)) .

It is not hard to see that

𝑀 (�̃�𝐽0 , 𝑥 𝐽0 ) =


𝑥 𝐽0,1 · · · 𝑥 𝐽0,𝑑 ( 𝐽0 )
... . .

.

𝑥 𝐽0,𝑑 ( 𝐽0 )


so its determinant is (−𝑥 𝐽0,𝑑 ( 𝐽0 ) )𝑑 ( 𝐽0 ) . Furthermore, since �̃� is in JNF, its determinant is the product of its eigenvalues

(with multiplicities). Now let
˜J = J \ {𝐽0} denote the Jordan blocks of �̃�, ˜𝜆𝐽 = 𝜆𝐽 − 𝜆𝐽0 denote the eigenvalue of the

block 𝐽 in �̃�. Then

det(𝑀 (𝐴, 𝑥)) = (−𝑥 𝐽0,𝑑 ( 𝐽0 ) )
𝑑 ( 𝐽0 ) ©«

∏
𝐽 ∈ ˜J

˜𝜆
𝑑 ( 𝐽 )
𝐽

ª®¬
𝑑 ( 𝐽0 )

det(𝑀 (�̃�𝐽 c
0

, 𝑥 𝐽 c
0

))

= (−𝑥 𝐽0,𝑑 ( 𝐽0 ) )
𝑑 ( 𝐽0 ) ·

∏
𝐽 ∈ ˜J
(𝜆𝐽 − 𝜆𝐽0 )

𝑑 ( 𝐽 )𝑑 ( 𝐽0 ) · det(𝑀 (�̃�𝐽 c
0

, 𝑥 𝐽 c
0

)) .

By the induction hypothesis applied to �̃�𝐽 c
0

and 𝑥 𝐽 c
0

, we get that (note that (𝑥 𝐽 c
0

)𝐽 ,𝑑 ( 𝐽 ) = 𝑥 𝐽 ,𝑑 ( 𝐽 ) for 𝐽 ≠ 𝐽0)

det(𝑀 (�̃�𝐽 c
0

, 𝑥 𝐽 c
0

)) =
∏
𝐽 ∈ ˜J
(−𝑥 𝐽 ,𝑑 ( 𝐽 ) )𝑑 ( 𝐽 ) ·

∏
𝐽 ,𝐻 ∈ ˜J,𝐽 ≠𝐻

( ˜𝜆𝐽 − ˜𝜆𝐻 )𝑑 ( 𝐽 )𝑑 (𝐻 ) =
∏
𝐽 ∈ ˜J
(−𝑥 𝐽 ,𝑑 ( 𝐽 ) )𝑑 ( 𝐽 ) ·

∏
𝐽 ,𝐻 ∈ ˜J,𝐽 ≠𝐻

(𝜆𝐽 −𝜆𝐻 )𝑑 ( 𝐽 )𝑑 (𝐻 ) .

And we get the result by putting everything together. □

We are now ready to show Lemma 6.5.

Proof of Lemma 6.5. It is not hard to check that 𝐴R is the block matrix (𝑅(𝐴𝑖 𝑗 ))𝑖, 𝑗 where

𝑅(𝑧) =
[
Re (𝑧) −Im (𝑧)
Im (𝑧) Re (𝑧)

]
for all 𝑧 ∈ C. Furthermore, there is a change of basis 𝑄 (independent of 𝑧) such that

𝑄−1𝑅(𝑧)𝑄 =

[
𝑧 0

0 𝑧∗

]
.
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Therefore by applying 𝑄 block-wise and permuting rows and columns, we can build a change of basis 𝑃 such that

𝐴R = 𝑃−1𝐵𝑃 and 𝑥R = 𝑃−1𝑦 where

𝐵 =

[
𝐴 0

0 𝐴∗

]
, 𝑦 =

[
𝑥

𝑥∗

]
.

It follows that 𝑃𝑀 =

[
𝑦 𝐵𝑦 · · · 𝐵2𝑑−1𝑦

]
. One can check that 𝑄 and 𝑃 have determinant 1 so det(𝑀) = det(𝑃𝑀)

and we have reduced the problem to computing the determinant of

𝑁 =

[
𝑦 𝐵𝑦 · · · 𝐵2𝑑−1𝑦

]
where 𝐵 is in Jordan normal form. Specifically, the Jordan blocks of 𝐵 are the Jordan blocks of 𝐴 and their conjugates.

By Lemma B.1,

det(𝑁 ) =
∏
𝐽 ∈J𝐵
(−𝑦𝐽 ,𝑑 ( 𝐽 ) )𝑑 ( 𝐽 ) ·

∏
𝐽 ,𝐻 ∈J𝐵 ,𝐽 ≠𝐻

(𝜆𝐵𝐽 − 𝜆
𝐵
𝐻 )

𝑑 ( 𝐽 )𝑑 (𝐻 ) .

Since we assume all the eigenvalues of 𝐴R to be distinct, the second product in this expression is nonzero. The first

product is equal to∏
𝐽 ∈J𝐵
(−𝑦𝐽 ,𝑑 ( 𝐽 ) )𝑑 ( 𝐽 ) =

∏
𝐽 ∈J𝐴

(−𝑥 𝐽 ,𝑑 ( 𝐽 )𝑥∗𝐽 ,𝑑 ( 𝐽 ) )
𝑑 ( 𝐽 ) =

∏
𝐽 ∈J𝐴

(
−Re

(
𝑥 𝐽 ,𝑑 ( 𝐽 )

)
2

− Im
(
𝑥 𝐽 ,𝑑 ( 𝐽 )

)
2

)𝑑 ( 𝐽 )
and therefore is nonzero if 𝑥 𝐽 ,𝑑 ( 𝐽 ) ≠ 0 for all 𝐽 . □

C INVERSE OF A CORE MATRIX

We now prove Lemma 6.6 which we first restate for convenience.

Lemma C.1. Let 𝐴 ∈ C𝑑×𝑑 be a core matrix and J range over its Jordan blocks. There exists a change of basis 𝑃 that

stabilizes any basic invariant, and such that 𝑃𝐴−1𝑃−1 = Diag(J𝑑 ( 𝐽 ) (𝜆−1𝐽 ), 𝐽 ∈ J).

Proof. Recall that a core matrix 𝐴 is a diagonal block matrix, where blocks are of the form

𝐴𝐽 =



𝜆 1

𝜆
. . .

. . . 1

𝜆


where 𝐽 ranges over the set of Jordan blocks J . Then we have

𝐴−1𝐽 =



𝜆−1 𝜆−2 𝜆−3 . . . 𝜆−𝑑 ( 𝐽 )

𝜆−1 𝜆−2 𝜆−𝑑 ( 𝐽 )+1

. . .

𝜆−2

𝜆−1


.

Then we get 𝑃 𝐽𝐴
−1
𝐽
𝑃−1
𝐽

= J𝑑 ( 𝐽 ) (𝜆−1) with 𝑃 𝐽 upper triangular, and the lemma follows. □

D SPECIAL JNF FOR REAL MATRICES

We now prove the following statement about Jordan normal form of real matrices.
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Lemma D.1. For every real matrix 𝐴, there is an invertible matrix 𝑄 such that

𝑄−1𝐴𝑄 =



J𝑑1 (𝜆1)
. . .

J𝑑𝑟 (𝜆𝑟 )
J𝑑 ′

1

(𝜆′
1
)
J𝑑 ′

1

(𝜆′
1

∗)
. . .

J𝑑 ′𝑠 (𝜆
′
𝑠 )
J𝑑 ′𝑠 (𝜆

′
𝑠
∗)



,

where the 𝜆𝑖 ’s are real and the 𝜆′𝑖 ’s are non-real. Moreover, 𝑄 and 𝑄−1 are of the form

𝑄 =

[
𝑄1 . . . 𝑄𝑟 𝑄 ′

1
𝑄 ′
1

∗ . . . 𝑄 ′𝑠 𝑄 ′𝑠
∗
]
, 𝑄−1 =



𝑇1
...

𝑇𝑟

𝑇 ′
1

𝑇 ′
1

∗

...

𝑇 ′𝑠
𝑇 ′
𝑆
∗



,

where the 𝑄𝑖 ,𝑇𝑖 ’s are matrices and all above matrices can be computed in in polynomial time.

Intuition: we start with a high-level description of the proof. Start with the JNF𝑀 = Diag(𝐽1, . . . , 𝐽𝑘 ) of a real matrix

𝐴. We can always re-order the blocks so that the first blocks have real eigenvalues, followed by the ones with positive

imaginary component and finally negative imaginary component. We write𝑀 = Diag(𝑅1, . . . , 𝑅𝑟 , 𝐽1, . . . , 𝐽𝑠 , 𝐽 ′
1
, . . . , 𝐽 ′𝑠 )

this decomposition. We would like to argue that there is a relationship between the 𝐽𝑖 and 𝐽
′
𝑖
but this is unclear:

we do not even know that 𝑠 = 𝑠′. The approach is therefore to simply drop the 𝐽 ′
𝑖
and replace them by 𝐽 ∗

𝑖
: �̃� =

Diag(𝑅1, . . . , 𝑅𝑟 , 𝐽1, . . . , 𝐽𝑠 , 𝐽 ∗
1
, . . . , 𝐽 ∗𝑠 ). By using that𝐴 is real and that eigenvalues come in conjugate pairs, we can argue

that �̃� is still a JNF for 𝐴. We then argue about the particular shape of the transformation matrices using the fact that if

𝐴𝑃 = 𝑃�̃� for some matrix 𝑃 then the columns of 𝑃 are generalized eigenvectors of 𝐴.

Let 𝐴 be a real matrix. Recall that we can compute the (complex) JNF in polynomial time [3, 4] and get a invertible

matrix 𝑃 and a matrix 𝑀 of Jordan blocks such that 𝑃−1𝐴𝑃 = 𝑀 . This means that 𝑀 is a block diagonal matrix of

Jordan blocks, where each block has an associated eigenvalue. Without loss of generality, we can re-order the blocks so

that the blocks 𝑅1, . . . , 𝑅𝑟 with corresponding real eigenvalues 𝜆1, . . . , 𝜆𝑟 come first, followed by the blocks 𝐽1, . . . , 𝐽𝑠

with corresponding eigenvalues 𝜇1, . . . , 𝜇𝑠 with positive imaginary component (Im (𝜇𝑖 ) > 0), and finally the remaining

blocks 𝐽 ′
1
, . . . , 𝐽 ′

𝑠′ with corresponding eigenvalues 𝜇′
1
, . . . , 𝜇′

𝑠′ with negative imaginary component (Im

(
𝜇′
𝑖

)
< 0). Note

that at this point, we do not claim that there is any relationship between 𝑠 and 𝑠′. With these notations, we have that

𝑀 = Diag(𝑅1, . . . , 𝑅𝑟 , 𝐽1, . . . , 𝐽𝑠 , 𝐽 ′1, . . . , 𝐽
′
𝑠 ) .
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The spectrum of 𝐴 is exactly

{
𝜆1, . . . , 𝜆𝑟 , 𝜇1, . . . , 𝜇𝑠 , 𝜇

′
1
, . . . , 𝜇′

𝑠′
}
. Since 𝐴 is real, the non-real eigenvalues come in

conjugate pairs, therefore for all 𝑖 = 1, . . . , 𝑠′, there exists 𝑗 such that 𝜇′
𝑖
= 𝜇∗

𝑗
(note however that this implies no

relationship between 𝐽 ′
𝑖
and 𝐽 𝑗 , they could have different sizes). Furthermore, a consequence of the equation 𝐴𝑃 = 𝑀𝑃

is that 𝑃 is of the form

𝑃 =

[
𝑆1 · · · 𝑆𝑟 𝑇1 · · · 𝑇𝑠 𝑇 ′

1
· · · 𝑇 ′

𝑠′

]
where the columns of each 𝑆𝑖 , 𝑇𝑖 and 𝑇

′
𝑖
form a Jordan chain, which means that for each 𝑖 ,

𝑇𝑖 =

[
𝑥𝑖,1 · · · 𝑥𝑖,𝑑 ( 𝐽𝑖 )

]
where 𝑥𝑖,1, . . . , 𝑥𝑖,𝑑 ( 𝐽𝑖 ) are generalized eigenvectors of 𝐴 that satisfy

𝐴𝑥𝑖,1 = 𝜇𝑖𝑥
𝑖,1, 𝐴𝑥𝑖, 𝑗 = 𝜇𝑖𝑥

𝑖, 𝑗 + 𝑥𝑖, 𝑗−1,

for 𝑗 = 2, . . . , 𝑑 (𝐽𝑖 ). Finally, we introduce a few notations for vector spaces: given a (not necessarily square) matrix 𝑋 ,

we letV𝑋 be the span of the columns of 𝑋 . A consequence of the JNF (i.e. 𝑃 is invertible) is that

R𝑑 = VR ⊕ VI+ ⊕ VI−

where

VR = V𝑅1
⊕ · · · ⊕ V𝑅𝑟 VI+ = V𝐽1 ⊕ · · · ⊕ V𝐽𝑠 VI− = V𝐽 ′

1

⊕ · · · ⊕ V𝐽 ′
𝑠′

are the generalized eigenspaces of the real and complex eigenvalues. We now let

𝑃 =

[
𝑆1 · · · 𝑆𝑟 𝑇1 · · ·𝑇𝑠 𝑇 ∗

1
· · ·𝑇 ∗𝑠

]
, �̃� = Diag(𝑅1, . . . , 𝑅𝑟 , 𝐽1, . . . , 𝐽𝑠 , 𝐽 ∗1 , . . . , 𝐽

∗
𝑠 )

which are essentially 𝑃 and𝑀 where we have replaced the 𝑇 ′
𝑖
and 𝐽 ′

𝑖
(which can be anything and possibly be unrelated

to 𝑇𝑖 and 𝐽𝑖 ) by 𝑇
∗
𝑖
and 𝐽 ∗

𝑖
(the conjugates). Note that at this point, it is not clear that 𝑃 and �̃� are square matrices. We

claim that

𝐴𝑃 = 𝑃�̃�.

For sub-matrices 𝑆𝑖 and 𝑇𝑖 , this follows directly from the equation 𝐴𝑃 = 𝑃𝑀 but we need to verify that it holds for 𝑇 ∗
𝑖
.

For that, we simply note that 𝐴 = 𝐴∗ (𝐴 is real) and 𝐴𝑃 = 𝑃𝑀 so

𝐴𝑇 ∗𝑖 = (𝐴∗𝑇𝑖 )∗ = (𝐴𝑇𝑖 )∗ = (𝑇𝑖 𝐽𝑖 )∗ = 𝑇 ∗𝑖 𝐽
∗
𝑖

which is what we wanted. Therefore, it only remains to see that 𝑃 is square and invertible. The submatrix 𝑋 :=[
𝑅1 · · · 𝑅𝑟 𝑇1 · · · 𝑇𝑠

]
has linearly independent columns since it’s a subset of the columns of 𝑃 which is

invertible. Furthermore,V𝑋 = VR ⊕ VI+ . The columns of 𝑌 :=

[
𝑇 ∗
1
· · · 𝑇 ∗𝑠

]
are also linearly independent because

V𝑇 ∗
𝑖
= V∗

𝑇𝑖
and therefore

V𝑌 = V𝑇 ∗
1

+ · · · + V𝑇 ∗𝑠 = V∗𝑇1 + · · · + V
∗
𝑇𝑠

=
(
V𝑇1 + · · · + V𝑇𝑠

)∗
=
(
V𝑇1 ⊕ · · · ⊕ V𝑇𝑠

)∗
= V∗I+ .

Therefore, we need to show thatV𝑋 ⊕ V𝑌 = R𝑑 , that is to say R𝑑 = VR ⊕ VI+ ⊕ V∗I+ .
First, we make an observation: for any 𝑖 , since we have 𝐴𝑇 ∗

𝑖
= 𝑇 ∗

𝑖
𝐽 ∗
𝑖
and 𝐽 ∗

𝑖
is a Jordan block for 𝜇∗

𝑖
, then 𝑇 ∗

𝑖
is a

Jordan chain for 𝜇∗
𝑖
and thereforeV𝑇 ∗

𝑖
is included in the generalized eigenspace of 𝐴 for 𝜇∗

𝑖
.

We claim that this implies thatVR ⊕ VI+ andV∗I+ are in direct sum. To see that, we need to show thatV𝐽 ∗
𝑖
and

VR ⊕ VI+ are in direct sum for all 𝑖 . On the one hand, V𝐽 ∗
𝑖
is included in the generalized eigenspace of 𝐴 for the
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eigenvalues 𝜇∗
𝑖
. On the other hand,VR ⊕ VI+ is the direct sum of all generalized eigenvalues 𝛿 that satisfy Im (𝛿) ⩾ 0

and therefore are all distinct from 𝜇∗
𝑖
because Im

(
𝜇∗
𝑖

)
= −Im (𝜇𝑖 ) < 0 (a consequence of Im

(
𝜆 𝑗
)
= 0 and Im

(
𝜇 𝑗
)
> 0 for

all 𝑗 ) as just shown. By standard facts, generalized eigenspaces for distinct eigenvalues are in direct sum which shows

the claim.

Finally, we claim that R𝑑 = VR ⊕ VI+ ⊕ V∗I+ . To do that, we will show thatVI− ⊆ V∗I+ which will conclude since

R𝑑 = VR ⊕ VI+ ⊕ VI− . Let 1 ⩽ 𝑖 ⩽ 𝑠′, we will show thatV𝑇 ′
𝑖
⊆ V∗I+ . Recall that 𝑇

′
𝑖
is a Jordan chain and 𝐴𝑇 ′

𝑖
= 𝑇 ′

𝑖
𝐽 ′
𝑖
,

hence

𝐴𝑇 ′𝑖
∗
= (𝐴∗𝑇 ′𝑖 )

∗ = (𝐴𝑇 ′𝑖 )
∗ = (𝑇 ′𝑖 𝐽

′
𝑖 )
∗ = 𝑇 ′𝑖

∗
𝐽 ′𝑖
∗

since 𝐴 is real. Since 𝐽 ′
𝑖
∗
is Jordan block,𝑇 ′

𝑖
∗
is a Jordan chain for 𝜇′

𝑖
∗
andV𝑇 ′

𝑖
∗ is included in the generalized eigenspace

of 𝜇′
𝑖
∗
. But Im

(
𝜇′
𝑖
∗) = −Im (

𝜇′
𝑖

)
> 0 so 𝜇′

𝑖
∗ = 𝜇 𝑗 for some 𝑗 and thenV𝑇 ′

𝑖
∗ is included in the generalized eigensace of 𝜇 𝑗

and therefore inVI+ . At the same time,V𝑇 ′
𝑖
∗ = V∗

𝐽 ′
𝑖

soV𝑇 ′
𝑖
⊆ V∗I+ .

In summary, we have shown that 𝐴𝑃 = 𝑃�̃� where �̃� is in JNF with conjugated blocks and 𝑃 has correspondingly

“conjugated” columns.

It remains to see that 𝑃−1 has a similar structure. In what follows, we rename 𝑃 to 𝑃 and �̃� to𝑀 so that 𝐴𝑃 = 𝑃𝑀 ,

and 𝑃 and𝑀 are “conjugated”. Assume for the moment that 𝐴 is invertible. We claim that we can compute an invertible

matrix 𝑄 , with the same conjugation pattern as 𝑃 , such that 𝑄𝐴−1 = 𝑀−1𝑄 . The details on how to compute such a

𝑄 can be found in [3, Theorem 4.1 and Appendix 1] but in short this is exactly the same algorithm used to compute

𝑃 but in “row form”, or equivalently since 𝐴−𝑇𝑄𝑇 = 𝑄𝑇𝑀−𝑇 , can be seen as another version of the JNF applied to

𝐴−𝑇 where the “ones” are below the diagonal. Intuitively, this works because the generalized eigenspaces of 𝐴−1 have

exactly the same structure as that of 𝐴. Having found such a 𝑄 , we note that

𝑀𝑄𝑃 = 𝑀 (𝑄𝐴−1) (𝐴𝑃) = 𝑀 (𝑀−1𝑄) (𝑃𝑀) = 𝑄𝑃𝑀

so 𝑀 and 𝑄𝑃 commute. But 𝑀 is block-diagonal so it follows that 𝑄𝑃 must also be block-diagonal, i.e. 𝑄𝑃 = 𝑋 :=

Diag(𝑋1, . . . , 𝑋𝑟+2𝑠 ) with the same block structure as𝑀 . Furthermore, since both 𝑃 and 𝑄 have the same conjugated

structure, it follows that 𝑋 is conjugated with the same structure. Finally, we observe that 𝑃−1 = 𝑋 −1𝑄 which preserves

again the conjugated structure and shows the result. In the case where 𝐴 is not invertible, we instead replace 𝐴 with

𝐴′ = 𝐴 + 𝛿𝐼𝑛 for some very large 𝛿 so that 𝐴′ is invertible. It is then not hard to see that the JNF of 𝐴′ is𝑀′ = 𝑀 + 𝛿𝐼𝑛 .
We can then compute 𝑃 and 𝑃−1 with the conjugated structure from 𝐴′ as above and those will be acceptable for 𝐴 as

well.
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