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Abstract— Wind energy is a key contributor to renewable 

energy production, with wind turbines playing a critical role in its 

generation. However, the operational efficiency of wind turbines 

is often compromised by blade faults, leading to reduced 

performance, expensive maintenance, and potential safety 

hazards. Traditional methods of diagnosing faults in wind turbine 

blades are limited in both accuracy and efficiency. This study 

proposes a novel fault diagnosis approach using Convolutional 

Neural Networks (CNNs), a powerful deep learning technique for 

data analysis. The dataset comprises four sets of vibration signals 

representing both healthy and faulty wind turbine blades, 

covering fault conditions such as blade cracks, surface 

degradation, imbalance, and blade twist. Our proposed CNN-

based method aims to accurately detect and classify these faults, 

enabling proactive maintenance and improving the overall 

reliability and efficiency of wind energy systems. 

Keywords— Wind Turbine; Fault Diagnosis; Vibration signals; 

Convolution Neural Networks.             

                                                                                

I. INTRODUCTION  

Wind energy has emerged as a prominent and sustainable 

source of renewable energy, playing a crucial role in 

contributing to climate change and reducing reliance on fossil 

fuels. Wind turbines , the cornerstone of harnessing wind 

power, are instrumental in converting wind energy into 

electricity [1]. However, the operational efficiency of wind 

turbines is susceptible to various challenges, notably blade 

faults, which can significantly impede performance, escalate 

reduce maintenance costs, and enhance safety [2]. 

As the demand for clean energy sources intensifies, the 

development and maintenance of wind energy systems become 

paramount. However, ensuring the optimal performance and 

longevity of wind turbines pose significant challenges, 

particularly in the realm of fault detection and diagnosis [3]. 

This scientific article delves into the crucial domain of fault 

detection and diagnosis in wind turbines, focusing specifically 

on the analysis of vibration signals for condition monitoring. 

Fault diagnosis and prognosis are crucial for wind turbine 

maintenance, but traditional methods struggle with complex 

systems and limited data. Recent advancements in machine 

learning and artificial intelligence have spurred interest in 

utilizing these technologies for fault diagnosis in wind turbines 

[4].  

For instance, in [5] Li et al. (2019) address limitations of 

traditional feature-based rolling bearing fault diagnosis by 

proposing a method using a Back-Propagation Neural Network 

(BPNN) for multiscale local feature learning. This approach 

aims to automatically extract informative features from raw 

vibration signals at different scales, improving fault 

classification accuracy and reducing reliance on manual feature 

selection. 

Several Studies have investigated the efficacy of  Artificial 

Neural Networks (ANN), Deep Neural Network (DNN), 

Stacked AutoEncoder (SAE)[6],Multi-Layer Perceptrons 

(MLP) [7,8],  Support Vector Machines (SVM) and Long 

Short-Term Memory (LSTM) networks in addressing the 

challenges of fault diagnosis in wind turbine[9,10].  

In study [11] introduced a hybrid method for Remaining Useful 

Life (RUL) prediction in wind turbine systems. Recognizing 

limitations of individual methods like statistics and machine 

learning (ML), they advocate for a combined approach. This 

hybrid method likely involves feature extraction from sensor 

data, employing ML algorithms for prediction, and potentially 

incorporating data fusion from various sources. 

In [12] the authors proposes an wind turbine condition 

monitoring method using Long Short-Term Memory (LSTM) 

algorithms. LSTMs, known for capturing long-term 

dependencies in data sequences, analyze historical sensor 

readings from the turbine. By comparing predicted future 

readings with actual sensor data, the method identifies 

deviations (residual signal) that could indicate developing 

defects. 

In [13] Nguyen et al. (2021) propose a method for bearing fault 

diagnosis using a Multi-Branch Deep Neural Network (MB-

DNN). This approach addresses limitations of traditional 

feature extraction and single-architecture DNNs.  



The MB-DNN utilizes multiple branches with different 

architectures to capture a wider range of features from vibration 

signals. Future research can enhance this approach by 

incorporating additional data sources and exploring deep 

learning for real-time wind turbine fault management. 

In this study, we propose a novel approach to fault diagnosis in 

wind turbine blades utilizing Convolutional Neural Network 

(CNN). CNNs represent a powerful class of deep learning 

algorithms well-suited for data analysis tasks, particularly 

pattern detection [14]. By leveraging CNNs, we aim to 

overcome the shortcomings of traditional fault diagnosis 

methods and enhance the accuracy and efficiency of identifying 

blade faults in wind turbines. 

The organization of this paper is outlined as follows: the 

subsequent section provides detailed insights into the 

methodology employed to develop this approach, Section 3 

outlines the findings and initiates discussion, and lastly, the 

concluding section offers a summary of the paper. 
 

II. METHODOLOGY 

This section outlines our methodology for diagnosing faults in 

wind turbine blades. Analyzing vibration signals generated by 

wind turbines under various operational conditions and 

compute a single metric, known as the wind turbine blade 

condition index, which acts as an indicator of the turbine's 

overall health. To assess the effectiveness of signal 

characteristics in fault diagnosis, we employ a ranking process. 

The proposed approach begins with data preprocessing to 

enhance dataset quality. Then, CNNs are utilized for feature 

extraction and optimizing model parameters and architecture, 

thereby ensuring accurate fault classification [15]. Fig. 1 

illustrates the flowchart of the proposed methodology, which 

encompasses the following steps: 

 

 

 

 

 

 

1. Feature extraction: statistical features are utilized to capture 

essential characteristics from raw vibration data [16]. 

2. Feature selection: The features are chosen from the extracted 

features using distinct ranking techniques [17]. 

3. Feature ranking: The extracted features are ranked using the 

ReliefF algorithm [18]. 

4. Fault classification: The CNN classifier is employed for fault 

classification. 

 

Fig. 1. Proposed fault diagnosis architecture. 

1.1 Wind turbine blade state: 

The data used in this research are obtained from [19]. The study 

considers various health conditions of wind turbine blades 

while assuming all other components are functioning properly. 

Fig. 2 illustrates the different failure scenarios simulated on the 

blade. Vibration signals are recorded accordingly. The 

scenarios simulated on the blade include: 

 

 

 

Fig. 2. The fault simulated in this research 

[14]. 



• State 1: The blade is healthy without any defects, operating 

at a blade angle of 60°. Fig.(2.a). 

 

• State 2: A blade crack occurs due to damage from foreign 

objects during operation. Fig.(2.eb). 

 

• State 3: Blade erosion caused by high-velocity wind erosion, 

simulated by degrading the flawless surface using 

sandpaper. Fig.(2.c). 

 

• State 4: Mass imbalance in the blade is simulated by adding 

a mass at a specific distance from the root. Fig.(2.d). 

 

• State 5: blade angle anomalies (twisted blade), resulting 

from extreme wind loads and asymmetric wind directions, 

potentially leading to surface damage and abnor-mal blade 

angles over time.Fig.(2.e). 

1.2 Dataset Description: 

The dataset was created by Ogaili et al, in 2023. It comprises 

three sets of vibration data from turbines in normal operating 

conditions and three sets from turbines experiencing issues, 

encompass blade cracks, surface degradation, twist and blade 

imbalance. The data was collected at a sampling rate of 1 kHz, 

with 500 samples recorded per channel.  

 

1.3  Convolutional Neural Network algorithm 

This section provides an extensive explanation of the proposed 

method for detecting and classifying faults. Researchers have 

introduced various methods for normalizing data, as well as for 

training, validating, and testing neural networks [20]. The 

flowchart given in Fig. 3 showcases a comprehensive 

illustration of the development convolutional neural networks 

algorithm. 

 

Fig. 3. The flowchart of the approach. 

The CNN architecture designed for fault classification in wind 

turbine blades undergoes preprocessing steps involving 

normalization and resampling before progressing through a 

convolution filter [21]. The output layer, consisting of five 

nodes, is engaged for classification. These nodes correspond to 

distinct fault occurrences: Healthy and faultless, Crack fault, 

Surface erosion fault, Imbalance and Blade twist fault. offering 

a comprehensive classification framework for fault analysis. 

 

III. RESULTS AND DISCUSSION 

 

This section presents a comparative analysis is conducted based 

on standard ML evaluation metrics, including precision, recall, 

f1-score and accuracy [22]. These metrics provide a 

comprehensive understanding of the algorithm performance in 

classifying faults across multiple classes, allowing for a 

quantitative analysis of its effectiveness.  

The dataset was randomly divided into two portions: a training 

set, which consisted 80% of the data, and a testing set, which 

contained 20%. The segmentation facilitates a comprehensive 

evaluation of the algorithm's performance on novel data, 

typically represented by the testing dataset.  

Following the completion of training, the algorithm was tested 

with fresh data to forecast and classify faults in the wind turbine 

blades. The results depicted in Fig. 4  illustrates the training and 

validation accuracy of our suggested CNN-driven model.  

which shows that the model will predict well for unseen data. 

 

Fig. 4. Training and validation accuracy. 

The performance of the algorithm was evaluated based on its 

ability to classify faults in wind turbine blades. To assess this, 

the fault classifications generated by the algorithm were 

analyzed using a confusion matrix,which provides an overview 

of a model's performance on fresh data, typically the test data. 

As depicted in Fig. 5. The predictions are represented on the x-

axis, while the actual class labels are represented on the y-axis. 

 



 

Fig. 5.   The confusion matrix. 

 

The confusion matrix summarizes the classification 

performance of a model across different classes. The model 

accurately classified all instances. However, there were 

misclassifications observed. Our model achieved accuracies of 

98.7% for Healthy State, 97.8% for Blade Crack, 97.5% for 

Twist Blade, and 98.5% for Imbalance State. The overall testing 

accuracy of the model was 98.10%. 

 

TABLE I. TESTING RESULTS 

 

Table I provides the testing results of the model across three 

different tests speed, along with their average values. The 

model demonstrates consistently high performance across all 

evaluation metrics. Precision average 98.4%, recall 98.1%, f1-

sore achieved 98.3%, and accuracy achieved 98.86%. These 

results indicate the model's robustness and reliability in fault 

detection within Wind turbine blades. 

1.4 Comparative study 

This section conducts a comparative study between our 

approach and recent models in the field of fault detection within 

wind turbine blades using ML techniques such as kNN as 

detailed in Table II. To evaluate how effective our suggested 

research is compared to previous studies, we compiled the 

table, outlining the identified fault types, the employed 

algorithms, and the accuracy of each method. Our method 

exhibits significantly superior testing accuracy when compared 

to these algorithms. 

 

TABLE II. RESULTS OF THE COMPARATIVE STUDY 

Classifier  Faults Accuracy 

MLP [6] 
Crack near the root fault,  

Blade tip and mid-span 

crack  

 

94.75% 

kNN [22] 
Crack near the root fault,  

Blade tip and mid-span 

crack  

97 % 

Our method  blade crack, surface 

degradation, imbalance 

and twist blade 

98.2 % 

  
Table II compares the performance of different classifiers in 

fault detection within wind turbine blades. MLP achieved 

94.75% accuracy in identifying Crack near the root fault, Blade 

tip and mid-span crack faults, while kNN achieved 97%. 

Notably, our method demonstrated the highest accuracy among 

all classifiers, at 98.86%, in identifying blade crack, surface 

degradation, imbalance and twist blade faults. These results 

highlight the potential of our approach to significantly enhance 

fault detection accuracy in wind turbines blade, thereby 

improving their reliability and efficiency. 

IV. CONCLUSUION 

In summary, this study explores the application of 

Convolutional Neural Networks for diagnosing faults in wind 

turbines blade using vibration data. By analyzing a 

comprehensive dataset encompassing various fault conditions, 

including blade cracks, surface degradation, and imbalance, the 

study demonstrates the CNN ability to accurately detect and 

classify these faults. This approach offers advantages over 

traditional methods, enabling proactive maintenance strategies 

that enhance wind turbine reliability and efficiency. The 

successful implementation of CNNs suggests promising 

avenues for future research in improving renewable energy 

infrastructure through advanced fault diagnosis techniques. 
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� �⁄  

 �. � � �⁄  �. � � �⁄  Average 

Precision 98.3% 98.3% 98.6% 98.4% 

Recall 97.89% 98% 98.1% 98.1% 

F1-score 98.1% 98.3% 98,3% 98.2% 

Accuracy 97.7% 98.14% 98.86% 98.2% 
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