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M. Stéphane Lanteri Directeur de Recherches INRIA Rapporteur

M. Christophe Geuzaine Professeur, Univ. de Liège Rapporteur
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Chapitre 1

General introduction

Electromagnetic analysis has become part and parcel of a big amount of scientific and engineering

research work since J.C. Maxwell completed the electromagnetic theory in 1873 [1]. Examples of

such work are radar and antenna simulations, geo-, bio- and medical-electromagnetics, optics, and

so on. The predictive power of the Maxwell’s theory is valid from the static to optical regimes and

from subatomic to intergalactic length scales, as proven over the years. The modern electromagnetic

analysis consists in solving a set of Maxwell’s equations which can only be resolved analytically for

very few simple cases, while an accurate and complete analysis of complex ones can be accomplished

only through techniques that solve the involved differential equations numerically with the help of

modern computers.

The general form of the Maxwell’s equations can be formulated as a hyperbolic system of partial

differential equations, and then can be solved with Godunov-type methods [2, 3], Finite-difference

time-domain (FDTD) methods [4–7] and so on. In this work, we aim at considering the simulation of

time-harmonic electromagnetic wave propagation problems. A field is referred to be time-harmonic

when the field quantities in Maxwell’s equations are harmonically oscillating functions with a single

frequency. We can point out the first- and second-order form of these equations. The first-order form

of time-harmonic Maxwell’s equations represents a system of two equations which couples both the

electric and magnetic field. Recently, discontinuous Galerkin methods [8] have been considered in

order to solve this set of equations and have showed their efficiency in various domains in scientific

computing [9]. In this work, we focus on the second-order form of time-harmonic Maxwell’s equations,

that is represented by a Helmholtz differential equation describing the evolution of the electric or the

magnetic field. The analytical solution of this equation when the field is generated by a dipole is called

a Green function [10], and as for the Maxwell’s theory, it exists unfortunately for very few cases.

There are many different numerical techniques for obtaining approximate solutions to boundary-

value problems of mathematical physics. One can note Volume integral equation methods, such as

the Method of Moments (MoM) [11, 12] with its different variations [13, 14] and Boundary Element

methods (BEM) [15], which are well adapted to homogeneous configurations. These methods profit

from the existence of the Green function in closed form.

When we deal with a complex case whose Green function is unknown, the Finite Element Method

(FEM) has totally proven its efficiency during a history of about 60 years. FEM was firstly proposed

in the 1940s and its use begun in the 1950s for aircraft design. After this, the method was applied

extensively to problems of structural analysis and increasingly to problems in other fields. Nowadays,

the FEM method has become a powerful numerical technique for computations in a large amount of

scientific domains, including computational electromagnetics [16].

One of the main advantages of this method is that it allows to treat complex media (such as

anisotropic or inhomogeneous) and different types of geometry. The oscillatory nature of the high-

frequency electromagnetic scattering problems requires a great number of grid points per wavelength

(typically 10 to 15 for the linear finite element method) [17], and therefore leads to large-scale system

of equations. For such problems, solving the main system of linear equations by a direct method entails

memory and CPU requirements that rapidly overwhelm even the largest currently available resources.

Furthermore, the convergence of classical iterative methods, such as GMRES [18], BICG [19] or

BICGSTAB [20] for example, which are well suited for complex matrices which are neither Hermitian
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nor definite (even if they are symmetric in general) is chaotic or failing [17, 21]. In addition, finding

a good preconditioner to solve these systems of linear equations is often treated as a combination

of art and science, and is very often not evident [21–23]. All this makes the numerical resolution of

the Helmholtz equation and related optimal control problems in heterogeneous media at high wave

number a challenging problem for the classical Finite Element Method.

A way to overcome these difficulties can be, for example, to apply high-order finite-elements [24],

or Domain Decomposition (DD) technique. Indeed, time harmonic wave propagation phenomena has

become a privileged field of application of Domain Decomposition Methods (DDMs) during the last

decade. The idea of the Domain Decomposition was firstly introduced by Lions in the end of the

1980s for the Laplace equation [25, 26]. But solving the Helmholtz equations describing wave propa-

gation in the frequency domain does not have the same nice properties than the solution of more

standard elliptic equations such as Laplace equation, which makes impossible to apply the idea of

overlapping Schwartz algorithm [27]. This probably explains why a big amount of research work on

DDM for such models started a bit later (in the middles 1990s in fact), since Després extended the

DD idea for the two-dimensional Helmholtz equations [28–33]. The principal DD idea is to split the

entire computational domain into smaller non-overlapping subdomains and to solve a sequence of

similar subproblems on these subdomains. The boundary conditions are adjusted iteratively by ad

hoc transmission conditions between neighboring subdomains. Després also introduced a relaxation

scheme [34] that greatly accelerated the iterative process. Later Stupfel extended this method by using

an ”onion-like” partition of the computational domain improving the efficiency of the transmission

condition and overall performance of this DDM [35].

Among a variety of DDMs, the Finite Element Tearing and Interconnecting (FETI) method based

on DD idea with Lagrange multipliers is showed to be an amazingly powerful technique with an

excellent numerical scalability [36–38]. Essentially, a FETI method can be viewed as an iterative

substructuring method where Lagrange multipliers are introduced at the internal interfaces between

subdomains in order to enforce the continuity of the electric field. The role of the Lagrange multipliers

consists in representing the unknown boundary condition between the subdomains. Over the past

years, FETI is proved to be suitable for the fast sequential and parallel iterative solution of large-scale

systems of equations arising from the finite element discretization of partial differential equations [39].

This method, originally proposed by Farhat and Roux [40] for computational mechanics and acoustics

problems, has been combined with the Dual-Primal (DP) idea [39] and applied to electromagnetic

problems [41]. As a vector-element implementation of the FETI-DPH method [42], the resulting one

named FETI-DPEM [41], distinguishes itself through the introduction of one Lagrange multiplier

per internal interface and through the following construction of an explicit interface equation. The

advantage, here is that, contrary to the classical FEM approach, the resulting linear system can be

solved by an iterative method. The FETI-DPEM method was shown to be scalable with respect to

the size of finite elements, the number of subdomains and conditionally scalable with respect to the

frequency [41]. In order to accelerate the convergence of the FETI-DPEM method and to make it

fully scalable with respect to the frequency, in 2007 a new approach, named FETI-DPEM2 method,

was extended by Li and Jin [43] for the electromagnetic problems. This method combines the DP

idea with an implementation of two Lagrange multipliers per interface [36] in order to obtain a mixed

(Neumann- and Robin-type) boundary condition for the internal interfaces.

Indeed, one of the key-points in the Domain Decomposition methods is the way the boundary

conditions are imposed. In order to accelerate DDMs, there are some research work which aim at

improving the transmission boundary condition between subdomains [44–46], i.e. on internal boun-

daries. One can also find some research work devoted to the extension of the Domain Decomposition

algorithms by prescribing on external boundaries a new Absorbing Boundary Conditions (ABC) [47]

of the first- and the second-order [35, 48]. To deal with subdomains with nonconformal interfaces,

one has to introduce two sets of unknown Lagrange multipliers and develop special DDM in order to



3

couple the subdomains. Among this type of DDM, the most known are the mortar element method [49]

and the cement element method [50], which have been investigated in computational mechanics and

applied mathematics communities respectively. Different Domain Decomposition methods based on

the cement elements have been successfully applied to large-scale electromagnetic simulations [51,52]

and become a base for creating a new hybrid finite element-boundary integral DDM [53]. We start

from a mesh for the entire problem and then, thanks to a greedly-like algorithm provided by an au-

tomatic meshing partition software METIS [54], we divide the computational domain into a set of

non-overlapping subdomains whose interfaces are always conformal.

The first goal of this doctoral thesis is thus to investigate and develop a powerful tool for

an efficient simulation of two- and three-dimensional direct electromagnetic problems for large-scale

configuration with conformal meshes. For this aim, we do not consider cement type methods, but we

propose here to restrict ourselves to the classical FETI-DPEM2 method by enforcing different types

of boundary condition not only on the degrees of freedom (DOFs) related to the internal interfaces,

but also to the ones related to the corner DOFs (we denote by “corner” the geometrical entities which

belong to more than two subdomains). This method, called the FETI-DPEM2-full [55], will be applied

to large scale electromagnetic and, in particular, scattering problems with complex geometries, which

will allow to study its efficiency from an applied point of view. We aim as well at presenting all the

implementation issues related to the algorithm.

The second goal of this PhD is to extend this method for the solution of a large (from a physical

point of view) number of electromagnetic problems containing whether inhomogeneous or anisotropic

objects. The main challenges that we are facing, will be considered here from a mathematical, physical

and numerical viewpoints.

The application area of fast and accurate forward solvers is very large. At the beginning of this

introduction we already discussed some of them, nevertheless there is one domain on which we would

like to pay most attention. Indeed, a fast forward simulator is a key-point in every Electromagnetic

inverse scattering problems. Microwave imaging techniques have become an important issue with a

large number of applications, such as non-destructive testing, biomedical imaging and geophysical

exploration. The term electromagnetic inverse scattering refers to techniques and processes used to

determine the properties of unknown targets (shape, position, permittivity and permeability) from the

knowledge of their response to an exterior electromagnetic excitation. This problem is known to be

non-linear and ill-posed. One can distinguish two classes of inverse problems.

In the first class, inverse scattering problems can be formulated as linear or linearized problems

under restrictive conditions, such as the Born or Rytov approximations, or if one is only interested

by the induced currents characterisation. This class of inverse problems is called to be qualitative.

Various methods exist in order to give some idea of the shape, location and number of objects inside

an investigation domain. Among the different techniques yielding the shape of the scatterer, one

can cite the diffraction tomography algorithm if the measurement is performed in far-field [56–59]

or the back-propagation algorithm [60]. Several sampling methods have also been derived, such as

the multiple signal classification (MUSIC) method [61, 62], the linear sampling method (LSM) [62–

64] or the factorization method (FM) [65]. Finally, if one is only interested in the localization of

point-like scatterers, the DORT (Décomposition de l’Opérateur de Retournement Temporel) method

is particularly well suited [66–68]. The qualitative imaging does not aim at providing quantitative

information. But nevertheless, it is an indefeasible part of solving every inverse problem. Indeed, we

can use a solution of the linearized problem in order to initialise and reduce the computational burden

of the quantitative inverse scattering problem, which belongs to the second class of inverse problems.

The quantitative inverse scattering problems provide a detailed information about all the relative

parameters that determine the interaction of objects with electromagnetic fields. In other words, this
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class of problems aims at providing not only the aforementioned support of the objects, but they

also provide the values of its electromagnetic material parameters. Unlike qualitative methods, quan-

titative ones solve the exact non-linear electromagnetic scattering inverse problem, which therefore

requires the solution of a system of coupled equations. For this aim, an iterative optimisation proce-

dure is generally applied. In the frame of this procedure, a cost function depending on the permittivity

distribution is defined and iteratively minimized. We would like to report the existence of two general

approaches here. In the first approach, called the contrast source inversion method (CSI), one of the

unknowns is not the electrical field, but the current distribution. This method has been extended

for various problems [69–72]. In this doctoral thesis we focus on the second, so-called ”conventio-

nal” approach, where the electrical field comes into play in order to satisfy the Helmholtz equation

at each iteration. One can note various Newton-type schemes [73–77] and a few global optimisation

techniques [78,79].

Thus, the third goal of this work consists in taking advantages of the proposed FETI-DPEM2-full

method into a quantitative inversion algorithm investigated in our laboratory. Indeed, it is of great

interest to render the inversion process more flexible in terms of required memory. This tool will

give us an opportunity to treat problems on a larger scale. We will discuss as well different effective

numerical strategies while implementing the proposed method in the inversion scheme. In order to

validate the new approach from a practical point of view, we will test it against experimental data

acquired with real world targets from the Fresnel database [80,81].

The organisation of this thesis is as follows. In Chapter (2) the basic concepts and equations

of the electromagnetic theory are briefly reviewed and introduced in order to position the problem.

Chapter (3) introduces a new variation of the FETI-DPEM2 method, with improved transmission

conditions between subdomains. We put some emphasis on the explanation of the difference between

the various DDMs and discuss these methods based on the use of the Lagrangian theory. We also

detail the specificities of the proposed FETI-DPEM2-full method. Chapter (4) is devoted to test this

FETI-DPEM2-full method for various two-dimensional configurations and to show its efficiency with

respect to the classical FETI-DPEM2 method. In Chapter (5) we discuss the difficulties that we faced

while solving the Interface equation related to the FETI-DPEM2-full method with both direct and

iterative methods in the case of 3D configurations. In this chapter, we mostly focus our attention on

the convergence behaviour of the iterative algorithm and we show that it is strongly affected by the

presence of anisotropic materials. After discussing the efficiency of the FETI-DPEM2-full method, we

compare the results of simulations with Scattered field measurements. Finally, Chapter (6) explores

the inversion part of this PhD thesis, i.e. the inversion algorithm that we use where an efficient im-

plementation of the FETI-DPEM2-full method has been performed. In this chapter, reconstructions

of various targets from measured scattered fields, extracted from the Fresnel database, are perfor-

med in order to validate the entire inversion algorithm and show the effectiveness of the proposed

methodology.
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2.1 Introduction

Electromagnetic analysis has been an indispensable part of many engineering and scientific studies

during the past century. Its success would not have been possible except for the existence of an accurate

and complete theory, which J.C. Maxwell finalized in 1873 [1]. The problem of electromagnetic analysis

is actually a problem of solving a set of Maxwell’s equations subject to given boundary conditions. As

it was mentioned in the general introduction, in this work we deal with the time-harmonic regime of

Maxwell’s equations [82] directly in terms of the electric and magnetic fields. For this, it is necessary

to derive from Maxwell’s equations, which involve both electric and magnetic fields, the governing

differential equations involving only one of them [16]. We will focus on the electric field which can be

found as a solution of the Helmholtz equation.

In this chapter, we introduce briefly the basic concepts and equations of the electromagnetic

theory used in this PhD thesis, in particular the different types of electromagnetic fields [83] and

its formulations in two- and three-dimensional cases [84], as well as the different types of associated

boundary conditions from a mathematical and physical point of view [85]. Finally, we introduce some

auxiliary techniques in the electromagnetic theory, such as the Near-to-Far-field transformation based

on the Huygen’s principle [86] and the Perfectly Matched Layer [87].

For a complete presentation of electromagnetic theory, the reader is encouraged to study references

[16,82,83,88,89] for an in-depth discussion of this material. This chapter may be skipped if the reader

is familiar with the theory.
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2.2 2D electromagnetic problems

In order to explain the different types of electromagnetic fields, we will start with a simple example.

Imagine that there are some sources that radiate in a bounded domain Ω filled with free space, i.e.

the space whose relative permittivity and permeability are equal to 1. The field that corresponds to

this configuration is called the Incident field E inc (Figure 2.1a). Imagine right now, that we want to

add to the domain Ω some objects with a relative permittivity which is different from 1. In this case

we obtain the Total field Etot (Figure 2.1b). From the linearity of Maxwell’s equations, the Scattered

field can be calculated as a subtraction of the incident field E inc from the total field Etot (Figure 2.1c)

as follows

Esc = Etot − E inc (2.1)

In this work we distinguish two main ways for obtaining the scattered field. In the next subsections

we will discuss these cases.

(a) Incident field (b) Total field (c) Scattered field

Figure 2.1 – Modulus maps (20 · log10|E|) of the different types of electric fields obtained in a 2D

domain of size 21× 21λ2.

2.2.1 Incident, total and scattered field formulations

We consider the electromagnetic scattering problem where an incident electromagnetic wave im-

pinges on an inhomogeneous medium. Let us assume that we are in a 2D configuration and that the

non-null component of the electric field is along the invariance axis, the z-axis. The term E inc = E inc
z (~r)

in this 2D configuration corresponds to the z-component of the incident field, and can be found as

a solution of the following 2D Helmholtz equation in a bounded domain Ω, when the s polarisation

case is considered, with a time convention in exp(−jωt) :

− div

(
1

µinc
r

grad E inc

)
− k2

0ε
inc
r E inc = jk0Z0J, in Ω (2.2)

where k0 and Z0 are the wavenumber and the intrinsic impedance respectively of free space, the

quantity µinc
r (resp. εinc

r ) corresponds to the relative permeability (resp. permittivity) of the medium

when it is isotropic. If the media are anisotropic, permeability tensors ¯̄µinc
r (~r) and permittivity tensors

¯̄εinc
r (~r) also come into play. J = Jz(~r) is a given current distribution which produces the field.
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In the presence of inhomogeneities, the field is perturbed and is now denoted as the total field Etot,

which satisfies a similar Helmholtz equation

− div

(
1

µtot
r

grad Etot

)
− k2

0ε
tot
r Etot = jk0Z0J, in Ω (2.3)

where the relative tensors of permeability ¯̄µtot
r (~r) and permittivity ¯̄εtot

r (~r) only differ from ¯̄µinc
r (~r) and

¯̄εinc
r (~r) where the inhomogeneities are located.

In the framework of this PhD thesis we will consider two main possibilities for finding the scattered

field. To start with, according to Eq. (2.1), we represent the scattered field as Esc = Etot − E inc. That

means that we can find the scattered field Esc in three steps

1/ At first, by calculating numerically the total field Etot solving Eq. (2.3)

2/ Then, by calculating the incident field E inc solving Eq. (2.2)

3/ And, finally, by subtracting one from another

According to Eq. (2.1), we can also present the total field as a summation of the scattered and

incident fields. Then, by substituting this relation into Eq. (2.3) we obtain Eq. (2.4)

− div

(
1

µtot
r

grad
[
E inc + Esc

])
− k2

0ε
tot
r

[
E inc + Esc

]
= jk0Z0J, in Ω (2.4)

We now subtract Eq. (2.2) from Eq. (2.4) and obtain Eq. (2.5) for the scattered field.

− div

(
1

µtot
r

grad Esc

)
− k2

0ε
tot
r Esc = J sc, in Ω (2.5)

where the induced currents are defined as

J sc = div

([
1

µtot
r

− 1

µinc
r

]
grad E inc

)
+ k2

0

[
εtot
r − εinc

r

]
E inc (2.6)

As one can see, the right part of this equation Jsc serves as secondary sources which differ from 0

if
1

µtot
r

6= 1

µinc
r

or εtot
r 6= εinc

r and when the incident field is non null.

The incident field E inc involved in Eq. (2.6) can be computed either by solving Eq. (2.2) with a

help of a numerical method, or by using the exact solution if it can be calculated analytically These

two approaches for calculating the scattered field are complementary and will be both exploited in

the following.

2.2.2 Boundary conditions

While there are many functions that satisfy the differential equations given above in the domain

of interest, only one of them is the real solution to the problem. To determine this solution, one must

know the boundary conditions associated with the considered domain. In other words, a complete

description of an electromagnetic problem should include the information about both differential

equations and boundary conditions.

In this subsection we present some boundary conditions in order to guarantee the unicity of the

solution in the domain Ω.

2.2.2.1 Mathematical formulation

Generally speaking, in electromagnetism, we deal with three main types of boundary conditions

from a mathematical point of view :
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1. Dirichlet-type boundary condition.

We will start with the Dirichlet-type boundary condition across the surface Σ1, which in the

general form is

E = θ1, on Σ1 (2.7)

2. Neumann-type boundary condition.

Now we will consider the Neumann-type boundary conditions across the surface Σ2, which in

the general form is presented as
1

µr

∂E
∂n

= θ2, on Σ2 (2.8)

3. Robin-type boundary condition.

The third type used in this work is the Robin-type boundary conditions across the surface Σ3,

which in the general form is presented as

1

µr

∂E
∂n

+ αE = θ3, on Σ3 (2.9)

2.2.2.2 Physical sense

1. Dirichlet-type boundary condition.

From an electromagnetic viewpoint, metal is characterized as having a very high conductivity.

So in the microwave regime, it can be assumed as a perfect conductor [13]. It means that at

the interface of this type of material, the tangential component of the electric field is null. In

the specific case of polarization considered here, it corresponds indeed to E = 0 [85,90].

2. Neumann-type boundary condition.

The Neumann-type boundary condition occurs whenever the normal component of the electric

field intensity is zero. Physically it corresponds to a perfect magnetic conductor in the consi-

dered polarization case, or can be found when there is a plane of symmetry for the electric

field [90].

3. Robin-type boundary condition.

From a physical point of view, the Robin-type boundary condition corresponds to the knowledge

of the relation between some specified potentials and the intensity of the electric field on the

specific boundary. As an example, we can refer to a case where the outer boundary of the domain

recedes to infinity. Such domain is called unbounded or open. A condition must be specified

at this infinite boundary to obtain an unique solution for the problem. Such a condition is

referred to as a Sommerfeld radiation boundary condition [91]. Assuming that all the sources

and objects are immersed in free space and located within a finite distance from the origin of

the coordinate system, the electric field E(~r) is required to satisfy

lim
ρ→∞

√
ρ

[
∂

∂ρ
E(ρ)− jk0E(ρ)

]
= 0 (2.10)

where ρ =
√
x2 + y2.

This equation is exactly valid at infinity. But as we reduce the size of the computational domain

to a finite one, we have to replace Eq. (2.10) by its finite approximation at an outer boundary

Σout. Thus, we present the first-order approximation of the radiation boundary condition which

is a representative of the Robin-type boundary conditions (Eq. 2.11).

1

µr

∂E(~r)

∂n
− jk0E(~r) = 0, on Σout (2.11)

It can be noticed here that this kind of boundary conditions can also be found in the case of

a high conductivity approximation.
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2.3 3D electromagnetic problems

Similarly, a 3D scattered field formulation of the problem can be derived from the incident and

total field formulations. We consider a three-dimensional electromagnetic scattering problem, where

a known monochromatic incident electromagnetic wave is impinging on an inhomogeneous target

D ⊂ Ω, whose relative permittivity varies with respect to the surrounding. The relative permittivity

and permeability distribution in absence (resp. in presence) of the scatterer are denoted as previously

by ¯̄εinc
r (~r) and ¯̄µinc

r (~r) (resp. ¯̄εtot
r (~r) and ¯̄µtot

r (~r)) with

¯̄εtot
r (~r) 6= ¯̄εinc

r (~r) ∀~r ∈ D
¯̄εtot
r (~r) = ¯̄εinc

r (~r) ∀~r ∈ Ω \D

Unlike the 2D case, for the 3D formulation, we have to consider the 3D vectorial Helmholtz

equation for the incident or the total field :

∇×
(

1
¯̄µr
∇× ~E

)
− k2

0
¯̄εr ~E = jk0Z0

~J in Ω (2.12)

Depending on the value of relative permittivity and permeability, the solution ~E = (Ex(~r), Ey(~r), Ez(~r))T

can correspond to the incident or total field.

From the linearity of Maxwell’s equations, the total field (associated to the permittivity distribu-

tion ¯̄εtot
r ) can be decomposed into the incident field ~E inc (associated to ¯̄εinc

r ) and the scattered field Esc

which satisfies a Helmholtz equation

∇×
(

1
¯̄µtot
r

∇× ~Esc

)
− k2

0
¯̄εtot
r
~Esc = ~J sc in Ω (2.13)

where k0 is the vacuum wavenumber. The induced currents are defined as

~J sc = −∇×
([

1
¯̄µtot
r

− 1
¯̄µinc
r

]
∇× ~E inc

)
+ k2

0

[
¯̄εtot
r − ¯̄εinc

r

]
~E inc (2.14)

2.3.1 Finite domain and associated boundary conditions

As for the 2D case (Section 2.2.2), we need to look for the correct solution among all the functions

which satisfy the differential equation (2.13). To determine this solution, one must know the boundary

conditions associated with the domain. The idea of the boundary conditions is the same as for the 2D

case (Section 2.2.2). There is only a difference in the equations.

For the 3D case we consider :

— Dirichlet-type boundary conditions (Eq. 2.15)

~n× ~n× ~E = θ1, on Σ1 (2.15)

— Neumann-type boundary conditions (Eq. 2.16)

~n× 1

µr
∇× ~E = θ2, on Σ2 (2.16)

— Robin-type boundary conditions (Eq. 2.17) given as :

~n×
(

1

µr
∇× ~E

)
+ α ~n× ~n× ~E = θ3 on Σ3 (2.17)

We can notice here that the physical meaning of each type of boundary conditions is the same as

the one encountered in Section (2.2.2) for the 2D case.
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2.4 Near-field/Far-field transform

The sources and the receivers are not necessarily located in the vicinity of the target. When the

sources are far from the target, one way to compute the field scattered by the object in its vicinity

is to use the scattered field formulation. When the receivers are located far from the object it is not

possible to mesh the whole space containing both the scatterers and the receivers. Thus, in this work,

we will use the Near-to-Far-Field transformation based on Huygen’s principle. The main idea of this

approach [16] is that if we know the electric and magnetic fields ~E and ~H on the surface Σ enclosing

all the scatterers in free space, we are able to calculate the field everything outside Σ thanks to the

following equation :

~E(r) =
{

Σ

{−jw ¯̄µ
[
n̂′ × ~H(r′)

]
G0(r, r′) +

[
n̂′ · ~E(r′)

]
∇′G0(r, r′)+

+
[
n̂′ × ~E(r′)

]
×∇′G0(r, r′)} dS

(2.18)

where ~H(r′) is the Magnetic field at r′, n̂′ denotes the unit vector normal to Σ at r′ and pointing

toward the exterior region. G0(r,r′) is the 3D free-space scalar Green’s function, given by

G0(r,r′) =
ejk0|r−r

′|

4π|r − r′|
(2.19)

2.5 Perfectly Matched Layer

Instead of using a Robin-type boundary condition in order to obtain the solution of the electroma-

gnetic problem in an unbounded domain, we can use a perfectly matched layer (PML). The concept

of PML was proposed by Berenger in 1994 to alleviate some problems with fictitious absorbers [87]. A

perfectly matched layer is a medium which is added and bounds the computational domain, it is built

such as all impinging waves emanating from Ω are transmitted and damped in the PML without any

reflections whatever the angle or the polarisation are. In order to ensure numerically that the domain

is physically unbounded, we will surround the external boundary of Ω with a cartesian PML.

There are various ways to apply the PML. In particular we can introduce a PML by stretching

the coordinate system [92]. But in this work we associate it with some kind of anisotropic material.

The anisotropic absorber model of PML was first derived by Sacks et al. [93]. Following this idea, we

present the coefficients of the relative permeability and permittivity associated to PML (resp. µPML

and εPML) as a matrix-multiplication of tensors in the following form :

¯̄µPML = ¯̄µr
¯̄Λ and ¯̄εPML = ¯̄εr

¯̄Λ (2.20)

where the tensors ¯̄µr and ¯̄εr are the relative permeability and permittivity arising in Eqs. (2.5)

and (2.13). In the Cartesian coordinate system, the new tensor is defined as follows :

¯̄Λ =

sysz/sx 0 0

0 szsx/sy 0

0 0 sxsy/sz

 (2.21)

where the coefficient sx is calculated according to the rule which is presented in Figure (2.2).
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(a) Investigation domain Ω with PML (b) PML computation

Figure 2.2 – (a) Schematic map of a domain Ω containing PML area with (b) the algorithm of the

PML computation, investigated in this work.

x is the current value of the barycentre of the considered element, Xmax and Xmin are the limits of

the PML boundaries, sizex is the size of the PML area in the x direction, σ is the relative conductivity,

ω is the angular frequency, ε0 = 8.85 · 10−12F ·m−1, χ is a parameter which is equal to 1 in our work,

and finally, n - is a numerical parameter which controls at which speed the wave is attenuated. In our

work it is equal to 3.

The other two coefficients (sy and sz) are determined in a similar way.

2.6 Conclusion

In this chapter we introduced briefly the basic concepts and equations of the electromagnetic theory

used in this PhD thesis. We have considered in particular the different types of electromagnetic fields

and their formulations in two- and three-dimensional cases. Then we discussed the different types of

the associated boundary conditions from a mathematical and physical point of view. As a next step

we are going to solve the presented equations in a numerical way, with methods which are going to

be introduced in the next chapter.
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3.1 Introduction

Unfortunately, Maxwell’s equations and, in particular, Helmholtz equations for can only be solved

analytically for a very few primary cases, such as mono-chromatic homogeneous problems without

anisotropy. Whereas a variety of approximate analytical techniques have been developed for relatively

simple problems in terms of geometry and physics, accurate and complete analysis of complex cases,

especially inhomogeneous configurations containing anisotropy, can be accomplished only through a

numerical method that solves differential equations with the help of powerful computers.

In particular, the Finite-Element Method (FEM) [94] is a numerical technique used to obtain

approximate solutions to boundary-value problems and is applied in computational electromagnetism

for treating mostly complex geometry and physics. The system of linear equations resulting from a

FEM discretization is highly sparse and can be solved using efficient solution techniques for sparse

matrices based on either direct methods [23, 95], or iterative methods [22, 23]. Direct methods have

an advantage that multiple right-hand sides can be treated efficiently with an excellent precision.

However, storing the factorized matrix is very challenging in terms of memory for large-scale problems.

Iterative methods are much less memory expensive. Nevertheless, solving the indefinite Helmholtz

equation with an iterative method is a difficult task in terms of convergence process [21] and it is not

so easy to find a good preconditioner for the problem matrix [21,23].

Nevertheless, however powerful is the employed linear solvers, finite element methods face major

difficulties when the size of the computational domain is large with respect to the wavelength. Indeed,

memory storage and computational time increase drastically with the size of the mesh. It is thus

compulsory to find new ways for solving these large scale problems.

Over past decade, the Domain Decomposition (DD) technique has been recognized as one of the

most important methodologies for constructing efficient parallel computing. Among various Domain

Decomposition Methods (DDMs), the Finite Element Tearing and Interconnecting (FETI) method

shows great potential to improve the capability of the FEM. The FETI method distinguishes itself

through the partitioning of the entire computational domain into non-overlapping subdomains and

the construction of the interface problem between them, which can be solved iteratively. Recently,

the ElectroMagnetic Dual-Primal FETI method, called FETI-DPEM [41,43], has been developed for

the simulation of three-dimensional electromagnetic problems, with the use of a global preconditioner

smartly designed in [39] to significantly improve the convergence of the interface solution. Over past

few years, the serial implementation of the FETI-DPEM and other FETI-like methods have been

successfully applied to the 2D and 3D electromagnetic problems [43,45,55,96,97].

In this Chapter we aim ourselves to introduce a new variation of the FETI-DPEM2 method,

so-called FETI-DPEM2-full method, with improved transmission conditions between subdomains.

Starting from the classical FEM formulation we will introduce the Domain Decomposition principal

idea and, then, review briefly the different DD techniques. We will present methods based on the

use of the Lagrangian theory and we will explain the main difference between the classical FETI-

DPEM2 method and its modification which is going to be proposed. Finally, we will discuss some

implementation issues of the proposed method.
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3.2 Finite Element Method in 2D

We are interested in solving the following 2D Helmholtz equation in the case of s polarization in

a bounded domain Ω (Figure 3.1) with the boundary Σ = ∂Ω which can contains inhomogeneities :

− div

(
1

µr
grad E

)
− k2

0εrE = jk0Z0J, in Ω (3.1)

where the solution E can be, for example, the z-component of the total or incident field.

Figure 3.1 – Schematic presentation of the domain Ω in 2D case.

Using the Galerkin-approach [98] the residual of Eq. (3.1) must be orthogonal (in the sense of the

L2(Ω) space) to the space of the trial functions which we call Φ∫
Ω

(
−div

(
1

µr
grad E

)
− k2

0εrE − jk0Z0J

)
v dΩ = 0, ∀v ∈ Φ (3.2)

Next, we convert the first part of Eq. (3.2) using Green’s formula∫
Ω

1

µr
grad E grad v dΩ−

∫
Σ

1

µr

∂E
∂n

v dS −
∫
Ω

k2
0εrE v dΩ = −

∫
Ω

jk0Z0J v dΩ (3.3)

As we have full freedom for choosing the space of trial functions, we can in particular select H1
θ (Ω)

as Φ. The functions of H1
θ (Ω) are the functions from L2(Ω), which equal to θ on the boundary Σθ. To

solve the problem (3.1) using the Finite Element Method, the domain Ω is subdivided into a number

of small domains (such as triangles for example), denoted as Ωs(s = 1, 2, 3, ...,M), with M denoting

the total number of triangles. To approximate Eq. (3.3) we substitute the infinite space of solution

H1
θ (Ω) by its finite-dimensional subspace V h(Ω) with the set of basis functions {ψs(~r)}. In the present

work, we will limit ourselves to first-order linear basis functions. In this case we can find a function

Eh close to E , using trial functions vh(~r). We will also approximate the infinite function J by its finite

discretized analogue Jh. Taking this into account, we can rewrite Eq. (3.3) as follows :∫
Ω

1

µr
grad Eh grad vh dΩ−

∫
Σ

1

µr

∂Eh
∂n

vh dS −
∫
Ω

k2
0εrEh vh dΩ = −

∫
Ω

jk0Z0Jh vh dΩ (3.4)

Every function Eh ∈ V h(Ω) can be presented as a linear combination

Eh(~r) =

nj∑
j=1

qjψj(~r) (3.5)
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We can rewrite (Eq. 3.4) into a system of linear equations for the vector components qj in the

discretized domain Ω :

nj∑
j=1

∫
Ω

1

µr
grad ψj(~r) · grad ψi(~r) dΩ−

∫
Ω

k2
0εr ψj(~r) ψi(~r) dΩ

qj =

−
∫
Ω

jk0Z0Jh ψi(~r) dΩ +

∫
Σ

1

µr

∂Eh
∂n

ψi(~r) dS, i = 1, ..., ni

(3.6)

This equation is written for every basis function ψi (i = 1, ..., ni) of the linear combination of trial

function vh. We then rewrite Eq. (3.6) in a matrix form :

KE = f +

∫
Σ

1

µr

∂Eh
∂n

Ψ dS (3.7)

Where, the FEM system matrix K is a summation of the Stiffness and Mass matrix, f is a right hand

side (rhs) vector. Note that the terms E and Eh are different [41, 43]. The former is the discretized

finite vector of weights E = (q1, ..., qnj )
T , while the latter represents the discretized analogue of the

electric field E . They are related through Eq. (3.5).

The FEM system matrix and the rhs vector are determined as follows :

K = G−Mvol (3.8)

G =

∫
Ω

1

µr
∇Ψ · (∇Ψ)T dΩ (3.9)

Mvol =

∫
Ω

k2
0εr Ψ ·ΨT dΩ (3.10)

f = −
∫
Ω

jk0Z0 Jh ·Ψ dΩ (3.11)

The term Ψ denotes a column vector containing the first-order linear basis functions ψi, i =

1, ..., ni. The number of unknowns in this case corresponds to the number of the points in the discre-

tized domain Ω. More precisely, the reader is referred to [99] in order to complete its knowledge on

this type of basis functions.

3.2.1 Imposition of the boundary conditions

In order to make the problem (Eq. 3.7) well posed, we need at first to impose boundary conditions

on the boundary Σ (Figure 3.1). In other words, we need to determine the last term∫
Σ

1

µr

∂Eh
∂n

Ψ dS (3.12)

which is related to the external boundary Σ. In this subsection we will talk about the implementation

of the different types of boundary conditions presented in Sections (2.2.2 and 2.3.1).

1. Dirichlet-type boundary condition.

The term (3.12) can not be defined exactly from the Dirichlet boundary conditions. But if we

choose a special type of basis functions which are equal to θ1 on the boundary Σ1 (see Eqs. 2.7

and 2.15), it will automatically cancel out this term.
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2. Neumann-type boundary condition.

The application of the Neumann-type boundary conditions is also simple. When we substitute

Eq. (2.8) into Eq. (3.12) we obtain the term
∫

Σ2

θ2 Ψ dS for all the basis functions across the

boundary Σ2 which is fully-determined and can be calculated. 1

3. Robin-type boundary condition.

When we substitute the Robin-type boundary condition defined as Eq. (2.9) into Eq. (3.12)

the resulting term can be divided into two parts :∫
Σ3

1

µr

∂Eh
∂n

Ψ dS =

∫
Σ3

θ3 Ψ dS −
∫

Σ3

α Ψ ΨT dS (3.13)

The first integral is associated to the rhs vector, while the second term, the so-called Mass-

matrix of the Robin-type boundary condition (Eq. 3.14), makes a contribution to the FEM

system matrix K.

MΣ(α) =

∫
Σ3

α Ψ ΨT dS (3.14)

3.2.2 Final linear system

We suppose that on the external boundary Σ the electrical field E satisfies the first-order approxi-

mation of the Sommerfeld radiation boundary conditions 2 written in the form of Eq. (2.11) in order

to guarantee the unicity of the solution in the bounded domain Ω. Taking into account the Robin-type

boundary condition as previously described in Section (3.2.1), Eq. (3.7) can be rewritten as follows :

K̃E = f (3.15)

where :

K̃ = G−Mvol −MΣ(jk0) (3.16)

As a rule, the FEM matrix K̃ resulting from the finite element discretization of the computational

domain even if sparse, can tend to be enormous. Especially in the domain of high-frequency elec-

tromagnetic scattering problems, where fine meshes are required for obtaining an accurate solution.

For such problems, solving Eq. (3.15) with a direct method entails memory and CPU requirements

that rapidly overwhelm even the largest resources that are currently available. In order to make this

process less expensive in terms of memory requirement, we could also provide an iterative solution to

Eq. (3.15). However, for high frequencies and therefore large values of the wavenumber k, the finite-

element matrix K̃ is usually indefinite, which poses serious challenges to the analysis, implementation

and performance of iterative solvers [21].

3.3 Domain decomposition technique in 2D

Over the past decade, the domain decomposition technique has been recognized as one of the most

effective methodologies for solving large-scale problems. There are many different methods which are

based on the Domain Decomposition technique. In the following, we will exploit a specific version of

one of these methods, named FETI. First, a tour of the various available methods is provided. The 2D

case will be mainly considered, and the specificities related to the 3D configuration will be detailed

later on.

1. We use the same technology for the 3D case.
2. We also would like to note that we could impose the other types of boundary conditions described in Section (2.2.2)

and it would not change the principals of the FETI or DDM techniques.
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3.3.1 Brief overview of DD-based methods

Let us start with the principal Domain Decomposition idea, which consists in dividing the domain

Ω into a set of non-overlapping subdomains Ωi (i = 1, .., Ns) with external and internal boundaries

Σi and Γi (i = 1, .., Ns) respectively (Figure 3.2), in order to look for the Ns-tuple of the solutions

E = {E1, . . . , ENs} in an independent way, instead of looking for the solution E in the entire domain

Ω.

Figure 3.2 – Schematic map of the non-overlapping domain decomposition of the 2D domain Ω.

Notations of the external and internal boundaries of the subdomain Ωi.

Let us now focus on the given subdomain Ωi. After applying the Galerkin approach as it has been

done previously in Section (3.2) and after finite element discretization, we obtain the following system

of linear equations which we will write in the matrix form for the subdomain Ωi :

KiEi = f i +

∫
Γi

1

µr

∂E ih
∂n

Ψi dS (3.17)

In the above equation, the matrix Ki contains the following contributions :

Ki = Gi −M i
vol −M i

Σ(jk0) (3.18)

where the main matrices are such that

Gi =

∫
Ωi

1

µr
∇Ψi · (∇Ψi)

T
dΩ (3.19)

M i
vol =

∫
Ωi

k2
0εr Ψi ·ΨiT dΩ (3.20)

M i
Σ(jk0) =

∫
Σi

jk0 Ψi ·ΨiT dS (3.21)

f i = −
∫
Ωi

jk0Z0 J
i
h ·Ψi dΩ (3.22)

As we can note, the last term of the system of linear equations presented in Eq. (3.17) is generally

indefinite. This term represents the contribution of the unknown boundary condition imposed to the

internal boundary Γi.

In order to ”glue” the subdomains together, we build a Lagrangian formulation with the addition

of new unknown Lagrange multipliers. In this work we will consider two types of methods. The first



3.3. Domain decomposition technique in 2D 19

one employs a single Lagrange multiplier field to glue the local solutions at the subdomain interface

boundaries. The second type of methods employs two Lagrange multiplier fields for that purpose.

Physically, the Lagrange multipliers represent the continuity of the tangential component of the field

(and the continuity of its derivatives). The available constraints imposed between subdomains are

summarized below :

Type of Number of Name of the
References

continuity Lagrange Multipliers method

E 1
FETI or

[38,39,100,101]
FETI-DP

∂E/∂n 1
Primal Schur

[102]
complement

E & ∂E/∂n 1 FETI1, FETI-DP1 [36,103]

E & ∂E/∂n 2 FETI2,FETI-DPEM2 [36,43]

E & ∂E/∂n - DDM [45,104]

E & ∂E/∂n - Cement DDM [50,51]

Table 3.1 – Summary of the different DD-based methods and related types of constraints.

When we are using one Lagrange multiplier per interface and if we are not using a regular partition

of the domains, the weak form used in each subdomain and equiped with a Neumann type boundary

condition at the interfaces yields spurious solutions of the Helmholtz equation which are not physically

acceptable in the global solution [36].

When we pass from the Neumann- to the Robin-type boundary condition by introducing the

augmented Lagrangian, it stabilizes the solution, but there is a problem in the choice of the normals [36]

which has to be done very carefully for the case of irregular arbitrary mesh partitioning. Indeed, for

arbitrary mesh partitions, the specific treatment of the subdomain interfaces described in [37], which

is designed for ensuring a constant sign of the regularizing matrix related to the Robin-type condition,

results from the fact that the FETI method considers only one normal and therefore employs only

one Lagrange multiplier per mesh partition interface. Thus, in order to regularize the subdomain

problem independently of the pattern of the mesh decomposition, another approach of the FETI

method based on introducing two Lagrange multipliers was proposed in [36]. Such a strategy, which

can also be viewed as introducing two different normals at each interface (one on each side), in the

domain decomposition literature is often referred as a three-field method [105].

All the methods presented here must thus be carefully preconditioned in order to be numerically

scalable with respect to different parameters :

— Number of subdomains

— Mesh size in the subdomains

— Number of Lagrange multipliers

— . . .

One way of preconditioning the interface problem is to use the corner points of the partitions

and to enforce strongly (by modifying the linear system, and not by adding a Lagrange multiplier)

the continuity of the field at these corner points in the resolution of the linear system related to the

interface parameters [39, 41–43]. In this case, and only in this case, we are dealing with Dual-Primal

methods since we are linking the set of dual variables {λ} to the field at corner points. This method is
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the one denoted as FETI-DP, or FETI-DPEM method. Finally, it is possible to further regularize the

problem by employing not only classical Lagrangian formulations but instead augmented Lagrangian

formulations when computing the Lagrange parameters, as these methods are known to provide better

regularized solutions (for example [106,107]).

3.3.2 Different ordering of the linear system

Let us consider each subdomain independently. The boundary conditions as well as the specific

handling of the corner points will be detailed later on. We will show that it is possible to reorganize

the linear systems when one wants to grap the corner points from various subdomains by using a

global numbering for localizing these specific points. The problem under consideration in this section

is the matrix form (Eq. 3.17) of the discretized 2D Helmholtz equation (3.1) in the subdomain Ωi.

For each type of ordering, we will introduce as well the set of geometrical matrices required for the

Domain Decomposition idea.

3.3.2.1 Ordering without global corner points.

When the corners in this subdomain are not treated in a specific way, we can group the unknown

coefficients into two subcategories :

Ei =

[
EiV
EiI

]
(3.23)

where in the subdomain Ωi, the notation V denotes the degrees of freedom (DOFs) associated with

the internal nodes, while I stands for the interface nodes, corners included. In this case, we can

conditionally divide the problem matrix and vector as follows :

Ki =

[
Ki
V V Ki

V I

Ki
IV Ki

II

]
and f i =

[
f iV
f iI

]
(3.24)

3.3.2.2 Ordering with corner points.

When the corners are gathered specifically, we are splitting the unknowns in the following way :

Ei =

EiVEiIr
EiIc

 =

[
Eir
Eic

]
, (3.25)

where the notations Eir denote all the internal and interface points belonging to the subdomain Ωi

except for the corner points which are denoted by Eic. In this case we get the following matrices and

right-hand-side vectors in each subdomain :

Ki =

Ki
V V Ki

V I KV c

Ki
IV Ki

II KIc

Ki
cV Ki

cI Ki
cc

 =

[
Ki
rr Ki

rc

Ki
cr Ki

cc

]
, f i =

f iVf iI
f ic

 =

[
f ir
f ic

]
(3.26)

The index r is thus joining the indexes V, I.
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3.4 One Lagrange multiplier with a classical Lagrangian

We are going to deal with FETI methods based on the introduction of an unique set of Lagrange

multipliers per interface in order to enforce continuity of the tangential components of the electric

fields on each interface between subdomains. To start with, we will focus on the methods whose

boundary conditions are results of the classical Lagrangian formalism. In literature this type of Domain

Decomposition techniques is known as one-level FETI method (dual Schur complement method)

[40, 108], FETI-DP [39, 109], FETI-DPEM1 method [41], FETI-H method [36, 37], or FETI-DPH

method [42]

3.4.1 An unique field continuity condition

The continuity of the tangential component of the electrical fields at the interfaces that we want

to impose can be written in 2D as follows :

E|Ωi(~r) = E|Ωj (~r) ∀~r ∈ Γij = Γi ∩ Γj (3.27)

In order to imply in the appropriate way the continuity of the subdomain solutions (Eq. 3.27) with

the correct sign of the normal on the interface we now introduce a signed Boolean matrix Bi which

extracts from a given subdomain vector a signed interface boundary component. To construct the

matrix B = {B1, ...,BNs}, we first construct the matrix B̂ in the following way

B̂ =


B̂1

Γ12 B̂2
Γ12 0 · · ·

0 B̂2
Γ23 B̂3

Γ23 · · ·
B̂1

Γ13 0 B̂3
Γ13 · · ·

· · ·


Note that this matrix has been constructed for the general case. It is an auxiliary matrix aiming

to construct the matrix B. The number of lines in the matrix B̂ corresponds to the number of the

interfaces, while the number of columns is equal to the number of subdomains. The local matrices

B̂i
Γi1i2

are defined as follows :

[B̂i
Γi1i2

]pq =


1 if p = q and i = i1 and i1 < i2
−1 if p = q and i = i1 and i1 > i2
0 otherwise

(3.28)

Each B̂i
Γi1i2

matrix will provide indications related to the Dirichlet boundary constraint on the Γi1i2

interface. As all the points in the various meshes are not interface points, we extract the matrix B from

B̂ by removing all the lines containing only zeros elements. The number of lines in the B matrix will

therefore correspond to the number of effective points which are actually present on all the interfaces.

Using this notation, the continuity of the subdomain solutions across the subdomain interfaces can

be written as

B E =

Ns∑
i=1

Bi Ei = 0 (3.29)

3.4.2 Classical Lagrangian formalism

Solving problem (3.15) is equivalent to finding the stationary point of the following Lagrangian :

L(E1, ..., ENs , λ) = L({Ei}, λ) =

Ns∑
i=1

(
1

2
KiEi − f i

)T
Ei + λT

(
Ns∑
i=1

Bi Ei
)

(3.30)
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In the equation above : Ki and f i are the discretized problem matrix and the rhs vector in the

given subdomain Ωi (Eq. 3.17), Ei is the local solution in this subdomain and, finally, λ is the Lagrange

parameter which has a dimension corresponding to the number of effective points which are actually

present on all the interfaces. The saddle point which minimizes
∑Ns

i=1(1
2K

iEi−f i)TEi and maximizes

λT
∑Ns

i=1 BiEi will provide the solution of the optimisation problem we are interested in. To find this

saddle point, we need to consider the following set of Karush-Kuhn-Tucker (KKT) [110] conditions :{
∇λL({Ei}, λ) = 0

∇EiL({Ei}, λ) = 0, ∀ i = 1, ..., Ns

(3.31)

Using the definition of directional derivatives, for the first equation, we will get

< ∇λL(E1, ..., ENs , λ), u > =

< ∇λL(E, λ), u > = lim
h→0

L(E, λ+ hu)− L(E, λ)

h

= lim
h→0

(1
2KE − f)TE − (1

2KE − f)TE + (λ+ hu)TBE − λTBE
h

= lim
h→0

λTBE + (hu)TBE − λTBE
h

= lim
h→0

h(u)TBE
h

= lim
h→0

(BE)Tu

= < BE, u >=<

Ns∑
i=1

BiEi, u >

Similarly, ∀i = 1, .., Ns

< ∇EiL({Ei}, λ), u > = < KiEi − f i + Bi
T
λ, u >

Thus {
∇EiL({Ei}, λ) = KiEi − f i + BiT λ, ∀i = 1, .., Ns

∇λL({Ei}, λ) =
∑Ns

i=1 BiEi
(3.32)

The KKT conditions yield the saddle point :{
KiEi − f i + BiT λ = 0∑Ns

i=1 BiEi = 0
(3.33)

3.4.2.1 Solving the linear system without common corner points

When we do not treat the corner points separately, this corresponds to nothing but the one-level

FETI method, known also as a dual Schur complement method [38,40,108]. We start with the saddle

point conditions (Eq. 3.33) which can be recasted into

KiEi = f i − Bi
T
λ (3.34)

Ns∑
i=1

BiEi = 0 (3.35)

Substituting the value of Ei found with the first equation in the second one we obtain the interface

equation, or interface problem for the FETI method :

Fλ = d (3.36)



3.4. One Lagrange multiplier with a classical Lagrangian 23

where

F =

Ns∑
i=1

Bi
[
Ki
]−1 Bi

T
(3.37)

d =

Ns∑
i=1

Bi
[
Ki
]−1

f i (3.38)

We then first solve for the λ parameter and afterwards for the electrical field everywhere in the various

domains.

3.4.2.2 Solving the linear system with common corner points

An other approach is to handle the corner points separately. Various Domain Decomposition

techniques are based on this idea. For example, we can refer to the FETI-DP [39,109], FETI-DPH [42],

or FETI-DPEM1 [41] methods. The term ”Dual-Primal” (DP) refers to the idea of directly imposing

continuity constraints across the corner DOFs between subdomains and indirectly enforcing all other

constraints by using dual variables (Lagrange multipliers).

Using the rc-notation of Section (3.3.2.2) and, in particular, the representation of the problem

matrix and RHS vector (Eq. 3.26) we start by introducing

— The set of the Lagrange multipliers divided into λ = {λr, λc}
— The signed Boolean matrix Bir which is an analogue of the matrix Bi presented previously.

The role of the matrix Bir is to extract from a given subdomain Ωi a signed vector of all the

interface boundary components, except the corner DOFs. The number of lines in this matrix

is equal to the number of the effective points which are actually present on all the interfaces,

but not on the corners. The number of columns corresponds to the number of ”r”-notation in

the subdomain Ωi.

Thus, let us rewrite the saddle point conditions (Eq. 3.33) taking this into account as follows :[
Ki
rr Ki

rc

Ki
cr Ki

cc

] [
Eir
Eic

]
=

[
f ir
f ic

]
−

[
BiTr λr
λic

]
(3.39)

Ns∑
i=1

BirEir = 0 (3.40)

In order to describe the ”Primal-part” of the DP idea we are going to introduce the projection Boolean

matrix Qi
Ec

. This Boolean matrix maps the global corner DOFs numbering Ec to local corner DOFs

numbering Eic. Mathematically, this can be expressed as

Eic = Qi
Ec

Ec (3.41)

Qi
Ec

is a matrix of the dimensions N i
c ×N

g
c . N i

c and Ng
c are respectively the number of corner points

in the i-th subdomain and the global number of corner points in Ω.

We can now rewrite the saddle point conditions (Eq. 3.33) using the rc-notation and the presented

Boolean matrices as [39,41] :

Ki
rrE

i
r +Ki

rcQi
Ec

Ec = f ir − Bi
T

r λr (3.42)

Ns∑
i=1

QiT

Ec
KiT

rcE
i
r +

Ns∑
i=1

QiT

Ec
Ki
ccQi

Ec
Ec =

Ns∑
i=1

QiT

Ec
f ic (3.43)

Ns∑
i=1

BirEir = 0 (3.44)
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where the term related to the set of Lagrange multipliers λc was cancelled out, because the tangential

component of the magnetic field is continuous across the interface between the subdomains (assuming

that there is no surface electric currents on the interface) [111], in other words :

Ns∑
i=1

QiT

Ec
λic = 0 (3.45)

Taking advantage of the diagonal nature of the Krr matrix, and by replacing the value of Eir in

the two other equations, we obtain a system of equations only in Ec and λr such that(
Fcc Fcr
Frc Frr

)(
Ec

λr

)
=

(
dc
dr

)
(3.46)

with

Fcc =

Ns∑
i=1

QiT

Ec
Ki
ccQi

Ec
−

Ns∑
i=1

[Ki
rcQi

Ec
]TKi−1

rr [Ki
rcQi

Ec
] (3.47)

Fcr = −
Ns∑
i=1

[Ki
rcQi

Ec
]TKi−1

rr Bi
T

r (3.48)

Frc = F Tcr = −
Ns∑
i=1

BirKi−1

rr K
i
rcQi

Ec
(3.49)

Frr = −
Ns∑
i=1

BirKi−1

rr Bi
T

r (3.50)

dc =

Ns∑
i=1

QiT

Ec
f ic −

Ns∑
i=1

[Ki
rcQi

Ec
]TKi−1

rr f
i
r (3.51)

dr =

Ns∑
i=1

BirKi−1

rr f
i
r (3.52)

The above problem is a dual-primal one [39] because it relates the dual Lagrange multipliers λr to

the primal field DOFs Ec. By eliminating Ec, the above system can be transformed into the following

symmetric dual interface problem(
Frr − FrcF−1

cc Fcr
)
λr = dr − FrcF−1

cc dc (3.53)

which is closely related to the original FETI interface problem (Eq. 3.36).

The definition of the interface problem (3.53) highly depends on the problem under consideration.

For the problems of second-order solid mechanics [39] this problem is symmetric positive, although for

the electromagnetic problems this system of linear equations is generally indefinite [41]. It is worth

mentioning that this relation contains a so-called coarse problem which serves as a preconditioning

technique [39,41]. We are going to consider this problem later on, in Section (5.3.3.2).

We then solve this system for λr and, afterwards for Ec, and replace the obtained values in

Eq. (3.39) to deduce Eir everywhere in the subdomains.

3.4.3 Interpretation in terms of boundary conditions

As we have already noticed, the system of linear equations (3.17) for the given subdomain Ωi is

an incomplete one, because it lacks the interface condition applied to the internal boundary Γi. In
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this subsection we would like to discuss the type of the boundary conditions associated to the case of

Section (3.4).

In the framework of this section, we assume the continuity of the tangential component of the

electric field across the subdomain interfaces of the form (3.27) which can be also written for the

discretized subdomains as Eq. (3.29). After having constructed the Lagrangian formulation we obtain

the saddle point of the form (3.33). If we now consider the first equation which is associated to the

given subdomain Ωi (Eq. 3.33), combined with the incomplete system of linear equations (3.17) than

the physical sense of the lagrange multipliers becomes clear. For the sake of clarity we will write these

equations one more time :

KiEi = f i +

∫
Γi

1

µr

∂E ih
∂n

Ψi dS (3.54)

KiEi = f i − Bi
T
λ (3.55)

Taking advantage from the discussions in Section (2.2.2) we can associate the set of Lagrange multi-

pliers λ with an unknown Neumann-type boundary condition for each local subdomain Ωi on the

internal interface Γi. This boundary condition can be denoted as

KiEi = f i +

∫
Γi

Λi Ψi dS

Λi =
1

µr

∂E ih
∂ni

The constraint that we impose between subdomains is the equality of the electric fields. Also we

know that for each Γij we have ni = −nj . This leads us to the following relation between Lagrange

multipliers [101] :

Λi =
1

µr

∂E ih
∂ni

= − 1

µr

∂Ejh
∂nj

= −Λj (3.56)

And, finally, as the constraint (Eq. 3.29) is represented by only one Lagrange multiplier Λi↔j , we

obtain the resulting relation for the unknown boundary condition :

Bi
T
λ = −

∫
Γi

1

µr

∂E ih
∂n

Ψi dS = −
∫
Γi

Λi↔j Ψi dS

Λi↔j =
1

µr

∂E ih
∂ni

= − 1

µr

∂Ejh
∂nj

3.5 One Lagrange multiplier with an augmented Lagrangian

It is well-known that augmented Lagrangian schemes provide solutions which are better regularized

than the classical Lagrangian saddle-point solutions [36,37,43]. In this subsection we are going to deal

with FETI methods based on introducing still only one set of Lagrange multipliers per interface

in order to enforce continuity of the tangential component of the electric fields on each interface

between subdomains. But now, we will search for the unknown boundary conditions for the internal

interfaces by taking advantage of the Augmented Lagrangian formalism. In literature this type of

Domain Decomposition techniques is known as FETI-1 method [36,101].
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3.5.1 An unique field continuity condition

The continuity of the tangential component of the fields at the internal interfaces in 2D case and

for the specific polarization considered here can still be written as follows :

E|Ωi(~r) = E|Ωj (~r) ∀~r ∈ Γij = Γi ∩ Γj

Thus, in the finite-element space we can use the same relation (Eq. 3.29) in order to impose the

continuity of the subdomain solutions across the subdomain interfaces, with the same matrix B defined

as previously.

3.5.2 The augmented Lagrangian formalism

The augmented Lagrangian functional which has been proposed in [36,37] can be expressed as

L({Ei}, λ) = L({Ei}, λ) +
1

2

Ns∑
i=1

(
Bi Ei

)TMi
Γ

(
Bi Ei

)
(3.57)

where L({Ei}, λ) is a classical Lagrangian functional (Eq. 3.30) discussed before andMi
Γ is an interface

matrix, i.e. a matrix defined on the internal interface Γi, which can be constructed as wanted. The

saddle-point conditions of this augmented Lagrangian functional are given by

KiEi − f i + Bi
T
λ+ (Bi

TMi
Γ Bi)Ei = 0 (3.58)

Ns∑
i=1

BiEi = 0 (3.59)

We can rewrite this system into

K̃iEi − f i + Bi
T
λ = 0 (3.60)

Ns∑
i=1

BiEi = 0 (3.61)

where the new matrix K̃i is determined as follows :

K̃i = Ki + Bi
TMi

Γ Bi (3.62)

The term in BiTMi
Γ Bi only refers to the DOFs which are located on the interface Γi of the given

subdomain Ωi. There are full freedom for defining this term. The matrix Mi
Γ is referred to as the

augmented matrix in [112]. As we can see, we obtained an almost identical set of equations as for

the method considered previously in Section (3.4.2). Thus, in order to construct and then solve the

Interface problem for FETI1 and FETI-DP1 methods we follow exactly the same procedure as written

in Sections (3.4.2.1) and (3.4.2.2) respectively by just replacing Ki with K̃i.

3.5.3 Interpretation in terms of boundary conditions

The resulting equation obtained after construction of the augmented Lagrangian functional (Eq. 3.60)

combined with the incomplete form of the Helmholtz boundary value problem after discretization

(Eq. 3.17) can be written as :

KiEi = f i +

∫
Γi

1

µr

∂E ih
∂n

Ψi dS

(
Ki + Bi

TMi
Γ Bi

)
Ei = f i − Bi

T
λ

(3.63)
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Comparing the structure of these equations, the role of the Lagrange multipliers and the matrix

Mi
Γ gets clear. ForMi

Γ = M i
Γ(α) (see Eq. 3.21), the FETI method based on the modified Lagrangian

formulation (3.57) is equivalent to equipping the exterior Helmholtz boundary value problem (3.17)

with the Robin-type boundary condition, and identifying each of the left- and right-hand sides of

this condition with the same Lagrange multiplier λ as follows :

Bi
T
λ =

1

µr

∂E i

∂ni
+ αE i = − 1

µr

∂Ej

∂nj
+ αEj = Bj

T
λ (3.64)

Note that the relation above takes place only if Γij = Ωi ∩ Ωj 6= ∅ .

3.6 Two Lagrange multipliers per interface internal node point

For arbitrary mesh partition, the specific treatment of the subdomain interfaces described in

Section (3.5), which is designed for ensuring a constant sign of the regularizing matrix M i
Γ, results

from the fact that the FETI1 method considers only one normal and therefore employs only one

Lagrange multiplier per mesh partition interface.

Another approach is designed to make the algorithm fully numerically scalable regardless of the

electrical size of the subdomains or the frequency of the electromagnetic fields. In order to regularize

the subdomain problems independently of the pattern of the mesh decomposition we equip the FETI

method with two Lagrange multiplier fields as described in this section.

Such a strategy, which can also be viewed as introducing two diferent normals at each interface

(one on each side), is often referred to, in the domain decomposition literature, as a three-field me-

thod [105]. The approach of using two Lagrange multipliers per interface helps us to avoid the problems

with the domain-numbering and the construction of normals to domains arising in the case of one

Lagrange multiplier [36,37]. Moreover, the spurious solutions which arise traditionally are damped by

the addition of this extra term.

3.6.1 Two field continuity conditions per interface

The continuity of the tangential component of the fields at the internal interfaces can still be

written as follows :

E|Ωi(~r) = E|Ωj (~r) ∀~r ∈ Γij = Γi ∩ Γj (3.65)

In order to impose this constraint we present an alternative to the treatment presented in Sec-

tion (3.4.1) by defining a unique solution U i↔j on the boundary Γij between the subdomains Ωi

and Ωj and introducing two Lagrange multipliers for each subdomain : the objective of the first La-

grange multiplier is to enforce the compatibility between E|Ωi and U i↔j , and the objective of the

second Lagrange multiplier field is to enforce the compatibility between E|Ωj and U i↔j .
To that end, we can rewrite the continuity of the tangential component of the electric fields (3.65)

as follows :

E|Ωi(~r) = U i↔j(~r) ∀~r ∈ Γi (3.66)

E|Ωj (~r) = U i↔j(~r) ∀~r ∈ Γj (3.67)

We partition the interface boundary Γi into interface edges Γil using the following guidelines :

— an interface edge is defined as a collection of connecting interface nodes ;

— each interface node is still not assigned to one and only one subdomain, but belongs at least

to two subdomains ;
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— in the local sense a corner point is a point which belongs to two interfaces Γil of the same

subdomain Ωi.

As previously we denote by EiI the discretized vector of unknowns E|Ωi(~r), and similarly, U i↔j

corresponds to the common unique solution U i↔j(~r). We now introduce Boolean matrices Di which

enable to extract only the node points which are on the interface of Ωi, i.e.,

DiEi = EiI (3.68)

Note that the matrix Di is defined differently from the matrix Bi from Section (3.4.1). Here it denotes

a Boolean matrix that simply extracts the unknowns on the interface without sign assignment. This

Boolean matrix is of the size n ×m, where n is the number of the points located on the Γi, and m

denotes the number of all the points in Ωi.

Similarly, we introduce Boolean matrices Ti→j which aims to extract only the node points which

are on the interface edge Γij from the interface node points of Ωi. The Boolean matrix Ti→j is of

the size n × m, where n is the number of the points located on Γij , including the corners, and m

corresponds to the number of the points located on the Γij . This enables to write that

Ti→jEiI = Ei→j

Ti→jλi = λi→j
(3.69)

We have in particular

λi =
∑

j∈nbr(Ωi)

Ti→jTλi→j (3.70)

where the array nbr(Ωi) contains all the numbers of subdomains which are neighbors to Ωi.

3.6.2 Augmented Lagrangian formalism

As we have done previously for the FETI1-formulation, we introduce an augmented Lagrangian

formalism combined with a special set of matrices M.

L(
{
Ei
}
,
{
λi→j

}
,
{
U i↔j

}
) =

Ns∑
i=1

(
1

2
KiEi − f i

)T
Ei +

Ns∑
i=1

∑
j∈nbr(Ωi)

λi→j
T (
Ei→j − U i↔j

)
+

Ns∑
i=1

∑
j∈nbr(Ωi)

1

2

(
Ei→j

TMi→j Ei→j − U i↔jTMi→j U i↔j
) (3.71)

Note that this equation is not ”correct” in terms of unknowns. Indeed, Eq. (3.71) contains a term

Ei→j which does not take a part of the optimization variables of L(
{
Ei
}
,
{
λi→j

}
,
{
U i↔j

}
). Thus,

with the aid of Eq. (3.69) we present the vector of unknowns on the local interface Γij as follows :

Ei→j = Ti→jDiEi (3.72)

Then using this relation, the Lagrangian (3.71) can be rewritten as :

L(
{
Ei
}
,
{
λi→j

}
,
{
U i↔j

}
) =

Ns∑
i=1

(
1

2
KiEi − f i

)T
Ei +

Ns∑
i=1

∑
j∈nbr(Ωi)

λi→j
T (

[Ti→jDiEi]− U i↔j
)

+

Ns∑
i=1

∑
j∈nbr(Ωi)

1

2

(
[Ti→jDiEi]TMi→j [Ti→jDiEi]− U i↔jTMi→j U i↔j

) (3.73)
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Unlike the case described in Section (3.4) and (3.5), the Lagrange parameter λ corresponds now to

the the double number of effective points which are actually present on all the interfaces. The saddle

point will provide the solution of the optimization problem we are interested in. To find it, we consider

the set of KKT conditions :
∇Ei L(

{
Ei
}
,
{
λi→j

}
,
{
U i↔j

}
) = 0, i = 1, .., Ns

∇{λi→j}L(
{
Ei
}
,
{
λi→j

}
,
{
U i↔j

}
) = 0

∇{U i↔j}L(
{
Ei
}
,
{
λi→j

}
,
{
U i↔j

}
) = 0

(3.74)

After computation the derivatives of the Lagrangian with respect to the various parameters we obtain

∇EiL = K̃iEi − f i + Di
T

∑
j∈nbr(Ωi)

Ti→j
T
λi→j , i = 1, .., Ns (3.75)

∇{λi→j}L = [Ti→jDiEi]− U i↔j , ∀i, j ∈ nbr(Ωi) (3.76)

∇{U i↔j}L = −λi→j − λj→i − (Mi→j +Mj→i)U i↔j (3.77)

where the local problem-matrix K̃i is similar to the one from Eq. (3.60), but constructed in the form

K̃i = Ki +
∑

j∈nbr(Ωi)

[Ti→jDi]TMi→j [Ti→jDi] (3.78)

Note that the system of equations (3.75-3.77) is absolutely identical to the Euler equations asso-

ciated to the Lagrangian proposed in [36], if we take into account the fact that the interface unique

solution U i↔j can have only two contributions (which is a logical conclusion), these come from the

subdomains Ωi and Ωj .

The first of the KKT conditions (∇{Ei}L = 0) yields the general FEM equation for the subdo-

main Ωi

K̃iEi = f i − Di
T
λi (3.79)

We then eliminate the common interface solution U i↔j in order to reduce the system. Thus, the two

last KKT conditions give

λi→j + λj→i = −(Mi→j +Mj→i)Ej→i (3.80)

with

Ej→i = Ei→j (3.81)

3.6.3 Separating interface and corner points

In order to consider the FETI-DPEM2 classical and full methods we partition the vector of unk-

nowns according to the ”rc”-notation described in Section (3.3.2.2). Thus, some geometrical matrices

should be presented.

First of all, we introduce an analogue of the matrix Di - a Boolean matrix Dir which extracts

the interface DOFs of the subdomain Ωi according to the ”rc”-notation. Mathematically it can be

expressed as :

DirEir = EiI (3.82)

Let us denote the size of matrix Dir as n×m. Then, n corresponds to the number of the points located

on the internal interface Γi without the corner nodes, while m is the total number of the points inside

Ωi except for the corners.

Secondly, we will use the Boolean matrix Qi
Ec

(Eq. 3.41) which enables here to map the global

corner DOFs numbering Ec with the local numbering Eic.
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Then, we divide the Boolean matrix T (Eq. 3.69) into two matrices Tr and Tc. The first of them

extracts the interface nodes related to the given interface Γij from all the interfaces node points of

Ωi, which can be mathematically expressed as :

Ti→jr EiI = Ei→jr

Ti→jr λir = λi→jr
(3.83)

The second Boolean matrix Tc enables to select all the corner DOFs related to the given internal

interface Γij from all the corners of the subdomain Ωi as

Ti→jc Eic = Ei→jc (3.84)

The idea of the construction of these matrices is presented in Figure (3.3). Note that the local indexes

of the selected nodes in this figure correspond to the non-null positions in this matrices, while the

number of selected points represents the vertical size of the matrices Ti→jr and Ti→jc .

Figure 3.3 – Schematic presentation of the unknowns belonging to the subdomain Ωi selected by

matrices Ti→jr and Ti→jc to the interface Γij .

As you can see, the matrix Ti→jr selects all the points related to the interface Γij , while the another

matrix Ti→jc extracts only two points in this particular case. These are the corner points related to

the interface Γij . It is simple to show, that the size of the matrix Ti→jr is equal to the number of the

interface points related to the given interface × the number of all the interface points belonging to

the given subdomain, while the size of the matrix Ti→jc is equal to the number of corner points related

to this interface × the number of the corner points belonging to the given subdomain.

Note that we can not write Ti→jc λic = λi→jc as it has been done for the previous matrix, because

the number of the Lagrange multipliers λic is twice bigger than the number of the corner points Eic
belonging to the internal interface Γi of the subdomain Ωi. The special treatment of the Lagrange

multipliers related to the corner points is going to be considered later on, in Section (3.6.4.2).

Finally, another Boolean Qi
λr

is introduced to extract the Lagrange multipliers λir related to the

given subdomain Ωi from all the list of Lagrange multipliers λr. This can be mathematically expressed

as :

Qi
λrλr = λir (3.85)

If we denote the size of this matrix as n × m then n will be the number of points located on the

internal interface Γi except for the corners, whereas the term m will correspond to the total number
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of the dual-vector λr. Similarly to Eq. (3.70), the following relations can be derived :

λir =
∑

j∈nbr(Ωi) T
i→jT
r λi→jr

λ =
∑Ns

i=1 QiT

λr
λi

(3.86)

These matrices are transposed [41, 43] because we assemble the local contributions into more global

ones.

3.6.4 Finite-element analysis of the subdomain problem

In order to construct the interface problem corresponding to the FETI2 method we will use an

approach which is a little bit different from the one of [36]. It was introduced in [43]. Using this

approach we can explain the main difference between the FETI-DPEM2 classical method and the

one, proposed in this PhD work.

Applying the ”rc”-notation to Eq. (3.79) we obtain an important relation for the vectors of unk-

nowns Eir and Eic for the local subdomain Ωi

[
K̃i
rr K̃i

rc

K̃i
cr K̃i

cc

] [
Eir
Eic

]
=

[
f ir
f ic

]
−

[
Dir

T
λir

λic

]
(3.87)

From Eq. (3.87) we can find that the subdomain system matrices for different subdomains become

decoupled. Indeed, this system of linear equations is written only for the subdomain Ωi, but not for

its neighbors, while all the interactions with the neighboring subdomains are included in the mixed

boundary condition at the interfaces given by Eq. (3.80). By using the first equation in system (3.87),

the electric field can be found as

Eir = K̃i−1

rr

(
f ir − Di

T

r λ
i
r − K̃i

rcE
i
c

)
(3.88)

Then we derive the subdomain level corner DOFs related system by eliminating Eir as

(K̃i
cc − K̃i

crK̃
i−1

rr K̃
i
rc)Qi

Ec
Ec = f ic − λic − K̃i

crK̃
i−1

rr f
i
r + K̃i

crK̃
i−1

rr Di
T

r λ
i
r (3.89)

This equation can be considered as the subdomain contribution to a global corner DOFs related finite

element system. After assembling all the subdomain contributions we obtain the global corner DOFs

related finite element system, which can be written as follows :

FEcEc Ec − FEcλr λr + FEcλc λc = dEc (3.90)

with

FEcEc = SEc

(
Ki
cc −Ki

crK
i−1

rr K
i
rc

)
Qi

Ec

FEcλr = SEc

(
Ki
crK

i−1

rr Dir
)
Qi
λr

dEc = SEc

(
f ic −Ki

crK
i−1

rr f
i
r

)
where the operator SEc is defined by

SEcu =

Ns∑
i=1

QiT

Ec
ui (3.91)

This operator assembles local contributions from all the subdomain corners in order to construct a

part of the Interface Problem related to the Ec vector.
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Note that we do not introduce the matrix FEcλc , because this is the key difference between the

FETI-DPEM2 classical and full methods. So, it is going to be presented later.

Let us start the inter-subdomain analysis with the main transmission condition written in the

form of Eq. (3.80). In order to explain the principal difference between the classical FETI-DPEM2

method and the method proposed in [55], we apply the ”rc”-notation to Eq. (3.80). This yields :[
λi→jr

λi→jc

]
+

[
λj→ir

λj→ic

]
= −

[
W i↔j
rr W i↔j

rc

W i↔j
cr W i↔j

cc

][
Ej→ir

Ej→ic

]
∀ Γij (3.92)

where W i↔j
∗− =Mi→j

∗− +Mj→i
∗− .

3.6.4.1 FETI-DPEM2 classical method

In various works related to the FETI-DPEM2 method (for ex. [43, 48, 96, 111, 113]), we can note

that there is no contribution of the corner DOFs to the set of Lagrange multipliers related to the

interface DOFs and the size of Eq. (3.80) is equal to the number of interface points related to the

interface Γij . Thus, we can conclude that in the classical FETI-DPEM2 method, the matricesW i↔j
rc =

W i↔j
cr =W i↔j

cc are all set to 0. Let us first focus on the first row of Eq. (3.92), that is the one related

to λr. Having applied the notations of Eq. (3.92), in the FETI-DPEM2 classical method, we have :

λi→jr + λj→ir = −W i↔j
rr Ej→ir (3.93)

Note that this equation is identical to the one from [43,111] in another notations. Indeed, the size of

the unknown Lagrange multipliers and the definition of the matrices are absolutely the same.

With the aid of the projection matrices presented in Section (3.6.3), we transform Eq. (3.93) as

follows :

λi→jr + λj→ir = −W i↔j
rr Tj→ir DjrEj

Then, using Eq. (3.88) we can simplify the equation above by eliminating Ejr as :

λi→jr + λj→ir = −W i↔j
rr Tj→ir DjrKj−1

rr

(
f jr − Dj

T

r λ
j
r −Kj

rcE
j
c

)
If we summate it over j with the help of Eq. (3.86) we will obtain :

λir +
∑

j∈nbr(Ωi)

Ti→j
T

r

[
Tj→ir −W i↔j

rr Tj→ir F irr
]
λjr =

∑
j∈nbr(Ωi)

Ti→j
T

r W i↔j
rr Tj→ir F jrcQ

j
Ec

Ec −
∑

j∈nbr(Ωi)

Ti→j
T

r W i↔j
rr Tj→ir djr

Then, using the same idea for the summation over i we obtain :

λr +

Ns∑
i=1

QiT

λr

∑
j∈nbr(Ωi)

Ti→j
T

r

[
Tj→ir −W i↔j

rr Tj→ir F irr
]
λjr =

Ns∑
i=1

QiT

λr

∑
j∈nbr(Ωi)

Ti→j
T

r W i↔j
rr Tj→ir F jrcQ

j
Ec

Ec−
Ns∑
i=1

QiT

λr

∑
j∈nbr(Ωi)

Ti→j
T

r W i↔j
rr Tj→ir djr

or, simply

λr + Sλr
[
Tj→ir −W i↔j

rr Tj→ir F irr
]
Qj
λr
λr =

Sλr
[
W i↔j
rr Tj→ir F jrcQ

j
Ec

]
Ec − Sλr

[
W i↔j
rr Tj→ir djr

]
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Here the operator Sλr is defined by

Sλru =

Ns∑
i=1

QiT

λr

∑
j∈nbr(i)

Ti→jr
T
uj→i (3.94)

This operator can assemble the contributions from all the interfaces and, then, from all the subdo-

mains, in order to construct a part of the Interface Problem related to the λr vector.

This is the first line of the interface problem of the FETI-DPEM2 classical method [43,111], which

can be written as

Fλrλrλr − FλrEcEc = −dλr (3.95)

where the main matrices are defined as

Fλrλr = Sλr
[
Tj→ir −W i↔j

rr Tj→ir F irr
]
Qj
λr

+ I (3.96)

FλrEc = Sλr
[
W i↔j
rr Tj→ir F jrc

]
Qj

Ec
(3.97)

dλr = Sλr
[
W i↔j
rr Tj→ir djr

]
(3.98)

F irr = DirKi−1

rr Di
T

r (3.99)

F irc = DirKi−1

rr K
i
rc (3.100)

dir = DirKi−1

rr f
i
r (3.101)

Let us now focus on the second row of Equation (3.92), that is on the Lagrange multipliers λc
related to the corner points. The specificity of the FETI-DPEM2 classical method is to set

λi→jc + λj→ic = 0 ∀ Γij (3.102)

This equation means that the summation of all the λc over each global corner point is equal to 0 [48],

i.e.

FEcλc =

Ns∑
i=1

Qi
Ec

T
λic = 0 (3.103)

Taking into account this term, the global corner DOFs related system of equations (Eq. 3.90) can be

written as follows :

FEcEc Ec − FEcλr λr = dEc (3.104)

After combining Eqs. (3.95) and (3.104) we obtain[
Fλrλr −FλrEc

−FEcλr FEcEc

] [
λr
Ec

]
=

[
−dλr
dEc

]
(3.105)

Following the idea presented in [43, 48], F−1
EcEc

, which is referred to as the coarse problem and has to

be solved at each iteration step, couples all the subdomains by propagating the residual error globally

and increases the convergence rate of the FETI-DPEM2 interface problem. Thus, we then eliminate

Ec and derive the FETI-DPEM2 classical interface equation [43,113] for the dual unknowns(
Fλrλr − FλrEcF

−1
EcEc

FEcλr

)
λr = −dλr − FλrEcF

−1
EcEc

dEc (3.106)

The interface problem is generally indefinite [43,97,111] and can be solved using a Krylov subspace

method. After the resolution of the interface problem, the electric field inside each subdomain can

be evaluated individually by using the known mixed boundary condition at the interface for each

subdomain with the aid of Eq. (3.88). The main advantage of the DD idea is that by introducing the

set of Lagrange multipliers, the original problem is reduced to an interface problem in order to find

the unknown boundary condition.
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3.6.4.2 FETI-DPEM2-full method

The term ”full” in the FETI-DPEM2-full method [55] refers to the idea of considering the full

set of relations in Eq. (3.92) both for the λr and λc Lagrange multipliers. Unlike the classical FETI-

DPEM2-full method, all the matrices W in Eq. (3.92) are different from 0.

To start with, we focus on the first row of the interface equation (3.92), that is the one related to

λr.

λi→jr + λj→ir = −W i↔j
rr Ej→ir −W i↔j

rc Ej→ic (3.107)

The size of this equation corresponds also to the number of the interface DOFs excluding the

corner ones. But unlike the FETI-DPEM2 classical method, in the full approach we take into account

the contribution from the corner points to the nearly located interface points by keeping the term

W i↔j
rc Ej→ic . This leads us to a small change in the first line of the interface problem (3.105). More

precisely, in the matrix FλrEc which is equal now to

FλrEc = Sλr
[
W i↔j
rr Tj→ir F jrc −W i↔j

rc Tj→ic

]
Qj

Ec
(3.108)

The main difference between the classical and full approaches of the FETI-DPEM2 method consists

in the contribution of the second row of the main interface equation (3.92) which for the FETI-DPEM2-

full method can be written as

λi→jc + λj→ic = −W i↔j
cr Ej→ir −W i↔j

cc Ej→ic (3.109)

The treatment of this equation is more tricky. Indeed, as the corner DOFs Ec are gathered and

ordered globally, it is not possible to calculate the full set of Lagrange multipliers both for λi→jc and

λj→ic from each side of the interface Γij . Thus, in the framework of the FETI-DPEM2-full approach

we are interested in searching a special set of Lagrange multipliers λi↔jc , one per each interface Γij .

Taking this into account we can rewrite Eq. (3.109) as follows :

λi↔jc = −W i↔j
cr Ej→ir −W i↔j

cc Ej→ic , ∀ i↔ j = 1...NI (3.110)

where i↔ j is the number of the interface Γij among all the NI interfaces.

A new projection Boolean matrix Qi↔j
λc

is introduced to extract the double Lagrange multipliers

λi↔jc associated to Γij from the full list of λc, i.e., λi↔jc = Qi↔j
λc

λc. A new operator Sλc is also defined

such that [36]

Sλcu =

NI∑
i↔j=1

Qi↔j
λc

T
ui→j =

NI∑
i↔j=1

Qi↔j
λc

T
uj→i (3.111)

This operator is an analogue of the two operators presented before (Eqs. 3.91 and 3.94). The new

operator is here to assemble all the contributions from every interface in order to create the last part

of the Interface Problem, that is the one, related to the set of λc. By applying this new operator to

(Eq. 3.110), we obtain

− Fλcλrλr − FλcEcEc + Fλcλcλc = dλc (3.112)

where

Fλcλr = Sλc

[
W i↔j
cr Tj→ir F jrr

]
Qj
λr

FλcEc = Sλc

[
W i↔j
cr Tj→ir F jrc −W i↔j

cc Tj→ic

]
Qj

Ec

Fλcλc = Sλc

dλc = Sλc

[
W i↔j
cr Tj→ir djr

]
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We will obtain as well a small change in the second row of the interface problem (3.105) which is

related to the fact that we associate the Lagrange multipliers λc to the Robin-type boundary condition.

Thus, unlike the classical approach, in the FETI-DPEM2-full method, we have

Ns∑
i=1

Qi
Ec

T
λic 6= 0 (3.113)

By assembling and summing all the subdomain contributions, we obtain the global corner points

related system of equations which is similar to the one from Eq. (3.90) :

FEcEc Ec − FEcλr λr + FEcλc λc = dEc (3.114)

The new matrix FEcλc can not be introduced through the operator SEc . It is a Boolean projection

matrix which puts in correspondence all the global corner Lagrange multipliers λi↔jc related to the

global corner Ek
c for every k = 1...NEc . The size of this matrix is equal toNEc×Nλc and its construction

is quite simple. In each line (that corresponds to the global index of the corner edge) we put 1 if the

given global corner Lagrange multiplier belongs to this corner and 0 if not.

Combining Eq. (3.95) with a new matrix FλrEc (Eq. 3.108), Eqs. (3.112) and (3.114) we arrive at

the Full interface problem of the FETI-DPEM2-full method Fλrλr −FλrEc 0

−FEcλr FEcEc FEcλc

−Fλcλr −FλcEc Fλcλc

λrEc

λc

 =

−dλr
dEc

−dλc

 (3.115)

But in practice, the Full interface problem is not directly solved but replaced by a linear system

with smaller dimension and better conditioning number [43,48,97]. Moreover, we do not need to know

the Lagrange multipliers λc because we are looking directly for the solution Ec. Once these Lagrange

multipliers are dropped out after few mathematical transformations, we arrive at the Reduced Interface

Problem (
Fλrλr + FλrEc F̂

−1
EcEc

F̂Ecλr

)
λr = d̂λr (3.116)

where

F̂Ecλr = −FEcλr + FEcλc F−1
λcλc

Fλcλr

F̂EcEc = FEcEc + FEcλc F−1
λcλc

FλcEc

d̂Ec = dEc + FEcλc F−1
λcλc

dλc

d̂λr = −dλr − FλrEc F̂
−1
EcEc

d̂Ec

In the following, unless specified otherwise, the Interface Problem will correspond to this Reduced

Interface Problem. We can now easily compute Ec by solving the following system of equations

F̂EcEcEc = d̂Ec − F̂Ecλrλr (3.117)

Finally, replacing Ec and λr in (Eq. 3.88) gives access to Eir in each subdomain Ωi.

3.6.5 Interpretation in terms of boundaries conditions

The difference between the FETI-DPEM2 classic and full methods can also be explained in terms

of the boundary conditions [96,111]. In this work we stick to the approach given by Farhat [36,39,42]

which consists in :
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1. Firstly, constructing a Lagrange functional, as it has been done in Eqs. (3.57) and (3.71) using

the desired type of constraints between subdomains.

2. Secondly, looking for the saddle point of the set of KKT conditions

3. And, finally, determining the type of boundary conditions related to each local subdomain.

In order to determine the type of the boundary conditions, we will write the indefinite system of

linear equations related to the local subdomain Ωi coupled with the previously obtained saddle point :

KiEi = f i +

∫
Γi

1

µr

∂E ih
∂n

Ψi dS

K̃iEi = f i − Bi
T
λ

(3.118)

where K̃i is determined as in Eq. (3.78). By comparing these two relations from Eq. (3.118) the

role of the Lagrange multipliers as well as the matrix M becomes clear. For the FETI-DPEM2 full

and classical methods, the unknown boundary condition corresponds to the Robin-type. But the

difference between these methods should be explained using the ”rc”-notation. For both methods

we assume at the internal interfaces for all the interface points that the field satisfies a Robin-type

boundary condition, given by
1

µr

∂E i

∂n
+ αiE i = Λir, on Γir (3.119)

{λir} =

∫
Γi∩Γi

r

(Λir Ψi − αiΨi Ψi) dS (3.120)

The term Γi ∩ Γir denotes the space located at interface Γi only related to the interface points.

The main difference between the classical and full FETI-DPEM2 methods can be explained on

the boundary conditions which are associated to the corners. For the FETI-DPEM2 classical method,

according to [111], the Lagrange multipliers related to the corner points can be associated to the

unknown Neumann-type boundary conditions, which mathematically can be expressed as follows :

1

µr

∂E i

∂n
= Λic, on Γi ∩ Γic (3.121)

{λic} =

∫
Γi∩Γi

c

(Λic Ψi) dS (3.122)

The term Γi ∩ Γic denotes the space located at interface Γi only related to the corner points.

Unlike the classical FETI-DPEM2 method, the one proposed in this work is based on the idea of

setting the Robin-type boundary conditions for all the points, including the corners. Therefore, instead

of assuming (Eqs. 3.121 and 3.122) at the corner points we assume

1

µr

∂E i

∂n
+ αiE i = Λic, on Γi ∩ Γic (3.123)

{λi} =

∫
Γi∩Γi

c

(Λic Ψi − αiΨi Ψi) dS (3.124)

Then, we determinate the common unknown Λi = {Λir,Λic}, given as :

1

µr

∂E i

∂n
+ αiE i = Λi, on Γi (3.125)
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The matrix Mi↔j and, therefore, W i↔j which are participating in the Interface Problem (3.115) is

constructed according to the weak form of the Robin-type boundary condition presented above for

the subdomain Ωi, as follows :

Mi↔j = MΓij (α) =

∫
Γij

α Ψi ΨiT dS (3.126)

By writing the similar equation for the subdomain Ωj we obtain :

1

µr

∂Ej

∂n
+ αjEj = Λj , on Γj (3.127)

By adding then Eq. (3.125) to Eq. (3.127) and applying the continuity of the electric and magnetic

field, we obtain :

Λij + Λji = (αi + αj)E ij (3.128)

Λij + Λji = (αi + αj)Eji (3.129)

According to [111] for the classical FETI-DPEM2 method this relation takes place only for the

interface points, but not for the corners. We proposed in this work to extend this relation even for

the corner points. This is the key of the FETI-DPEM2-full method.

3.7 Domain decomposition in 3D

3.7.1 Finite Element system

Like in the two-dimensional configuration, we start with the following 3D Helmholtz equation in

a bounded domain Ω which can contain inhomogeneities :

∇×
(

1

µr
∇× ~E

)
− k2

0εr ~E = jk0Z0
~J in Ω (3.130)

where ~E = (Ex(~r), Ey(~r), Ez(~r))T is the total or the incident field with a time dependency in exp(−jωt)
originated in the current distribution ~J . This incomplete form, from the mathematical point of view,

is complemented then by the radiation boundary condition (Eq. 3.131) on the external boundary Σ,

in order to provide the unicity of the solution in the bounded domain Ω.

~n×
(

1

µr
∇× ~E

)
+ jk0 ~n× ~n× ~E = 0 on Σ (3.131)

As we have already done for the 2D case (Section 3.2), we then represent the discretized field ~Eh
as a linear combination of basis functions in the finite-dimensional subspace V h(Ω) ⊂ H1

θ (Ω). After

finite-element discretization we obtain the integral equation in weak form for the 3D case :

nj∑
j=1

∫
Ω

1

µr
(∇× ~ψj) · (∇× ~ψi) dΩ−

∫
Ω

k2
0εr

~ψj · ~ψi dΩ + jk0

∫
Σ

(~n× ~ψj) · (~n× ~ψi)dS

 qj =

−
∫
Ω

jk0Z0
~J · ~ψi dΩ, i = 1, ..., ni

(3.132)

where the set of vectors ~ψ = ~ψ(~r) are basis functions which belong to V h(Ω). The integral equation

above can then be written in a matrix form, which is similar to Eq. (3.15), as follows :

KE = f (3.133)
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where the FEM problem matrix and vector are defined as :

K = G−Mvol + MΣ(jk0) (3.134)

G =

∫
Ω

1

µr
(∇×Ψ) · (∇×Ψ)T dΩ (3.135)

Mvol =

∫
Ω

k2
0εr Ψ ·ΨT dΩ (3.136)

MΣ(jk0) =

∫
Σ

jk0εr (~n×Ψ) · (~n×Ψ)T dS (3.137)

f = −
∫
Ω

jk0Z0 Jh ·Ψ dΩ (3.138)

The term Ψ denotes a column vector containing the first-order linear vector basis functions ~ψi, i =

1, ..., ni.

As we have a full liberty for choosing the finite-elements, we can in particular select the tetrahedras

(Figure 3.4) as generic mesh elements. In this case every element of volume contains :

Figure 3.4 – The finite-element cell.

— 6 numbered edges (i = [1], [2], [3], [4], [5], [6])

— 4 numbered points (j = 1., 2., 3., 4.)

— 4 triangle-faces (Table 3.2)

N p1 p2 p3 e1 e2 e3

1 1 2 3 1 2 4

2 1 2 4 1 3 5

3 1 3 4 2 3 6

4 2 3 4 4 5 6

Table 3.2 – The numbering (p - by points and e - by edges) of 4 face-triangles in each tetrahedra.

Using the scalar finite elements, sometimes we observe the occurrence of non-physical solutions

as well as the inconvenience of imposing boundary conditions at material interfaces and conducting
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surfaces [16]. For these reasons, more than 50 years ago Whitney [114] and later on Nedelec [115]

proposed to use an other type of elements which are called vector basis or vector elements. For the

3D case in this work we are going to use the vector basis elements of the 1st (linear) order. In this

case the size of the problem corresponds to the global number of edges in the domain Ω.

3.7.2 FETI-DPEM2-full method in 3D

As for the 2D case (Section 3.6.4.2), we assume that the domain Ω is divided into a set of Ns

non-overlapping domains :

Ω =

Ns⋃
i=1

Ωi, Ωi ∩ Ωj = ∅, ∀i 6= j (3.139)

where the index i denotes the subdomain number. In terms of the formulas there is no difference

between the 2D and the 3D cases. But now all the unknown Lagrange multipliers λ represent the

Robin-type boundary condition for the 3D case (Eq. 3.140).

~n×
(

1

µr
∇× E i

)
+ αi ~n× ~n× E i = Λi, on ∂Γi (3.140)

The choice of the mathematical parameter αi for the 3D case will be discussed later on, in Sec-

tion (5.3.5.1). Taking into account the aspects of imposing the Robin-type boundary condition pre-

viously described in Section (3.2.1), we obtain the system of linear equations associated with the local

electromagnetic problem in the subdomain Ωi :

KiEi = f i +

∫
Γi

Λi Ψi dS (3.141)

In order to make this section self-sufficient, we would like to notice, that after having applied the

”rc”-notation to the equation above and to the matrix form of the transmission conditions (Eq. 3.92),

we obtain absolutely the same full interface problem (Eq. 3.115) and the reduced one (Eq. 3.116) as in

the 2D case. Thus, we will not detail further more the mathematics associated to the implementation

of the FETI-DPEM2-full method in a 3D configuration as there are fully similar to the 2D case.
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3.8 How to test the FETI-methods

The FETI-DPEM2 method becomes more complex in terms of geometry when we are dealing with

arbitrary partition. That is why we would like to dedicate this chapter to explain how it is possible

to guarantee almost all the steps of the method. In this work we have used two main ways to test the

FETI-DPEM2-full method :

— Tests based on the use of analytical solutions

— Tests based on the use of previously computed numerical solutions

3.8.1 Algorithm flowchart

Here we will present the main steps of the algorithm :

1. Read input data

2. Creation of the mesh discretization

3. Mesh partition

4. Creation of the list of the interface-triangles

5. Creation of the list of λr,Ec and λc
6. Printing the mesh

7. Creation of the geometry matrices (3.6.3)

8. Creation of the global rhs

9. Division of the global rhs

10. do {number of partitions}
Creation of K in ”rc”-notations

Inversion of Krr

Make all the transformations (3.6.4.2)

Make a contribution into Eq. (3.115)

end

11. do {number of sources}
solve the Interface Problem (3.115)

do {number of partitions}
creation of K in ”rc”-notations

Solution for Er (3.87)

end

end

12. Store field

3.8.2 Test with analytical solutions

Two approaches presented in Section (3.8) help us to test and to debug the method. We would

like to explain the idea of these two approaches for the 2D case, because for 2D problems we have a

clear vision of the ongoing process and geometry. Let us imagine that we are dealing with an elliptic

problem (3.142-3.143) in the same bounded domain Ω, as in Figure (3.1).

div (λgrad u) + γ u = −f, in Ω (3.142)

λ
∂u

∂n
+ α u = Λ, on Σ (3.143)

This boundary-problem can describe the stationary distribution of the temperature u in the domain

Ω, if λ is the thermal conductivity and f − γu is the density of the heat sources. But in the frame of
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this test case, we consider this equation as a mathematical equation without any physical sense. In

particular, we can ”search for” the exact solution

u = 2x3 + 8y2 sin(x) (3.144)

By setting the coefficients λ, γ and α we can find the rest of the unknown parameters for this problem

- f and Λ :

f = −
(
(8y2 − 16) sin(x)− 12x

)
+ jk0

(
2x3 + 8y2 sin(x)

)
, with λ = 1 and γ = jk0

Λ =
∂u

∂n
+ jk0u, with α = jk0

By setting these parameters we guarantee the unicity of the solution (3.144) in the bounded

domain Ω. To start with, we set the size of Ω (Figure 3.1) equal to [−4, 4] × [−4, 4] and then we

calculate the elliptic boundary-problem (3.142-3.143) inside the given domain with the classical FEM

method. The obtained solution u is presented in Figure (3.5).

Figure 3.5 – The exact solution u in a bounded domain Ω

Now, following the idea of the FETI-DPEM2 method we divide our domain Ω into 4 subdomains

with respect to the center-point (0, 0). In other words, we represent the field u as a union of the local

fields in each subdomain u = ∩ ui, i = 1..4. Then we calculate the field ui as a solution of the local

bounded problem (3.145-3.146) in each subdomain Ωi using still the classical FEM method.

div
(
λgrad ui

)
+ γ ui = −f i, in Ω (3.145)

λ
∂ui

∂n
+ α ui = Λi, on Σi

λ
∂ui

∂n
+ α ui = Λi, on Γi

(3.146)

The results of the classical FEM method are presented in Figure (3.6). Note that all the values Λi on

the external (Σi) and internal (Γi) interfaces can be calculated analytically. It leads us to the main

idea of this approach, that is we can use the values λi→j from the Boundary conditions (3.143) to test

the transmission condition of the FETI-DPEM2-full method in the matrix form :[
λi→jr

λi→jc

]
+

[
λj→ir

λj→ic

]
= −

[
Wi↔j

rr Wi↔j
rc

Wi↔j
cr Wi↔j

cc

][
Ei↔jr

Ei↔jc

]
As it was noticed before, we know the exact solution (3.144) for this problem. That means that we

also know the values of Ei↔jr and Ei↔jc everywhere in the domain. And now if we calculate the relative
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Figure 3.6 – The solutions ui obtained in each subdomain with classical FEM method

error between two parts of this equation (left and right) for any interface between every Ωi and Ωj

we will obtain an error of the order of 10−14 to 10−13. This idea gives us an opportunity to control

and to trace the error on λ.

But the main advantage of this approach is that from the beginning until the end of the method

we can control errors of constructions of all the geometrical(projection) matrices. In our work we paid

main attention on the construction of the Full Interface Problem (3.115). It is evident that if we know

the values of λr, λc and Ec we can check step by step all the equations.

1. Fλrλr · λr + FλrEc ·Ec by comparing with dλr

2. Fλcλr · λr + FλcEc ·Ec + Fλcλc · λc by comparing with dλc

3. FEcλr · λr + FEcEc ·Ec + FEcλc · λc by comparing with dEc

and if the comparisons do not provide an error of the order 10−14 to 10−13 then there is an error

of construction in the projection matrices. It is an easy way to go deeper and to check each of the

matrices F.

3.8.3 Test with numerical solutions

The second approach is similar. But instead of the exact solution we take the FEM-one. In our

work we used this approach to test and to debug both the two- and three-dimensional electromagnetic

problems. For example we have a numerical solution E of a physical problem obtained with the classical

FEM method (Figure 3.7). It is obvious, that we can not calculate any more the electric field in each

subdomain, because of the lack of internal boundary conditions. Indeed, we do not know the values Λi

for each subdomain Ωi, unlike the previous mathematical approach (Section 3.8.2) where these values

could be calculated analytically.

In the framework of this test approach, we construct matrices M i→j of the Robin-type boundary

conditions applied to the internal interfaces Γi→j with the help of the electric field obtained with

the FEM method which serves us as an exact solution. For example, if we use the same domain

decomposition in 4 subdomains, as previously, then we can get the values λ on each internal interface

as shown in Figure (3.7) with red color lines.

All the following steps are the same as for the previous approach detailed in Section (3.8.2). As

we know λ, the rhs and the solution obtained with FEM, we also know all the needed information to

test the method as we did previously.
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Figure 3.7 – Modulus of an electric field in the bounded domain Ω, obtained with the FEM me-

thod. Red lines denote the domain decomposition, where we can calculate the values of Lagrange

multipliers λ

3.9 Source term implementation

In this section we would like to explain the way for constructing the right-hand side vector. We

will consider two specific test-cases when the source point is located on

— a boundary between the subdomains

— a corner point

The first test case is schematically presented in Figure (3.8).

Figure 3.8 – One source in the domain and the domain decomposition in this case
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The main rule in this case is that the summation of the values of the local RHS-vectors in Ω1 and

Ω2 must be equal to the value of the global FEM-RHS vector in this point. In our approach we place

the full value to one domain (for example to the first one), but the value of the second local RHS

vector in this point is set to be equal to 0. In this case we do not need to calculate the column of K−1
rr

in this point.

We use the same idea when the source point is placed on a corner point. In our approach we set

to non-zero only one out of all the local corner points. Schematically :

Figure 3.9 – Source located in a corner point, domain decomposition and the structure of the local

RHS-vectors in this case.

3.10 Conclusion

Starting from the classical Finite Element formulation we introduced the principal Domain Decom-

position idea as well as some of the Domain Decomposition techniques. The principal methods based

on the Lagrangian theory have been presented here in order to introduce the FETI-DPEM2 method

which distinguishes itself through its excellent convergence results, scalability and the parallel imple-

mentation. In this chapter we introduced a modification of this method, so-called, FETI-DPEM2-full

method, and showed the main difference between these two methods. We considered both the two-

and three- dimensional formulations and have discussed at the end some implementation issues.

As a next step, we are going to study the efficiency of the proposed method and compare the

results obtained with the FEM and the FETI classical methods.
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4.1 Introduction

In the previous chapters, we have considered the mathematical and physical formulations of the

different electromagnetic problems, as well as the numerical algorithms which provide a solution in

an efficient way. In particular, Finite Element Tearing and Interconnecting method seems very robust

when one is dealing with arbitrary mesh partitions. The general principle of FETI methods is to

divide the entire computational domain into non-overlapping subdomains, in order to construct the

Interface problem, and to calculate the solution in each subdomain independently. In the previous

chapter, we proposed an extension of the dual-primal techniques by enforcing a Robin-type boundary

condition (with two Lagrange multipliers) not only on the edges related to the internal interfaces but

also to the ones related to the corner nodes. Indeed, in the methods already proposed (for example

FETI-DPEM2 [43]), only one Lagrange multiplier was applied to these corner nodes, yielding a local

Neumann-type boundary condition.

We will demonstrate in the following chapter that the proposed extension more efficiently simulates

the scattering from two-dimensional objects made of either isotropic or anisotropic materials. We have

focus our attention so far on two-dimensional configurations as it allows easiest comparisons between

different methods. We will test the FETI-DPEM2-full method in order to study :

— Its computational limits

— The influence of the various physical parameters

— The influence of the transmission conditions at the various interfaces

— The influence of Anisotropic media [116] and Perfectly matched layer (PML) [111]

In order to verify the obtained results, during all the calculations, we will compare them with

the results obtained with the classical FEM and FETI-DPEM2 methods with a criteria based on the

L2-norm discrepancy.

We do not pursue the goal of comparing these two methods in terms of convergence results, nor in

time/memory efficiency. Thus, during all of the numerical experiments in the two-dimensional case,

we use the frontal solver Mumps [117] based on the LU decomposition. We also set the classical

parameter αi from the Robin-type boundary condition to be equal to jk0 for all the calculations,

except the ones aiming to study the influence of this parameter.

For the two-dimensional configuration, the domain is discretized thanks to a free unstructured

mesh generator GMSH [118]. This global mesh is inserted into a home-made mesh partitioner which

provides, for each subdomain, the structure of the local mesh as well as the boundaries and the

corner nodes lists between subdomains. This partitioner intensively uses subroutines provided by

METIS [54]. The factorization of each sub-matrices is performed thanks to the direct sparse solver

MUMPS [117,119] and stored during the resolution of the interface problem.
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4.2 Computational limits of the FETI-DPEM2-full method

In a domain filled with air (ε0 = 8.85 · 10−12F ·m−1, µ0 = 4π · 10−7H ·m−1) whose size is [8× 8]m2

two sources are radiating at the same frequency f1 = f2 = 800MHz (Figure 4.1a).

(a) Configuration for the incident field (b) Configuration for the total field

Figure 4.1 – (a) Positions of the sources in the area filled with air and (b) 3 scatterers inside the

domain with different relative permittivities.

As the wavelength is λ ≈ 0.37m, the size of the domain is of≈ 21λ×21λ. For the reasons, previously

discussed in Section (2.2.2) we set the radiation boundary conditions on the external boundary Σ.

The modulus and the phase of the electric field obtained with the FEM classical method are presented

in Figure (4.2).

(a) Modulus (b) Phase (rad)

Figure 4.2 – Maps of the modulus and the phase of the electric field in free space, obtained with the

classical FEM method, for the configuration described in Figure (4.1a).

As a next step, we introduce 3 scatterers with different relative permittivities ε1
r = 1.5, ε2

r =

3.0 and ε3
r = 5.0 (Figure 4.1b). To obtain physically accurate results we have to discretize the domain

with the step l given by Eq. (4.1)

l = λ/ (κ
√
εr) (4.1)
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where λ corresponds to the wavelength and the numerical parameter κ represents the number of points

per wavelength which is normally varying from 5 to 20.

Previously the relative permittivity εr was set equal to 1 everywhere. But since we put scatterers

inside the domain we now need to refine the mesh with respect to the relative permittivity of the

scatterers. Taking this into account we refine the mesh from the previous case and calculate the given

problem with the classical FEM method. The modulus and the phase of the electric field corresponding

to the configuration of Figure (4.1b) and obtained with the FEM method are presented in Figure (4.3).

(a) Modulus (b) Phase (rad)

Figure 4.3 – Maps of the modulus and the phase of the electric field with three scatterers inside the

domain, computed with the classical FEM method, for the configuration described in Figure (4.1b).

The same configuration has also been computed with the FETI-DPEM2-full method using a

partitioning into 5 subdomains.

Comparing these two sets of figures, we can not visually see the difference between the results of

the FEM-classic and the FETI-DPEM2-full methods. In order to compare the obtained results not

only visually, but also in a quantitative way, the following criteria (Eq. 4.2) has been introduced.

L2 − error =
||E1 −E2||2

||E1||2
(4.2)

where E1 is the value of the electric field calculated with the FEM-classic method and E2 is the value

of the electric field calculated with the FETI-DPEM2 classic or the FETI-DPEM2-full methods.

In Table (4.1) the results of comparison with the different partitioning are presented. We can see a

huge difference between results obtained with the FETI-DPEM2 classical and the FETI-DPEM2-full

methods in terms of relative L2-error. We also can conclude from this table, that the results of the

FETI-DPEM2-full method in terms of relative error do not depend on the number of subdomains

or the way the partitioning is performed.Indeed, the partitioning, done with METIS is arbitrary

(Figure 4.5) and does not follow explicitly the geometry of the scatterers.

The logical question now would be : How can we explain such valuable difference in Table (4.1)

between the FETI methods and where does this misfit come from ? Previously, in Section (3.6), we

discussed the principal modifications that we proposed in order to modify the classical FETI method.

It has been shown that the main difference consists in a special treatment of the corner DOFs.
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(a) Modulus (b) Phase (rad)

Figure 4.4 – Maps of the modulus and the phase of the electric field with three scatterers inside,

computed with the FETI-DPEM-full method, for the configuration described in Figure (4.1b).

Ns L2-error L2-error

FETI-DPEM2 classic FETI-DPEM2-full

5 8.2052E-003 2.6031E-012

10 9.3415E-003 2.4195E-012

15 2.0310E-002 5.6008E-012

20 5.0769E-002 7.8799E-012

25 4.6738E-002 1.3348E-011

30 4.8722E-002 1.3182E-011

35 5.4464E-002 1.3785E-011

40 6.6617E-002 2.1932E-011

45 9.7185E-002 1.2690E-011

70 0.1185 4.7477E-011

80 0.1539 1.9958E-011

Table 4.1 – The relative L2-error of the classical and full FETI-DPEM2 methods applied to the

configuration presented in Figure (4.1a) with different partitionings.

In order to answer the two questions above, let us consider the worst case in terms of relative

error, i.e. the partitioning into 80 subdomains (Figure 4.5). The number of the corner points is

around 140 inside the chosen domain decomposition. Thus, we plot at various corner points the values

of the electric field obtained with the FEM classical, FETI-DPEM2 classical and FETI-DPEM2-full

methods (Figure 4.6). From this figure we can see the relatively large difference between the values

obtained with the FETI-DPEM2 classical method as compared to the FEM method, while we almost

do not have any difference between the FETI-DPEM2-full method and the FEM classical method.

This difference leads to errors in the computed Lagrange multipliers λr, and errors on the estimated

field Er. This explains the discrepancy observed between the two methods in Table (4.1).
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Figure 4.5 – Map of the imaginary part of the electric field, showing the way the partitioning has

been performed into Ns = 80 subdomains, for the configuration described in Figure (4.1b).

Figure 4.6 – Value of the electrical field extracted at the various corner points obtained with the

FEM classical, FETI-DPEM2 classical and FETI-DPEM2-full methods.
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4.3 Influence of the physical parameters

The purpose of the second test is to study the influence of the different physical parameters.

For example, from Figure (4.7) we can see the variations of the electric field when various relative

permittivities of the scatterers are used, in particular the difference between electric fields obtained

with the FETI-DPEM2-full method applied for the partitioning into 80 subdomains, when all the

scatterers inside have the permittivity 1.5 and 5.0.

(a) εr = 1.5 (b) εr = 5

Figure 4.7 – Maps of the modulus of the electric field obtained with the FETI-DPEM2-full method.

The physical properties of the scatterers are set to (a) ε1
r = ε2

r = ε3
r = 1.5 and (b) ε1

r = ε2
r = ε3

r = 5.0.

Following the same idea as in Section (4.2), we play with the relative permittivity of the scatterers

(Table 4.3) and compare the relative error of the FETI-DPEM2 classical method with the one of the

FETI-DPEM2-full method.

εr L2-error L2-error

FETI-DPEM2 classic FETI-DPEM2-full

1.5 2.3461E-002 1.9562E-012

2.0 2.9300E-002 2.3079E-012

2.5 2.6335E-002 6.2068E-012

3.0 2.6232E-002 1.0380E-011

3.5 3.4079E-002 8.5070E-011

4.0 3.4153E-002 1.4048E-011

4.5 2.5168E-002 3.9277E-011

5.0 2.5871E-002 1.1491E-011

Table 4.2 – The relative error with various relative permittivities of the scatterers.

From Table (4.3) we can draw two conclusions :

— The results of the FETI-DPEM2 methods do not depend on the choice of the physical para-

meters.

— Like in the previous case presented in Section (4.2), the FETI-DPEM2-full method provides

more precise results in terms of relative L2-error than its classical approach.
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The fact that the results of the FETI-DPEM2-full method do not depend on the choice of the

physical parameters means that this method is able to treat a large range of physical applications

with great confidence.

4.4 Influence of the transmission conditions

The purpose of the third test is to analyse the influence of the mathematical parameter αi which

arises in the Robin-type boundary condition given in Eq. (3.125). For this, we will consider the

following problem : inside the area filled with air as previously shown, there are 2 sources (Figure 4.8a)

which radiate at the same frequency f = 800 MHz.

(a) Configuration for the incident field (b) Configuration for the total field

Figure 4.8 – (a) Positions of the sources in the area filled with air and (b) 2 scatterers inside the

domain with different relative permittivities, as well as a special partitioning of the domain Ω.

As a next step we place 2 scatterers with different values of relative permittivity ε1
r = 1.5, ε2

r =

5 and divide this domain into 4 subdomains such that the boundary between the 2 subdomains

corresponds at the same time to the boundary between two regions with different physical properties.

Such partitioning is presented in Figure (4.8b). The principal geometrical parameters of such domain

decomposition are given in Table (4.4).

Ω1 Ω2 Ω3 Ω4

N4 191 474 102 752 66 553 65 795

N• 95 962 51 601 33 436 33 057

Table 4.3 – Number of triangles N4, number of nodes N• , i.e. number of unknowns in every local

subdomain given by the decomposition in Figure (4.8b).

Using such domain decomposition into 4 subdomains (Figure 4.8b) we calculate the problem with

the aid of the FEM classical and FETI-DPEM2-full methods. The results obtained with these two me-

thods are presented in Figure (4.9). Then, in order to compare the obtained results not only visually,

but also in a quantitative way, we compute the L2 discrepancy (Eq. 4.2) presented in Table (4.4).

When analysing this table, we can say that the special treatment of the corner DOFs in the framework
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(a) Results of FEM (b) Results of FETI

Figure 4.9 – Maps of the modulus of the electric field calculated with (a) the classical FEM and (b)

the FETI-DPEM2-full methods, for the configuration of Figure (4.8b).

L2-error L2-error

FETI-DPEM2 classic FETI-DPEM2-full

1 5.0637E-003 8.1753E-012

2 6.5133E-003 3.6063E-012

3 2.7721E-003 1.7938E-013

4 3.0508E-003 7.9388E-013

Table 4.4 – Relative L2-errors of the FETI-DPEM2 classic and FETI-DPEM2-full methods in each

subdomain for the decomposition into 4 subdomains given in Figure (4.8b).

of the FETI-DPEM2-full method, presented in Section (3.6.4.2), provides us better results in terms

of relative L2-error, as compared to the classical approach.

We have then played with the coefficient αi arising in the Robin-type boundary conditions. The

results are presented in Table (4.5). In this table the value diff corresponds to αi =

√
µirε

i
r+
√
µkrε

k
r

2 jk0

suggested in [120]. From Table (4.5) we can see that the relative error does not depend on the value

of the mathematical parameter αi selected for the Robin-type boundary condition.

We also would like to pay attention on the importance of the arbitrary domain decomposition

(Table 4.4). As you can see, even in such simple two-dimensional case, the equal partitioning in terms

of geometry yields a big difference in terms of local number of unknowns. Note that the number of

unknowns in Ω1 is almost three times bigger than the one in Ω4. This is because a strong scatterer

is located inside Ω1. It means that the LU-decomposition of the problem matrix, related to Ω1, takes

much more time than the one of Ω4, which is not efficient in terms of computational time, nor required

memory.
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αi L2-error L2-error

FETI-DPEM2 classic FETI-DPEM2-full

jk0 4.3500E-002 3.1887E-012

2jk0 5.7462E-002 3.1887E-012

3jk0 5.9161E-002 1.9781E-012

4jk0 6.0614E-002 5.4414E-012

5jk0 8.6018E-002 8.1677E-012√
εrjk0 7.9300E-002 8.3769E-012

diff 5.6018E-002 8.5804E-012

Table 4.5 – Relative L2-error of the FETI-DPEM2 full and classical methods while using different

mathematical parameters αi.

4.5 Anisotropic media

In this Section we are going to analyse the influence of anisotropic media. The aspects of the

anisotropy were considered in Section (2.5) when we talked about PML. In this section we will consider

a more general case, which in 2D E// configuration is given as :

¯̄ε =

0 0 0

0 0 0

0 0 εzz

 , ¯̄µ =

µxx µxy 0

µyx µyy 0

0 0 0

 (4.3)

Considering still the configuration of two sources radiating in free space at the working frequency

of 800 GHz presented in Figure (4.1a), we will suppose now that the area is filled with a material

which has the following properties : εrzz = 1.0, µrxx = 1.0, µryy = 2.0 and µrxy = µryx = 0.

Following the idea of the FETI-DPEM2-full method, the domain has been partitioned into 20

subdomains. The coefficient αi of the Robin-type boundary condition is set again to be equal to jk0.

The simulation performed with the proposed method is presented in Figure (4.10).

(a) Modulus (b) Phase

Figure 4.10 – Maps of the modulus and the phase of the electric field in an anisotropic media with

εrzz = 1.0, µrxx = 1.0, µryy = 2.0 and µrxy = µryx = 0, obtained with the FETI-DPEM2-full method.
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Using the same domain decomposition into 20 subdomains we will consider the same problem,

but now with µrxx = 2.0, µryy = 1.0 and µrxy = µryx = 0 for comparison. The results obtained with the

FETI-DPEM2-full method are presented in Figure (4.11).

(a) Modulus (b) Phase

Figure 4.11 – Maps of the modulus and the phase of the electric field in an anisotropic media with

εrzz = 1.0, µrxx = 2.0, µryy = 1.0 and µrxy = µryx = 0, obtained with the FETI-DPEM2-full method.

To prove the accuracy of these results, we can consider the quantitative comparison (Eq. 4.2) of

the FETI-DPEM2 classic and full methods, as shown in Table (4.6).

L2-error L2-error

FETI-DPEM2 FETI-DPEM2

classic full

Figure (4.10) 3.1836E-002 1.7933E-012

Figure (4.11) 5.5128E-002 5.5661E-012

Table 4.6 – Quality comparison of the FETI-DPEM2 classic and full methods in terms of relative

error L2.

As we can see from this table, the anisotropic media does not have any influence on the FETI

results in terms of relative L2-error when the Interface Problem is solved with a direct method.
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4.6 PML influence

In this section we are going to analyse the influence of a Perfectly Matched Layer (PML) on the

results of the FETI-DPEM2-full method. For this, let us add the PML to the problem considered in

Figure (4.1a). We can schematically present the resulting configuration as shown in Figure (4.12).

Figure 4.12 – Positions of the sources in the area filled with air and bounded with PML

Following the DD-idea, the discretized domain corresponding to the configuration of Figure (4.12)

has been divided into 20 subdomains. The results obtained with the FETI-DPEM2-full method are

presented in Figure (4.13).

(a) (b)

Figure 4.13 – Maps of the modulus and the phase of the electric field in a free space bounded with

PML.

In order to understand the advantage of using PML, the reader should visually compare Fi-

gures (4.2) and (4.13). There exist some differences between the electric fields obtained with and wi-

thout the PML. For the electric field computed with the radiation boundary conditions (Figure 4.2),
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close to the boundaries, there are some tenuous reflections, while these reflections disappear with the

aid of PML (Figure 4.13). We then calculate the exact solution with the help of the Hankel function

H+
0 (k0r) and compare the 3 cases in terms of the phase of the electric field (Figure 4.14).

(a) (b) (c)

Figure 4.14 – Phases of the electric field obtained with the FETI-DPEM2-full method in the domain

bounded with (a) the radiation boundary condition, (b) the PML layer, compared to (c) the exact

solution obtained with the aid of the Hankel function H+
0 (k0r).

From this figure we can clearly see that the solution obtained in the domain bounded with PML is clo-

ser to the exact one, than the solution obtained in the domain bounded with the radiation boundary

condition.

In order to compare the obtained results not only visually, but in a quantitative sense as well,

we calculate this problem with the FETI-DPEM2 classical method and perform the comparison of

Eq. (4.2) with the method FEM.

L2-error L2-error

PML FETI-DPEM2 FETI-DPEM2

classic full

Without 3.7902E-003 2.1513E-012

With 2.2056E-002 3.6919E-010

Table 4.7 – Quality comparison of the FETI-DPEM2 classic and full methods in terms of relative

error L2.

As we can see from Table (4.7), we almost do not have any influence of the PML area to the

numerical results of FETI method when the interface problem is solved with a direct method.
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4.7 Scattered field computation

Considering still the problem described previously in Section (4.6), we now introduce 3 scatterers

described in the configuration of Figure (4.1b) in the domain filled with air and bounded with the

PML. Schematically this configuration is presented in Figure (4.15).

Figure 4.15 – Schematic configuration of the domain which is bounded with PML and containing

two sources with 3 scatterers inside.

Following the principal Domain Decomposition idea, we divide the domain Ω into 16 subdomains

without any geometrical conditions on the internal boundaries between sudbomains, as shown in

Figure (4.16).

Figure 4.16 – Map of the schematic domain, showing the way the partitioning has been performed.
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According to the scattered field formulation described in Section (2.2.1), the field Esc can be

calculated in two ways. To start with, we can find the scattered field as a subtraction of the total

field with the incident field. Note that the latter has been calculated previously in Section (4.6), while

the former can be calculated with the FETI-DPEM2-full method, using the domain decomposition

presented above in Figure (4.16). The modulus and the phase of Etot obtained with the proposed

method are presented in Figure (4.17).

(a) Modulus (b) Phase

Figure 4.17 – Maps of the modulus and the phase of the total field Etot calculated with the help of

the FETI-DPEM2-full method using a domain decomposition into 16 subdomains.

By subtracting the incident field E inc from the total field Etot we obtain the scattered field Esc

which is presented in Figure (4.18) in terms of modulus and phase.

(a) Modulus (b) Phase

Figure 4.18 – Maps of the modulus and the phase of the scattered field obtained after subtracting

the incident field from the total field.



60 Chapitre 4. 2D Forward Problems

In order to verify the obtained results we provide the quantitative comparison of the FEM and

FETI methods (Table 4.8) as in Eq. (4.2).

L2-error L2-error

FETI-DPEM2 FETI-DPEM2

classic full

E inc 2.6464E-002 1.0621E-012

Etot 6.2947E-002 4.4222E-011

Esc 4.4706E-002 2.2642E-011

Table 4.8 – Quantitative comparison of the FETI-DPEM2 classical and full methods in terms of

relative L2-error for the scattered field computation.

According to the second approach presented in Section (2.2.1), we have to know a-priori the

incident field E inc in order to solve Eq. (2.5) whose rhs J sc contains this term. We can do it in two

ways. The incident field E inc can be found as :

1/ The exact solution based on the Hankel function H+
0 (k0r)

2/ The solution of the Helmholtz equation (2.2)

Note that we have to know the incident field not everywhere in the domain Ω, but only in the places

where the scatterers are located (Section 2.2.1).

To start with, we obtain the incident field as the value of the Hankel function H+
0 (k0r) applied for

the configuration of Figure (4.12) inside the scatterers. The modulus and the phase of such incident

field are given in Figure (4.19).

(a) Modulus (b) Phase

Figure 4.19 – Maps of the modulus and the phase of the incident field in a free space obtained with

the help of Hankel function H+
0 (k0r) applied for the configuration of Figure (4.12).

Using this incident field, we then calculate the Scattering problem (2.5) with the help of the

FETI-DPEM2-full method with the domain decomposition into 16 subdomains presented above in

Figure (4.16). The obtained results are almost identical and visually are indistinguishable as compared

to the results obtained with the first approach (Figure 4.18).
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We then use a previous solution E inc (Figure 4.13) obtained with the FETI-DPEM2-full method

in order to complete the rhs J sc of Eq. (2.5). As previously, the obtained results visually are also very

close to those of Figure (4.18) and are almost indistinguishable. The qualitative comparison of both

approaches is given in Table (4.9).

L2-error L2-error

FETI-DPEM2 FETI-DPEM2

classic full

Hankel 4.0017E-003 7.8773E-013

Helmholtz 9.0057E-002 8.7216E-012

Table 4.9 – Quality comparison of the FETI-DPEM2 classical and full methods in terms of relative

L2 error.

We then compare the two solutions of the proposed method obtained with Hankel and Helmholtz

approaches in terms of relative L2-error which is equal to 7.0289E-002. Such huge error can be ex-

plained by the same-order error existing between the H+
0 (k0r) solution and the regular incident field

FEM solution, which is equal to 6.0384E-002. As the two incident fields are different, it is thus normal

that the two resulting scattered fields are also different.

4.8 Conclusion

The two-dimensional numerical results presented here have shown that the new treatment of

the corner points enables to provide more accurate results with respect to the classical FETI-DPEM2

method. We have been able to partition and handle internal interfaces wich are not necessarily straight

lines without major drawback in terms of computational accuracy.

The Interface Problem corresponding to both the FETI-DPEM2 classical and full methods was

solved with the direct method based on the LU -decomposition. We have seen in this chapter that

there is no restriction for taking into account scatterers which are made of heterogeneous structures or

even anisotropic materials. Showing the comparison of the results obtained for different values of the

mathematical parameter αi, one can be sure that by playing with this parameter we will not degrade

the final solution of the method. This is an important conclusion, since we are going to apply iterative

methods in the following chapter in order to solve the Interface Problem.
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5.1 Introduction

Finally, we arrive at the last chapter related to the Direct part, which is dedicated to solving

three-dimensional electromagnetic problems. This type of problem is strongly dimension dependent

and if in 2D the use of direct solvers like [117, 119, 121] is obvious (a typical scattering problem with

106 unknowns is solved in few dozen of seconds on a classical PC ), the resolution of the linear system

arising from the discretization of 3D configurations with a direct solver is much more tricky, time and

memory consuming. The proposed FETI-DPEM2-full method is applied here in order to make this

process faster and less memory dependent.

In the previous chapter, a series of numerical tests have shown the efficiency of the proposed

method applied to two-dimensional electromagnetic simulations. In this chapter, we follow the same

ideas applied this time to a 3D configuration and for the vectorial Helmholtz equation. We analyse

a 3D free-space scattering problem, which leads us to implement a scattered field formulation within

a domain truncated by Perfectly Matched Layers (PML) [87,111]. We do not thoroughly explore the

numerical efficiency of the FETI-DPEM2-full method as we have previously done in 2D, but prefer

to focus our attention on the convergence behaviour of the iterative algorithm which is used to solve

the interface problem. Indeed, iterative procedures appear unavoidable when dealing with large size

problems. We show in this chapter that the convergence of the iterative algorithm is strongly affected

by the presence of anisotropic materials. We also show how the method can be strongly accelerated by

following the Evanescent Modes Damping Algorithm (EMDA) [106] which originally was proposed as

a more accurate approximation of the Dirichlet-to-Neumann (DtN) operator for the non-overlapping

Schwarz DDM [106], instead of classical Sommerfield boundary conditions between adjacent domains.

After discussing the efficiency of the FETI-DPEM2-full method, we will provide various numerical

tests where we will present the obtained electrical fields visually (for example in terms of its imaginary

part). This will allow us to perform primary tests in order to verify the obtained results. We will also

compare the results of simulations with scattered fields measurements [80] in order to verify the

effectiveness of the proposed method in practical situations.
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5.2 Benchmark configuration

In this section, we compare the field computed thanks to the various approaches in the framework

of a 3D scattering configuration. We assume that a domain Ω is filled with air (Figure 5.1a). The

operating frequency is 1 GHz. The domain is a cube whose size is [0.6×0.6×0.6]m3 that corresponds to

the size 2λ×2λ×2λ. A dipole is located at the position [0.05, 0.05, 0.0]m and oriented as [1.0, 1.0, 0.0].

The domain is surrounded by a cartesian uni-axial Perfectly Matched Layer (PML) whose width is

0.1m ≈ 0.33λ. The mesh size corresponds to 20 points per wavelength.

In this work we are going to describe the three-dimensional mesh obtained after finite-element

discretisation by the following set of parameters (Table 5.1)

κ Np Nt Ne

20 43 189 245 174 298 771

Table 5.1 – Mesh obtained after finite-element discretisation of the problem presented in Fi-

gure (5.1a) consisting of Np points, Nt tetrahedras and Ne edges, which corresponds to κ (Eq. 4.1)

points per wavelength.

Next, we position two spherical scatterers with radiuses R1 = R2 = 0.04 m = 0.13 λ inside the

domain Ω. The centers of the spheres are positioned at the points (−R1, −R1, 0) and (R2, R2, 0).

A schematic map of the configuration is given in Figure (5.1b) All the scatterers are assumed to be

non-magnetic (¯̄µr = I), and they present a relative permittivity respectively equal to ¯̄ε1
r = 2.85 · I

and ¯̄ε2
r = 5.0 ·I. After refining the mesh using Eq. (4.1) we obtain the following domain discretisation

(Table 5.2) of the problem presented in Figure (5.1b)

κ Np Nt Ne

20 44 308 249 031 302 561

Table 5.2 – Mesh obtained after finite-element discretisation of the problem whose configuration is

given in Figure (5.1b).

(a) Incident field configuration (b) Total field configuration

Figure 5.1 – Position of (a) the dipole and (b) two spherical scatterers in the area filled with air.

This configuration corresponds to (a) the incident and (b) the total field.
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5.2.1 Fields distributions

Let us calculate at first the incident field, i.e. let us solve the problem presented in Figure (5.1a).

Following the idea of the FETI-DPEM2-full method, we divide the domain Ω into 10 non-overlapping

subdomains without any geometrical constraints and conditions on the boundaries between them

(Figure 5.2) using a greedly-like algorithm provided by an automatic meshing partition software

METIS [54].

Figure 5.2 – Schematic map of the domain, showing the way the partitioning has been performed

for Ns = 10.

Throughout all the three-dimensional computations we are going to describe the resulting domain

decomposition by the following set of parameters :

Ns Nλr NEc Nλc

10 33 739 463 1 379

Table 5.3 – Number of Lagrange multipliers λr associated to the Interface-edges (Nλr), number

of corner edges (NEc) and number of Lagrange multipliers λc associated to the corner edges (Nλc)

obtained after a domain partitioning of the problem presented in Figure (5.1a) into Ns subdomains.

As in the 2D case, we now use the frontal solver MUMPS based on the LU-decomposition [117]

to solve the full Interface Problem (3.115). Following this idea we can control geometrical errors and

guarantee the correct solution by comparing it with the solution of the classical FEM method. The

imaginary parts of the incident field obtained with the classical FEM method and the FETI-DPEM2-

full method are presented in Figures (5.3a) and (5.4a) respectively.

We then play with the number of subdomains (Ns = 5, 10, 15, ...) and present the results obtained

with the FETI-DPEM2-full method in terms of the relative L2-error (Table 5.4).

As we can see from Table (5.4) the relative difference is very small, so there is no reason to show the

fields obtained with the different domain decomposition, because we will not be able to distinguish

the results visually.

We now calculate the electromagnetic problem corresponding to the configuration of Figure (5.1b)

in order to obtain the total field. First of all we use the classical FEM method for this aim. Then,
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Ns 5 10 15

L2-error 7.1134E-011 3.9787E-011 4.4427E-011

Table 5.4 – Relative L2-error of FETI-DPEM2-full method for the incident field when different

partitioning (Ns = 5, 10, 15) are used.

following the Domain Decomposition idea, we divide the given domain into 10 subdomains by using

a similar partitioning as for the incident field (Figure 5.2). The main parameters of the domain

decomposition for this problem are presented in Table (5.5)

Ns Nλr NEc Nλc

10 35 586 495 1 418

Table 5.5 – Principal domain decomposition parameters of the problem corresponding to the total

field presented in Section (5.2) given for a partitioning into Ns = 10 subdomains.

First of all, we compare the results obtained with the FETI-DPEM2-full and FEM classical me-

thods visually, in terms of the imaginary part of the total field (Figures 5.3b and 5.4b). Like previously,

we can not visually see the difference between these two results. Then, in order to give some quan-

titative criteria, we play with the number of subdomains and calculate the relative L2-error between

FETI and FEM methods. The results are listed in Table (5.6).

Ns 5 10 15

L2-error 8.1993E-012 2.9217E-011 9.5612E-012

Table 5.6 – Relative L2-error of the FETI-DPEM2-full method for the total field when different

partitioning (Ns = 5, 10, 15) are used.

Finally, we present the results of the scattered-field formulation. Using the same finite-element

discretisation (Table 5.2) and domain decomposition into 10 subdomains (Table 5.5) as for the total

field configuration, we solve Eq. (2.13) using the classical FEM method and the method FETI-DPEM2-

full. It must be noticed here that we have used the scattered field formulation even if the source is

enclosed in the computational domain. The results of the imaginary part of the scattered field obtained

with the FEM classical and FETI-DPEM2-full methods are presented in Figures (5.3c) and (5.4c)

respectively. From the comparison of these figures, we conclude that the results are in good agreement.

This also can be proved by comparing these results in terms of the relative L2-error between FETI

and FEM methods (Table 5.7).

Ns 5 10 15

L2-error 1.7938E-012 9.9886E-011 3.6063E-011

Table 5.7 – Relative L2-error of FETI-DPEM2-full method for the scattered field when different

partitioning (Ns = 5, 10, 15) are used.
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(a) Incident field E inc (b) Total field Etot (c) Scattered field Esc

Figure 5.3 – Imaginary part in the plane z = 0 of the (a) incident, (b) total and (c) scattered fields

calculated with the FEM classical method.

(a) incident field E inc (b) Total field Etot (c) Scattered field Esc

Figure 5.4 – Imaginary part in the plane z = 0 of the (a) incident, (b) total and (c) scattered fields

calculated with the FETI-DPEM2-full method. The investigation domain has been divided into 10

subdomains.

5.2.2 Implementation difficulties

All the FETI methods with arbitrary mesh partition become very complex in terms of 3D geometry.

In particular, it is very difficult to control the construction of the geometrical matrices presented in

Section (3.6.4). Indeed, there are a huge number of geometrical quantities that must be linked properly

and/or extracted by means of the matrices B, D, T, ... Moreover, the normals at the interfaces as

well as the connection with the neighbouring domain must be handled with care. A lot of effort has

thus been spent in order to verify the construction of such matrices and to control step by step the

implementation of the FETI method. In order to verify the obtained results, we have used three

approaches :

— Tests based on the use of analytical functions (Section 3.8.2)

— Tests based on the resolution of physical problems (Section 3.8.3)

— Comparisons with the classical FEM method
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5.3 Iterative methods

As it was already noticed, all the results in Section (5.2.1) are obtained with the help of the frontal

solver MUMPS based on the LU-decomposition. Unfortunately, the direct methods for the Interface

Problem become very expensive in terms of required memory and computational time, especially for

the large-dimension systems.

As an example, we can consider the profile of the Full Interface Problem (Figure 5.5a) which

corresponds to the scattered field configuration from Section (5.2), where the domain Ω has been

divided into 5 subdomains. In order to solve the Interface Problem we perform the LU-decomposition

of this matrix. The profile of L and U matrices are given in Figure (5.5b)

(a) Before LU-decomposition

I’m dansing

(b) Before LU-decomposition

Figure 5.5 – Profile of (a) the Full Interface Problem (Eq. 3.115) and (b) profile of its LU-

decomposition presented as one entire matrix. Colored points denote non-zero elements.

It is obvious that these 2 matrices are definitely not sparse, requiring therefore a large amount of

memory storage. To avoid these problems we have to use iterative methods.

5.3.1 Krylov-subspace methods

In our work we have considered two iterative methods such as the Generalized Minimal Resi-

dual Method (GMRES) and the Biconjugate Gradient Stabilized Method (BICGSTAB). These two

methods are based on Krylov subspaces [23], i.e. subspaces of the form

Km(A, v) ≡ span{v,Av,A2v, ..., Am−1v} (5.1)

where A is a matrix arising in the system of linear equations Ax = b to solve, v is a vector of the space

of rational numbers. The dimension of the subspace of approximants m increases by one at each step

of the approximation process.

The GMRES method is derived from Arnoldi process [122] for constructing an L2-orthogonal

basis of Krylov subspaces. In [18] it was shown that the method is theoretically equivalent to the

Generalized Conjugate Residual (GCR) method and to ORTHODIR [23]. The implementation of this

method is similar to the Full Orthogonalization Method.

In [48, 96, 97] the Interface Problem arising from the classical FETI-DPEM2 method is solved

with the help of the BICGSTAB method. This algorithm is a variation of the conjugate gradient

squared (CGS) method, which, in cases of irregular convergence, may lead to substantial build-up

of rounding errors, or possible overflow. BICGSTAB was developed to remedy this difficulty. This

method produces iterations whose residual vectors r′j are of the form
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r′j = %j(A)ςj(A)r0 (5.2)

in which r0 is a initial residual, ςj is the residual polynomial associated with the BCG algorithm and

%j is a new polynomial defined recursively at each step with the goal of stabilizing the convergence

behavior of the algorithm.

Looking ahead, we have to say that from a numerical point of view, the BICGSTAB method is

almost not suitable to solve the electromagnetic problems with PML area. In all the test cases that

we have performed it never converged and always broke down. That is why in this work we decided

to use the GMRES method, because, as it was shown in [18], it can not break down and therefore is

more stable.

Considering still the system of linear equations in the general form Ax = b, we recall that a

matrix A is called positive definite if its symmetric part (A+A∗)/2 is Symmetric Positive Definite

matrix. This is equivalent to the property that 〈Ax, x〉 > 0 for all nonzero real vectors x. Also we

would like to remind that all the eigenvalues of every symmetric matrix are always real.

The convergence of the iterative methods based on the Krylov-subspace highly depends on the

definition of the matrix A. Indeed, the methods based on this subspace stagnate or may not converge

(it depends on the method) if the symmetric part of the matrix is not positive definite [18, 23]. This

property is important for us, as we are going to apply the GMRES method which is parts of the

Krylov-subspace methods.

5.3.2 Applying the Iterative method to the Interface Problem

In this section we are going to use the GMRES method to solve the full Interface Problem arising

from the scattered problem described in Section (5.2). Let us now set some parameters for the GMRES

method (Eq. 5.3)

m = 10

η = 5 · 10−3
(5.3)

where m is the size of the Krylov subspace and η is the stopping criterion. These parameters of the

GMRES method will be called normal and will be used in the future during all the calculations.

For the domain decomposition into Ns = 10 subdomains we plot the convergence results of the full

Interface Problem (Figure 5.6).

Figure 5.6 – (—) Convergence of the GMRES method without preconditioning for solving the full

Interface Problem (Ns = 10) and (- -) the required relative error of 5 · 10−3.
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From Figure (5.6) we can conclude that the GMRES method for the full Interface Problem stag-

nates at some level and will hardly achieve the required relative error (in our case 5.E-003). It is

worth mentioning that for the different domain decomposition into Ns = 5..15 subdomains, we have

not been able to calculate this Scattering problem when the full Interface Problem was solved, i.e. the

GMRES method has always stagnated. In the following sections we will consider the possible sources

of problems and how to overcome these issues.

5.3.3 Spectrum behavior

5.3.3.1 Bad conditioning issue

This problem happens very rarely, but anyway deserves to be considered and discussed. It may

happen that the local matrices Ki are very badly conditioned. In this case, if the relative error after

inverting the matrix Ki is 10−5 (for example), at the end of the resolution of the Interface Problem

(even with a direct method), we will not obtain a relative error for the FETI-method with respect to

the method FEM better than 10−5. It is totally normal and, again, it does not happen very often.

5.3.3.2 Eigenvalues issue

As a rule, the system of linear equations which we call the Interface Problem is indefinite [43,97].

Sometimes it leads to problems, due to the reasons described at the end of Section (5.3.1).

In this section we will study the properties of the Interface Problem. Note, that some research

work has been performed in order to study the definition of the matrix corresponding to the Interface

Problem [44, 45, 96]. In this PhD thesis we stick with the classical approach given by Y. Saad, M.H.

Schultz in 1986 [18, 23]. According to this approach, we need to calculate the eigenvalues of the

symmetric part of the matrix corresponding to the Interface Problem. It is the only way that we are

going to use in order to study the definition of the Interface Problem in this PhD thesis.

For the Scattering problem described in Section (5.2) with the domain decomposition into Ns =

3, 5, 10 subdomains we calculate at first the vector of eigenvalues for the full Interface Problem

(3.115). The results are presented in Figure (5.7).

Figure 5.7 – Eigenvalues of the symmetric part of the full Interface Problem with PML when different

partitioning (Ns = 3, 5, 10) are used.

From Figure (5.7) we can conclude that the eigenvalues of the full Interface Problem have a

regular, almost anti-symmetrical structure. As you can see, most of the eigenvalues are positive, but

unfortunately not all of them.
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Considering still the Scattering problem from Section (5.2), we then have studied the eigenvalues

corresponding to the reduced Interface Problem (3.116). The eigenvalues behaviour is presented in

Figure (5.8). From this figure we can see, that the number of negative eigenvalues is almost the same

Figure 5.8 – The eigenvalues of the symmetrical part of (—) the full (Eq. 3.115) and (- - -) the

reduced Interface Problem (Eq. 3.116) on the common scaled axis X = [0,1].

for the full and reduced Interface problems. Nevertheless, the reduced problem is better conditioned

than the full one, which correlates with [39,41,43,113]. In consequence of such results we would like to

note that, from this moment, we are going to consider only the reduced Interface Problem.

In order to study the efficiency of the reduced IP, we now play with different domain decompositions.

The results obtained with the FETI-DPEM2-full method applied to Ns = 5, 10, 15 subdomains are

given in Table (5.8).

L2-error L2-error
Number of

Ns FETI-DPEM2-full FETI-DPEM2-full
iterations

+ MUMPS + GMRES

5 1.7938E-012 2.0807E-002 48

10 9.9886E-011 1.9119E-002 308

15 3.6063E-011 3.2492E-002 899

Table 5.8 – Results of calculations using the FETI-DPEM2-full method with different partitioning

(Ns = 5, 10, 15) when the reduced Interface Problem is solved.

Figure 5.9 – Convergence of the GMRES method without preconditioning for solving the reduced

Interface Problem when different partitioning (Ns = 5, 10, 15) are used.
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Note that, by moving from the full Interface Problem to the reduced one, we have been able to

calculate the Scattering Problem described in Section (5.2) with the FETI-DPEM2-full method thanks

to the GMRES method. Nevertheless, as you can see from Table (5.8) when using this iterative method,

the number of iterations depends highly on the number of subdomains. The convergence behavior is

presented in Figure (5.9).

From Figure (5.9) we can conclude that for the problem at hand, the GMRES method can stagnate

and will never reach the level even of 1.E-4 in the case of Ns > 10 . A way to overcome this problem

will be proposed later on, in Section (5.3.5.1).

5.3.4 PML-layer issue

After performing various numerical tests, it appeared that the PML area had some influence on

the convergence process of the GMRES method. This issue was not encountered in 2D as we only

employed there a direct solver.

5.3.5 PML influence

To understand the influence of the PML, we will consider the Scattering problem described in Sec-

tion (5.2) with a partitioning into Ns = 50 subdomains. The main domain decomposition parameters

corresponding to such partitioning are given in Table (5.9)

Ns Nλr NEc Nλc

50 81 956 2 760 7 838

Table 5.9 – Principal domain decomposition parameters of the Scattering problem presented in

Section (5.2) for a partitioning into Ns = 50 subdomains.

To solve the reduced Interface Problem we use the GMRES method with normal parameters given

by Eq. (5.3). The main results related to this problem are presented in Table (5.10).

L2-error L2-error Number

Ns FETI-DPEM2f FETI-DPEM2f of

+ MuMPs + GMRES iterations

50 5.5514E-010 9.1813E-002 1275

Table 5.10 – Results of calculations with the FETI-DPEM2-full method using a partitioning into

Ns = 50 subdomains.

For this problem we calculated also the relative L2-error in each subdomain. Some of them are

presented in Table (5.11).

Ωi 27 28 29 31 41

L2-error 0.5085 0.2435 0.3509 0.5687 0.2995

Table 5.11 – Relative L2-error within some subdomains.

As you can see from Table (5.11), sometimes this error is really huge. Such results seem a little bit

surprising for us, because the relative error between the FEM-solution and FETI-one is 9.1813E-002

(Table 5.10). Moreover, visually we hardly can see the difference between these two solutions. Then
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we studied more precisely these 5 ”problem-subdomains”, whose numbers are given in Table (5.11),

and it turned out that all of them are subdomains containing a PML area.

To explain such behaviour we are going to obtain the exact values of the vectors λr, Ec and λc.

By exact values, we understand the solution of the same Scattering problem with the FETI-DPEM2-

full method, whose Interface Problem is solved with a direct method (LU-decomposition of MUMPS).

Now we select the subdomain with the largest error (the subdomain Ω31, see Table 5.11) and trace

its Lagrange multipliers λr (Figure 5.10).

Figure 5.10 – Real part of the Lagrange multipliers λ in the domain Ω31. The black lines denote the

Lagrange multipliers which correspond to a PML region. The regions denoted with (−·) and (−−)

are going to be considered more precisely in Figures (5.11) and (5.12) respectively.

The black vertical lines denote the Lagrange multipliers which are in the zone of the PML. As

you can see, almost all this subdomain is positioned into the PML. Now we are going to perform few

GMRES iterations and to look precisely the convergence behaviour of the Lagrange multipliers which

are located in the area with PML and without PML.

To start with, we plot in Figure (5.11) the Lagrange multipliers during the iteration process in

the region without PML (which corresponds to the square (−·) in Figure 5.10).

Figure 5.11 – Real part of some Lagrange multipliers λ in Ω31, which are not inside a PML. (—) Exact

values, (- - -) Computed after 10 GMRES iterations.

From this figure we can conclude that even after 10 iterations we obtain a perfect convergence in the

area without PML, as the iterative solution in this figure totally corresponds to the exact one.

Unfortunately, we can not say the same about the Lagrange multipliers which are inside the zone

of the PML. Even after 100 iterations (Figure 5.12) for this Scattering problem we will not obtain a

convergence as good as the one we obtained for the previous case without PML.
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Figure 5.12 – Real part of some Lagrange multipliers λ in Ω31, which are inside a PML. (—) Exact

values, (- - -) Computed after 10 to 100 GMRES iterations.

As we can see from Figure (5.12), at some points, there is even no convergence at all. That is the

reason why the iterative method can stagnate at some level [18,23].

5.3.5.1 The EMDA-algorithm

Considering still the Scattering Problem described previously, we will now try to decrease the

number of iterations obtained in Sections (5.3.3.2) and (5.3.5). To do so, we need to reconsider the

internal boundary conditions, as it is known to impact the convergence of the domain decomposition

algorithms. When α is simply set to jk0 [123], the approximation of the Dirichlet-to-Neumann operator

in the Robin-type boundary conditions given by Eq. (3.140) does not treat efficiently the evanescent

modes [45]. The Evanescent Modes Damping algorithm (EMDA) proposed in [106] enables to extend

the transmission boundary conditions to these evanescent modes. We only consider here the EMDA

case where α = jk0(1+jχ), χ being a real-valued positive coefficient. The optimal value for χ depends

in particular from the mean curvature on the interface [46]. As the partitioning is performed in an

irregular fashion, we simply set χ = 0.5 in the following computations as it is favorized in [46].

The electromagnetic problems corresponding to the total and scattered field (Section 5.2) are then

computed for the domain decomposition into Ns = 15 subdomains using the EMDA approach. The

convergence results for these problems are presented in Figure (5.13).

(a) Scattered field (b) Total field

Figure 5.13 – Number of iterations required for achieving a relative error of 5.E-3 when computing

the scattered and the total fields using (—) the classic approach and (- - -) the EMDA approach for

the reduced Interface Problem.

From this figure we observe a very good progress in terms of the number of iterations required to

reach the desired stopping criterion for both the total and the scattered field computation.

The same Scattering problem is computed for different partitioning (Ns = 15 to 50 subdomains)

and the associated L2-norm error is presented in Table (5.12). When comparing this table with

Tables (5.8) and (5.10), it is obvious that the number of iterations has been drastically reduced and

no stagnation effect is now visible.
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L2-error L2-error
Number of

Ns FETI-DPEM2-full FETI-DPEM2-full
iterations

+ MUMPS + GMRES

15 3.6063E-011 7.9494E-002 48

20 1.2913E-010 7.7824E-002 46

30 8.5017E-011 6.7407E-002 38

40 2.7154E-010 8.1373E-002 175

50 5.5514E-010 8.3392E-002 118

Table 5.12 – Results of calculations obtained with the FETI-DPEM2-full method for various parti-

tioning when the reduced Interface Problem is solved with the EMDA approach.

5.3.5.2 Trying without PML

As we have already seen in Section (4.6), the PML helps us to avoid the reflections from the

external boundaries which arise when the radiation boundary condition (Eq. 2.17) is set. In our work

the quality of the results that we obtain even without PML is fully sufficient when comparing them

with measurements. That is why, for the solution of real physical problems (Section 5.5) we set the

radiation boundary condition on the external boundary. It is, in our opinion, the most effective tool

for obtaining a good convergence when solving a physical problem.

Considering still the Scattering problem described in Section (5.2), we now replace the PML layer

with the radiation boundary condition. For this test case, we use both α = jk0 and the algorithm

EMDA with α = jk0(1 + j 0.5). We now compare the simulated results of the problem with PML

(Table 4.4) and without (Table 5.13) for different domain decompositions, but for the same GMRES

normal parameters (Eq. 5.3).

L2-error L2-error Number of Number of Number of

Ns with without iterations iterations iterations

PML PML with PML without PML without PML

jk0 jk0(1 + j 0.5)

20 7.7824E-002 5.5654E-003 46 7 10

30 6.7407E-002 7.1044E-003 38 7 9

40 8.1373E-002 9.0133E-003 175 10 11

Table 5.13 – Results obtained with and without PML when different partitioning (Ns = 20, 30, 40)

are used.

From Table (5.13) we can clearly see the advantage of replacing the PML region by the radiation

boundary condition. Although, we would like to note that the EMDA approach was created in order to

damp the evanescent modes. So this method might not improve the results of the propagating modes.

That is what we see in Table (5.13), where the classical coefficient jk0 provided better results than the

EMDA. Thus, we apply this EMDA approach only for problems containing anisotropic media and, in

particular, PML.
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5.4 Efficiency of the FETI-DPEM2-full method

As an edge-element implementation of the FETI-DP method [39] for the electromagnetic analysis,

the FETI-DPEM is a method with a strong mathematical and computational background. That is

why before applying the FETI-DPEM method to real physical problems we would like to consider its

efficient numerical realisation. For this we will detail the algorithm which we use in this work. It will

give us an idea of the memory usage and the computational time required for each calculation step.

5.4.1 Numerical algorithm

Following the Domain Decomposition idea, the computational domain Ω is divided into Ns non-

overlapping subdomains automatically thanks to an automatic meshing partition software METIS [54],

as it has been done previously. In general, the subdomain interfaces resulting from such a decompo-

sition typically have irregular shapes without any conditions on the boundaries between subdomains.

Thus, the creation of the Boolean projection matrices presented in Section (3.6.3) must be performed

very carefully. To control its creation we already discussed some techniques in Section (3.8).

The implementation of the FETI-DPEM2-full method, as in the classical FETI-DPEM2, consists

of three major steps [39,97]

1. Preprocessing step

2. Solution of the reduced Interface problem (Eq. 3.116)

3. Calculation of the electric field in every subdomain

In the preprocessing step, each subdomain problem is processed, where the subdomain finite

element matrices Ki
rr,K

i
rc,K

i
cr,K

i
cc and M i

rr,M
i
rc,M

i
cr,M

i
cc are assembled. The global corner DOFs

related system F̂EcEc is fully assembled over all the subdomains. Such a corner system has the size

N2
c that makes it relatively small due to the small number of corner DOFs. Hence, a local copy

of its factorisation in the sparse format is kept during all the computation [97]. In addition, the

sparse matrices Ki
rr are factorized with the frontal solver Mumps [117] for all the subdomains, whose

factorizations are stored and will be used repeatedly throughout all the computations. Once it is done,

we calculate the Right-hand side vector d̂λr whose size is Nλr .

The preprocessing step is followed by the iterative solution of the reduced Interface problem

(Eq. 3.116). The idea of the IP solution is similar to the one that was presented in [97] for the classi-

cal FETI method. In this work we focus on :

1. The extension of this idea to the proposed FETI-DPEM2-full method

2. The detailed explanation of the Matrix-vector multiplication process throughout the iterative

resolution of the reduced Interface problem

Once the Interface problem is solved, as well as the global corner DOFs related system (Eq. 3.117),

the fields in the subdomains can be recovered independently by using the computed boundary condi-

tions at the subdomain interfaces with the help of Eq. (3.87).

5.4.1.1 Matrix-vector multiplication

As we are interested in using this method for real physical problems, we are going to talk about

the Multi-source formulation at once. In this PhD thesis, we base our work on the extension of the

FETI-H method proposed in [124], which was designed for the solution of acoustic scattering problems

with multiple right-hand sides. This algorithm is based on the step-by-step solution of the Interface

Problem for each rhs vector.



78 Chapitre 5. 3D Forward Problems

When using an iterative method to solve the Interface problem (Eq. 3.116) the multiplication (5.4)

needs to be evaluated at the kth iteration.

δk =

(
Fλrλr + FλrEc F̂

−1

EcEc
F̂Ecλr

)
λkr (5.4)

In this work we consider the terms λkr and δk as vectors of size Nλr , even if we deal with a Multi-

source formulation. It is worth mentioning that we could treat them as matrices, but it would not be

effective in terms of memory usage.

Unlike the results presented in [97] we use only two cycles over all the subdomains to calculate

the matrix-vector multiplication δk. In full-form, we can rewrite it as

δk =

[
Fλrλr + FλrEc F̂

−1

EcEc

(
FEcλc F

−1

λcλc
Fλcλr − FEcλr

)]
λkr (5.5)

The multiplication presented in Eq. (5.5) can be accomplished in four steps :

Step 1. Calculate

δk = Fλrλr λ
k
r

zk1 = Fλcλr λ
k
r

zk2 = FEcλr λ
k
r

Step 1. in one cycle over all the subdomains.

Step 1. And then zk = FEcλc F
−1

λcλc
zk1 − zk2

Step 2. Solve F̂EcEcy
k = zk for yk

Step 3. Calculate xk = FλrEc y
k

Step 4. Calculate δk = δk + xk

To start with, we will explain how we perform Step 1 in only one cycle over all the subdomains.

For this, we are going to consider properly one more time the matrices Fλrλr ,Fλcλr and FEcλr which

are defined as follows :

Fλrλr = I +

Ns∑
i=1

QiT

λr

∑
j∈neighbor(i)

Ti→j
T

r

(
Tj→ir −Wi↔j

rr Tj→ir DjrKj−1

rr Dj
T

r

)
Qj
λr

(5.6)

Fλcλr =

NI∑
n=1

QnT

λc

(
Wi↔j

cr Tj→ir DjrKj−1

rr Dj
T

r

)
Qj
λr

(5.7)

FEcλr =

Ns∑
i=1

QiT

Ec

(
Ki
crK

i−1

rr Di
T

r

)
Qi
λr (5.8)

At first, we would like to note that the inversion of the local matrix Ki
rr is very expensive in

terms of memory and time of computations, even when only some of the columns are required, as for

example in DirKi−1

rr DiTr . That is why we do not attempt to form the matrix-vector product x = Ki−1

rr b

by computing Ki−1

rr at first and then perform some multiplications. Instead, we solve the system of

linear equations Ki
rrx = b for a given x, because it is more efficient and more accurate [125].

Also as we can see from the matrices definition (Eq. 5.6 - 5.8), for every local subdomain Ωi the

term Ki−1

rr DiTr Qi
λr

is common. That leads us to the idea of computing this term only one time for

every subdomain. Taking this into account we perform the multiplication of the matrices Fλrλr ,Fλcλr
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and FEcλr to the matrix λkr in three steps :

For i = 1..Ns a

Step 1a. Calculate ai = DiTr Qi
λr
λkr

Step 1b. Solve Ki
rr b

i = ai in order to find the term bi

Step 1c. Make the contribution of bi into δk, zk1 and zk2 using Eq. (5.6 - 5.8)

End a

Step 3 is performed similarly to Step 1. There is only a difference in the values of the variable

ai at Step 1a.

If we do not take into account the parallel computations, there are two effective ways [97] to

implement the solution of the coarse problem (Step 2). In our work, the factorization of the global

corner DOFs related system F̂EcEc is performed one time on the preprocessing step and it is then

kept during all the computations. Such a factorization is used repeatedly in the forward and back-

ward substitutions in the solution of the coarse problem. Note that if we are limited by the memory

resources, then the only possibility to calculate a large-scale 3D electromagnetic problem is to use

the second way of the coarse problem implementation. Unlike the first approach, in this second way

we do not factorize the matrix F̂EcEc during the preprocessing step. Moreover, we do not store this

matrix. This allows us to make the algorithm much more effective in terms of memory requirements,

but at the same time it makes the algorithm a bit slower. Indeed it forces us to perform Step 2 in

one cycle over all the subdomains. So the reader is highly recommended to use the second approach

only in the following two cases :

1. If we can not solve a problem because of the lack of computational resources

2. If we deal with a big number of right-hand sides.

In order to study the gain of these two approaches we will consider the time and memory requi-

rements of the FETI-DPEM2-full method in the following two sections.

5.4.2 Memory requirements

As it was already discussed in Section (5.4.1) we store the factorization of the local matrices

Ki
rr during all the computations. It is worth mentioning that this step is not mandatory. Indeed, we

can factorize all the matrices Ki
rr at every iteration one time for Step 1 and one time for Step 3.

From one side, this decision would be effective in terms of memory, but from the other - significantly

inefficient in terms of computational time. In our realization, we prefer to keep the factorized matrices

LirrU
i
rr = Ki

rr in sparse format. Therefore, the memory usage can be estimated as :

Memory ∝MInitialization + LirrU
i
rr︸ ︷︷ ︸

∀i = 1..Ns

+ N2
c︸︷︷︸

FEcEc

+ Nλr︸︷︷︸
rhs

(5.9)

In the above, MInitialization represents the memory required to store the solution vectors (optio-

nally), the geometrical matrices, GMRES matrices and temporary arrays. The term LirrU
i
rr, ∀i = 1..Ns

denotes the memory required for storing all the factorized matrices. N2
c is the memory required to

store the ”global” matrix F̂EcEc . This number corresponds to the number of DOFs associated to the

corners in the power of 2. As we have seen previously in Section (5.4.1.1), this step is an optional one.

And finally, the last term represents the memory required to store the right-hand side vector.
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5.4.3 Time requirements

In the DDM process, it is obvious that, as the number of subdomains increases, the time associated

with the subdomain analysis in the preprocessing step decreases monotonically due to the reduced

size of the subdomain problems, whereas the time to solve the interface equation first decreases due to

smaller subdomain problems and then increases due to an increasing number of interface and corner

unknowns. A practical way for finding an optimal decomposition in terms of computations time is

going to be done later on.

Although, the computational time can be estimated as

Time ∝ TInitialization + TF̂EcEc
+N src · Trhs +

Ns∑
i=1

T i(LU)rr
+ TGMRES (5.10)

Here, TInitialization represents the time spent on the domain decomposition, the creation of the

internal interfaces and geometrical matrices. The term TF̂EcEc
denotes the time spent on the creation

and factorization of the matrix F̂EcEc . To create the right-hand side vector we spend a time Trhs. This

can be explained by applying an algorithm similar to Step 1a - 1c. The term
∑Ns

i=1 T
i
(LU)rr

which is

equivalent to Ns ·T average
rr represents the time spent for the factorization of all the local matrices Ki

rr.

The last term takes much more time than all of the first ones. This term denotes the time spent

for obtaining the iterative solution of the Interface problem. It can be presented as

TGMRES = Niter
[
m
(
2 Ns Tf&b + T cf&b

)]
(5.11)

where, Niter is the number of iterations required to reach the stopping criteria η, m here denotes the

restart number of the GMRES method, and the terms Tf&b and T cf&b represent the time spent to

make one forward and backward substitutions for the Step 1a and 2 respectively.

As it was showed previously, the step corresponding to the term TF̂EcEc
is optional and can be

missed. But in this case the time of GMRES iterations changes as follows :

TGMRES = Niter [m · 3 Ns Tf&b] (5.12)
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5.5 Comparisons with Fresnel database measurements

In this section, we are going to compare the results of simulations (FETI-DPEM2-full, FEM-

classical) with scattered field measurements [80]. This will allow us to verify the effectiveness of the

FETI-DPEM2-full method in practical situations. For each problem, we will provide the size of the

domain Ω in terms of the wavelength, all the physical parameters needed for the simulation and the

main geometrical criteria both for the classical FEM method and the FETI-DPEM2-full one.

5.5.1 Configuration description

We will not precise the details of the anechoic chamber of the Center Commun de Ressources

Micro-Ondes pictured in Figure (5.14) which has been used to perform the measurements, because it

has been previously described in several papers [80,126].

Figure 5.14 – Picture of the anechoic chamber at the Center Commun de Ressources Micro-Ondes

(CCRM) which was used to measure the scattered field data of different targets of the Fresnel database.

The sources are located all around the target, at the distance r = 1.796 m from the center (Fi-

gure 5.15). The azimuthal angle θs is ranged from 20◦ to 360◦ with a 40◦ step (i.e. 9 meridians) and

the polar angle φs is ranged from 30◦ to 150◦ with a 15◦ step (i.e. 9 parallels). Due to the design

of the system presented above, the receivers are restricted to the azimuthal plane (i.e. φ = 90◦) at

r = 1.796 m from the center and for technical reasons, they can not be closer than 50◦ from the
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(a) Sources

I’m dansing

(b) Receivers

Figure 5.15 – (a) Positions of the sources and (b) the receivers on the measurement sphere, and

definition of the angles and polarizations, with M(r,θ,φ) = (1.796, 60, 45).

source meridian. In our simulations, we do not have such problems, thus we calculate the scattered

field for an azimuthal angle θr ranging from 0◦ to 360◦ with a step of 10◦. We compare the scattered

field calculated with our method only at the angles where the measured fields exist. In this work, the

source can be polarized along Eφ or Eθ directions, while all the receivers are polarized only along Eφ.

As you can see from Figure (5.15) the antennas and receivers are placed far from a target (at

r = 1.796 m). That is why we only take into account the physical area near the target to reduce the

dimension of the problem (Figure 5.16).

Source

Computational
domain Ω

A
A
A
A
A
A
A
A
A
A
A
A

Complex scatterer

�
�
�
�
�
�
�
�
�
�

Figure 5.16 – Map of the domain Ω under consideration with a target inside.

We assume that the computational domain Ω is filled with air (Figure 5.16). It represents a
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parallelepiped whose size depends on the operating frequency. At the external boundary, we set the

radiation boundary conditions. After finite-element discretization, we obtain a mesh whose element

size l depends on the wavelength λ, the parameter κ and the relative permittivity εr as Eq. (4.1).

In the next subsections we are going to calculate the scattered field Esc created by different targets

from the Fresnel database inside the domain Ω. Then we are going to obtain Esc outside the domain Ω,

in some points where the receivers are placed using the Near-to-Far-Field transformation (Section 2.4).

Finally, we are going to compare these results with the measured fields.

For each Scattering problem we calculate one average relative L2-error between the FEM-classical

method and the FETI-DPEM2-full one. Also we calculate the average number of iterations for all

the sources. To check the data we consider the relative error between the measurements and the

simulations as follows :

Error =
1

NsrcNrec

∑Nsrc
s=1

∑Nrec
r=1 |Emes

s,r − Esim
s,r |2∑Nsrc

s=1

∑Nrec
r=1 |Emes

s,r |2
(5.13)

where Esim
s,r = Esim(s, r, f) (resp. Emes

s,r = Emes(s, r, f)) denote the simulated (resp. measured) scattered

field obtained with the source s and receiver r at the frequency f . The terms Nsrc and Nrec are the

total number of sources and receivers. The incident field E inc is determined as :

E inc = Aejφej
~ks~r (5.14)

where A and φ are the Amplitude and the Phase of the incident field such that |E inc(0, 0, 0)| = 1 and

arg(E inc(0, 0, 0)) = 0, as it is precognized in the Fresnel database [80].

5.5.2 TwoSpheres target

This target consists of two dielectric spheres with a diameter of 50 mm and a relative permittivity

of 2.6. Their positions are given in Figure (5.17).

(a) (b)

Figure 5.17 – (a) Diagram and (b) picture of the TwoSpheres target on the polystyrene mast in the

anechoic chamber.

To start with, we set the working frequency to 4 GHz which corresponds to λ = 0.075 m. The

domain Ω (which for such wavelength is a parallelepiped with a size of ≈ 3.3× 3.3× 2.7 λ3) has been

discretized into finite elements (Table 5.14) and then, following the idea of the FETI-DPEM method,

has been divided into 25 subdomains (Table 5.15).
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κ Np Nt Ne

10 26 561 144 981 168 743

Table 5.14 – Finite element discretization of

the domain with the TwoSpheres target which

corresponds to 10 points per wavelength.

Ns NEc
Nξ Nλr

25 1 282 3 609 41 350

Table 5.15 – Principal decomposition para-

meters of the domain with the TwoSpheres

target which corresponds to a partitioning

into 25 subdomains.

Obviously, we calculate this problem for all the source orientations, treating them as a Multiple

right-hand side. Nevertheless we are going to present the results obtained with a single target orien-

tation and a single source θs = 30◦. This problem is calculated with the help of the classical FEM

method and the FETI-DPEM2-full method. As previously, we use the normal GMRES parameters

(Eq. 5.3) for solving the reduced Interface Problem. To have a good vision of the scattered field inside

the domain, we plot its imaginary part obtained with the FETI-DPEM2-full method on the slice z = 0

(Figure 5.18a).

(a) (b)

Figure 5.18 – (a) Im(Esc) created by the source at the angle θs = 30◦ with the reflection of the

TwoSperes target and (b) Esc obtained in the θφ polarization with a single source θ = 30◦, but all

receivers positions at 4GHz. Scattered field magnitudes (up) and phases (down).

Thanks to the database of Institut Fresnel, we can compare the results obtained with the FETI-

DPEM2-full method with the measurements. We can see from Figure (5.18b) that the measurements

and results obtained with the FETI-DPEM2-full method are in good agreement.

Thanks to the working frequency range ([4-8] GHz, corresponding to wavelengths spanning from

3.75 to 7.5 cm) of the previously introduced microwave device and the Fresnel database, we can verify

the results of the proposed method by applying the frequencies 4 − 8 GHz with a step of 1 GHz to

the TwoSpheres target. As we can see from Table (5.16) the absence of PML-area leads us to the

perfect convergence that was discussed previously in Section (5.3.5.2). This error with respect to the

measurements is higher than the one obtained when comparing FEM and FETI-DPEM2-full fields.
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f Size of Ω
Ne Nλr

L2-error L2-error
Niter(GHz) in λ3 (FEM) (measure)

4 3.3× 3.3× 2.7 168 743 41 350 8.6804E-003 0.3964 8

5 3.7× 3.7× 2.8 233 218 53 652 1.1114E-002 0.5477 8

6 4.0× 4.0× 3.0 291 182 59 066 6.5795E-003 0.4805 9

7 4.3× 4.3× 3.2 379 087 69 640 1.7038E-002 0.4326 8

8 4.7× 4.7× 3.3 461 155 83 836 8.1210E-003 0.5295 9

Table 5.16 – Results of simulations with the FETI-DPEM2-full method at various frequencies for

the TwoSpheres target.

This is due to the fact that we have not taken into account the measurement error bars during the

comparison with our L2 criterion.

5.5.3 Cube of spheres target

This target consists of an aggregate of dielectric spheres. Each sphere has a diameter of 15.9 mm

and a permittivity of 2.6. They were assembled so as to obtain a cube measuring 47.6 mm on each

side. The positions of this target is shown in Figure (5.19). Due to the size of the spheres and their

arrangement, this target has the finest geometrical details in the Fresnel database.

(a) (b)

Figure 5.19 – (a) Diagram and (b) picture of the CubeSpheres target on the polystyrene mast in the

anechoic chamber.

To start with, we set the working frequency to 4 GHz which corresponds to λ = 0.075 m. The

domain Ω (which for such a wavelength is a cube with a size of ≈ 2.5λ × 2.5λ × 2.5λ) has been

discretized into finite elements (Table 5.17) and then, following the idea of the FETI-DPEM method,

has been divided into 7 subdomains (Table 5.18).
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κ Np Nt Ne

10 60 430 362 855 409 215

Table 5.17 – Finite element discretization

of the domain with the CubeSpheres target

which corresponds to 10 points per wave-

length.

Ns NEc
Nξ Nλr

7 326 929 45 590

Table 5.18 – Principal decomposition para-

meters of the domain with the CubeSpheres

target which corresponds to a partitioning

into 7 subdomains.

As previously, we calculate this problem for all the source orientations, treating them as a Multiple

right-hand side. For this scatterer we are going to present only the results obtained with a single target

orientation and a single source θs = 30◦, as we have done previously. For the CubeSphere target we

present the results obtained with the classical FEM method and the FETI-DPEM2-full. As previously,

we use the normal GMRES parameters (Eq. 5.3) for solving the reduced Interface Problem. To have

a good vision of the scattered field inside the domain we plot its Imaginary part obtained with the

FETI-DPEM2-full method on the slice z = 0 (Figure 5.20a).

(a) (b)

Figure 5.20 – (a) Im(Esc) created by the source at the angle θs = 30◦ with the reflection of the

CubeSpheres target and (b) Esc obtained in the θφ polarization with a single source θ = 30◦, but all

receivers positions at 4GHz. Scattered field magnitudes (up) and scattered field phases (down).

In Figure (5.20b) we present the scattered far-field obtained with both the FEM and FETI methods

at the frequency of 4 GHz compared to the measured field at the angle θs = 30◦. We can see from this

figure that the measurements and results obtained with the proposed method are in a good agreement.

The relative L2-error (Eq. 5.13) for all the sources is 0.2778. Also we control the results of the

method FETI-DPEM2-full with respect to the classical FEM and find a relative L2-error of 9.1311E-

003. The average number of iterations for every source is 8.
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5.5.4 TwoCubes object

The last target from the Fresnel database considered in this chapter is called TwoCubes. This

object consists of two dielectric cubes measuring 0.025 m on each side with a permittivity of 2.35.

The position of this scatterer is shown in Figure (5.21)

(a) (b)

Figure 5.21 – (a) Diagram and (b) picture of the TwoCubes target on the polystyrene mast in the

anechoic chamber.

As previously, we set the working frequency to 4 GHz and the domain Ω (which for such wavelength

is a cube with a size of ≈ 3.1λ×3.1λ×3.1λ) has been discretized into finite elements (Table 5.19) and

then, following the idea of the FETI-DPEM method, has been divided into 65 subdomains (Table 5.20).

κ Np Nt Ne

16 91 238 553 678 626 320

Table 5.19 – Finite element discretization of

the domain with the TwoCubes target which

corresponds to 16 points per wavelength.

Ns NEc Nξ Nλr

65 4 732 13 320 152 834

Table 5.20 – Principal decomposition para-

meters of the domain with the TwoCubes tar-

get which corresponds to a partitioning into

65 subdomains.

θr(deg)θr(deg)

Figure 5.22 – Esc obtained in the θφ polarization with a single source at the angles θs = 30◦ at the

frequency f = 4 GHz. Scattered field magnitudes (left) and scattered field phases (right).

The results obtained with the FEM classical and FETI-DPEM2-full methods are presented in

Figure (5.22) with respect to the measurements. We can see that the scattered far-field Esc calculated



88 Chapitre 5. 3D Forward Problems

with both the FEM and FETI methods are in good agreement with the measurements performed in

the Anechoic chamber.

The relative L2-error presented in Eq. (5.13) between the measurements and the scattered field

obtained with the FETI-DPEM2-full method is equal to 0.3107. The relative L2-error between the

FEM and FETI methods is equal to 3.3138E-004. It took only 9 iterations for the GMRES method

to reach this level of error.

5.6 Towards ellipsoid targets

In this section we are going to present some simulated scattered fields generated by ellipsoid

targets. This problem becomes challenging in terms of required memory and computations time, as

the size of the ellipsoids is much bigger than the wavelength. That is why it is of great interest to test

the proposed FETI-DPEM2-full method on such problems.

We use the following source-receivers configuration : there is one source radiating in free space

placed in the azimuthal plane at θs = 0◦, 45◦ and 90◦ with 2 different polarizations (Eθ and Eφ) at

the same distance r = 1.796 m. The receivers are placed in the azimuthal plane at θr = 1◦ to 360◦

with a step of 1◦. For the given configuration we distinguish 6 different test-cases (Table 5.21)

Test-case θs Polarisation

TC1 0◦ Eθ
TC2 45◦ Eθ
TC3 90◦ Eθ
TC4 0◦ Eφ
TC5 45◦ Eφ
TC6 90◦ Eφ

Table 5.21 – 6 different test-cases considered for the superellipsoid targets.

5.6.1 One ellipsoid target

This target is an ellipsoid with diameters Dx, Dy and Dz of 10, 15 and 10 cm respectively. The

relative permittivity εr of the ellipsoid is equal to 1.45 which corresponds to foam [127]. The domain

Ω is a parallelepiped whose size depends on the wavelength. For the given problem we set the working

frequency to f = 4 GHz which corresponds to λ = 0.075 m. The domain Ω (which for such wavelength

is a parallelepiped with a size of 0.212× 0.262× 0.212 m3 (3λ× 3.5λ× 3λ)) has been discretized into

finite elements (Table 5.22) and then, following the idea of the FETI-DPEM method, has been divided

into 15 subdomains (Table 5.23).

κ Np Nt Ne

15 74 168 451 920 511 834

Table 5.22 – Finite element discretization

of the problem presented in Section (5.6.1) at

the frequency of 4 GHz which corresponds to

15 points per wavelength.

Ns NEc
Nξ Nλr

15 1 015 2 868 69 726

Table 5.23 – Principal decomposition pa-

rameters of the domain with the Ellipsoid at

4 GHz, which corresponds to a partitioning

into 15 subdomains.

We then calculate this problem for all the source orientations (TC1 .. TC6) with the classical FEM

method and the method FETI-DPEM2-full using the domain decomposition presented above.
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To have a good vision of the scattered field inside the domain, we plot the Imaginary part of Esc

obtained with the FETI-DPEM2-full method on the slice z = 0 (Figure 5.23) for 3 positions of the

source, but only for the polarization Eθ (TC1, TC2 and TC3). Looking at the Amplitude and the

Phase of the scattered field presented in Figure (5.24) we can conclude that the results of the FEM

method and the method FETI-DPEM2-full are in a good agreement. From a physical point of view,

we have good confidence that these results are correct. Indeed, the obtained solution is symmetric for

the angles θs = 0◦ and 90◦.

(a) Test-case 1 (b) Test-case 2 (c) Test-case 3

Figure 5.23 – Im(Esc) created by the source at the angles (a) θs = 0◦, (b) θs = 45◦ and (c) θs = 90◦

at the frequency f = 4 GHz in presence of the Ellipsoid target. The computations are performed with

the FETI-DPEM2-full method.

(a) Test-case 1 (b) Test-case 2 (c) Test-case 3

Figure 5.24 – Esc obtained in the θφ polarization with a single source at the angles (a) θs = 0◦,

(b) θs = 45◦ and (c) θs = 90◦ at the frequency f = 4 GHz. scattered field magnitudes (up) and

scattered field phases (down).
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5.6.2 Four ellipsoids target

This target consists of four dielectric ellipsoids with diameters Dx, Dy and Dz of 5, 8 and 5 cm

respectively. Their positions are given in Figure (5.25). The relative permittivity εr of each ellipsoid

is equal to 1.45 which corresponds to foam [127]. For this problem, we use the same source-receiver

configuration as previously detailed. The domain Ω is a parallelepiped whose size depends on the

wavelength.

(a) z = 0

(b) y = 0

(c) x = 0

Figure 5.25 – Schematic map of the 4 ellipsoids target inside the domain Ω.

As compared to the previous target considered in Section (5.6.1) the 4 ellipsoids take much more

place and, evidently more memory required for calculations. In this case solving such problems becomes

difficult even with the FETI methods. So far we did not talk about the optimal domain decomposition

in terms of the required memory or computational time. In this subsection we are interested to find it.

Let us set the operating frequency equal to 8 GHz which corresponds to λ = 0.0375 m. In this

case the size of the domain Ω is 0.1862 × 0.236 × 0.1062 m3 (4.97λ× 6.29λ× 2.83λ). The resulting

finite-element discretization can be fully described by Table (5.24)

κ Np Nt Ne

15 219 428 1 360 897 1 548 019

Table 5.24 – Finite element discretization of the problem presented in Section (5.6.2) at the frequency

of 8 GHz which corresponds to 15 points per wavelength.

In this simulation, we decompose the computational domain into Ns = 20...250 subdomains in

order to find an optimal decomposition. The results of the different domain decompositions in terms

of computational time and memory requirement are presented in Figure (5.26).

It can be seen from this figure that the computational time is not very sensitive to the number

of subdomains around the optimal one, whereas the memory required for the computations increases

very rapidly after the optimal point. Also, we can conclude that the optimal number of subdomains

in terms of memory is not the same as for the time of computations. In this case we need to find a

compromise. In our opinion the general rule to determine the optimal number of subdomains in terms

of memory is to divide the total number of FEM unknowns by a number between 10 000 and 15 000

which corresponds to the approximately number of unknowns in each subdomain, but in terms of

computational time we should use a coefficient between 6 500 and 8 000 which agrees with [97].
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Figure 5.26 – Memory required to calculate the problem of 4 ellipsoids and the time of one matrix-

matrix multiplication when different partitioning are applied.

The investigation domain Ω is divided then into 170 subdomains which corresponds to a compro-

mise in terms of memory and computational time. As previously, in order to have a good vision of

the scattered field inside the domain, we plot its Imaginary part obtained with the FETI-DPEM2-full

method on the slice z = 0 (Figure 5.27).

(a) Test case 1 (b) Test case 2 (c) Test case 3

Figure 5.27 – Im(Esc) created by the source at the angles (a) θs = 0◦, (b) θs = 45◦ and (c) θs = 90◦

at the frequency f = 8 GHz in the presence of the 4-Ellipsoids target.

By varying then the working frequencies between 4 and 12 GHz (Figure 5.28), we can conclude

that the classical FEM method is effective until 6 GHz for this problem statement on our computer

configuration, whereas with the FETI-DPEM2-full method we have been able to calculate all the

tasks in this range of frequency (Table 5.25). All computations have been performed on an Intel(R)

Xeon(R) CPU X5570 @ 2.93GHz, with 48 GB of RAM, with no parallel programming specificities.

We suppose that these results are correct from a physical point of view, because all of them are

symmetric for the angles θs = 0◦ and 90◦ (Figure 5.28).



92 Chapitre 5. 3D Forward Problems

f Size of Ω
Ne Nλr

Optimal L2-error Time of one
Niter(GHz) in λ3 Ns (FEM) Fx (Eq. 5.5)

4 3.23× 3.89× 2.17 475 017 114 636 50 8.8774E-003 13.42 9

5 3.67× 4.50× 2.33 593 046 146 474 62 1.5437E-002 16.72 9

6 4.12× 5.12× 2.5 926 761 231 134 97 7.6544E-003 22.43 8

7 4.53× 5.69× 2.66 1 205 349 313 262 126 – 31.11 8

8 4.97× 6.29× 2.83 1 548 019 398 918 162 – 45.88 9

9 5.40× 6.90× 3.00 1 951 464 519 414 205 – 59.02 10

10 5.83× 7.47× 3.17 2 365 405 637 188 248 – 73.81 10

11 6.27× 8.07× 3.34 2 789 473 754 008 293 – 85.07 10

12 6.70× 8.72× 3.50 3 010 219 805 682 316 – 99.79 9

Table 5.25 – Results of simulations with the FETI-DPEM2-full method at various frequencies, for

the 4 ellipsoids target.
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(a) Test case 1

(b) Test case 3

Figure 5.28 – Im(Esc) created by the source at the angles (a) θs = 0◦, (b) θs = 90◦ at the frequencies

f = 4 GHz, 8 GHz and 12 GHz in the presence of the 4-Ellipsoids target. Scattered field magnitudes

(up) and scattered field phases (down).
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5.7 Conclusion

In this chapter, we have presented the implementation of the FETI-DPEM2-full method for ge-

neric 3D electromagnetic scattering problems. Indeed, a new set of Lagrange multipliers have been

added in order to handle differently the continuity conditions at the corner edges between the various

subdomains. Moreover, we have been able to partition and to handle internal interfaces which are not

necessarily straight lines without major drawback in terms of computational accuracy.

Due to the increasing size of the underlying linear systems, classical iterative methods have been

investigated to solve the interface problem. The numerical results presented here have shown that

the convergence speed of the iterative method is seriously affected by the presence of the PML and

the transparency condition between the internal interfaces. A more accurate approximation of the

Dirichlet-to-Neumann operator has thus been investigated. We have been able to numerically show

that the use of EMDA strongly enhances the convergence process when PML materials are used

in order to mimic open space configuration. Moreover, this approach presents no restriction with

respect to heterogeneous and/or anisotropic scatterers. Although, it is concluded in Section (5.3.5.2)

that EMDA is outperformed by the Robin-type boundary condition with the classical coefficient

αi = jk0 [123] when we deal with the isotropic media.

So far, we have only investigated a sequential implementation of the FETI-DPEM2-full method

for addressing three-dimensional large-scale direct electromagnetic problems. In the future, it would

be thus of interest to investigate its parallel implementation.
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6.1 Introduction

As we have discussed in the general introduction, quantitative inverse scattering algorithms at-

tempt to estimate from scattering experiments the physical parameters and features (position, form,

size and complex permittivity) of a target. We can point out two main challenges which are asso-

ciated with quantitative microwave imagining. These are ill-posedness of the electromagnetic inverse

scattering problem and its non-linearity. The former jeopardizes the robustness of the reconstruction

algorithms and the quality of the results and the latter results in a high computational cost because

it requires an iterative optimisation into which the forward solver plays a key role.

Various works take profit of the finite element method in order to solve inverse problems in

different scientific domains, such as optical imaging [128–130], electroencephalography imaging [131],

electrocardiographic imaging [132], elasticity imaging [133–135], electrical impedance tomography

[129, 136, 137], electrical capacitance imaging [138], eddy-current imaging [139] and, of coarse, in

microwave imaging [140–147]. Very few take profit from the FETI-DPEM methods to handle large-

scale problems, apart eventually [148] where a two-dimensional configuration is investigated.

In this work, we focus on the three-dimensional case, because the computational burden here

is more important than in 2D and leads us to the necessity of well-defined numerical strategies

developments. As we have set our sights on quantitative imagining algorithms, which attempt to

recover the value of the complex permittivity in every point of a given investigation domain, without

any use of a-priori information, the number of the reconstruction unknowns is increasing drastically.

We thus must tune the FETI-DPEM2-full method in order to make this process more flexible in terms

of required memory.

As inverse scattering problems are ill posed, they are thus very sensitive with respect to the signal-

to-noise ratio [126]. It is thus even more of interest to provide robust inversion algorithms. In particular,

we can point out a Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimization algorithm

with line search [77, 126, 149], which distinguishes itself through an approximation of the Hessian

matrix in the Newton correction step with a matrix that does not involve the explicit computation

of second order derivatives. Taking advantage of the Lagrangian formalism and the definition of an

ad-hoc adjoint field, we can calculate the gradients with respect to the permittivity. Thus, we obtain

an iterative algorithm which involves two full forward scattering problems at each iteration of the

inversion procedure. Again, we will search for effective numerical strategies while implementing the

FETI-DPEM2 method in the inversion scheme.

Various solution methods have been proposed and will be detailed afterwards. They are validated

against experimental data acquired with real world targets and well-known from the international

inverse problem community as they serve as database for testing their algorithms [80,81].
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6.2 Quantitative inverse scattering problem

Consider an isotropic inhomogeneous dielectric object embedded in an isotropic, possibly inho-

mogeneous background with permittivity εb(~r) (Figure 6.1). The embedding medium is assumed to

be infinite and non-magnetic, as well as the object under consideration. Thus, its interaction with

electromagnetic fields is entirely determined by its complex permittivity ε, which is function of the

3D position vector ~r.

ε(~r) = ε0εr(~r) (6.1)

where ε0 is the permittivity of vacuum and εr(~r) represents the relative permittivity in the object.

In this setting, the goal of the electromagnetic inverse scattering problem is to reconstruct the

complex relative permittivity function εr(~r) from multi-view scattering data within a bounded domain

D which contains the unknown object. The form and the shape of the investigation domain D can

vary from simplest (cube, sphere, ...) to more complex ones (union of few objects). This knowledge

can be obtained from the resolution of the qualitative inverse problem for example [150]. The principle

of collecting multi-view scattering data was explained previously (in Section 5.5). 1

Figure 6.1 – Geometry of the problem. A three-dimensional set of objects inside a investigation test

domain D and a computational domain Ω.

From the knowledge of the measured scattered field Emes
s,r = ~Emes(s, r) for s = 1, ..., Nsrc and

r = 1, ..., Nrec, the inverse scattering problem is formulated as an optimization problem (Eq. 6.2),

where the least squares data fit cost functional J (εr) is evaluated for the given measured field Emes
s,r

and the calculated scattered far-field 2 E far
s,r (εr) = ~E far(s, r, εr) for an updated permittivity function εr.

J (εr) = ||Emes
s,r − E far

s,r (εr)||2W =
1

2

Nsrc∑
s=1

Nrec∑
r=1

ws,r|Emes
s,r − E far

s,r (εr)|2 (6.2)

1. The multi-view scattering data are collected as follows : the investigation test domain D is illuminated with Nsrc

number of incident fields E inc
s (s = 1, ..., Nsrc). For each such illumination s, the scattered field is measured in a number

of measurement positions r = 1, ..., Nrec which can differ for different s.

2. We use the term scattered far-field E far
s,r(εr) as the sources and receivers are located outside of the investigation

domain Ω.
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where the matrix w corresponds to appropriate weighting coefficients which are linked to the expe-

rimental noise [151]. Such cost function assumes white Gaussian noise, which is the case in our free

configuration [151]. In order to obtain the field outside the investigated domain Ω from the know-

ledge of the scattered field Esc = ~Esc(~r), in the positions of antennas, we use the Near-to-Far-Field

transformation presented in Section (2.4), which will be denoted as F :

F(E far, Esc) = E far(r)−
{

Σ

{−jwµ
[
n̂′ ×∇× Esc(r′)

]
G0(r, r′)

+
[
n̂′ · Esc(r′)

]
∇′G0(r, r′) +

[
n̂′ × Esc(r′)

]
×∇′G0(r, r′)} dS′

(6.3)

As we use the radiation boundary condition, we can take Σ = ∂Ω, which is the external boundary of

the investigation domain Ω. We could also have only used the field back-propagated on a close surface

surrounding the domain, i.e. performing a far-to-near-field transformation. Unfortunately, this linear

operator is ill-posed and requires additional regularization strategy. Thus, we prefer to compute the

field locally, propagate it to far-field and perform the comparison at the receivers locations.

In the equation above, the calculated scattered field Esc created by secondary sources J sc = ~J sc(~r)

and the unknown permittivity εr(~r) are related by Helmholtz equation (6.4) which will be denoted as

H :

H(Esc, εr) = ∇×
(

1

µr
∇× Esc

)
− k2

0εrEsc in Ω (6.4)

In order to take into account the constraints (6.3) and (6.4) we introduce a following Lagrange

functional :

L(E far, Esc,εr,U ,P) =

Nsrc∑
s=1

Nrec∑
r=1

(
wr,c |Emes

s,r − E far
s,r (εr)|2 + Re

〈
U ,F(E far

s,r , Esc)
〉

Γfar
+ Re 〈P,H(Esc, εr)− J sc〉Ω

) (6.5)

where the added extra term represents the constraints of Eqs. (6.3) and (6.4). When U = ~U(~r) and

P = ~P(~r) are the correct Lagrange multipliers, then the saddle point of Eq. (6.5) satisfies Eqs. (6.3)

and (6.4).

The saddle point of Eq. (6.5) provides as well an efficient way to compute the gradient of the cost

functional by introducing the adjoint field. To find this saddle point, we need to consider the following

set of Karush-Kuhn-Tucker (KKT) [110] conditions :

∇EfarL(E far, Esc, εr,U ,P) = 0

∇EscL(E far, Esc, εr,U ,P) = 0

∇εrL(E far, Esc, εr,U ,P) = 0

∇UL(E far, Esc, εr,U ,P) = 0

∇PL(E far, Esc, εr,U ,P) = 0

(6.6)

This supposes that the differentiability of the cost function L is defined on each direction for each

parameter [137, 152]. We will use this fact in order to calculate the derivatives in a given direction

(Appendix A).

According to the mathematical determination of Lagrange multipliers, this derivative can be as-

sociated with an Adjoint total field Ptot (Appendix A). This field is obtained through the calculation

of a scattered Psc and incident P inc Adjoint fields, as it has been done for the direct problem. Follo-

wing the reciprocity principle, this adjoint field follows the same type of equations as the direct field



6.3. Inversion algorithm 99

except that the receivers act as sources and emit the discrepancy existing between the measured and

simulated fields [153], which is expressed as follows for a given source position

Jadj
s =

Nrec∑
r=1

2 ws,r (Emes
s,r − E far

s,r ) (6.7)

Schematically we can represent these two types of electric fields as shown in Figure (6.2).

(a) Total field

Im dancing

(b) Adjoint field

Figure 6.2 – Schematic explanation of (a) the total and (b) Adjoint fields in terms of antennas which

are illuminating an object.

Finally, it can be shown (Appendix A) that the gradient of the cost functional can be found as

follows :

∇εrJ (εr) =

Ns∑
s=1

Etot
s · Ptot

s (6.8)

which is similar to the expressions found in the 2D configuration [99,145,146,153].

Since a solution to the optimization problem has to be sought numerically, a parameter represen-

tation of the complex permittivity function εr(~r) is needed to obtain a finite number of optimization

variables. Thus, we are going to look for the solution in a space denoted as L2
h, which is a finite-element

subspace of L2. After finite-element discretization, the number of elements in the domains Ω and D
are equal to Nt and L respectively. The goal is to reconstruct the complex permittivity function εr(l),

or, equivalently, the contrast χ(l) = εr(l) − εb(l) in every element l = 1, ..., L of the investigation

domain D.

6.3 Inversion algorithm

The algorithm that we are going to use in this work consists in updating the map of permittivity

until Eq. (6.2) is minimized as follows :

1. Let us require that

J (ε(i+1)
r ) < J (ε(i)

r ) (6.9)

where i corresponds to the iteration number. The equation above is equivalent to the demand

J (ε
(i)
r + δεr) < J (ε

(i)
r ), where δεr is an update direction.

2. Following Taylor formula applied up to second order, we can determine this direction as

δεr = −2 H−1 ∇J (εr) (6.10)

where H is a Hessian matrix, which is written as follows :
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H = ∇2J (εr) =



∂2J (εr)

(∂εr1)2

∂2J (εr)

∂εr1∂εr2
· · · ∂2J (εr)

∂εr1∂εrL
∂2J (εr)

∂εr2∂εr1

∂2J (εr)

(∂εr2)2
· · · ∂2J (εr)

∂εr2∂εrL
...

...
. . .

...
∂2J (εr)

∂εrL∂εr1

∂2J (εr)

∂εrL∂εr2
· · · ∂2J (εr)

(∂εrL)2


(6.11)

where the derivation takes into account that J is a real function of complex parameters [154].

In a Newton optimization scheme, the complex permittivity vector εr is iteratively updated as

ε(i+1)
r = ε(i)

r + δεr

In order to accelerate the convergence rate, it is better to use the correction δεr as a search

direction along which next iterate is located as

ε(i+1)
r = ε(i)

r + αδεr (6.12)

where the positive parameter α is defined with an approximate line search. It is worth mentio-

ning that the search direction step defined in Eq. (6.12) fully satisfies to the demand (Eq. 6.9).

The choice of this parameter is such that J (ε
(i)
r +αδεr) is close to a local minimum of the cost

function J along the search direction δεr .

3. There is one more important question left : how can we calculate the term H−1 =
[
∇2J (εr)

]−1
.

In this work we apply the quasi-Newton method which consists in approximating the Hessian

matrix H in the Newton correction step (Eq. 6.10) with a matrix B ' H−1 which does not

involve the explicit computation of second order derivatives. At each iteration the approximated

Hessian matrix is updated based on the change in the gradient with respect to the previous

iteration.

There are a lot of different approximations for selecting the matrix B. We have decided to

implement an approach based on the classical BFGS method given by Broyden, Fletcher,

Goldfarb and Shanno [155,156].

The idea of the method consists in using an approximation of the inverse Hessian matrix H to

steer its search through variable space [156]. But as compared to the classical BFGS method

(where the dense L × L matrix is stored), the L−BFGS method maintains a history of the

past m steps that represent the approximation implicitly, which is much more efficient in terms

of memory requirement. This memory consumption aspect is compulsory as we are dealing

with 3D large-scale problems. In this thesis, we are going to use a package already developed

for this algorithm by the Argonne National Laboratory and Northwestern University [157,158].
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Taking into account the mathematical formulation of the inverse problem described above, we now

present the iterative algorithm in a structured way :

Set i = 0

Select an initial-guess ε
(0)
r

Determine J (0) = J
(
ε

(0)
r

)
Calculate ∇J (0) = ∇J

(
ε

(0)
r

)
While (εr is not convenient & ∃ new α δεr & i < MAXiter)

- Define the length α and the direction δεr of the step with the help of the

- L−BFGS method.

- Update the relative permittivity as ε
(i)
r = ε

(i−1)
r + α δεr

- Calculate the direct problem in order to find Esc
(
ε

(i)
r

)
, and then Etot

(
ε

(i)
r

)
- Calculate the adjoint problem in order to find Psc

(
ε

(i)
r

)
, and then Ptot

(
ε

(i)
r

)
- Calculate the gradient of the cost functional via Eq. (6.8)

- Set i = i+ 1

End do

This iterative algorithm stops if

— the maximum number of iteration is reached

— we can not find a new step α

— there is no evolution in the relative permittivity, or in the gradient. Mathematically, we can

write :
|εir − εi−1

r |
|εi−1
r |

< ξ or
|∇J i −∇J i−1|
|∇J i−1|

< ξ (6.13)

— the obtained relative permittivity εir is convenient, i.e.

J (εir) < ξ (6.14)

The term ξ corresponds to the stopping criterion of the inverse iterative process. In our work,

it is set to be equal to ξ = 5.E-2 for all the following calculations.

6.4 Efficient implementation of the FETI method

Note that the considered above algorithm requires two solutions of the Helmholtz equation at

every iteration step of the optimization process. These are for the direct and for the adjoint problems.

High-frequency electromagnetic scattering problems call for fine meshes, and therefore lead to large-

scale systems of equations. For such problems, solving Helmholtz equations with a direct method

entails memory and CPU requirements that rapidly overwhelm even the largest resources that are

currently available. Thus, in order to make this process more flexible in terms of memory requirement,

we have implemented the FETI-DPEM2-full method previously proposed and discussed.

6.4.1 Verification criteria

Let us now discuss which are the principal criteria that we will use in order to verify the well

behaviour and efficiency of the inversion algorithm.

1. Convergence of the cost function.

This criterion shows the correct behaviour of the inversion algorithm, i.e. the choice of the

permittivity step αδεr (Eq. 6.12), the correct calculation of the gradient of the cost functional,

the correct approximations of the matrix B ≈ H−1.



102 Chapitre 6. 3D Quantitative Inverse Problems

2. Comparison with the exact solution.

We consider the first criterion as a necessary condition, but unfortunately, this condition is not

sufficient. As practice shows, the inversion algorithm can often converge to a wrong solution,

i.e. it exists a risk of getting trapped in local minima in addition to the risk of ending up in the

wrong global minimum, as the inverse problem stays always underdetermined. So it would be

useful, for example, to calculate the relative error between the numerical solution and the exact

one. Such error might not be sufficient, because of the noise, or just few pixels which reach a

totally wrong permittivity and deteriorate the solution. As it requires further 3D interpolation

routines, due to lack of time, this criterion has not unfortunately been computed and only

visual comparison are provided between reconstructed and actual maps.

3. Comparison with the FEM-based solution.

In Sections (4) and (5) devoted to the efficient implementation of the FETI-DPEM2-full method

for 2D and 3D Direct electromagnetic calculations, we showed that the limit of the proposed

method is a classical FEM solution. Thus, we introduce the third criterion used in this work,

that is a comparison with the FEM-based inversion algorithm.

The principal idea of this criterion is to compare the results obtained with the FETI-based

inversion algorithm with the one which is based on the FEM classical method which has been

developed in our laboratory and approbate on different 3D electromagnetic inverse scattering

problems [81,159]. We would like to point out the main criteria of comparison between FEM-

and FETI-based algorithms, that we use in our work.

— The L2-error between the maps of the relative permittivity obtained with the two algo-

rithms. The solutions are taken from the last inversion iteration of each method.

— The number of iterations of the two algorithms.

— The L2-error between the FETI- and FEM-solutions at every iteration step of the inversion

algorithm.

6.4.2 Permanent and non permanent information

In order to implement in an efficient way the FETI-DPEM2-full method for the inverse problem,

we need to point out the main specificities of the inversion algorithm considered in Section (6.3).

To start with, the inversion algorithm that we are going to use in this work is fully iterative. It

means that if we want to implement the FETI method efficiently, we have to conditionally divide

it into 2 parts. The first one is going to contain all the information that does not change during all

the calculations. The second one, in its turn, changes at every iteration step of the inversion algorithm.

For the part that does not change, we can list :

a) All the geometrical features (number of unknowns, FETI geometrical matrices, interface ma-

trices M i↔j , lists of edges and elements, etc)

b) All the subdomains i = 1, ..., Nper which do not contain the investigation test domain D. In the

future, we will denote such domains as permanent ones. For example, the subdomains Ω1,Ω2

and Ω3 in Figure (6.3) are permanent.

c) The permanent part of the non-geometrical matrix F̂EcEc . By permanent we call a matrix

only obtained from the contribution of all the permanent subdomains.

For the second part that changes at every iteration step, we inventoriate :

a) All the R.H.S. for both the direct and adjoint problems.

b) All the subdomains which contain the investigation test domain D. In the future, we will

denote such domains as non − permanent ones. For example, the subdomains Ω4 and Ω5 in

Figure (6.3) are non-permanent.
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c) The non− permanent part of the F̂EcEc matrix.

Figure 6.3 – Schematic example of the domain partitioning which are contained or not in an investi-

gation test domain D showing the difference between permanent and non− permanent subdomains.

The goal now is to analyse the efficiency of the permanent/non-permanent approach from a prac-

tical point of view. To start with, we chose the TwoCubes object from the Fresnel database. The

choice of this target is dictated by its simplicity and size, and by the fact that we have already studied

this object in Section (5.5). All the tests in this section will be performed on synthetic noiseless data.

The TwoCubes object consists of two cubes with permittivity εr = 2.35 and a side of 0.025 m. For

the given problem, we choose the operating frequency equal to 4 GHz that corresponds to λ = 0.075 m.

Obviously, the geometry for the direct problem (Figure 6.4a) is going to differ from the one for the

inverse problem (Figure 6.4b). As previously, the domain Ω is a cube with a side of 0.23 m (or,

in background wavelengths ≈ 3.1λ). Then we introduce a sphere with a radius of 0.05 m centred

in Ω as an investigation test domain D. This test domain does not provide any precision on the

target. We than artificially create a little cube with a side of 0.01 m inside the investigation domain

(Figure 6.4b), where we set the initial permittivity equal to 1.1, with the aim of avoiding initial zero-

solution. Schematically the investigated domain for the inverse problem is presented in Figure (6.4b).

(a) Direct problem

I’m dancing

(b) Inverse problem

Figure 6.4 – Schematic map of the TwoCubes target scene.

The domain Ω has been discretized into finite elements (Table 6.1) and then, following the main

idea of the FETI method, has been divided into 19 subdomains (Table 6.2), that corresponds to the
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optimal number of partitions in terms of computational time.

κ Np Nt Ne L

10 27 820 154 485 189 285 15 197

Table 6.1 – Finite element discretization of

the domain Ω for the inverse problem at the fre-

quency of 4 GHz which corresponds to 10 points

per wavelength.

Ns Nper Nλr NEc Nλc

19 10 39 388 1 055 2 966

Table 6.2 – The principal decomposition para-

meters of the domain Ω for the inverse problem

at the frequency of 4 GHz which corresponds to

the partitioning into 19 subdomains, where 10

of them are permanent.

As previously detailed in Sections (5.2), we treat the computational mesh obtained after finite-

element discretization in terms of Np points, Nt tetrahedras and Ne edges which corresponds to κ

(Eq. 4.1) points per wavelength. We then give as well the size L of the investigation test domain D.

Similarly, after having done the domain decomposition of Ω, the given partitioning corresponds to the

number of Lagrange multipliers λr associated to the Interface-edges (Nλr), number of corner edges

(NEc) and number of global Lagrange multipliers λc associated to the corner edges (Nλc).

For the mesh obtained after finite-element discretization of the TwoCubes target, we have 19

subdomains, where 10 out of them are permanent (Table 6.2). Since all the subdomains are approxi-

mately of the same size, the time spent on the LU-decomposition for each of them is also almost

the same. For the given problem, the average time of one local LU-decomposition is t = 0.42 sec. It

means that on each iteration step of the inversion algorithm we will be able to save Nper · t sec of

time. For the given problem, it is about 4.2 sec. The gain for the F̂EcEc matrix is much bigger. At the

beginning of the algorithm, we create the basis of this matrix in the csr format. Then we allocate a

memory for storing a full matrix (N2
Ec

elements of complex type) where we are going to recalculate

the contribution of only non − permanent subdomains. For the given problem, we save around 25

seconds per iteration step. Finally, we would like to note that the gain in terms of time is going to

increase in a non-linear way when the size of the global problem is increasing. It is thus of interest to

separate the various domains with respect to this permanent/non− permanent feature.

6.4.3 Inner and outer iterative loops

Let us now schematically present the FETI-based inversion algorithm developed in this work

(Figure 6.5). This algorithm starts with the initialisation of the inversion solution which is denoted

here as ”Initial guess”. As an example, we can refer to the previous test case (Figure 6.4b), where

inside the investigated test domain D of spherical form, a little cube was chosen with a relative

permittivity, different from the background one. We also can notice an approach which is called

frequency-hopping [160], where the initial solution is taken as a result of a similar inverse problem

calculated at a close frequency.

The ”Initial guess” component of the algorithm is followed by ”FETI permanent/non−permanent”
steps. These two parts of the algorithm were described previously in Section (6.4.2). We only would

like to pay attention to the fact that the iterative process of the inversion algorithm comes back to

the non− permanent part, while the ”FETI permanent” part is calculated only once.

The step which is called ”FETI iterations” is a bit more complex. The 3D electromagnetic inverse

scattering problems that we consider here are highly underdetermined. This term refers to the fact

that the number of unknowns (in our case, pixels in the investigation test domain D) is much smal-

ler than the number of provided data or even of the available degrees of freedom associated to the

dataset [161, 162]. Thus, in order to obtain a convergence of the algorithm to a correct solution, we

have to provide a large number of input measurements. In our algorithm, the number of right-hand
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Figure 6.5 – Schematic representation of the FETI-based inversion algorithm used in this work.

sides is equal to min(Nsrc, Nrec)
3 for both the direct and adjoint problems. It means that at each

inverse-iteration step we need to solve a system of linear equations with 2min(Nsrc, Nrec) RHS. This

can lead to a large number of forward problems in practical situations.

3. Let us assume that Nsrc < Nrec. In this case the number of RHS for the direct problem is equal to Nsrc. Then,

following Eq. (6.8), we can note that for calculating the gradient of the cost functional we only need to know the adjoint

field in source-positions s = 1, ..., Nsrc. That is why the number of RHS for the adjoint problem is also equal to Nsrc.

If the assumption above does not take place, i.e. in the case if Nsrc > Nrec, we can use the principle of reciprocity

(exchange sources and receivers) and we will obtain the same number of RHS.
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For the classical FEM method, the initialisation procedure (LU-decomposition) takes most of the

time. Once it is done, obtaining (LUx = f) is performed in a very fast way. For the FETI method, the

time management is totally different. As it was previously noted in Section (5.4.3), the convergence

process of the FETI-DPEM2-full method takes as much time as the initialisation procedure (LU-

decomposition and construction/decomposition of the F̂EcEc matrix). As an iterative-type method,

the FETI-DPEM suffers a lot from the big number of rhs. Thus, in order to accelerate the proposed

method, we will consider few ideas for selecting the solution initialization and the principal FETI

parameters.

In order to apply it efficiently, we will discuss :

– The stopping criterion of the FETI solution, which is denoted as η (Section 6.4.3.1).

Recently, we have said that the FETI method converges towards the solution of the FEM

method. But to obtain such result, we need to iterate the Interface problem for a very long

time. Due to the lack of time, we obviously need to use a GMRES stopping criterion η of an

order which is much less than the computer error. Taking this into account, a logical question

would be : what kind of information will we lose by computing the inverse problem with an

error of such order and will we obtain a correct solution at all ? In other words, we will try to

answer the following question : how long do we need to repeat the step (�) in the scheme (6.5)

in order to obtain an appropriate physical solution ?

– The initialisation of the GMRES solution (Section 6.4.3.2).

In order to accelerate the inversion algorithm, we can use as well the initialisation of the

GMRES solution. Previously in this section, we discussed the initialisation of the inversion

solution which is done only once. Unlikely the inversion algorithm, the method FETI can be

pre-initialised at every inversion iteration. Thus, in this framework, we will answer to the

following question : What kind of initial GMRES solution λsr do we need to take for both the

direct and adjoint problems, i.e. what information do we have to transmit through the stage

(�) in the scheme (6.5), in order to accelerate the inversion algorithm ?

The study of these two main aspects raised above will allow us to combine them in order to obtain

the best mixture of FETI-parameters (Section 6.4.3.3).

6.4.3.1 GMRES stopping criterion

Like the quasi-Newton algorithm used in this work, the FETI-DPEM2-full method is also an

iterative one. It means that we have to properly choose the stopping criterion η when solving the

Interface Problem (GMRES, BiCGStab, e.t.c.). In order to obtain with the FETI-based algorithm

the same 4 solution with respect to the FEM-one, we have to set η to be equal to the computer error.

Unfortunately, as practice shows, the multi-sources calculation is going to be tremendously slow in

terms of computation time at every iteration step.

This section thus is devoted to the stage (�) in the inversion algorithm (6.5) and the remaining

question here is : can we choose the stopping criterion for the GMRES method as large as possible

without loosing the quality of the inversion solution ? And is it possible to perform this choice auto-

matically ? In this Section, we will try to answer to these questions.

To start with, we calculate the problem presented in Section (6.4.2) with different stopping crite-

ria η for the iterative method GMRES. The related results are presented in Figure (6.6).

4. By the same, we denote a solution obtained with the FETI-based inversion algorithm whose relative L2- error is

of the computer order with respect to the FEM-based approach
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Figure 6.6 – The data fit cost function versus the number of iterations for the reconstruction of the

TwoCubes target from noiseless simulated fields at 4 GHz, using the FETI-based inversion algorithm

with different stopping criteria η for the GMRES method.

From Figure (6.6) it can be seen that we can conditionally divide these results into two groups.

In the first one, we can include the criteria η = 1.E-1 and 5.E-2, while the second one contains all the

rest. As we can see, the difference between these two groups is very small. Nevertheless, we can not

guarantee that the solutions in these two groups are the same, or even close to each other.

(a) Target with a crossing line (b) Re(εr)

Figure 6.7 – (a) Target under test : TwoCubes object with a line (1101,1102) crossing the diagonals

of the two cubes as well as the shared corner and (b) Comparison along the crossing line between the

reconstructed real part of the relative permittivity obtained with the FEM- and FETI-based methods

with different GMRES stopping criteria η.

That is why in Figure (6.7b) we show the solutions obtained with the different GMRES stopping

criteria η in order to compare the results obtained either with the FETI- or the FEM-based methods.

A line crossing the diagonals of the two cubes (Figure 6.7a) as well as its shared corner is considered

more specifically.

From Figure (6.7b) we can clearly see that, at the end of the inversion algorithm, we obtain a

correct solution regardless of the stopping criteria, since the difference between them is not significant.

But according to practice, this case is a particular one. To prove it, we will change the initial geometry

of the inverse problem. We now conform the mesh of the investigation test domain D to the one shown

in Figure (6.4a). It means that we do take into account a mesh which is conformal to the cubes shape.

Then, as previously, we calculate this problem with the FEM- and FETI-based inversion algorithms

with different GMRES stopping criteria for the FETI-DPEM2-full method (Figure 6.8).

The maps of the relative permittivity obtained with the FETI-based inversion algorithm corres-

ponding to the GMRES stopping criteria η = 1.E-1 and η = 1.E-2 are presented in Figure (6.9).
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(a) Convergence of J (εr) (b) Relative error of the solution

Figure 6.8 – (a) The data fit cost function and (b) the relative L2-error of the permittivity εr versus

the number of iterations for the reconstruction of the TwoCubes target from noiseless simulated fields

at 4 GHz using (- -) the FEM- and FETI-based inversion algorithms with different GMRES criteria :

(- ∗ -) η = 1.E-1, (- 2 -) η = 1.E-2, (- 4 -) η = 1.E-3. The domain is described in Figure (6.4a).

(a) η=1.E-1 (b) η=1.E-2

Figure 6.9 – The reconstruction of the TwoCubes target from noiseless simulated fields at 4 GHz with

the help of the FETI-based method with GMRES stopping criteria : (a) η=1.E-1 and (b) η=1.E-2

The differences between the results corresponding to η = 1.E-1 and η = 1.E-2 are presented in Fi-

gure (6.10).

(a) Re(εr) (b) Im(εr)

Figure 6.10 – Comparison between the results of the FETI-based algorithm obtained with different

GMRES stopping criteria, such as (—) η = 1.E-1 and (- -) η = 1.E-2 in terms of the (a) real and

(b) imaginary parts of the relative permittivity and the actual one (. . .) along a line crossing the

diagonals of the two cubes as shown in Figure (6.7a).
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The results observed from Figures (6.8),(6.9) and (6.10) allow us to conclude that the value of the

stopping criterion η = 1.E-2 is sufficient to obtain a correct, adequate solution of the inverse problem

with respect to a FEM one.

So the question now is : how can we change this parameter dynamically ? We will try to answer

this from a practical point of view. First of all, we suppose that this parameter should depend on the

cost function J (εr). In most of the test cases performed in this work, the first order of the stopping

criterion η is enough to obtain a correct convergence until the level of 1.E-2 – 1.E-3 in terms of cost

function order. That is why in the following reconstructions we are going to use the following strategy

for the choice of the GMRES stopping criterion η (Table 6.3).

J (εr)

> 1.E-2 < 1.E-2

η J (εr) 1.E-2

Table 6.3 – Selection scheme for the GMRES stopping criterion η.

In practice, once we make the stopping criterion η to be equal to 1.E-2, we can use it until the

end of the calculations.

6.4.3.2 GMRES initialisation

We want now to accelerate the FETI-resolution process at every iteration step of the inversion

algorithm. For this we will use a ”smart initialisation” of the GMRES solution by transmitting different

types of information through the stage (�) of the inversion algorithm (6.5).

To start with, we remind that at every iteration step of the inversion algorithm we solve Eq. (3.116)

in order to obtain two types of GMRES solutions : λr for the direct field and λr for the adjoint field.

To proceed further, we introduce the GMRES solution obtained at the jth iteration of the GMRES

method for the sth source position and at the ith iteration of the inversion algorithm, which will be

denoted as

{λjr}si (6.15)

Up to now, {λ0
r}si was set to be equal to 0 for both the direct and adjoint problems, which corresponds

to a classical initialisation denoted as ”FETI without”.

We will now consider two acceleration ideas :

— The first initialisation idea is to take {λ0
r}i as the value {λ0

r}i−1 obtained at the previous ite-

ration step of the inversion algorithm. This initialisation technique is called ”FETI lambdaR”.

— The second initialisation idea is based on taking the solution {λ0
r}s−1 obtained for the previous

source as an initial guess for the present source {λ0
r}s. In literature this approach is referred as

a marching-on-in technique [163]. Applied to the FETI method, this initialisation technique

will be denoted as ”FETI sources”.

In order to verify the results of the FETI-based inversion algorithm obtained with the two initiali-

sation techniques described above, we are going to verify these solutions with the classical FEM-based

method and with the FETI-based method with classical initialisation.

We will make some numerical experiments based on the reconstruction of the TwoCubes target

from noiseless simulated fields at 4 GHz with the GMRES stopping criterion η = 1.E-2. The results

of the different initialisation techniques are presented in Figure (6.11)

Some conclusions can be drawn from Figure (6.11). First of all, the FETI-based inversion algorithm

often stops earlier then the FEM-one. It can be caused by the fact that with a low order GMRES

stopping criterion, we are not able to provide high-order information on the solution and do not
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(a) Convergence of the cost function (b) Cut of Re(εr)

Figure 6.11 – (a) Data fit cost function and (b) Comparison along the crossing line presented in

Figure (6.7a) between the reconstructed real part of the relative permittivity obtained with the FEM-

and FETI-based methods with different GMRES initialisation procedures.

find a new direction for εr after some point. In the particular case of Figure (6.11), the FETI-based

algorithm with the FETI lambdaR initialisation stopped after 21 iterations, because all the solutions

obtained after the 20st iteration were equal to the solutions of the 21st iteration up to the error of the

η tolerance, so the GMRES method did not make any extra iterations. In spite of this, the solution

obtained with FETI lambdaR initialisation is satisfactory, because it provides a similar information

about the target. Nevertheless, the solutions obtained with the other types of initialisation are in

perfect agreement with the FEM-based algorithm. It is thus difficult to derive the best initialisation

so far if we only compared the reconstructed permittivity maps.

Let us now consider the number of iterations of the FETI-DPEM2-full method on each iteration

step of the inversion algorithm. For this, we will distinguish two pairs within each inverse-iteration :

the direct problem computations and the adjoint ones. We also would like to note that from this

moment we are going to compare all the results in terms of the Average number of the GMRES

iterations with respect to the number of sources, which we call the A number.

(a) (b)

Figure 6.12 – The A number of iterations of the (a) direct field and (b) adjoint field calculations

obtained with the (- · 2) FETI lambdaR initialisation, (- ◦ -) FETI sources initialisation, (- 4 -)

FETI without initialisation versus the number of iterations of the inversion algorithm.

These results presented in Figure (6.12) were a bit surprising, but after having done other numerical

experiments, we concluded that, for the direct field calculations, the FETI lambdaR initialisation is

more useful then the FETI sources one, whereas for the adjoint field calculations it is the contrary.

We suppose that such conclusion is due to the fact that for the direct problems, as the sources

are far apart, the incident wave changes from one source to another. On the contrary, the map of εr
varies less. So the initialisation technique ”FETI lambdaR” works better in this case than the ”FETI

sources” initialisation. Such results should be mitigated if more sources were present, as in that case,

the ”FETI sources” should also work satisfactorily.



6.4. Efficient implementation of the FETI method 111

As for the adjoint field, it is created according to Eq. (6.7), where the emission corresponds to the

discrepancy between the measured and simulated field at the receiver locations. As these receivers

are sending at the same time this discrepancy signal, the adjoint field sources correspond to the

superposition of all these fields. Thus, from one iteration to the other one, there is no changes for the

adjoint sources locations and their amplitude, due to the averaging performed by the superposition, are

quite similar, apart for the first iterations. This seems the reason why the ”FETI sources” initialisation

works better in this case.

6.4.3.3 The best mixture of the FETI parameters

In this Section we would like to summarize all the useful information discussed previously in

Sections (6.4.3.1) and (6.4.3.2) in order to create the most efficient FETI-based inversion algorithm.

Thus, we will describe the main parameters that we have selected for the FETI-DPEM2-full method.

1. During all the next computations we will use the strategy of the GMRES stopping criterion

choice described in Section (6.4.3.1).

2. For the {λr} choice we will take the results of Section (6.4.3.2) with few modifications. First of

all, in order to reduce the number of iterations of the inversion algorithm as much as possible, we

will change the initialisation technique for the direct field calculation (from lambdaR to sources)

when the lambdaR initialisation provides only zero information (for details see Section 6.4.3.2).

Secondly, we should not forget about the case without any initialisation. For example, according

to the results in Figure (6.12b) there are some cases when the initialised solution converges

with larger number of iterations as compared to the case with no initialisation. Thus if the

relative error of the first GMRES iteration is bigger then 1.0 we make the initial solution to

be equal to 0 (no specific initialisation strategies) and continue the calculations.

3. For the calculation of the adjoint field, we only apply the ”FETI sources” initialisation so far.

Taking this into account, let us present the results obtained with the FETI-based algorithm with

the most efficient ”mixture” of the FETI parameters. In particular, the reconstruction of the chosen

target from the noiseless calculations (Figure 6.14) and the A number of iterations for the both

direct and adjoint field computations (Figure 6.13). They show us the efficiency of the selected FETI-

parameters.

Figure 6.13 – A number of iterations of both the direct and adjoint field computations versus the

number of iterations for the FETI-based inversion algorithm with the most efficient ”mixture” of the

FETI parameters.
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(a) (b)

Figure 6.14 – The reconstruction of the TwoCubes target from simulated noiseless fields at 4 GHz

with the help of the (a) FEM- and (b) FETI-based inversion algorithms.

6.4.4 Memory and time question

There are two important questions that we would like to discuss now. These are related to the

technical features of the memory and time requirement. The former is the easiest one, because in

order to see the advantage of the FETI method implementation, we will only provide the memory

volume required for the FEM- and FETI-based methods. The latter is a bit more complex, because the

time required for obtaining a solution with the FETI-based method linearly depends on the number

of FETI (GMRES) iterations. From this knowledge, we can nevertheless estimate the time of one

iteration of the FETI-based inversion algorithm as Eq. (6.16).

Time = min(Nsrc, Nrec) (Td + Ta) (6.16)

where Td and Ta are the times for solving the Helmholtz equations for the direct and adjoint pro-

blems respectively, which highly depend on the number of FETI iterations. Each of these terms was

previously considered in Section (5.4.3). In the case of n iterations (for example given in Figure 6.13),

for the chosen size of the Krylov subspace m (for the normal GMRES parameters m = 10), for the

partitioning into Ns = 19 subdomains and, finally for the times Tf&b and T cf&b (see Eq. 5.11) which

are equal to 0.3 sec and 0.4 sec respectively, we can estimate the total time as :

Time = 36 · (10 [2 · 19 · 0.3 + 0.4]) = 4248 sec
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6.5 Inversion of the experimental data

In this section we will discuss the efficiency of the FETI-based inversion algorithm when confronted

to measurements, where noise is unfortunately present. For this, we will perform the reconstruction

of few targets from the 3D Fresnel database [80, 81] which have been used intensively for testing 3D

inversion algorithms. The Fresnel database involves the set of homogeneous objects, i.e. objects where

only two permittivity values are present in the permittivity profiles, the background permittivity and

the permittivity of the target. Most of these objects have been studied and simulated in Section (5.5)

where the proposed FETI-DPEM2-full method was applied for solving 3D Large-scale electromagnetic

scattering problems. Thus, in this section we will not detail again the structure of each target. For its

definitions the reader is refered to Section (5.5).

To start with, we set the working frequency to 4 GHz to obtain the reconstruction for all the

objects. Then, for every target, we are going to use the inversion algorithm, described previously in

Section (6.3). For the solution of the direct problem we will either use the classical FEM method or the

proposed method FETI-DPEM2-full with the optimal set of parameters discussed in Section (6.4.3.3).

For every target, these two resulting inversion schemes are employed in independent reconstructions

and the results are compared.

For the two inversion algorithms (FEM- and FETI-based) the investigation test-domain D is a

sphere with a diameter of 0.16 m (≈ 2.1λ). It is contained within a global cubic domain Ω with a

side of 0.26 m (≈ 3, 5λ). As previously, we artificially create a little cube with a side of 10 mm inside

the investigation domain, where we set the initial permittivity equal to 1.1, with the aim of avoiding

initial zero-solution. The geometry of the domain Ω with the investigation domain D is presented

in Figure (6.15). As you can see from this figure, the center of domain/test-sphere is located at

(0.,0.,0.025) m. The investigation domain D is such that it contains all the objects from the Fresnel

database.

Figure 6.15 – Geometry of the spherical investigation domain D with an artificial cube, within the

computational domain Ω.
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The principal domain Ω has been discretized into finite elements (Table 6.4) and then, following the

main idea of the FETI method, has been divided into 38 subdomains (Table 6.5), that corresponds to

the optimal number of partitions in terms of computation time. In this case, the number of permanent

subdomains is 12 out of 38.

κ Np Nt Ne L

10 51 050 302 244 362 280 77 539

Table 6.4 – Finite element discretization of

the domain Ω for the Fresnel database recons-

truction at the frequency of 4 GHz which cor-

responds to 10 points per wavelength.

Ns Nper Nλr NEc Nξ

38 12 89 308 2 818 7 963

Table 6.5 – The principal decomposition para-

meters of the domain Ω which corresponds to

the partitioning into 38 subdomains, where 12

of them are permanent.

As the chosen mesh is common for the reconstruction of all the targets from the Fresnel database,

we would like to mention here the memory requirement. For the classical FEM method, we need around

15.3 GB of operative memory in order to reconstruct the objects with the mesh described above. It

takes only 5.7 GB for the FETI-DPEM2-full method. As the time requirement highly depends on the

number of FETI (GMRES) iterations, we will discuss it for each object under reconstruction.

6.5.1 TwoCubes target

Let us start with the object that we used for applying and testing the FETI-DPEM2-full method

in Section (5.5.4). This object consists of two cubes with permittivity εr = 2.35 and with a side length

of 0.025 m (Figure 6.16).

Figure 6.16 – Geometry of the TwoCubes target compared to the investigation domain D which is

a sphere. A crossing black line is also presented.

The initial reconstruction of this target at 4 GHz with the FETI-based inversion algorithm yields

the result of Figure (6.17). The cubes are located at the correct position and have more or less the

correct size. As we can see, the permittivity values are a bit too low (min = 0.58,max = 2.12).

However, we can conclude that for the given target the optimal set of FETI-parameters discussed in

Section (6.4.3.3) is sufficient to obtain a physically correct solution.
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(a) (b)

Figure 6.17 – Reconstruction of the TwoCubes target from measured fields at 4 GHz obtained with

the FETI-based inversion algorithm. (a) 3D view of the reconstructed iso-surface corresponding to

values εr = 1.5 ... 2.35 and (b) Vertical and horizontal cuts at the cube centres of the real part of the

permittivity maps. The semi-transparent object inside represents the actual boundaries of the target.

In order to comfort the obtained results, we then reconstruct the same target with the FEM-based

inversion algorithm. As it can be seen from Figure (6.18), both the FEM- and FETI-based algorithms

stopped after 25 iterations with the data fit reduced to 1.30d-3 and 1.49d-3 respectively.

Figure 6.18 – Evolution of the least squares data fit cost function J (εr) over iterations for the

reconstruction of the TwoCubes target from the measured fields at 4GHz using the FEM- and FETI-

based inversion algorithms.

As we can see, the behaviour of the cost functions is similar for the two algorithms, but in order

to be sure that we obtain similar solutions as well, we need to provide another type of comparison,

as shown in Figure (6.19).

From Figure (6.19) we can conclude that the results obtained with the FEM- and FETI-based

algorithms are in good agreement. It means that the proposed FETI-DPEM2-full method was im-

plemented in a correct way. In fact, we are not interested in looking for the imaginary part of the

solution εr, because for all the objects from the Fresnel database Im(εr) = 0. Nevertheless, our inver-

sion algorithm is based on the independent search of both the real and imaginary parts. That is why

in the framework of the TwoCubes target reconstruction, we would like to show that at the end of the
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(a) Re(εr) (b) Im(εr)

Figure 6.19 – Comparison between the (—) FEM- and (- -) FETI-based solutions in terms of the

(a) real and (b) imaginary parts of the relative permittivity and the actual one (. . .) along a line

crossing the diagonals of the two cubes as shown in Figure (6.16).

inversion algorithm, the imaginary part of the solution is not equal to 0 due to the noise existence and

to the fact that the problem is undetermined (Figure 6.19b). Nevertheless, the reconstructed imagi-

nary parts are reasonably low. As no a-priory constraints on the values are given, it is also possible

to obtain permittivity values with ε′r < 1 or ε′′r < 0.

The technical side of the FETI-based inversion algorithm is represented in Figure (6.20). As we

Figure 6.20 – Evolution of the average GMRES iterations for one source for the direct and adjoint

problems.

can see, the average number of iterations for one source is equal to 1 for the direct problem and

varies from 1 to 1.5 for the adjoint problem. It means that the initialisation procedure discussed in

Section (6.4.3.2) is good enough for both the direct field and the adjoint field computations. We remind

that the minimal number of antennas is 36 and the time of one GMRES iteration is ≈ 11 sec. In order

to estimate the computational time, we use Eq. (6.16). For this target, the approximate time of one

inverse-iteration is equal to 1030 sec against 450 sec for the FEM solution when no parallelization

procedure is followed. This knowledge gives us an idea of the total time of the inversion algorithm.

6.5.2 TwoSpheres target

The TwoSpheres target consists of two dielectric spheres with a diameter of 0.05 m and a permit-

tivity εr = 2.6. As compared to the previous object, the TwoSpheres target is approximately twice

bigger. Its actual position in the investigation domain D is presented in Figure (6.21).
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Figure 6.21 – Geometry of the TwoSpheres target within the spherical investigation domain D. A

crossing black line is also presented.

The initial reconstruction of this target at 4 GHz with the FETI-based inversion algorithm yields

the result of Figure (6.22). The spheres are located at the correct position and have more or less

the correct size. As we can see, the permittivity values are totally different from the previous target

(min = −4.55,max = 3.34), however their spreading yields the determination of value εr = 2.6. That

leads us to a conclusion that for the given target the optimal set of FETI-parameters discussed in

Section (6.4.3.3) is totally sufficient to obtain a physically correct solution.

(a) (b)

Figure 6.22 – Reconstruction of the TwoSpheres target from measured fields at 4 GHz obtained

with the FETI-based inversion algorithm. (a) 3D view of the reconstructed iso-surface corresponding

to values εr = 2.4 ... 2.6 and (b) Vertical and horizontal cuts of the real part of the permittivity maps.

The semi-transparent object inside represents the actual boundaries of the target.
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We then reconstruct the same target with the FEM-based inversion algorithm.

(a) (b)

Figure 6.23 – Comparison between the (—) FEM- and (- -) FETI-based solutions for the reconstruc-

tion of the TwoSpheres target from measured fields at 4GHz in terms of (a) the evolution of the least

squares data fit cost function J (εr) over iterations and (b) the real part of the relative permittivity

with the actual one (. . .) along a line crossing the diameters of the two spheres as in Figure (6.21).

As we can see from Figure (6.23a) the behaviour of the cost functions is similar for the two

algorithms, in spite of the different number of iterations (23 for FETI and 39 for FEM). Thus, similarly

to the previous target, we provide as well another type of comparison, as shown in Figure (6.23b).

We can clearly see the difference between the two solutions. Nevertheless we are fully satisfied by the

obtained results, because this difference is of the same level as the noise. Thus, we suppose that the

results obtained with the FEM- and FETI-based algorithms are in a good agreement. The imaginary

part of the solution is different from zero, but its value is not significant.

The technical side of the FETI-based inversion algorithm is represented by Figure (6.24). As we

Figure 6.24 – The evolution of the average GMRES iterations for one source for the direct and

adjoint problems.

can see, the average number of iterations for one source is varying from 1 to 3 for the direct problem

and from 1 to 6 for the adjoint problem. It is twice bigger with respect to the previous target. This

can be explained by the size of the TwoSpheres object, which is almost twice bigger than the object

TwoCubes. For this target the approximate time of one inverse-iteration is equal to 2100 sec against

450 sec for the FEM solution. This knowledge gives us an idea of the total time of the inversion

algorithm.
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6.5.3 CubeSpheres target

The CubeSpheres target consists of an aggregate of dielectric spheres. Each of them has a diameter

of 0.0159 m and a permittivity of 2.6. The position of the target in the investigation domain D is

presented in Figure (6.25).

Figure 6.25 – Geometry of the CubeSpheres target within the spherical investigation domain D. with

the coupling black line.

The initial reconstruction of this target from measured fields at 4 GHz with the FETI-based

inversion algorithm yields the result of Figure (6.26). The spheres are located at the correct position,

(a) (b)

Figure 6.26 – Reconstruction of the CubeSpheres target from measured fields at 4 GHz obtained

with the FETI-based inversion algorithm. (a) 3D view of the reconstructed iso-surface corresponding

to values εr = 1.7 ... 1.94 and (b) Vertical and horizontal cuts of the real part of the permittivity

maps. The semi-transparent object inside represents the actual boundaries of the target.

nevertheless we are faced with a problem of size and form determination of each individual sphere.

Such results can be explained as follows : the diameter of a sphere in the wavelength background is

0.0159 m ≈ 0.2λ, which is much less then the wavelength. As we know, in the classical tomography,

the expected spatial resolution is ∼ λ/2 [59]. With non-linear scattering algorithms, the expected

spatial resolution might be lower. Nevertheless, without adding a-priori information, it is doubtless
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to obtain better results. That is why the obtained results are not surprising for us. As we can see, the

permittivity values are low (min = 0.57,max = 1.94). Indeed, as the reconstructed target is bigger,

its estimated permittivity is lower in order to provide the same scattering power.

The logical question now is : could the FEM-based method manage this problem better ? In order

to answer this question, we reconstruct the same target with the FEM-based inversion algorithm.

(a) (b)

Figure 6.27 – Comparison between the (—) FEM- and (- -) FETI-based solutions for the reconstruc-

tion of the CubeSpheres target in terms of (a) the evolution of the least squares data fit cost function

J (εr) over iterations and (b) the real part of the relative permittivity with the actual one (. . .) along

a line crossing the diameters of the spheres as in Figure (6.25).

As we can see from Figure (6.27a) the behaviour of the cost functions is similar for the two

algorithms, in spite of the different number of iterations (17 for FETI and 33 for FEM). Thus, similarly

to the previous target, we provide as well another type of comparison, as shown in Figure (6.27b).

In contradiction to the previous target (Section 6.5.2) where the difference between the number of

iterations was almost the same, for the given object we can hardly see the difference between the

FEM- and FETI- solutions. We suppose that the results obtained with the FEM- and FETI-based

algorithms are in a good agreement. The imaginary part of the solution is different from zero, but its

value is not significant.

The technical side of the FETI-based inversion algorithm is represented by Figure (6.28). As we

Figure 6.28 – Evolution of the average GMRES iterations for one source for the direct and adjoint

problems.

can see, the average number of iterations for one source is varying from 1 to 2 for the direct problem

and from 1 to 5 for the adjoint problem. For this target, the approximate time of one inverse-iteration

is equal to 2650 sec against 450 sec for the FEM solution. This knowledge gives us an idea of the

total time of the inversion algorithm. It is worth mentioning here that the FEM-based algorithm

requires more iterations (twice in fact) than the FETI-based inversion approach and that they stop

for different reasons.
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6.5.4 Myster target

The Myster target consists of 12 dielectric spheres with a diameter of 0.0238 m and a permittivity

εr = 2.6 which were glued together to compose a regular geometrical figure. Its actual position in the

investigation domain D is presented in Figure (6.29).

Figure 6.29 – Geometry of the Myster target compared to the investigation domain D.

This target was not unveiled to the inverse problem community before the publication of the special

section in Inverse Problems. This target was indeed, at that time, an effective mysterious target for

blind testing the various algorithms.

The initial reconstruction of this target at 4 GHz with the FETI-based inversion algorithm yields

the result of Figure (6.30). The spheres are located at the correct position, nevertheless we are faced

(a) (b)

Figure 6.30 – Reconstruction of the Myster target from measurements at 4 GHz obtained with the

FETI-based inversion algorithm. (a) 3D view of the reconstructed iso-surface corresponding to values

εr = 1.72 ... 2.50 and (b) Real part of the relative permittivity depicted in five horizontal slices (top :

z = 0, 13.74, down : z = 22.23, 35.97, center : z = 17.985 mm). The semi-transparent object inside

represents the actual boundaries of the target.
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with the same type of problems as for the CubeSpheres target. As we can see, the permittivity values

are also a little bit low (min = 0.34,max = 2.50).

In order to prove the obtained results from the numerical point of view, we then reconstruct the

same target with the FEM-based inversion algorithm. As it can be seen from Figure (6.31), the data

fit is reduced to 2.17d-2 after 63 FEM-iterations and 2.50d-2 after 36 FETI-iterations. The behaviour

Figure 6.31 – Evolution of the least squares data fit cost function J (εr) over iterations for the

reconstruction of the Myster target from the measured fields at 4GHz using FEM- and FETI-based

inversion algorithms.

of the cost functions is similar for the two algorithms, even if the error remains higher with the FETI

solution. The Myster target is geometrically more complicated than all the previously considered

targets. Thus, we need to provide another type of comparison, shown in Figure (6.32) in order to be

sure that we obtain similar solutions as well.

Figure 6.32 – Reconstruction of the Myster target from measurements at 4 GHz obtained with the

(left) FETI- and (right) FEM-based inversion algorithm. The real part of the relative permittivity is

depicted in horizontal slices (top : z = 0.01374 and down : z = 0.02223).

The results obtained with the FEM method appear sharper, but also we can note that there is

a brighter unwanted ring around the target. To avoid it, we have to stop the inversion algorithm at
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an earlier iteration. In this case, if we compare the results obtained with the FEM- and FETI-based

algorithms after the same number of iterations, we will hardly note the difference both numerically

and visually. Indeed, at the end of the inversion process, when the cost functional is sufficiently

reduced, it reaches the level of the signal to noise of the experiment. Thus, the last iterations only

provide oscillations in the reconstructions which are linked to noise. One way of regularising is thus

simply to stop the inversion iteration rapidly.

The technical side of the FETI-based inversion algorithm is represented by Figure (6.33). The

Figure 6.33 – Evolution of the average GMRES iterations for one source for the direct and adjoint

problems.

average number of iterations for one source is varying from 1 to 2 for the direct problem and varying

1 to 4 for the adjoint problem. The approximate time of one inverse-iteration is equal to 1980 sec

against 450 sec for the FEM solution. This knowledge gives us an idea of the total time of the inversion

algorithm.

6.6 Conclusion

In this chapter we were dealing with the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton op-

timization algorithm with line search, which distinguishes itself through an approximation of the

Hessian matrix in the Newton correction step with a matrix that does not involve the explicit compu-

tation of second order derivatives. Taking advantage of the Lagrangian formalism and the definition

of an ad-hoc adjoint field, we calculated the gradient with respect to the permittivity. In order to

make this process less depending on memory, we applied the previously discussed FETI-DPEM2-full

method. Then we considered different computational aspects of the proposed method, such as the

pre-initialisation and the influence of the stopping criterion. Taking this into account, we tested the

FETI method on various objects from the Fresnel database. All of these tests have shown the efficiency

and the gain of the FETI method.





Chapitre 7

Conclusion and perspectives

In this doctoral research, algorithms for solving two- and three-dimensional electromagnetic pro-

blems have been studied. The emphasis was on the Domain Decomposition idea which has been

recognized as one of the most efficient parallel techniques in the domain of computational electro-

magnetics. In particular, the FETI-DPEM2 method has shown its efficiency in various implementa-

tions [43, 48, 97]. Starting with the classical formulation of the FETI-DPEM2, we have extended this

method by imposing everywhere, even on the corner degrees of freedom (DOFs), more exible Robin-

type boundary conditions. The resulting interface problem was completely rewritten which lead us to

a new global coarse preconditioner.

We have then presented the implementation of this modified method, denoted as FETI-DPEM2-

full [55], for generic 2D and 3D electromagnetic problems. The scattered field formulation was more

specifically considered. Note that we pursued different goals in these two cases. In 2D, we aimed at

showing that the new treatment of the corner DOFs enables to provide more accurate results with

respect to the classical FETI-DPEM2 method. We also have been able to show that essentially, by

playing with the mathematical parameter αi, arising from the Robin-type boundary condition, we

would not degrade the final solution of the method. For this, we compared the results of the FETI

methods with the ones obtained with the FEM method. Moreover, the results obtained in the 2D

case have shown that there is no restriction in taking into account scatterers made of heterogeneous

or anisotropic materials, and we are not limited in taking a strict partitioning. Indeed, we have been

able to partition and handle internal interfaces which are not necessarily straight lines without loss

of the solution quality.

Note that the electromagnetic problems are strongly dimension dependent and, if in 2D, the use

of direct solvers for the resolution of the linear system arising from the finite-element discretization

was obvious, the one related to the 3D configurations with a direct solver was much more tricky,

time and memory consuming. Indeed, according to the dense structure of the FETI-DPEM related

interface problem, its resolution with a direct method could be over-performed by just solving a regular

FEM system of linear equations. We thus had to implement an iterative technique which, as we have

shown, was not so obvious for problems containing anisotropic materials. In order to overcome the

convergence related problems, the Evanescent Modes Damping algorithm (EMDA) has been applied.

Indeed, this algorithm is recognised as a ”numerically simple” technique which enables to extend the

transmission boundary conditions to evanescent modes in the anisotropic area. In order to validate the

proposed method from a practical point of view, we then performed a comparison between the results

of simulations (FETI-DPEM2-full, FEM-classical) and scattered field measurements from the Fresnel

database. Finally, we have shown the effectiveness of the proposed method with respect to FEM by

performing calculations on large objects with respect to the wavelength. Indeed, it was concluded that

the FETI-DPEM2-full method is able to deal with much bigger domains in terms of wavelengths than

the classical FEM method.

Finally, we arrive at the main application of the FETI-DPEM2-full method. It is well known that

a fast forward simulator is a key-point in every electromagnetic inverse scattering problems. In this

thesis, we focused on the Broyden-Fletcher-Goldfarb-Shanno quasi-Newton optimization algorithm

with line search. The finite element method previously applied for solving two direct problems at

each iteration of the inverse process has been replaced by the more flexible, in terms of memory,
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FETI-DPEM2- full method. In order to accelerate the process of a multi-source calculation, we have

studied some implementation issues of the proposed method, such as the stopping criterion or different

choices of initialisation. It was concluded that, for calculating the direct problem, it is better to take

the solution from the previous inversion iteration, while for calculating the adjoint problem we use the

marching-on-in technique [163]. We have also proposed in this work to choose the stopping criterion

of the FETI method automatically at each iteration of the inversion algorithm.

Despite the advances made in two- and three-dimensional electromagnetic problems, several im-

provements are still possible and should be integrated. Let us focus at first on the ”direct” part of

this thesis. As far as the forward electromagnetic problem is concerned, the following suggestions can

be made.

— As it was mentioned before, the domain decomposition technique has been recognized as one of

the most important methodologies for constructing efficient parallel computing algorithms [97].

Indeed, the proposed FETI-DPEM2-full method based on the Domain Decomposition idea is

highly parallelizable and can be implemented for the simulations of large-scale electromagnetic

problems using massively parallel systems. Although, in this PhD thesis, we preferred to focus

on the methodology and development of a new approach, rather than its numerical realisation.

Nevertheless, almost a linear speed-up [97] can be expected from the parallelization of the algo-

rithm. This, without any doubts, can be treated as the first way to improve our computational

package.

— Improving the convergence properties of the iterative process constitutes the key in designing

effective algorithms, in particular in mid and high frequency. Recently, a lot of effort has been

put on creating various techniques based on local transmission conditions in order to improve

the convergence : these include the class of FETI-H methods [36, 37, 101, 103],, the optimized

Schwarz approach [164], and the evanescent modes damping algorithm [106, 165, 166]. Howe-

ver, the related impedance operators do not accurately approximate the exact Dirichlet-to-

Neumann (DtN) operator on all the modes of the solution, which makes the resulting iterative

methods suboptimal. It is thus of great interest to apply a new square-root based transmis-

sion condition, localized using Padé approximants, which accurately approximates the DtN

operator, as it has been done in [45] for the classical Lions-Després domain decomposition

method [25,26,28].

— Finally, in order to increase the domain of applications, it is necessary to ”clean” the compu-

tational code for a resolution of three-dimensional electromagnetic problems and, of course to

create a more simple and clear user interface.

Concerning the quasi-Newton approach to microwave imaging, since electromagnetic measured

fields essentially have a limited number of degrees of freedom in finite precision [167], the information

content of the data vector is always limited and can not be increased by adding more illuminations

and measurement positions. On the other hand, it is clear that increasing the resolution leads to a

smaller cell size and a bigger number of DOFs. This will unfortunately result in over-fitting issues.

In order to overcome this problem, it is of great interest to apply different types of regularization

schemes, such as the value picking regularization [168], or the level-set approach [169,170].



Annexe A

Calculation of derivatives of the

Lagrangian

The parameter of interest, here the relative permittivity εr, must minimize a properly defined cost

functional J (εr) (Eq. 6.2). This problem then has been reformulated into a Lagrange functional as in

Eq. (A.1) in order to take into account the constraints of the Near-to-Far-Field transformation and

the Helmholtz equation for the scattered field.

L(E far, Esc,εr,U ,P) =

Nsrc∑
s=1

Nrec∑
r=1

Ls,r(E far, Esc, εr,Us,r,Ps,r) =

Nsrc∑
s=1

Nrec∑
r=1

(
ws,r|E far

s,r − Emes
s,r |2 +Re

〈
Us,r,F(E far

s,r , Esc)
〉

Γfar
+Re 〈Ps,r,H(Esc, εr)− J sc〉Ω

)
(A.1)

The saddle point of Eq. (A.1) provides an efficient way for computing the gradient of the cost functional

by introducing an adjoint field. To find this saddle point, we need to consider the following set of

Karush-Kuhn-Tucker (KKT) conditions :

∇E farL(E far, Esc, εr,U ,P) = 0

∇EscL(E far, Esc, εr,U ,P) = 0

∇εrL(E far, Esc, εr,U ,P) = 0

∇UL(E far, Esc, εr,U ,P) = 0

∇PL(E far, Esc, εr,U ,P) = 0

(A.2)

Assuming that the functional L(E far, Esc, εr,U ,P) is differentiable in the Frechet sense we will

calculate the derivative in the following directions :

A.1 Derivation with respect to the far-field

To start with, we will calculate the derivative with respect to the far-field, which is equal to

< ∇E farLs,r(E far, Esc, εr,Us,r,Ps,r), h >Γfar=

lim
t→0

1

t
{Ls,r(E far + th)− Ls,r(E far)} =

Part1 + Part2

(A.3)

where Part1 can be calculated as follows :

Part1 =

lim
t→0

1

t
{ws,r|(E far

s,r + th)− Emes
s,r |2 − ws,r|E far

s,r − Emes
s,r |2}

(A.4)
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Let us consider the first term here, which is equal to :

ws,r|(E far
s,r + th)− Emes

s,r |2 =ws,r|(E far
s,r − Emes

s,r ) + th|2 =

ws,r|E far
s,r − Emes

s,r |2 + ws,r|th|2 − 2ws,rRe
〈
th, E far

s,r − Emes
s,r

〉
Γfar

(A.5)

Taking this into account, Part1 can be rewritten as follows :

Part1 =

lim
t→0

1

t

{
ws,r 〈th, th〉Γfar − 2ws,rRe

〈
th, E far

s,r − Emes
s,r

〉
Γfar

}
=

− 2ws,rRe
〈
h, E far

s,r − Emes
s,r

〉
Γfar

(A.6)

Similarly, we obtain for Part2 :

Part2 =

lim
t→0

1

t

{
Re
〈
Us,r,F(E far

s,r + th, Esc)
〉

Γfar
−Re

〈
Us,r,F(E far

s,r , Esc)
〉

Γfar

} (A.7)

Taking advantage of Eq. (6.3) we can rewrite the equation above as follows :

Part2 =

lim
t→0

1

t

{
Re

〈
Us,r, E far

s,r + th+
{

Σ

(...)− E far
s,r +

{

Σ

(...)

〉
Γfar

}
=

lim
t→0

1

t

{
Re 〈Us,r, th〉Γfar

}
= Re 〈Us,r, h〉Γfar

(A.8)

Combining these two parts we obtain :

∇EfarLs,r = Us,r − 2ws,r
(
E far
s,r − Emes

s,r

)∗
, on Γfar (A.9)

A.2 Derivation with respect to the scattered field

Following the same idea we can calculate the derivative with respect to the scattered field :

< ∇EscLs,r(E far, Esc, εr,Us,r,Ps,r), h >Ω=

lim
t→0

1

t
{Ls,r(Esc + th)− Ls,r(Esc)} =

Part1 + Part2

(A.10)

where Part1 can be obtained as follows :

Part1 =

lim
t→0

1

t

{
Re
〈
Us,r,F(E far

s,r , Esc + th)
〉

Ω
−Re

〈
Us,r,F(E far

s,r , Esc)
〉

Ω

}
=

lim
t→0

1

t

{
Re
〈
Us,r,F(E far

s,r , Esc + th)−F(E far
s,r , Esc

〉
Ω

}
=

lim
t→0

1

t

{
Re

〈
Us,r, E far

s,r − E far
s,r +

{

Σ

{Q(Esc + th)−Q(Esc)} dS′
〉

Ω

} (A.11)



A.3. Derivation with respect to the relative permittivity 129

where Q(x) is the subintegral value of Eq. (6.3). Taking advantage of the linearity of the operator

Q(x) with respect to x, we then obtain :

Part1 =

lim
t→0

1

t

{
Re 〈Us,r,Q(th)〉Ω

}
= Re 〈Us,r,Q(h)〉Ω

(A.12)

Note, that the operator Q is not selfadjoint. Moreover, it is hard to find explicitly its adjoint operator

Q∗. Physically speaking, it corresponds to the attempt of finding the scattered field on the boundary

of the investigation domain Ω from the knowledge of the scattered far-field on the line Γfar. That is

a very difficult problem, as part of the information about the electromagnetic wave vanishes when it

propagates to far distance. The second part of this equation can be calculated as :

Part2 =

lim
t→0

1

t

{
Re 〈Ps,r,H(Esc + th, εr)− J sc〉Ω −Re 〈Ps,r,H(Esc, εr)− J sc〉Ω

} (A.13)

Using the linearity of the operator H with respect to the first parameter, we can write :

Part2 =

lim
t→0

1

t

{
Re 〈Ps,r,H(Esc + th− Esc, εr)〉Ω

}
=

lim
t→0

1

t

{
Re 〈Ps,r,H(th, εr)〉Ω

}
= Re 〈Ps,r,H(h, εr)〉Ω

(A.14)

Note that unlikely the operator Q, the operator H is selfadjoint with respect to the first parameter,

at least in lossless media. Thus we can rewrite the equation above as follows :

Re 〈Ps,r,H(h, εr)〉Ω =

Re 〈H(Ps,r, εr), h〉Ω
(A.15)

Finally, combining Eqs. (A.12) and (A.15) we obtain the second derivative expression :

∇EscLs,r = H(Ps,r, εr) +Q∗(Us,r), in Ω (A.16)

A.3 Derivation with respect to the relative permittivity

Let us now calculate the third derivative, which is going to consist as well on 2 parts :

< ∇εrLs,r(E far, Esc, εr,Us,r,Ps,r), h >Ω=

lim
t→0

1

t
{Ls,r(εr + th)− Ls,r(εr)} =

Part1 + Part2

(A.17)

This time we will start with the second part :

Part2 =

lim
t→0

1

t

{
Re 〈Ps,r,H(Esc, εr + th)〉Ω

}
− lim
t→0

1

t

{
Re 〈Ps,r,H(Esc, εr)〉Ω

}
=

lim
t→0

1

t

{
Re 〈Ps,r,H(Esc, εr + th)−H(Esc, εr)〉Ω

} (A.18)



130 Annexe A. Calculation of derivatives of the Lagrangian

Taking into account the definition of the operator H (Eq. 6.4) we can rewrite equation above as

follows :

Part2 =

lim
t→0

1

t

{
Re
〈
Ps,r,−k2

0[εr + th]Esc + k2
0[εr]Esc

−k2
0[εr − εb + th]E inc + k2

0[εr − εb]E inc
〉

Ω

}
=

lim
t→0

1

t

{
Re
〈
Ps,r,−k2

0 th (Esc + E inc)
〉

Ω

}
=

lim
t→0

1

t

{
Re
〈
Ps,r,−k2

0 th Etot
〉

Ω

}
=

Re
〈
Ps,r,−k2

0 h Etot
〉

Ω

(A.19)

For this derivative the first part represents the gradient of the cost function :

Part1 =

〈
∂J
∂εr

, h

〉
Ω

(A.20)

Combining Eq. (A.20) with the second part of the derivative (Eq. A.18), we obtain the third derivative :

< ∇εrLs,r, h >Ω=

〈
∂Js,r
∂εr

, h

〉
Ω

−Re
〈
k2

0 Ps,r Etot
s,r , h

〉
Ω

(A.21)

From Eq. (A.21) we can obtain the explicit expression for the gradient of the cost function J as :

∇εrLs,r =
∂Js,r
∂εr
− k2

0 Ps,r Etot
s,r , in Ω (A.22)

A.4 Cost function derivation

Let us assume that we are at the saddle point condition. We thus have for the three derivatives

above : 
∇E farL(E far, Esc, εr,U ,P) = 0

∇EscL(E far, Esc, εr,U ,P) = 0

∇εrL(E far, Esc, εr,U ,P) = 0

(A.23)

Taking into account Eqs. (A.9), (A.16) and (A.22), we can rewrite them as
∂Js,r
∂εr

= k2
0 Ps,r Etot

s,r , in Ω

H(Ps,r, εr) = −Q∗(Us,r), in Ω

Us,r = 2ws,r

(
E far
s,r − Emes

s,r

)∗
, on Γfar

(A.24)

Because of the lack of the explicit expression for the adjoint operator Q∗, we calculate at first the

Lagrange multiplier Us,r as it is given above in the last equation of Eq. (A.24). Then we propagate this

value, which represents nothing but the discrepancy between the measured and simulated fields, from

the far-field region to the investigation domain Ω. This propagation is performed assuming that εr = 1

everywhere in Ω. We thus use the classical free space Green function for obtaining P inc
s,r everywhere

inside the investigation domain. In order to compute the total field Ptot
s,r , instead of using the second

equation of Eq. (A.24) we compute the adjoint scattered field Psc
s,r at first as we did in Section (2.2.1)

taking into account the variations in permittivity as well as the incident adjoint field. The adjoint

total field Ptot
s,r is finally obtained by summing P inc

s,r and Psc
s,r.
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Finally, we use the first line in Eq. (A.24) in order to find the gradient of the cost function.

∂J
∂εr

= k2
0

∑Nsrc
s=1 Ptot

s Etot
s (A.25)
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[67] Hervé Tortel, Gilles Micolau, and Marc Saillard. Decomposition of the time reversal operator for

electromagnetic scattering. Journal of Electromagnetic Waves and Applications, 13(5) :687–719,

1999. (Cited on page 3.)
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