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Foreword

This document is a habilitation à diriger des recherches (HDR) thesis. It is organized in two parts:
The first part presents a reflection on my work and the state of the Natural Language Processing
community; The second part is an overview of my activity, including a detailed CV, a summary
of the work of the PhD students I contributed to advising, and a list of my personal publications.
Self-citations are postfixed with † and listed in Chapter 9, while external references are listed in the
bibliography at the end of the document. Each contribution chapter ends with a section listing PhD
student work related to that chapter.
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Abstract

Natural language is pervasive in a society of information and communication. Processing it auto-
matically, be it in the form of analysis or generation, is at the center of many artificial intelligence
applications. In the last decades, the natural language processing (NLP) community has slowly adopted
machine learning, and in particular more recently deep learning, as a major component of its research
methodology. NLP tasks are typically expressed as structured classification problems, for which sys-
tems can be devised by finding parameters that minimize a cost function on a previously hand-labeled
training corpus.

This document explores the current state of the research questions addressed by the NLP com-
munity through three interwinded challenges: taming modeling assumptions, ensuring generalization
properties and dispensing adequate methodology.

Modeling assumptions are often seen from a statistical point of view, such as the assumption that
training samples shall be independently distributed, yet NLP assumes other kinds of dependency as-
sumptions which impact system performance. Input representations, and in particular the scope of
input features used to characterize a decision, may need to be reconsidered when processing rich lin-
guistic phenomena. Structured predictions for which decisions are interdependent are tackled through
a compromise between rich decoding schemes with low modeling power, and suboptimal decoding with
richer models. Linguistic descriptions have lead to modular approaches resulting in processing chains
hindered by cascading errors, an approach questioned by recent end-to-end and multitask training.

The second challenge is performance generalization, meaning that systems shall not collapse under
conditions differing from the training distribution. Generalizing NLP systems across genres, such as
from news to social media, and modality, from text to speech, requires accounting for the distributional
and representational shift between them. In addition, recent development of common annotation
schemes over a range of languages, and the resulting availability of multilingual training data allows
to explore creating systems that can process novel languages for which they have not received full
supervision.

The third challenge is methodological, exemplified through problems with shared tasks and lack of
user involvement in current evaluation metrics. Shared tasks, a tool used to foster progress through
independent evaluation of systems developed by competing scientific institutions, are both beneficial
and detrimental due to over-engineering and bias effects. Besides shared tasks, the loss functions
encouraged by machine learning for training NLP systems are often generic and do not account for
the context in which they are used. Developing user-oriented evaluations is a research direction for
improving this involvement.
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Chapter 1

Introduction

In order to make machines significantly
easier to use, it has been proposed (to try)
to design machines that we could instruct
in our native tongues. This would,
admittedly, make the machines much more
complicated, but, it was argued, by letting
the machine carry a larger share of the
burden, life would become easier for us.

Edsger W. Dijkstra, 1979

Natural Language Processing (NLP) is a field of computer science which aims at studying how
human language in all its forms can be processed and generated by computers. Originating from a
multidisciplinary community, it draws from the fields of mathematics, philosophy of language, linguis-
tics, psycholinguistics, cognitive sciences, social sciences, neuroscience, in order to model and simulate
human behavior regarding natural language.

A definition of the word language, given in (Crystal et al. 2018), could be “a system of conventional
spoken, manual, or written symbols by means of which human beings, as members of a social group
and participants in its culture, express themselves. The functions of language include communica-
tion, the expression of identity, play, imaginative expression, and emotional release.” This definition
actually restricts itself to natural language, by opposition to formal languages which are mathemat-
ical constructs made of sequences of abstract objects with interesting regularities, in which fall for
instance programming languages. Even though formal languages are often used to describe some as-
pects of natural languages, the ‘natural’ modifier has been included because of the complexity of the
observed phenomenon of human-human communication that may be beyond the reach of simple formal
languages. The debate between formalists and naturalists probably originated in Noam Chomsky’s
interest for the source of the phenomenon of language in the mind (embodied by the study of formal
languages) and relative lack of interest for how this phenomenon translates into actual linguistic in-
stances, corrupted by actuators and communication channel issues. Yet, corpus-based linguistics and
the ensuing empirical evaluation of natural language processing systems have led to very successful
applications that changed our everyday life, and that would probably not have been possible if the
community did not focus on natural language at some point.

The previously mentioned definition of language also imposes interesting restrictions on the kind of
symbolic systems used for conveying language, and the fact that language is a human-centric concept.
While spoken language is the means of choice for human communication and the first language a
baby learns, written language has been the favorite durable means of communication because it could
be painted, written, printed, and sign language even if most developed in disabled communities, is a
recognized complement to spoken language and one of the first languages infants can learn. A first
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12 CHAPTER 1. INTRODUCTION

question entailed by this restriction is whether language can be expressed in other modalities. For
instance, music is often recognized to have a lot of properties of language (Rohrmeier et al. 2015), and
therefore should it be considered as a natural language? Another question is whether the symbols upon
which language relies need to be discrete or could be of another form. The space of colors is inherently
continuous, and language has trouble mapping it with symbols; paralinguistic information such as
emotions also do not map well to a symbolic space; sign language has many non-symbolic constructs
based on location or intensity of gestures. Maybe the underlying question is whether thinking is
symbolic and, if not, how it maps to a symbolic language (Lupyan 2016). The second restriction is the
limitation to human communication. It has been shown multiple times that animals use some form of
language that have a lot in common with human language, and it is also interesting to question whether
natural language processing should be limited to human language (and there are several current efforts
to build dog-human translation devices, with various degrees of success).

The general public perception of natural language processing is that since language manipulation
is so easy for humans, it should be as straightforward for machines. Automatic speech recognition, the
generation of a transcript from what was said in an audio recording, is a typical example of an intuitively
easy yet extremely difficult task. The first problem is the recognition of phonemes from the acoustic
signal. Phonemes are the basic unit of sound that can be produced by the vocal conduct, such as vowels
(sustained frequencies produced by driving air through the vocal folds) or consonants (produced for
example by fast tongue and lip movements). Recognizing phonemes is challenging because different
morphologies of the vocal conduct lead to speaker-level variability of the frequencies and timing that
characterize a phoneme. It is also challenging because the vocal conduct is a continuously moving organ
which results in slow transitions between the stable states of phonemes. In addition to those challenges,
the acoustic channel (reverberation, distance to the microphone, type of microphone, presence of other
sources of noise) may be corrupted leading to uncertainties in the recognition process. Even if the
phoneme sequence were easy to reconstruct, mapping phonemes to lexical units is difficult because of
ambiguity. Given a phoneme sequence, there are typically hundred thousand sequences of words that
map to that sequence among which most are nonsense but some make perfect sense out of context (a
good source of puns). A speech recognition system has to guess the actual sequence, which often implies
understanding the intent of the original speaker. Automatically understanding such natural language,
called Natural Language Understanding or NLU, is also difficult because of ambiguity (a single word
might have multiple senses), because of the use of references which require to account for a broad
context (for instance relying on general knowledge), and because the target of what “understanding”
means (and in general what semantics is) is ill-defined and often an open research problem.

Natural language processing includes some of the most difficult problems of the field of artificial
intelligence because they often require world knowledge and general reasoning (therefore, it is listed as
one of the IA-complete problems, possibly requiring general Artificial Intelligence), yet many success-
ful applications have been striving over the years. These applications rely on mimicking how humans
manipulate language in a specific context or domain instead of completely simulating an intelligent
system. General purpose dialog agents, also known as “chatbots”, are a good example of how humans
can be deceived in thinking that they are talking to an intelligent machine. The Turing test, long
thought as a good test of achieving artificial intelligence, consists in blindly matching human judges
with dialog agents and other humans, and measuring whether the judges can discriminate between
humans and computer programs. The ELIZA chatbot (Weizenbaum 1976) or contestants to the Loeb-
ner Prize competition (Stephens 2004) are dialog systems which rely on conversational tricks in order
to evade difficult questions (such as invoking boredom, switching topics, etc.) Machine Translation
is another example which uses recurrent statistical properties of aligned corpora across languages in
order to mash-up good-quality translations. One fundamental question of NLP is whether we should
continue to make mimicries, in the same way the aeronautics community has built planes instead of
simulating bird flight, or if we can overcome the difficulties of simulating cognitive functions of the
brain.

While early natural language processing systems relied on formal models (the introspective ap-
proach), the community has slowly evolved towards using statistical models of language to eventually
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relying on machine learning for a broad range of NLP tasks. This evolution probably began with the
introduction of corpora of naturally occurring language phenomena for evaluating the quality of NLP
systems. This was a step towards more ecological evaluation of language technology. As corpus size
grew, it started to be possible to tune system hyper-parameters to maximize performance, and finally
to use a subset of the annotated data to train machine learning algorithms. Machine learning consists
in creating computer programs that can learn from experience without being explicitly designed to
solve a particular task. The inference problem is often formalized as generating the output (class label,
symbolic structure or set of real values) from a parametrizable function of the input (features extracted
from observations), while the learning problem consists in finding the parameters of the function that
best generate the correct labeling of a corpus. The approach developed in the NLP community by first
replacing hand-designed rule-based systems with automatically mined rules from a superset of possible
rules, which made the success, for example, of the Brill part-of-speech tagger (Brill 1992). Later,
researchers developed statistical approaches leveraging independence assumptions to decompose joint
probabilistic models of the labels to predict and observations, and computed the probability of events
through a frequentist maximum likelihood estimation of discrete distributions. These approaches lead
to success in automatic speech recognition (Huang et al. 1990), language modeling or machine trans-
lation (Koehn 2009). Another landmark approach was maximum entropy (Berger et al. 1996) and
conditional random fields (Lafferty et al. 2001) which extend the frequentist statistical approach to a
log-linear modeling of distributions decomposed over features of the input. The NLP community then
followed more closely the advances in the machine learning community. More classes of models have
been made possible to explore by formalizing the learning problem as a loss function minimization
problem, and directly minimizing the end-task errors (such as approximations of BLEU in machine
translation). While most prominent models were linear, nonlinear models have long been explored
with decision trees, support vector machines or neural networks. Finally, recent advances in deep
learning have promoted neural networks to the dominant approach for a lot of NLP problems, such as
speech recognition, machine translation, etc. In major conferences and journals of the domain (Com-
putational Linguistics, ACL, EMNLP, EACL, NAACL, COLING, etc.), the percentage of papers with
titles related to machine learning has tripled from 2010 to 2018, going from around 10% to more than
30% (lower bound on actual topical content; see Table 1.1). Clearly, machine learning is establishing
itself as a very strong component of the field. This observation makes one wonder whether this trend
will last, or whether machine learning will eventually fade and be replaced.

Year Matches Total %
1965-2009 1,494 20,671 7.2

2010 269 2,666 10.1
2011 207 1,856 11.2
2012 279 3,047 9.2
2013 298 2,540 11.7
2014 371 3,297 11.3
2015 464 2,587 17.9
2016 806 3,722 21.7
2017 970 3,144 30.9
2018 1,468 4,335 33.9

mid-2019 379 1,120 33.8

Table 1.1: Number of article titles of the major conferences and journals of the domain indexed
in the ACL Anthology (CL, ACL, EMNLP, EACL, NAACL, COLING, etc.) that match typical
machine learning words (neural, learning, deep, training, embedding, network, end-to-end, attention,
lstm, ensemble, adversarial, bayesian, supervised, margin, support, loss) from 1965 to mid-2019 with
of focus on recent years. Data collected from https://aclanthology.info.

Machine learning and the whole ecosystem it generates (data collection and annotation, system

https://aclanthology.info
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development, model choice and parameter tuning, evaluation protocols and shared tasks) is favored by
the community for the following reasons. First, it is considered as a step towards ecological evaluation
through the use of collected naturally occurring language data. It also helps building a repeatable
experimental setup because machine learning algorithms, trained with the same corpus and given
the same initial parameters, lead to the same performance results on the test set. One advantage of
machine learning that is a dividing argument in the community is that associated models are often
linguistic-theory neural and by being able to learn relevant features from the data, require less linguistic
expertise on the target problems. This aspect also allows to capture regularities that are not apparent
in the data, and therefore often yields superior performance in scientific competitions. Another benefit
is that machine learning models can often account for very large datasets and are relatively efficient in
terms of processing. An additional reason is that some aspects of machine learning imitate the learning
process of the brain, allowing computers to learn language in the same way children learn language.
This last reason is debatable since it is not settled how much of the implementation of language in the
brain is the result of evolution, and how much is the result of social interaction.

While machine learning may seem like a definitive answer to a very broad range of problems,
it also exhibits some limitations which have been recognized by various communities. The main
disadvantage is that machine learning requires much more supervision than humans for being able to
obtain reasonable performance (and even sometimes super-human performance) in solving a particular
class of problems. There have been many efforts to increase data efficiency, such as active learning
techniques (Settles 2012) which consist in iteratively training a system and selecting which examples
to annotate in order to maximize the performance gain of the system. Another trend of research is
that of meta-learning in which machine learning systems are faced with numerous different tasks so
that they get a chance at capturing faster the specifics of a novel task (Finn et al. 2017). In the
computer vision community, it has been shown multiple times that it is easy to add noise to images
that perceptually belong to a category unambiguously while a trained system gives a different category
with very high confidence. Attacking machine learning systems with adversarial examples is an old
topic as evidenced in the speaker verification community with voice transformations that allow spoofing
an identity (Matrouf et al. 2006), or by more recent techniques for building physical objects that can
consistently fool machine learning systems while being recognized by humans (Kurakin et al. 2016). In
order to contain the effects of such attacks, but also required by certain application domains such as
medicine, recent efforts in machine learning have focused on making systems which are interpretable
at the model level (what did the model learn, how did it learn?) and at the decision level (why did the
mode make a given decision?). It is often stated that deep neural networks are not interpretable, but
one can remark that linear models are not much more interpretable than their deeper peers (Lipton
2016).

Given the attraction of the NLP community for machine learning in face of the benefits and
drawbacks it carries, it is reasonable to question whether those specificities are important for the NLP
field, and try to shape what compromises the community is making by focusing on a single approach.
This document presents a set of reflections based on my experience at the saddle point between the
fields of natural language processing and machine learning, and illustrated and supported by arguments
based on the research I have conduced since my MSc thesis. Its aim is to introduce elements that can
help us move towards answering the following questions:

• What is the impact of assumptions typically associated with machine learning on current NLP
research?

• Are models trained through machine learning able to generalize well on natural language pro-
cessing tasks?

• What are the limits of methodological practices in the natural language processing community
in the context of machine learning?

• On what problems should the NLP community focus now that reliance on machine learning has
matured?
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This document does not give a definitive answer to those questions. But it shows directions which
might lead to a better understanding of a range of NLP problems. Those directions are based on the
idea of extending the context in which problems are tackled, by pushing the envelope of formalization,
modeling, implementation and methodology associated with them. This approach is fundamental to
Contextual Language Understanding.

This part of the document is organized as follows. Chapter 2 gives a broad overview of major
natural language processing techniques with a focus on recent deep learning approaches. Chapter 3 is
an attempt at measuring the impact of assumptions on NLP system performance. Chapter 4 tries to
determine up to what point generalization is limited in current NLP approaches. Chapter 5 addresses
some of the methodological concerns with current practices in empirical research in the community.
The last chapter of this part gives a general conclusion and lists a few prospects in the field.
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Chapter 2

Modern Natural Language
Processing

Many introductions to natural language processing, encompassing historical or recent approaches, can
be found in the literature. The objective of this chapter is not to build a comprehensive survey of
existing problems and methods but rather to focus on select landmarks that are relevant to the next
chapters. In particular, it only covers a few supervised machine learning techniques popular within
the community for a large number of NLP tasks. For a more in-depth approach of NLP, the reader
may refer to (Jelinek 1997; Manning et al. 1999; Martin et al. 2009; Koehn 2009; Goldberg 2016; Deng
et al. 2018).

This chapter first covers the dominating methodological approach to building NLP systems based
on empirical evaluation of their performance on “language-in-the-wild” corpora. Then, it outlines a
broad family of NLP tasks and reviews machine learning approaches that can be exploited to tackle
them.

2.1 An Empirical Approach
Empirical evaluation has become the workhorse of the natural language processing community. In
terms of methodology, the main problems that need to be addressed are reproducibility (research
results can be replicated), and representativeness (the experimental setting is realistic). To address
both, researchers have been resorting to the notion of corpus, a set of language samples collected from
actual interactions or sources, which stand as representative of the NLP problem being addressed.
Corpora can be made accessible for others to replicate results, and can be collected from a variety of
settings to ensure realism.

The typical approach for creating an NLP system consists in the following loop:

1. define the task, be it part-of-speech tagging, named entity recognition, machine translation, or
summarization;

2. gather corpora that encompasses a range of sources, genres, styles to be representative of the
applications you have in mind;

3. write a precise and coherent annotation guide, and define a meaningful evaluation criterion;

4. annotate the corpora with task labels using informed or naive annotators to build a gold stan-
dard;

5. create a system that will predict labels from raw data;

17
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6. evaluate the system output on held-out data;

7. loop to step (1) to refine the approach – only a subset of steps might be refined (for instance, it
is common to alternate between improving a system and evaluating it).

This loop, which could be called TCGASE (for Task, Corpus, Guide, Annotation, System, Evalua-
tion), is essential not only to current NLP research, but also to system engineering in the industry as
quality control. It is suitable for creating machine-learning based systems as it provides an environ-
ment with labeled data and a criterion to optimize for. In the following sections, we detail a bit more
the notions of task, system and evaluation metrics.

2.2 Tasks
Traditionally, NLP tasks are organized according to the analysis-synthesis dichotomy, as well as the
means-and-end dichotomy which considers intrinsic tasks (which are steps towards an end) and ex-
trinsic tasks (which can be involved in end-user applications). However, the boundary between those
categories is very loose as the same models can often be used for analysis and synthesis, and a lot of
intrinsic tasks can be exposed in applications.

Another way of looking at NLP tasks is according to processing levels: meta, syntactic, semantic,
discourse and pragmatic levels. Automatic processing at those levels is typically performed sequentially,
from the lower to the higher level. A non-exhaustive list of tasks could be described as follows.

• The Document level operates on meta-descriptors of the linguistic content:

– Language and code identification and segmentation: finding what language the current doc-
ument contains, some documents containing multiple languages, or sequences of words using
different writing systems, such as the inclusion of English words in Chinese, or mathematical
symbols in an article;

– Author identification and trait classification: characterizing the style of an author to devise
her identity or traits such as social category, age, etc.;

– Document structure analysis: determining where structural elements such as section head-
ers, paragraphs, lists, figures, etc. are.

• The Syntactic level corresponds to structural elements that are linked to the function of lin-
guistic elements:

– Sentence splitting, punctuation prediction: finding where sentences start and end, which
can be difficult in spontaneous spoken or textual content;

– Word segmentation, tokenization, multiword expression detection: identifying words and
associated lemmas in the stream of characters which might not be separated by spaces or
punctuation such as in Sino-Tibetan languages;

– Part-of-speech tagging, morphological analysis: determining the syntactic category of words,
as well as traits such as gender or number which can be determined from sequences of
characters within words;

– Syntactic chunking and parsing: finding the latent structure that links words together
outlining the function of groups of words under a grammar theory.

• The Semantic level aims at analyzing the meaning of linguistic constructs:

– Named entity recognition, linking: identifying sequences of words which correspond to real-
world entities and matching them in a database of existing entities;

– Word-sense disambiguation: recognizing the meaning of each lexical unit among a catalog
of possible meanings;
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– Topic classification and segmentation: finding the topic or hierarchy of topic segments of a
document;

– Semantic parsing: constructing the latent structure of the sense of a sentence from the
meaning of individual words according to one of the semantic representation theory.

• The Discourse level drives how discourse and interaction are organized

– Coreference resolution: resolving pronouns and references to aforementioned entities or
external entities;

– Dialogic parsing: analyzing the construction of a dialog or a multiparticipant conversation
in terms of dialog acts, question-answer pairs, etc.;

– Discourse parsing: determining how arguments are constructed and related.

• The Pragmatic level consists in the integration of meaning units in the context in which they
are produced, often with an applicative end in mind.

– Sentiment analysis and opinion mining: determine the stance or emotional state of an
author, speaker or character regarding a topic;

– Knowledge representation: build an ontology or formal representation of knowledge acquired
from a text or during a communication effort;

– Reasoning / integration: reason about what to do next given the current state of system
and linguistic input (dialog systems, robots, etc.).

It is apparent that some of those task do not completely fit the category they are attached to,
and that some may benefit from the output of a number of other tasks. This description towards the
analysis side of NLP also holds (in reverse level order) for the generative side which aims at producing
linguistic constructs given abstract representations.

Natural language processing has generated a number of applications that span the whole industry of
human-human and human-machine interactions, such as machine translation, summarization, speech
recognition or dialog systems. Those applications might be treated as compositions of finer-grained
NLP tasks, or tasks of their own.

Most of those tasks can be cast as one of five problems:
• Labeling: predict an output label from a set of possible labels (a classification task), often

extended to sequence or tree labeling because the label for one element depends on neighboring
elements. Word sense disambiguation or part-of-speech tagging belong to that category.

• Segmentation: predict segment boundaries for the input, as a partition of disjoint, possibly
overlapping segments. Syntactic chunking or named entity recognition are instances of this task.
A non-overlapping segmentation task can be cast as a sequence labeling problem by using the
popular begin-inside-outside (BIO) encoding which appends a B to the first item of a segment,
an I to all items inside it and an O for items which are not in a segment1.

• Regression: predict a value in a continuous space, such as for sentiment valency assessment,
predicting the quantity of silence required for a dialog system to take the floor, speech synthesis
(generation of a sequence of audio samples), or predicting customer satisfaction on Likert scale.
When the nature of the target is not natively continuous, the problem is often mapped to
(ordered) labeling.

• Relation detection: predict that two elements are in relation, and label that relation. Depen-
dency parsing is cast as relation detection, but so can be coreference resolution. Some constraints
can be added to the task as in dependency parsing where a word can only have one governor,
which ensures that the created structure is a tree.

1There exist a range of representations of segments as word-level classification tasks (Konkol et al. 2015) and explicit
prediction of segment boundaries (Gillick et al. 2016).
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• Generation: predict a label which decomposes as a sequence of items (generally words). It is the
case of summarization or machine translation for which a sequence of words must be generated.

The advent of deep learning has greatly extended the expressivity of machine learning systems, blurring
this categorization2.

2.3 Systems
Given this description of natural language tasks, it would be interesting to be able to reuse similar
methods for dealing with different problems. The mainstream approach is to use machine learning to
solve those problems.

NLP problems are often treated as classification of an input x ∈ X as a label y ∈ Y where X
and Y are respectively the set of all possible inputs and labels. When X or Y are large, x and y
are decomposed in smaller units, such as words and part-of-speech tags of a sentence. The inference
problem consists in predicting y given x, with a parameterized function fθ.

ŷ = argmax
y∈Y

fθ(x) (2.1)

Training consists in finding the parameters θ that minimize an empirical loss on never seen data
(for example the number of mislabeled instances), which is approximated by minimizing a loss function
L on a training corpus C, which is called empirical risk minimization (ERM).

θ̂ = argmin
θ

∑
(x,y)∈C

L(y, fθ(x)) (2.2)

In the following sections, we overview a few “shallow” machine learning models and “deep” neural
networks that are often used in NLP systems.

2.3.1 Standard models
Perceptron The perceptron algorithm is one of the most straightforward linear model for machine
learning. If x is a feature vector, W a weight matrix of size the number of features times the number
of possible labels, y is a score vector with a value for each label (the highest scoring label being the
predicted one). Prediction under that model is performed as:

y = Wx (2.3)

Training is achieved by stochastic gradient descent by repeatedly sampling examples from the training
set, performing prediction, and adjusting the weights according to whether the correct label was
predicted or not. The gradient is discretized so that −1 is added to the weights of the incorrectly
highest scoring label, and 1 is added to the weights of the gold label that should have been predicted,
in a maximum margin fashion. A very good extension is the averaged perceptron which consists in
saving the weight matrix after each update, and eventually averaging all the weight matrices to produce
the final model (Collins 2002). It can be computed efficiently by observing that the average model can
be factorized according to each of the updates.

Structured prediction problems can be tackled by decomposing y in substructures and using an
inference procedure, such as the Viterbi Algorithm for chains of factors, and then adjust the weights
of the features linked to the substructures. The size of W depends on the number of features times
the number of values the substructures can take (for a bigram tagger, they would be the number of
possible tag bigrams) which tends to grow quickly in practice. Sparse representations are often used
for both x and W .

2Systems can be set up to solve hybrids of those problems although the various losses they are trained for can be
broadly mapped to them.
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The perceptron algorithm has been very popular in the NLP community for its simplicity and
speed, while achieving very good results in tagging and parsing tasks at a fraction of the cost of other
models (Collins 2002; McDonald et al. 2005a). A number of variants of the training procedure have
been proposed, such as Mira (Crammer et al. 2006) or Adagrad (Singer 2010), without leading to
systematic improvements compared to the averaged perceptron.

Maximum entropy and conditional random fields Maximum entropy models are log-linear
probability models which can be expressed as:

pθ(y|x) =
1

Z(x)
exp

(∑
k

θkfk(x, y)

)
(2.4)

Z(x) =
∑
y′∈Y

exp

(∑
k

θkfk(x, y
′)

)
(2.5)

where θ is a vector of trainable parameters and f(x, y) is a binary feature vector for the label y of x.
Z(x) is a normalization factor which makes the probabilities over labels y sum to 1.

Log-linear models can be trained by maximizing the log likelihood of the training data, with an
optional regularization penalty (Lreg(θ), with λ regulating the quantity of regularization, determined
on a development set).

L(θ) =
∑
i

log pθ(y
(i)|x(i)) (2.6)

Lreg(θ) =
∑
i

log pθ(y
(i)|x(i))− λ

2

∑
j

θ2j (2.7)

L(θ) (and Lreg(θ)) is convex and can be maximized with any off-the-shelf algorithms such as gradient
ascent or LBFGS (Liu et al. 1989). Closed-form derivation of the gradients of L with respect to θ can
be found in (Collins 2005).

Conditional Random Fields (CRF) are maximum entropy models applied to labels y decomposable
over a graph of factors. The basic idea is that an instance consists in a set of slots T which have to
be labeled with atomic labels yt ∈ YT so that y = {yt}T . Then, we can consider GT a graph over T
and factors as connected components, or cliques, of GT . Intuitively, the factors are subsets of atomic
predictions in T that represent dependent phenomena. Given that, a CRF is a log-linear model where
binary features are extracted for each factor, and associated with trainable weights. Since cliques may
share slots, the inference problem (finding the highest scoring labeling of the graph) must make sure
that factors agree on the atomic label chosen for a given slot.

In NLP, the most commonly used form of CRF model is first-order linear chain CRFs. If x =
x1 . . . xT is a sequence of observations, and y = y1 . . . yT is a sequence of labels, then pθ(y|x) can be
expressed as:

pθ(y|x) =
1

Z(x)

T∏
t=2

exp

(∑
k

θkfk(x, yt, yt−1)

)
(2.8)

Z(x) =
∑
y′

T∏
t=2

exp

(∑
k

θkfk(x, y
′
t, y

′
t−1)

)
(2.9)

where factors correspond to bigram of labels in the instance, and Z(x) is summed over all possible
labeling of the input. This extends to higher order (larger n-grams), and other types of structure, such
as trees or graphs.

Training is similar to that of maximum entropy models, except that inference is performed with
the Viterbi algorithm (for sequences) which finds the maximum probability labeling of an instance,
and the forward-backward algorithm which can compute the Z(x) normalization factor efficiently.



22 CHAPTER 2. MODERN NLP

CRFs have been very successful in tagging tasks, such as part-of-speech tagging or named entity
recognition (Toutanova et al. 2003).

Support vector machines A kernel is a similarity function between two instances that satisfies the
Mercier property. In particular, it has the following property:

K(xi, xj) = ⟨ϕ(xi) · ϕ(xj)⟩ (2.10)

which means that the similarity may be computed in a projection space (ϕ(x)) as a scalar product ⟨·⟩.
The main idea of Support Vector Machines is to find a separator hyper-plane in the projection space
instead of the original representation space of the data, where the projection space is of potentially
larger dimension than the original to ensure that the classes are separable (known as the kernel trick).

The classifier is trained by finding a separator that classifies examples with a maximum margin
criterion, by using slack variables ξi which correspond to the penetration of an example in the space
of the opposite class. If yi ∈ {−1, 1} is the label of example xi, the C-SVC formulation (Cortes et
al. 1995) of SVMs with L2 regularization is trained as:

min
w,b,ξ

C
∑
i

ξi +
1

2

∑
k

w2
k (2.11)

subject to yi(w
⊤ϕ(xi) + b) ≤ 1− ξi ∀i (2.12)

ξi ≤ 0, ∀i (2.13)

where w is a weight vector, b a bias term, C a hyper-parameter that must be set on a development
set, ϕ(xi) is the projection and ξi is the slack for example i. The dual of this objective is minimized
with quadratic programming techniques.

Inference of the trained classifier is defined as:

y = sgn
(∑

i

yiαiK(xi, x) + b

)
(2.14)

where (xi, yi) are training examples, αi is obtained during training from the dual problem and K is
the kernel.

SVMs have been very popular in the machine learning community because of the associated theo-
retical results. They have been used for a range of NLP problems such as sentiment analysis (Vinodhini
et al. 2012).

Boosting Boosting is an ensembling method which consists in building a linear combination of weak
classifiers in order to obtain a stronger classifier. Many schemes have been proposed for learning
such combination, but Adaboost (Schapire et al. 1999) was one of the most successful. It consists
in iteratively selecting a set of classifiers from the ensemble and weighing them in order to maximize
performance. It alternates between weighting the examples from the training set so that erroneous
predictions according to the combination have more weight, and then selecting the weak learner which
contributes best to the weighted loss. BoosTexter was a very successful implementation of Adaboost on
decision stumps, which are one-level decision trees, such as decision thresholds for real-valued features,
and presence detectors for textual features (Schapire et al. 2000).

The decision function for an Adaboost classifier after T rounds of training is of the form:

y =

T∑
t=1

αtht(x) (2.15)

where ht ∈ H is a weak learner selected at round t and αt is the scalar weight associated with the
learner at that round. Note that the same learner may be selected multiple times.
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The training algorithm for Adaboost Real.MH is as follows3. Let X be a matrix of m examples,
and Y the associated one-hot encoded matrix for k labels. We define D a distribution over examples
and labels. h ∈ H are functions (weak learners) that return a confidence matrix over their predictions
for the labels for all examples. At each iteration, the weak learner ht which minimizes the function Z
is selected. The distribution D is then updated according of the weighted errors of the classifier.

Z(D,α, h) = sum(D ⊙ e−αY⊙h(X)) (2.16)

D1 =
1

mk
(2.17)

αt = 1 (Boostexter already accounts for α in h) (2.18)
ht = argmin

h∈H
Z(Dt, αt, h) (2.19)

Dt+1 =
Dt ⊙ e−αtY⊙ht(X)

Z(Dt, αt, ht)
(2.20)

where sum(·) returns the sum of all elements of a matrix and ⊙ is the elementwise multiplication. In
Boostexter, αt = 1 and h(X) is defined as follows:

W j
b = sum0 (Dt1 [s(X) = j ∧ Y = b]) (2.21)

cj =
1

2
ln

(
W j

1 + ε

W j
0 + ε

)
(2.22)

ht(X) = c1s(X) + c0(1− s(X)) (2.23)

where sum0(·) is the sum over rows of its argument, 1[·] is the indicator function, ε = 1
mk , s(.) is a

decision stump which returns 1 if a predicate over X is true, 0 else (typical predicates include presence
of a symbolic feature, or the fact that a feature is above a threshold). cj is the confidence of the
decision stump for a given decision according to the weight distribution on the training set.

In the past, Adaboost has been quite popular4 in the NLP and in particular the NLU communities
due to its ability to seamlessly account for word n-grams, unknown features, and blend symbolic and
continuous features. Gradient boosting (XGBoost) is a variant which is still very popular for its
performance especially among Kaggle competition participants.

2.3.2 Deep models
As stated earlier, training a machine learning algorithm consists in finding a set of parameters that
minimize a loss L between the predicted label and reference label for all training examples. This
minimization process can be achieved through gradient descent techniques which require computation
of the gradient with respect to the parameters θ of the loss5 for a given training instance. Finding
analytically the gradient can become difficult depending on the combined loss and inference functions.
Yet a neat trick has allowed to automatically compute the gradient of deep function compositions,
giving birth to deep learning.

The methods that lie under the deep learning name, are in fact quite a general class of inference
functions which can be relied on to compute the loss. In particular, L is expressed as a computational
graph of which composing functions need only to be partially derivable in regard of their input.
Figure 2.1 shows a node of the computation graph with two inputs and one output. Using the chain

3The one implemented in ICSIBoost (Favre et al. 2007c).
4Some say that Boostexter is the first classifier you should try when approaching a new problem since it consistently

yields a strong baseline, as evidenced by the success of related implementations on the MLComp platform (Liang et
al. 2010).

5One very common loss for training classification systems is the cross-entropy loss Lce(yt, yp) = yt ln yp+(1−yt) ln(1−
yp).
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rule, one can compute the derivative of L in regard of each of the parameters of f as the product of the
partial derivatives of each component of the computation graph in the paths that link a parameter θi
to L. The back-propagation algorithm consists in using gradient descent to minimize L and propagate
the partial derivatives along the graph from L towards the parameters.

f
x1

∂f
∂x1

(y)

x2

∂f
∂x2

(y)

f(x1, x2)

y

Figure 2.1: Computational graph node for a function f with two inputs x1 and x2 and one output
f(x1, x2). In the forward pass it computes f from its input, while in the backward pass it receives a
desired output and computes the partial derivative of the input for that output.

Functions that can be expressed as computational graphs are somewhat abusively called neural
networks6 because they often rely on the basic building block of applying a linear transform to the
input vector followed by an element-wise parameter-free non-linear function such as tanh(Wx+ b). A
number of machine learning approaches can be re-expressed under the deep learning framework, by
for instance using a neural network to build a representation from the input, and then feed it to the
classifier. Conditional Random Fields can be trained this way (Artieres et al. 2010).

Input Representation A typical representation for categorical input such as text is a one-hot vector
(or one-of-n) where all the components are zero except the one which represents the symbolic value of
the input. If the input is a vector of features, then a representation can be created by concatenating
the one-hot representations for each of the features. Such representations have been widely adopted
with shallow models because of the induced sparsity. Since deep models do not rely on this sparsity,
they can benefit from richer representations.

The problem with using words as features is that the lexicon is rich and it is very likely to encounter
words at test time which are unknown from the training set. This is especially relevant for languages
with a productive morphology. In addition, lexicology shows that words have a range of relationships
(such as synonymy, hyperonymy, grammatical traits) which are not encoded by one-hot representations.
In order to alleviate both problems, a number of techniques under the name “word embeddings” have
been proposed. Most of them rely on the distributional hypothesis according to which words occurring
in similar contexts tend to have similar meaning (Harris 1954).

Pioneered by techniques like LSA (Deerwester et al. 1990), the general idea is to build a low-
dimension approximation of a cooccurrence matrix between words in a given window, built on a very
large corpus of text. The recent model GloVe builds vector representations for words so that their dot
product approximates the log of their cooccurrence (Pennington et al. 2014). The skip-gram model
used in word2vec (Mikolov et al. 2013) and fasttext (Bojanowski et al. 2016), two other well-known
techniques, makes sure the dot-product of words that occur in the same context is higher than that
of words which occur in different contexts. Instead of words, one can use subword-units such as mor-
phemes (Qiu et al. 2014) or supra-units such as subtrees from the dependency parse (Levy et al. 2014)
in order to represent word meaning, obtaining embeddings with different properties. It has been shown
that word embeddings exhibit the interesting behavior that linear transformations in the representa-
tion space encode linguistic regularities, such as plural, gender, or semantic relationship (Mikolov et
al. 2013). While a number of evaluation corpora have been built to assess that property, it seems to

6Neural networks should probably have been called chain-rule machines to be more accurate.
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be valid only for frequent words, and we are yet to see concrete applications which benefit from it.
Recent work on building multilingual word embeddings seeks cross-lingual representations in order to
build NLP systems that can be transferred from one well-resourced language to another less-resourced
language (Ammar et al. 2016b). Word embeddings have flooded NLP conferences, and it is difficult
to cite all the work related to their computation, evaluation and use (Li et al. 2018).

Once computed, word embeddings can be used to initialize lookup layers in neural networks, which
are either fixed so that the embeddings for unknown words7 can be used at test time, or learned with
the rest of the model (fine-tuned). Embeddings can be used for other features than words, such as
morphology, or even characters.

Convolutional neural networks Convolutional neural networks (CNN) originated in the computer
vision community where they were developed to simulate the detection of small patterns by receptive
fields8 in the visual cortex (LeCun et al. 1998). In the context of natural language processing, they
are more reminiscent of the bag-of-word hypothesis because they provide a location invariant. In fact,
a typical CNN recognizes word n-grams in a word sequence.

Let x1 . . . xn be a sequence of words, a convolutional filter at a position i and with window length
l can be defined as:

convl(x, i) = σ(Wvec(xi− l
2 :i+

l
2
) + b) (2.24)

where σ(·) is an activation function, often ReLU (Nair et al. 2010), vec(·) is an operator which con-
catenates its input vectors in order to make a single vector, W and b are trainable parameters of the
layer. The convolutional filter is then repeated for all positions i (sequence boundaries are padded with
either special vectors or a continuation of the input). While this filter is known to learn a sequence
of l word embeddings, multiple such filters can be used in parallel in order to learn multiple n-grams.
This is achieved by increasing the number of columns of W and b.

A pooling operator is then introduced in order to provide position invariance, for instance the
max− pooling operator uses the location for which the activation is maximum, therefore acting as a
bag of n-grams.

poolmax(x) =
n

max
i=1

convl(x, i) (2.25)

While variants have been proposed, CNN(x) = poolmax(x) is one of the most popular implementa-
tions. It can learn which embedding n-grams are important in the input irrespective of their location.
Because computations can be parallelized across n-gram location, the efficiency of CNNs makes them
specifically suitable for processing large inputs.

Recurrent neural networks Recurrent neural networks (RNN) operate over a sequence of obser-
vations / predictions and maintain a hidden state which is updated after seeing each observation. They
can be trained by unrolling them through time, and treating them as a large DNN where some weights
are shared across time steps. A simple Elman recurrent neural network might be implemented as:

h0 = 0 initial state (2.26)
ht+1 = tanh(Wrxt + Urht + br) recurrence (2.27)

yt = softmax(Woht+1 + bo) output (2.28)

Where h0 is the initial state, xt and ht are the input and hidden states at time t, ht+1 is computed as
a function of xt and ht and used both for the next time step and the prediction of the label yt in the
output layer.

7Words existing in the embedding training corpus, but not in the NLP system trained for the target task.
8CNNs share their weights between receptive fields, obtaining position independence. One may wonder how the visual

cortex implements the idea of weight sharing.
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This kind of architecture is typical of tagging tasks, but recurrent neural networks can be used
for other tasks such as classification (sentiment analysis), text generation (caption generation) or
transduction (machine translation, summarization, conversational agents). For classification tasks,
instead of predicting one label per time step, one can input the hidden state at the end of the sequence
to a decision layer which performs classification. This RNN is called an encoder. Similarly, the
initial state h0 can be replaced by a representation computed with another neural network in order to
condition the predictions on a factor (such as the image for caption generation). This RNN is called
a decoder. The encoded-decoder approach where an input is read, and then an output is generated is
widely adopted for machine translation (Sutskever et al. 2014).

RNNs are trained by unrolling the network of a number of time steps, and back-propagation is
truncated after T time steps to render the problem tractable.

Cells In order to better model long-term dependencies, a number of variants have been proposed
for computing the hidden state. LSTM (long short-term memory) cells use a gating mechanism for
allowing the model to learn when to memorize a value from the input and when to use it:

it = σ(Wixt + Uiht + bi) input (2.29)
ft = σ(Wfxt + Ufht + bf ) forget (2.30)
ot = σ(Woxt + Uoht + bo) output (2.31)
c′t = tanh(Wcxt + Ucht + bc) cell state (2.32)

ct+1 = ft ⊙ ct + it ⊙ c′t (2.33)
ht+1 = ot ⊙ tanh(ct+1) (2.34)

LSTM(xt, ht, ct) = (ht+1, ct+1) (2.35)

An interesting aspect of LSTMs is that eq.2.33 creates a path where the gradient does not cross any
non-linearity, which is supposed to reduce the gradient vanishing problem. Highway layers use the same
idea to ensure the propagation of the gradient in multilayer architectures (Srivastava et al. 2015a).
A number of variants of LSTMs have been proposed in order to carry fewer parameters, or model
different phenomena. Gated Recurrent Units (GRU) are often used in the NLP community because
on most problems they are faster than LSTMs without significant performance degradation (Chung
et al. 2014).

zt = σ(Wzxt + Uzst + bz) update (2.36)
rt = σ(Wrxt + Urst + br) forget (2.37)
ht = tanh(Whxt + Uh(rt ⊙ st) + bh) input (2.38)

st+1 = (1− zt)⊙ ht + zt ⊙ st new state (2.39)
GRU(st, xt) = st+1 (2.40)

Encoder-decoder architectures A language model can be implemented with RNNs by predicting
the next word given the current word and the hidden state which encodes the history without a
fixed horizon like n-grams. Such a language model can be conditioned on some arbitrary input in
order that it gets biased towards generating different word sequences given different inputs. The bias
could introduce additional information concatenated to word representations or as the initial hidden
state (instead of setting it to 0). The additional information could be topics (Mikolov et al. 2012), a
representation for an image (Xu et al. 2015) or some arbitrary data. Such a model is often called a
decoder. Conversely, the hidden state after seeing a number of words is supposed to carry that history
and can be used as a representation of its content. By dropping the RNN output layer and leveraging
the hidden state after seeing the last word, one can use it as representation for categorizing the text
(for sentiment analysis for example (Rouvier et al. 2016a†)). Such an RNN is called encoder.
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The encoder-decoder framework first creates a representation of the input, and then generates a
sequence of words conditioned on that input. The greatest success of this idea is Neural Machine
Translation (Bahdanau et al. 2014) which uses an encoder to create a representation of a sentence in
the source language, and then generates the translation in the target language using a decoder. Another
interesting application is learning conversational agents and question answering systems which given
a representation of a question generate an answer word by word (Vinyals et al. 2015). Encoders and
decoders need not be RNNs and could be any kind of representation-generating and output-generating
neural networks. The point of the approach is that both are trained end-to-end so that the learned
representations are tailored to the generation task (text to text, image to text, text to image, etc.).

Advanced architectures A range of architectures have been proposed to extend the speed of se-
quence prediction neural networks over large inputs such as speech data.

Quasi-Recurrent Neural Networks (Bradbury et al. 2016) and variants make sure that a large
portion of matrix multiplications involved in computing activations of a sequential layer can be par-
allelized. The simplest form consists in only using a forget gate, so that the input transformation zt
can be computed for a whole sequence at once in a single matrix multiplication.

zt = tanh(Wxt + b) (2.41)
ft = σ(Wxt) forget gate (2.42)
ht = ft ⊙ ht−1 + (1− ft)⊙ zt (2.43)

QRNNs have been shown to perform as well as LSTMs on a few tasks requiring more layers but at a
fraction of the execution time.

This idea can be extended to fully convolutional networks with a non-recurrent gating mechanism.
Gated Linear Units (Dauphin et al. 2016) apply two convolutions on the input, and use the second
one as gating mechanism for the first one. Again, this architecture works if multiple layers of GLU are
stacked, the convolution window at a given layer helping characterize a larger context.

ht = conv
(1)
l (x, t)⊙ σ

(
conv

(2)
l (x, t)

)
(2.44)

Another interesting approach to accessing long term contextual information is dilated convolu-
tions (Yu et al. 2015) which operate like convolutions, but on inputs distant of a dilatation factor d.
At each layer, the dilatation factor is increased in order to reach further context. This approach was
successfully applied to the text-to-speech and speech-to-text tasks (Oord et al. 2016).

2.3.3 Additional design patterns
Bidirectional networks The first issue with RNNs is that even though they can potentially mem-
orize long-distance phenomena, they are limited by their temporal causality. A straightforward exten-
sion consists in building two RNNs, one that runs from forward in time from 0 to n, and another that
runs backwards from n to 0. Their output at each time step is then concatenated to produce a hidden
representation which is both influenced by the past and the future.

hf
0 = hb

n = 0 (2.45)
hf
t = RNNf(hf

t−1) (2.46)
hb
t = RNNb(hb

t+1) (2.47)
ht = hf

t ⊕ hb
t (2.48)

where ⊕ is the concatenation operator, ·f and ·b respectively correspond to variables linked to the
forward and backward RNNs. The produced representation ht can then be used to predict, for instance,
word-level labels.
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Multilayer networks In order to build more abstract representations, it is common practice to stack
multiple layers of neural networks which each feeds from the representations created by underlying
layers. In the vision community, it has been shown that layers closer to the input recognize simple
shapes while deeper layers match more abstract concepts. In NLP, multiple layer CNNs will be able
to capture combination of n-grams and multilayer RNNs can leverage phrase-level or sentence-level
representations.

Multilayer architectures are riddled with the same gradient vanishing problem that RNNs suffer
along the time dimension, but from layer to layer. DenseNets for instance, consist in connecting each
layer to all the subsequent layers, including the output, therefore providing a shorter path for supervi-
sion propagation (Huang et al. 2016). Residual connections (He et al. 2015), consist in systematically
adding the input of a layer to its output:

Li+1 = F (Li) + Li residual connection (2.49)

where Li is the output at layer i and F (·) is the non-linear function performed by a given layer. In
this topology, there is a linear path from each layer to the output for gradients to propagate. The last
class of multilayer connection is reminiscent of LSTMs as it includes a gating mechanism which choses
between a layer’s input and its transformed output (Srivastava et al. 2015b).

gi = σ(WLi + b) gate (2.50)
Li+1 = gi ⊙ F (Li) + (1− gi)⊙ Li highway connection (2.51)

where gi is a gate vector, ⊙ is the elementwise multiplication. Here, if gi = 1, the layer output is used,
while if gi = 0 its input is used.

Attention Mechanisms One observation with RNNs and in particular encoder-decoder networks
is that they tend to forget about specific events that occurred at the beginning of the sequence they
process (Bahdanau et al. 2014). The problem is that fixed-sized representations (such as the hidden
state of an RNN) cannot account for all the information available in a variable-size input. Loosely
modeled after attention in human cognition, the attention mechanism in neural networks creates a
global representation given a sequence of states as a weighted sum over these states. The weight
distribution is parameterized on the decoder state so that the neural network can learn to focus on
different input states when performing predictions.

Let ej be an encoder state, and di be a decoder state, one implementation of an attention mechanism
in an encoder-decoder can be defined as

αi =softmaxj(falign(di, ej)) (2.52)

ATTNi =
∑
j

αi,jej (2.53)

where falign is a function which computes an alignment score between a pair of encoder and decoder
states. Two broad types of alignments have been proposed: additive and multiplicative attentions (Bah-
danau et al. 2014; Luong et al. 2015):

f+
align(di, ej) =v⊤tanh(W1di +W2ej) additive attention (2.54)
f×
align(di, ej) =d⊤i W3ej multiplicative attention (2.55)

where v is a parameter vector, W1, W2 and W3 are parameter matrices.
In machine translation, attention mechanisms tend to learn an alignment between source and

target words, and can be used to map unknown source words to target locations and translate them
separately. Attention mechanisms are not limited to RNNs and can be applied to any representation,
such as convolutions in images (Xu et al. 2015). In particular, they are used to implement memory
lookups in memory networks (Sukhbaatar et al. 2015), and can even replace RNNs when stacked as
multiple layers and combined with a position-encoding representation (Vaswani et al. 2017).
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Ensembles Since gradient descent is not guaranteed to find the optimum of a non-linear loss func-
tion, different random initialization can lead to very different models although they have similar per-
formance. Creating model ensembles by averaging the pseudo-probability score vectors they generate,
has consistently led to large performance increase (Zhou et al. 2002a; Gong et al. 2017; Józefowicz et
al. 2016) but reminds us that we are lacking insight on the true capacity of models and that empirical
evidence of the superiority of a given model is relative.

Architecture Search One problem with deep learning is that there is no guarantee that a given
architecture is the best for a given problem. Practitioners often rely on empirical search for the best
set of hyper-parameters for a system by running many training iterations in parallel and maximizing
performance on a development set. This very costly activity is a crucial component of successful
systems and a typical setback for beginners. This area of research is very active and has yielded
interesting results.

One can train a neural network to generate architectural parameters for another neural network.
(Zoph et al. 2016) have shown that alternative gating mechanisms for LSTMs could be found by a
system trained this way leading to improvements on difficult benchmarks. Other efforts look at ways
of improving the efficiency of covering a large search space (Liu et al. 2018).

2.4 Evaluation
While the machine learning community has created a large set of loss functions addressing many needs,
they all have in common that they are defined with the objective of facilitating the loss minimization
problem. For example, losses used in deep learning should be easily decomposed in a computation
graph from which a gradient can be derived. However, natural language processing problems have
specifics that might not completely match those requirements. In this context, the machine learning
loss is used as a proxy for the real metric used for system evaluation. Such metrics are defined by
incorporating task specificities (such as the presence of multiple references as in machine translation),
and relating them to the end applications (choice of class weight in a classification experiment).

Evaluation in NLP can be devised in two categories. Manual evaluation involves judges who look
at each instance labeled by a system and devise a rating for it; Automatic evaluation leverages a hand-
annotated corpus in order to streamline the evaluation process. A completely automatic evaluation
metric, one that would not require human intervention, is still elusive because there is no sensible
theoretical model to drive its definition. If such metric existed, it could be leveraged by machine
learning to build better systems.

2.4.1 Manual Evaluation
Manual evaluation is necessary when a ground truth corpus cannot be easily and cheaply built. It
is the case for instance in generative tasks such as machine translation or summarization, and highly
subjective tasks such as emotion and sentiment classification. Irrespective of the method for manual
evaluation, one fundamental issue is that humans are not consistent in their judgment. Due to the
vagueness of the evaluation procedure (if it wasn’t vague, it could be easily implemented as a program),
judges tend to disagree among them and be inconsistent in time (due to the learning effect, the fact
that judges get used to a repeated task). Therefore, it is important to use multiple judges per evaluated
item, and to use techniques such as the Latin square design to limit sequential effects (Bradley 1958).

Likert Scales Likert scales are dimensions in which an instance can be evaluated according to a
continuous value or more commonly discrete values in an interval. For example, the automatic summa-
rization community has used two scales for evaluating the quality of a summary: readability/fluency
and overall responsiveness. The first one assesses whether the summary is written in well-formed
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English independent of its content (often subcategorized as grammaticality, non-redundancy, referen-
tial clarity, focus, and structure and coherence), while the second one assesses whether the summary
covers all important content from the source documents. Both metrics are evaluated on the following
scale (Dang et al. 2008):

1. Very poor

2. Poor

3. Barely acceptable

4. Good

5. Very good
Typical problems with Likert scales are the conservative decision problem where judges tend to select
the middle category because of a confound between a rating and the confidence in that rating, range
discrepancy problems where judges use different ranges in the given scale requiring normalization
to aggregate the data, and the formulation problem where the offered category descriptions influence
adversely the judges (such as having agreement categories (such as “I strongly agree”) for non-subjective
judgments.

System comparisons Discovering and understanding the source of system differences are impor-
tant in system design. Sometimes, Likert scales cannot shed light on such differences in that it is
more productive to directly compare system outputs. The most straightforward approach for system
comparisons consists in displaying pairs of system outputs to judges and collecting their preference
according to a set of criteria. Those pairwise comparisons could be mediated by a reference output
example, as for example in summarization one would display two system-generated summaries and one
reference summary as ground for the comparison. Then the question could be which system conveys
more the content of the reference? Pairwise comparisons can then be aggregated by ranking operators
such as Kendal rank correlation. Comparing more than two systems is possible but made cumbersome
by user experience challenges (should the systems be sorted by adequacy? should only the best system
be selected? how does the UI affect the produced rankings?)

Manual Matching In NLP tasks that involve composing elements (such as semantics), it is possible
to create a gold standard for an instance with subitems that need to be matched to the items of the
system hypothesis. While many metrics rely on automatic matching, manual matching is an option
for when it is unreliable. HTER (human-targeted translation error rate) consists in manually applying
edits to a translation hypothesis until it becomes one of the reference translations (Snover et al. 2006).
The Pyramid method for evaluating summaries consists in first listing minimal semantic content units
(SCUs) from a set of reference summaries for a given instance, and manually matching them to segments
of text in a system-generated summary.

2.4.2 Automatic evaluation
In the following, | · | denotes the number of elements of a set. ref is a reference or gold standard for
a given instance, hyp is a hypothesis or system output for that instance. The most straightforward
evaluation metric is accuracy.

acc = |correct|
|ref| (2.56)

The error rate can be devised from the accuracy metric.

err = |errors|
|ref| = 1− acc (2.57)
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Accuracy is widely used in NLP to measure system performance on problems in which predictions
are synchronous to the reference. For instance, POS tagging is evaluation with accuracy at the tag
level. In dependency parsing, we use LAS (labeled attachment score) and UAS (unlabeled attachment
score) metrics, which are respectively the number of correctly identified and labeled governors (LAS)
and the number of correctly identified governors (UAS). For both, there is one prediction per word, so
|ref| is the number of words.

Asynchronous evaluation When predictions are not synchronous between the gold standard and
the system output, one can use the F-score, also known as F-measure, as a metric. It is the harmonic
mean between the Recall (number of correctly predicted events from the reference) and the Precision
(number of correct system predictions), and comes from the literature of information retrieval where
one seeks a set of relevant documents (correct) from a large set of |ref| documents. The system retrieves
|hyp| documents, and a subset of those are correct.

R =
|correct|
|ref| (2.58)

P =
|correct|
|hyp| (2.59)

Fβ =
(1 + β2)PR

β2P +R
(2.60)

F1 =
2PR

P +R
(2.61)

where β is an adjustment factor between the importance of recall and precision for the target appli-
cation. β = 1 is used in most application domains. For example, F1-score is used for named entity
recognition because one may detect spurious entities and miss some entities, requiring to differentiate
those types of errors.

Alignment Guessing which prediction is associated with which reference label is not always straight-
forward. In that case, one has to consider the evaluation problem as one of finding the alignment
between the reference and the hypothesis which minimizes the number of errors (the same idea can be
applied in order to maximize correct matches).

metric = argmin
alignment

cost(alignment(ref,hyp)) (2.62)

An example of such metric is the Word Error Rate (WER) used in automatic speech recognition
which aligns the transcript of the hypothesis with the reference through Levenshtein alignment (finding
the minimum number of insertions, deletions and substitution between two sequences). The number
of errors is then the sum of the numbers of insertions (ins), deletions (del) and substitions (sub).

WER =
|ins+ del+ sub|

|ref| (2.63)

WER can be greater than 100% if there are more words in the hypothesis than in the reference.
Extensions of WER have been proposed for machine translation where the alignment is not mono-

tone (some constituents might be moved in the sentence) in a metric called Translation Error Rate
(TER). The alignment can be performed efficiently through a beam search over the possible word dis-
placements, also called shifts, computing at each step the Levenshtein distance between the modified
strings (SNOVER et al. 2005). The METEOR metric improves over TER by using equivalence classes
between words and expressions, derived from WordNet, to get better alignments between translations
which do not use the same wording (Banerjee et al. 2005).
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Bag-of-Matches The alignment approach assumes that it is easy to determine whether a subset of
the hypothesis matches the reference. It also assumes a structural constraint: that matches are ordered,
for example. Due to the fact that there is not canonical semantic representations for texts, it might
be interesting to devise more lenient metrics. In generation tasks such as automatic summarization
or machine translation, the community has created metrics based on bags of matches, matching small
substrings from the reference irrespective of order.

First, let I be a set of test instances (i ∈ I, i = 1 . . . |I|); let H be a corpus of references (each
instance i might have multiple references Ri), and H be a set of system-generated hypotheses (Hi is
the hypothesis for instance i). Then, we can define cm, the clipped number of matches of an element
in Ri and Hi. Elements are defined later but they are generally based on words.

cmi(x) = min(count(x,Ri), count(x,Hi)) (2.64)

where count(x, y) is the number of times x occurs in y. The clipped number of matches cm(·) is useful
for preventing to give extra credit to words artificially added to system output.

For automatic summarization, Lin (2004) proposed to compute the overlap of word n-grams between
a hypothesis summary and a set of reference summaries. ROUGEn for n-grams of length n is defined
as:

rn(Ri,Hi) =

∑
u∈n-grams(Ri)

cmi(u)∑
u∈n-grams(Ri)

count(u,Ri)
(2.65)

ROUGEn =
1

|I|
∑
i∈I

jacknife({rn(Ri \ j,Hi), j ∈ Ri}) (2.66)

where n-grams(·) denotes the word n-grams of summary, rn(i) is the (clipped) n-gram recall for
instance i, and jacknife(·) is a sampling procedure that applies jacknifing (Efron et al. 1981) to the
reference sets diminished by one reference.

In practice, ROUGE also adds preprocessing to the n-grams through lowercasing, stemming and
stopword-stripping of the input9.

BLEU, BiLingual Evaluation Understudy (Papineni et al. 2002), is a similar metric for machine
translation. Whereas ROUGE is a recall metric which requires that the input be clipped to a maximum
length for preventing artificial inflation of scores, translation does not enforce a length constraint, and
therefore BLEU is defined as a precision-based metric modified to disallow scoring inflation from adding
more words to the system output. BLEU is also computed at the corpus-level instead of being a mean
over instances.

pn =

∑
i∈I
∑

u∈n-grams(Hi)
cmi(u)∑

i∈I
∑

u∈n-grams(Hi)
count(u,Hi)

(2.67)

β = e1−
|R|
|H| if |H| ≤ |R| else 1 (2.68)

BLEUN = β exp

(
N∑

n=1

wn log pn

)
(2.69)

where pn is the corpus-level (clipped) n-gram match precision, β is a brevity penalty based on the
difference in length between the hypothesis and the reference, and BLEUN is the metric score for
n-grams of length up to N .

While similar in spirit, BLEU and ROUGE have indeed quite different implementations. Both
are hard to use directly as losses in machine learning, yielding the reliance on surrogates (Zhukov
et al. 2017) or reinforcement learning (Ryang et al. 2012).

9The ROUGE 1.5.5 implementation also clips matches to the number of references (preventing extra scoring from
redundant information), and uses jacknifing (a bootstrapping method which computes the actual score as the mean of
scores from all the sets of references constructed with one reference ablated) for generating more reliable measures.
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Machine learning for evaluation As shared tasks have flourished in various domains of NLP, they
have often been associated with accurate manual evaluations (such as adequacy/fluency for machine
translation) and cheap, less accurate metrics for automatic evaluation (such as BLEU or TER for
machine translation). In order to bridge the gap between those two kinds of approaches to evaluation,
a meta-level of evaluation was presented as shared tasks: the challenge is to build an automatic
evaluation metric which performs on par with manual metrics–as for example (Machacek et al. 2014).
The notion of performance in that domain consists in having a good correlation with human judgments.
Most metrics that emerged from those shared tasks have in common that they rely on machine learning
(often a simple regression) trained on a set of human assessments from previous years competition on
the target task, and generally combine multiple existing metrics, enhanced domain-specific features
and the optimization of a loss-proxy to correlation.

2.4.3 Significance testing

Natural language processing systems are typically developed using a finite annotated dataset. The
dataset is split in training, development and test (or held-out) shards. While the training subset
serves finding model parameters, the development set is used to compare models (and search for
good hyper-parameters), and the test set is kept untouched until the evaluation of the system. All
three subsets are a sample from the underlying distribution of the data. Each of them is assumed
to be representative of the data. However, due to not knowing ways of measuring representativness,
a different choice of one of those sets might yield different results, and in particular give a different
ranking across systems. In addition, random choices when training ML algorithms might also lead
to different evaluation scores: different weight initialization, different training set traversal ordering,
number of training rounds, etc. are all known to affect the performance of the resulting system.

Significance testing consists in estimating the probability of being incorrect when we argue that
one system is better than another one. We generally confront two hypotheses: H0, the null hypothesis
under which the result comes from a random effect10, and H1, the alternative hypothesis under which
the result is true. Significance testing computes P (accept H0), and compares it to a significance
threshold p0 defined prior to the analysis. The fact that system A is better than system B is considered
statistically significant if P (accept H0) < p0, the probability of accepting H0 being called the p-value.
In the literature p0 = 0.05 (corresponding to a “confidence of 95%” – an entertaining read on the
origins of the threshold can be found in (Cowles et al. 1982)) is predominantly chosen, but (Søgaard
et al. 2014) argues that we should use p0 = 0.0025 to actually implement a policy where the research
community makes mistakes in less than 5% of findings. Significance testing is a topic often debated in
science because assumptions associated with significance tests are often not verified in a study11, and
because over-relying on significance testing leads to methodological issues and bias in research policy
building (Leek et al. 2017).

Three types of significance tests are described in (Dror et al. 2018) by order of statistical power.
Parametric tests (such as t-test) assume a type of distribution for the metric at hand, which is not
always compatible with currently used metrics, such as ROUGE. Sampling-based non-parametric tests
do not have those assumptions but require a large amount of processing and therefore might not be
applicable on larger datasets. Finally, sampling-free non-parametric tests are less computationally
intensive but also the least statistically powerful (incorrectly considers the H0 as true while H1 is).

In the following, we present two tests: approximate randomization which is a non-parametric sam-
pling test (Riezler et al. 2005), and the modified Wilcoxon signed-rank test which is a non-parametric
sample-free test (Oyeka et al. 2012).

10The actual wording of the hypotheses depends on the metric and the statistical test used.
11Dror et al. (2018) argue that the minimal elements of NLP datasets (sentences, paragraphs, documents...) are not

independent because they might have been produced by the same author, reviewed by the same editor, or are related to
the same event. Therefore, none of the significance tests available today shall be used.
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Approximate Randomization The approximate randomization test is often advocated in the NLP
community because it is very easy to implement and does not have the assumption and bias problems
of many tests (Noreen 1989; Riezler et al. 2005). This test directly estimates the probability that
two system outputs come from the same distribution, irrespective of which system is better than the
other. It assumes that the two system outputs can be stratified along a parallel partition (for instance
sentences or documents), and that strata are independent. The test consists in sampling from the
set of all combinations of strata, and counting the number of times the score difference between the
samples is larger than the score difference between the system output. The exact version of this test
which evaluates all permutations of the test set is called Pitman’s permutation test (Pitman 1937).
The p-value can be deducted from the ratio between that number and the size of the sample. Typical
sample sizes are in the ranges 1,000–10,000. Algorithm 1 presents an overview of the approximation
randomization algorithm for computing the p-value of a difference between two system outputs. A
baseline implementation would call the evaluation procedure repeatedly, which is expensive if it includes
an alignment process or inference (such as running an NLP tool), but it is possible to cache intermediary
results, exchange them at the swap stage, and lazily recompute the aggregate metric (such as F-Score,
ROUGE or BLEU). This approach was implemented in SRLEVAL (Favre et al. 2010a†).

Data: A and B, two system outputs on a parallel partition P ; e(·) an evaluation function; N
the number of samples (typically 10,000); rnd() ∈ [0; 1[ a random number generator.

Result: p the estimated p-value.
r ← 0 ;
baseline difference: b = |e(A)− e(B)| ;
foreach n ∈ [1;N ] do

foreach i ∈ P do
if rnd() > 1

2 then
swap A[i] and B[i] ;

end
end
difference of sample: d = |e(A)− e(B)| ;
if d ≥ b then

r ← r + 1 ;
end

end
p-value: p← r+1

N+1 ;
Algorithm 1: Approximate randomization for significance testing.

This algorithm has two main drawbacks: the nature of the sampling process might result in different
significance levels for different initialization, and the assumption of independence between strata is
generally wrong with respect to the input (sentences follow each other), but mostly right with respect
to systems (sentences are effectively processed independently, or at least strata can be designed to
encompass the span of input effectively used by the systems). Another potential problem is that the
larger the strata, the higher the p-value. Even if a system is significantly different from another at the
sentence level, it might not be so at the document level. Investigating this phenomenon and how to
prevent it from happening would be interesting, but might require advice from statisticians.

Modified Wilcoxon signed-rank test The Wilcoxon signed-rank test is a largely used non-
parametric, non-sampled significance test (Wilcoxon 1945). While it does not make assumptions
on the distribution of the metric used to evaluate systems, it assumes that the metric is continuous
and that there are no instances with identical scores (no-difference samples). The modified Wilcoxon
signed-rank test addresses these issues and is more suitable for NLP (Oyeka et al. 2012). Like other
statistical tests, it assumes that instances are independent.
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Let n be the number of instances in the test set (e.g. sentences). Let b = e(A)− e(B) be a vector
of differences between evaluation measures for systems A and B on the instances. First, we need to
compute |b| the absolute value of the differences between the systems, and sgn(b) the sign of that
difference:

sgn(bi) =

 1 if bi > 0
−1 if bi < 0
0 otherwise

(2.70)

Let r|b| be the rank of the absolute values in b12. We define r̄|b| as the average rank for each value
of |b| – that is if a value occurs 3 times in |b|, then the associated average rank is the sum of the ranks
divided by 3. Subsequently, p+ and p− are the probabilities of differences of being positive or negative.

p+ = P (sgn(b) = 1) ∼ count(sgn(bi) = 1)

n
(2.71)

p− = P (sgn(b) = −1) ∼ count(sgn(bi) = −1)
n

(2.72)

Then, the z-score statistic can be computed with the following formulas (see (Oyeka et al. 2012)
for details).

T =
∑
i

sgn(bi) · r̄|bi| (2.73)

Var(T ) = n(n+ 1)(2n+ 1)

6

(
p+ + p− −

(
p+ − p−

)2) (2.74)

z-score =
T − n(n+1)

2√
V ar(T )

(2.75)

From the z-score, one can use a lookup table13 to retrieve the corresponding p-value and compare
it to the significance threshold p0.

This test is suitable for very large datasets where it is not tractable to apply sample-based tests.
It is unsuitable for small sample sizes.

2.5 Conclusion
This chapter was dedicated to an overview of major machine learning models applied to solve natural
language processing problems. A broad range of NLP tasks can be cast as one of five problems:
classification, regression, segmentation, relation detection and generation. We presented models in
which those NLP tasks can be cast: the perceptron algorithm, support vector machines, conditional
random field, and various deep learning architectures.

There are several aspects that we did not cover but are important when developing NLP systems.
The early parts of the TCGASE loop, corpus creation and annotation, are very important, time
consuming and yet important tasks. The problem of annotators diverging in term of interpreting
annotation guides or becoming inconsistent in time, the compromise between choosing annotation
categories representative of the linguistic phenomenon, or categories easy to predict for a system, the
cost of using experts or the problems with leveraging crowd sourcing, are all problems that need to
be tackled when building NLP systems. Discussing those issues could easily transform this document
into a long book. They are often overlooked by machine learning practitioners who tend to focus on
systems in order to maximize performance, and not reconsider the data.

12By sorting |b| by ascending value and noting which one is first, which one is second and so on. The ranks start at 1.
13With statistics software or online calculators such as https://www.socscistatistics.com/pvalues/

normaldistribution.aspx, retrieved on 2019-04-30.

https://www.socscistatistics.com/pvalues/normaldistribution.aspx
https://www.socscistatistics.com/pvalues/normaldistribution.aspx


36 CHAPTER 2. MODERN NLP

Machine learning is a constantly evolving field and advances in expressiveness and performance of
models continues to generate fascinating approaches in NLP. However, one may wonder whether the
current trend for ML to conquer most corners of NLP is sustainable and will eventually solve all of
NLP.



Chapter 3

Beyond machine learning
assumptions

3.1 Introduction
Natural language processing systems are built on models that make various assumptions. The basic
assumption of machine learning methods is that training data is representative of test data, and in
particular that training data and test data come from the same distribution. This assumption entails
that training and test data are representative samples drawn from that distribution, and some ma-
chine learning algorithms also assume that instances (words, sentences, documents) are independently
and identically distributed (IID). In particular, inference and learning over one instance is performed
independently of the content of other instances. This has far-fetching consequences on the capabili-
ties of NLP systems, and requires that researchers maintain a precise understanding of the modeling
assumptions linked to the models they use. Taming those assumptions, and overcoming the ensuing
limitations has generated a lot of work in the NLP community. Beyond independence, recent models
also make assumptions on the dependency structure assumed over the problems, from independence
to all sorts of approximations for modeling co-variates.

In this chapter, we go beyond machine learning assumptions to overview different types of de-
pendence assumptions from an NLP point of view, and illustrate them in the framework of specific
contributions. As we will see, dependency is often a matter of compromise. In the following, the first
assumption explored is the scope of features used to characterize a decision, which are often limited
in their nature. The second assumption is that of decision-space independence assumptions linked to
the structured nature of natural language, such as the Markov process assumption. The third is the
conditional independence of higher level NLP tasks on lower level tasks which is at the heart of the
pipeline approach.

3.2 Input representations
It is well admitted in empirical research that an effect, however strong, should not be presumed to
only come from the observable captured in the first place. One has to argue thoroughly on the possible
sources of an effect, and measure appropriately their incidence on the studied phenomenon.

Machine learning researchers often take for granted that input features readily cover the phe-
nomenon to be modeled and focus on algorithms by relying on performance differentials in order to
assess their benefits. It is, however, clear that if input features are lacking in terms of explaining the
studied phenomenon, any supervised method for training a predictor will be performance-bound by
the set of features used to model the data. This performance limitation problem might actually be due
to the following issues: not enough training data was used for training the model (the training set is
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a too small sample of the general distribution it was drawn from, and therefore the estimation of the
model will be too crude), the model cannot fit the shape of the data for structural reasons (such as
a linear model in the context of learning a non-linear function), or the features used as input cannot
represent accurately the phenomenon (such as discriminating colored crayons in a black-and-white
image). Here, we are interested in that last problem.

A starting point could be that if a human can label an instance, then assuming machine-learning
algorithms are human-like, the features extracted from that instance should be enough to reach hu-
man performance. A limitation of that assumption well-known to the NLP community is that humans
possess an experience of the real world, and some problems can only be tackled with so-called world
knowledge, which could be a formal description of all the knowledge amassed by a human over her life.
Word-sense disambiguation, textual inference, general dialog systems, or translation from Chinese to
a western language are said to be problems that can only be solved with world knowledge. Notwith-
standing the issue of formalizing world knowledge, which is an open problem, gathering more training
data might be a costly way of addressing world knowledge by allowing the algorithm to capture it
indirectly through the data distribution. Another problem of the human-performance hypothesis is
that for a range of interesting NLP problems, humans are not able to agree on a labeling (sentiment
analysis and emotion detection are classical examples of that issue).

Assuming that an instance is well modeled by a set of features indirectly implies that it is in-
dependent from other features one might collect to represent it. There are various cases of input
representations that are limited to a set of features while they could encompass a wider context. Un-
derstanding spoken content is one of those tasks where research has concentrated on processing the
transcript extracted from the audio signal while forgetting that speech occurs in a multimodal context,
and that other modalities might be of use.

The modality of choice for natural language processing is text. A large body of human communica-
tion comes in the form of textual content, be it books, letters, and newspapers. Even if they are being
progressively replaced by electronic counterparts, their basic content is still textual representations of
human ideas. Yet, most communication occurs in a multimodal setting where text is not the canonical
channel for conveying information. Natural language is by essence multimodal as face-to-face commu-
nication benefits for example from non-lexical cues such as gestures, face expressions, social signals
like convergence, etc. Assuming that the text modality is independent of the other modalities is naive,
and in particular, even if understanding text content is possible for humans without considering other
modalities, ambiguities which are hard to solve for systems may be much more accessible when tak-
ing into account the whole multimodal context of a message. It is even more interesting when the
application is to understand high-level events in a situation.

3.2.1 Multimodal conditioning
The first example we are presenting consists in conditioning a decision with multimodal co-variates
which are not apparent to the system designer yet have the potential to bring large performance
improvements.

Video understanding involves a typical multimodal scene which comprises images (and potentially
texts on images), audio, and transcribed speech as basic modalities. The REPERE challenge organized
by DGA, LNE and ELRA consisted in identifying at any time in a TV show all the persons on the
screen. This challenge was created to foster multimedia indexing applications such as being able
to search for all videos involving a given person, not only in textual mentions but audio and video
appearances as well. The task is challenging because in TV shows persons are identified at key moments
but their identity is not recalled for long times. For example, a talk show with multiple invited speakers
might contain a presentation of the speakers by the anchor at the beginning and then display their
name from time to time on screen when they talk. To be able to infer at every instant who is who,
systems have to rely on unsynchronized long-distant cues, and rely on propagation to associate an
identity with faces in the image modality and speech in the audio modality.

At the time of the REPERE challenge, the standard approach consisted in extracting identities in
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each modality (displayed texts, pronounced names, speech segments, faces) based on optical character
recognition, speech-to-text, speaker recognition and face recognition. The system created by the
PERCOL team1 can be summarized as follows:

• For displayed texts, zones of interest are processed by an off-the-shelf OCR in all the frames
they appear in to create confusion networks of the potential characters. A few rules separate
names from other content such as news or stocks, and names are normalized according to a large
quantity of crawled names deemed potentially relevant (such as political figures, celebrities…)

• Pronounced names are detected in recognized speech, but this is not robust enough because
of frequent errors and out-of-vocabulary names. Therefore a spoken term detection system is
leveraged to detect potential names, from the large list, in phonetic sequences. On top of detected
names, an attribution system decides whether a detected name is that of the current speaker,
next speaker, previous speaker or none of those based on linguistic features from the transcript
and structural features from the conversation.

• A large number of speaker models are created with standard techniques such as i-vectors from
collected external data and agglomerative clustering in order to perform direct speaker identifi-
cation.

• The face processing system does not perform face identification2, but rather detects shots and
faces, and clusters them according to their pixel content.

Alone, each of these mono-modal systems are relatively poor: exploiting displayed texts has a high
precision but low recall, ASR is noisy and involves an additional difficult step of attributing names
to persons who might not be present on the screen or heard, speaker identification works well but
the coverage of biometric model dictionaries is not large enough for it to generalize, and the vision
pipeline itself is not able to produce identities. Therefore, the system leverages propagation strategies
to transfer identities detected in one modality to another modality:

• rule-based cross-modal propagation strategies which use the result of clustering in a given modal-
ity to propagate names to another modality;

• a multimodal clustering technique which refines the clustering in each modality to be able to
transfer labels across modalities (Bendris et al. 2014†);

• a final fusion step which merges the results from other strategies.
At the REPERE competition, given the difficulty of correctly attributing identities in each of the
modality, this approach was not able to outperform the systems created by the other participants.
Yet, for the last iteration of the competition, we decided to leverage a bias of the dataset which is
that most TV shows occur both in training and test, and therefore often involve the same anchors,
are shot at same or similar sets, and have a very regular structure. We used this strategy to identify
the background of camera shots and rely for instance on the fact that some cameras are subshots of
others in order to create show-specific propagation rules which would allow for instance identifying
the invited speaker on the left of the table and label her with a displayed name from the beginning of
the show. This kind of strategy, and an aggressive model selection based on performance analysis on
the development set and a leave-one-out of the training set lead to the PERCOL consortium winning
the competition. Even though the proposed approach does not generalize well to new TV shows, it
exemplifies the fact that in a multimodal context, a system should look at the whole picture and try
to understand the context in which the instances have been generated.

Even though the “understanding” problem addressed by the aforementioned work is a difficult one,
the language part is relatively underdeveloped because linguistic signals for identifying people in TV
shows are weaker and harder to address than other signals. Yet, there are other applications where
this link is tighter and can be explored.

1In which I was involved.
2The team did not have reliable enough technology for that task.
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3.2.2 Multimodal embedding fusion
The second example seeks the creation of multimodal representations from several monomodal inputs,
in order to inform the decisions of a system.

The multimodal understanding task at stake is the detection of the role of speakers in a TV
show (Rouvier et al. 2015a†). For each speaker turn, the system has to predict whether the speaker is
the host of the show, a commentator, a reporter or another role such as the interviewee. This task has
been typically solved only looking at one modality at a time. The presented work extends monomodal
systems with the idea of multimodal embedding fusion, which is an alternative to early (input-level)
or late (decision-level) fusion. The text, audio and image modalities are processed3 as follows:

• Text: a convolutional neural network detects word-embedding n-grams similar to typical features
extracted in non-neural systems (Dufour et al. 2011). It assumes that professional speakers use
discriminative word patterns typical of their role (such as asking questions for the host, or using
a more colloquial style with disfluencies for interviewees).

• Audio: an i-vector speaker verification system generates a fixed-size representation of the audio
(which should contain the speaker identity, but which actually reflects a lot of factors of the
input, such as the acoustic environment). This representation is then fed to a fully connected
MLP. This system is supposed to model idiosyncratic effects of the behavior of speakers, as well
as the environment in which speech was captured (for instance, interviews often take place in
the field while hosts and commentators are on a set).

• Image: a standard Alexnet CNN produces a representation of one image per segment (the me-
dian), being able to model the outfit of the speaker, the number of persons on the screen, the
presence of overlaid text, and the overall objects depicted. This approach (not detecting an
actual person) is also biased towards modeling the environment because the speaker might not
be seen on the screen, and it is hard to link an image of a speaking person to actual speech such
as with lip sync for instance (Chung et al. 2016).

All three systems are pre-trained with standard tasks such as ImageNet for the image part (Krizhevsky
et al. 2012), word embeddings (Mikolov et al. 2013) for the text part, and speaker identification among
1,000 speakers for the audio part (Rouvier et al. 2015b†). Each of them is then trained on the
role classification task separately. Two multimodal fusion strategies are compared: late fusion which
ensembles the decision scores of the systems (sum of output), and a “multimodal embedding fusion”
which uses the penultimate layer of each system as rich representation for the corresponding modality
and is then fed to a multilayer perceptron to combine them in a final decision. Results show that
the multimodal systems improve over the monomodal systems, and that embedding fusion, by having
access to multimodal regularities, leads to an additional improvement (Rouvier et al. 2015a†).

An additional fine-grained example of leveraging multimodality in the context of language under-
standing is the task of resolving prepositional phrase attachments in an image caption with features
coming from an analysis of the image itself (Delecraz et al. 2017†). PP-attachment is notoriously
hard syntactic paring task because selecting the word which governs a prepositional phrase depends
on semantic interpretation of the sentence. For example, the sentences “I am holding a cup with a
blue glove” and “I am holding a cup with a blue bottom” have both a very similar structure, and in
particular the same sequence of part-of-speech tags, yet in the first one, the PP-phrase introduce by
“with” is attached to the verb “hold” as the glove is an instrument for the action to hold, and in the
second one, the PP is attached to the noun “cup” as the bottom is a part of the cup. There are other
examples which cannot be disambiguated only from world knowledge such as “I am looking at the
man with a telescope” where both interpretations of who is operating the telescope are valid without
further context. In the world knowledge case, parsers can learn some of the associations in their train-
ing corpus, but they do not generalize well and efforts to leverage lexical resources or regularities from
large corpora lead to small gains (Agirre et al. 2008; Mirroshandel et al. 2012).

3Each audio segment is the base for an instance in which features are extracted.
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3.2.3 Alignment across modalities
The last example focuses on making correspondences between phenomena across modalities, bridging
elements of each modality together while leaving the rest unrelated. It can be seen as an alignment
process across modalities.

When an image depicting the same scene as described in a sentence is available, a human can
readily resolve the ambiguity, so a system should be able to benefit from this additional context. The
Flickr30k-Entities corpus contains about 30,000 images with multiple captions crowdsourced originally
to build a paraphrase corpus, and later extended with hand-annotated entities with corresponding
bounding boxes in the image, semantic categories (such as human, animal, instrument…), and corefer-
ence links across modalities and captions of a same image. We additionally annotated gold-standard
PP attachments on 29k potentially ambiguous prepositions. A dependency parser trained on a con-
ventional tree bank generates attachments with 75% accuracy for that corpus and training a reranker
given lexical features can raise that accuracy to 86% (due to the mismatch between the domain of the
Penn Treebank and image captions). Such a reranker would not generalize well on a corpus involving
objects with different properties, such as from the medical domain, and therefore we explored the
possibility to generate visual features and use them in the reranker in place of lexical features. The
approach consists in detecting objects in the image, linking them to textual entities in the sentence,
and compare their relative position and semantic categories:

• Visual object bounding box detection and semantic class prediction is performed with the
YOLOv2 (Redmon et al. 2016) retrained on the Flickr30k objects.

• Textual entities are detected with a simple BIO tagger based on an averaged perceptron.

• A matching score between phrases and detected objects is computed by projecting both in a
common representation space through neural networks, ResNet-152 for the content of object
bounding boxes, and GRU recurrent networks for phrases (Faghri et al. 2017).

Then, from this pipeline, features based on the relative position of the objects corresponding to the
phrases being mediated by a preposition are leveraged to train the reranker who decides whether
a potential PP attachment is correct or incorrect (in the case of attachments to verbs, the link is
forwarded to the subject/object on the other size of the verb). Results show that visual features can
improve PP-attachments by 3 points in average, but by a very large margin for locative prepositions
such as “near”. Even though lexical features offer a better improvement and the conjunction of lexical
and visual features is not better than lexical features alone, this result represents a landmark because
detecting objects in the visual modality is hard (recall of 50%) and matching them to phrases is also
hard (20% error rate on gold-standard bounding boxes).

To conclude this section on representation-level independence, considering that text is independent
of other modalities is inaccurate and an important body of work has shown that cross-modal informa-
tion is relevant. A recent example is the shared task on multimodal machine translation (Specia et
al. 2016). Nevertheless, the challenges of multimodal processing are numerous, in particular the vary-
ing performance of predictions in different modalities, the difficulty to build end-to-end multimodal
systems, and the lack of synchronization between phenomena which generates long-range dependencies
difficult to model.

3.3 Structured Predictions
NLP problems often involve predicting multiple labels per instance, such as associating one part-of-
speech label per word in a sentence. Under a holistic model, the POS label for a given word depends
on understanding the whole sentence, which means that all words from the instance should be used for
each prediction. However, in practice, often a subset of the input is considered, and there is a potential
benefit in looking at predictions our system would make for neighboring slots when predicting a given
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label. Structured predictions are prediction problems where some form of dependency between the
predicted labels is assumed. This assumption might be useful because of some modeling compromise
(such as only looking at the current word), or due to some constraints on the validity of produced
labeling (in parsing, the output must be a tree and shall not be a disconnected graph; in named entity
tagging with the BIO encoding, an “inside” label cannot follow an “outside” label).

In this section, we explore the compromise between rich modeling and dependency structures in the
output, as well as the problem of exact versus approximate inference when the dependency structure
leads to difficult inference problem solving.

3.3.1 The Markovian assumption
Markov processes are stochastic processes in which the conditional probability distribution of future
states only depends on the current state. They have been popular in NLP for two reasons: they restrict
the space of events for which we need an accurate probability estimation to states and state transitions,
and they allow to decompose structured prediction problems and therefore to infer exactly maximal
probability assignments thanks to dynamic programming. While Markov processes work on chains of
events, they can be extended to trees or graphs (Markov random fields), and the notion of current
state can be extended to a clique in the graph with a bounded size (order-n Markov structures).

The Markov independence assumption has been the “cash cow” of NLP for a long time because
the benefit of exact inference of structural predictions was higher than that of modeling long-range
dependencies, probably due to rather poor modeling of emission and transition probabilities. Speech
recognition is famous for having been dominated by HMMs for phonetic predictions, and n-gram
language models for word sequence predictions. In ASR, the fate of HMMs was sealed with the proposal
of first end-to-end approaches (Hannun et al. 2014; Collobert et al. 2016) which learn to generate a
sequence of characters directly from speech frames or audio samples. While best performance on
benchmarks are still occupied by HMM systems, and even end-to-end systems benefit from language
model rescoring (Collobert et al. 2016), the gap is small, and it seems that engineering progress is the
only barrier to the retirement of HMMs in those applications. The machine translation community has
followed similar trends while going from phrase-based systems to Neural Machine Translation (NMT).
In both speech and translation applications, inference was approximate because of the size of the state
space, and even with current neural-network-based systems, beam search is still beneficial although
conditional independence is not true anymore (Klein et al. 2017).

Part-of-speech tagging and syntactic parsing have followed a similar trend which is to put less em-
phasis on the decoding process and more on the modeling part. For POS tagging, the trend is straight-
forward by going from HMMs (Kupiec 1992) to log-linear models (Collins 2002) to CRFs (Awasthi et
al. 2006) and finally to sequential neural networks such as LSTMs (Ma et al. 2016). In parsing, the
trend is less straightforward because the variation in popularity of formalisms (constituents, dependen-
cies, adjoint tree grammars…) and decoding strategies (chart parsing, graph-based or transition-based
parsing). Yet the community has followed a similar trend with probabilistic context-free grammars
(PCFGs) which are HMMs on context-free grammars, refined as PCFG-LAs which include latent vari-
ables for refining non-terminals (Petrov et al. 2007), and a series of models supported by the averaged
perceptron (McDonald et al. 2005b; Bohnet 2010) and recently by neural networks (Dyer et al. 2015).
As an example, the system that Stanford submitted to the CoNLL’17 parsing shared task consisted of
LSTMs which create representations at word indexes then combined to create dependency-level rep-
resentations fed to decision layers. This approach effectively creates contextual representations based
on the whole sentence, so that syntactic phenomena can readily be predicted without accounting for
other decisions: the authors of the system describe a rule-based system for ensuring that predictions
lie on a tree, and postpone using a maximum spanning tree decoder as future work.

Independence assumptions, in a probabilistic sense, allow for exact inference of the structure prob-
ability maximization problem. Removing them with end-to-end and recurrent neural networks helps
growing a much finer modeling of singular events themselves, and therefore be less reliant on capturing
the global structure. Yet, even if in a probabilistic interpretation neural networks can avoid many
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conditional independence assumptions, they make other kinds of assumptions similar to independence
based on their topology, and the kinds of non-linear operations they perform, for which we don’t have
yet the mathematical tools which will help us understand how they affect system performance.

3.3.2 Exact inference
Predictions in NLP often involve an inference step which searches for the structured output with
maximum score. In tasks such as part-of-speech tagging or syntactic parsing, one may leverage dynamic
programming through variants of the Viterbi algorithm to find the exact solution to the inference
problem. When the search space becomes large, such as in automatic speech recognition or machine
translation, the DP search space is pruned in order to explore only the most promising solutions. There
are other tasks, such as summarization, for which inference does not reduce to a dynamic program and
for which exact inference is harder.

Automatic summarization is often cast as a constrained optimization problem: pack as much
information as possible in a limited size summary. In extractive summarization, this problem leads
to models which select subsets of the input, such as sentences, until the size limit is met. If each
sentence brings a value to the summary but adds its length towards the length constraint, this problem
is a knapsack problem, a well-known NP-complete problem (Karp 1972). For this reason, a lot of
summarization implementations turn to approximate inference, such as greedy search for the solution.

For instance, the seminal work on maximal marginal relevance (MMR) proposed to select a set
of sentences which maximizes total relevance while minimizing redundancy (Carbonell et al. 1998).
Relevance of a sentence is modeled as its cosine similarity with the centroid of the input document
to be summarized (the average sentence vector), and redundancy as the cosine similarity between
two sentences in the summary. Ideally, the summary should contain sentences which maximize their
individual relevance score while minimizing the sum of their pairwise redundancy scores. This problem
is akin to a quadratic knapsack problem (Gallo et al. 1980) which is expensive to solve for large inputs,
and therefore the MMR algorithm yields a greedy solution which consists in iteratively selecting the
sentence which maximizes the following score:

ŝ = argmax
s/∈S

(
λcosine(s, c)− (1− λ)max

s′∈S
cosine(s, s′)

)
(3.1)

where S is the set of sentences selected so far in the summary, c is the centroid of all input sentences,
cosine(·, ·) is a similarity operator in the sentence representation space, and λ is a hyperparameter
balancing the contribution of relevance and redundancy4. This greedy search assumes that selecting a
sentence at a given iteration is independent from the sentences which will be selected in the remaining
iterations. Like MMR, a lot of extractive summarization approaches rely on a fancy estimation of sen-
tence relevance – LexRank (Erkan et al. 2004), ML-based approaches (Kupiec et al. 1995), SVD (Gong
et al. 2001) – yet compute redundancy as word overlap with the already selected sentences. Sentences
that do not increase the lexical diversity of the summary at a given iteration of greedy selection are
discarded.

The greedy summarization approximation is not such a bad approximation, as evidenced by the
fact that summarization objectives can be submodular functions over sets, which have been shown to
be maximizable by a greedy algorithm with a guaranteed approximation factor (Lin et al. 2011). A
function f is called submodular if for any A ⊆ B ⊆ S and s ∈ S \B:

f(B ∪ {s})− f(B) ≤ f(A ∪ {s})− f(A) (3.2)

which means that the value gained from adding a sentence s to a set of selected sentences does not
increase as the set of selected sentences grows. A relaxed version of MMR (which models redundancy
as the sum of similarity of the selected sentence to all other sentences) can be written as a submodular

4Typical values of λ for news multidocument summarization are around 0.95
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function, and in particular, if a summary valuation function is monotone (f(S ∪ {s}) ≤ f(S)), the
following greedy algorithm can be applied:

ŝ = argmax
s/∈S

f(S ∪ {s})− f(S)

lλs
(3.3)

where S is the summary so far, ls is the length of sentence s and λ is a scaling factor 5. This essentially
selects the sentence with highest objective gain to length increase ratio. In practice, (Lin et al. 2011)
show that greedy search for a selection of sentences with this method results in close to optimum
objective maximization, and increased ROUGE score compared to baselines.

Yet, another trend of work looks at exact solutions to the sentence selection problem. (McDonald
2007) proposed to formalize the same MMR variant (sum instead of max in redundancy computation)
as an Integer Linear Program (ILP) which can be maximized with off-the-shelf solvers. They proposed
the following formulation:

max
∑
i

xiReli −
∑
i<j

xijRedij (3.4)

s.t.
∑
i

xili ≤ L (3.5)

xij ≤ xi ∀i, j (3.6)
xij ≤ xj ∀i, j (3.7)
xi + xj − xij ≤ 1 ∀i, j (3.8)
xi ∈ {0, 1} ∀i (3.9)
xij ∈ {0, 1} ∀i, j (3.10)

where Reli is the relevance of a sentence i, Redij is the redundancy induced by having sentences i
and j in the summary, xi is an indicator that sentence i is in the summary, xij is an indicator that
sentences i and j are together in the summary, li is the length of sentence i and L is the length budget
for the summary. The other constraints ensure the consistency between xi and xij variables. This
linear formulation for a quadratic problem induces a quadratic number of variables and constraints
which quickly lead to large instances.

Another global formulation is presented in (Gillick et al. 2009a†). It relies on the idea that sentence-
level computation of relevance and redundancy might not be appropriate since some sentences contain
less relevant clauses, and information in one sentence might be redundant with another sentence while
both cover valuable content. The summarization problem is then cast as a budgeted set-cover problem
where sentences cover information units (here, word bigrams), and the budget operates on sentence
lengths.

max
∑
i

ciReli (3.11)

s.t.
∑
j

xj lj ≤ L (3.12)

xj ≤ ci ∀j ◁ i (3.13)∑
j◁i

xj ≤ ci ∀i (3.14)

xi ∈ {0, 1} ∀i (3.15)
cj ∈ {0, 1} ∀j (3.16)

5λ = 1 leads to an approximation factor of 1− e−
1
2 , but other values of λ can lead to higher ROUGE scores.
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where Reli is the relevance of information unit i, lj is the length of the sentence j, xj is an indicator
that sentence j is in the summary, ci is an indicator that information unit i is in the summary, and
j ◁ i indicates that sentence j covers information unit i. This model was built while trying to generate
summaries maximizing ROUGE-2 score, the official metric of the DUC/TAC evaluation campaign. It
is an approximation6 of ROUGE-2 where the relevance score Reli is the number of reference summaries
a bigram occurs in. For multidocument summarization, replacing Reli with the number of documents
a bigram occurs in lead to one of the best systems at the TAC 2008 and 2009 evaluation campaigns7.

While ILP is an attractive formalism for inference in NLP, it has to be noted that even very
strong implementations can be slow on hard or large instances. For example, formalizing the Viterbi
algorithm with ILP leads to a very slow decoder while the classical dynamic programming approach
is much more efficient. The budgeted set-cover maximization formulation is submodular monotone,
given non-negative Reli scores, and therefore also benefits from good greedy approximation (Khuller
et al. 1999). Local search is another relatively general approximation technique which randomly swaps
sentences in the solution in order to improve the score of the solution. It that can solve large instances
of the budget max-cover and modified MMR formulations almost always to optimality in a short time8.

Inference with non-polynomial formulations also brings challenges in the context when composing
hypothesis spaces. How can the (exponential) space of possible solutions of a summarizer be repre-
sented? How can n-best lists be extracted efficiently? Those are open problems which might turn very
hard to solve.

To wrap up, assuming independence between objects involved in the inference process of an NLP
task may lead to reduced performance compared to exact inference while providing faster inference (in
the greedy case). This is especially true for summarization which is by nature a problem where con-
straints induce NP complexity, even though quality greedy approximations are possible for a restricted
set of problem formulations.

3.4 Independence at the Phenomenon Level
This section outlines the type of assumptions made at the phenomenon-level, by assuming for example
that syntax does not dependent on semantics. It is embodied in processing chains which produce
several levels of annotations which sequentially dependent on the previous levels. We look into how
processing chains are implemented, the kind of limitations they impose on the predicted phenomena,
and a few extensions that have been proposed to overcome those limitations.

3.4.1 Processing Chain
The historical approach to natural language processing consists in modularizing the prediction of
various levels of analysis as a processing chain which sequentially extracts higher levels of phenomenon
representations from the input from lower-level representations. For example, to perform surface
semantic parsing, such as semantic role labeling, one will typically run the following steps:

• sentence splitting (from raw text to sentences);

• word tokenization (from sentences to tokens);

• part-of-speech tagging (decorate tokens with part-of-speech tags);

• lemmatization (decorate tagged tokens with the lemma they correspond to);

• syntactic parsing (predict the syntactic structure of a sentence given tokens, part-of-speech tags
and lemmas);

6It is an approximation because ROUGE clamps occurrences and the metric is resampled with jack-knifing.
7Part of the success also came from high quality sentence splitting, and post-processing rules (Gillick et al. 2009b†).
8Unpublished personal result implemented with localsolver (Benoist et al. 2011)
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• and finally semantic parsing (predict a semantic interpretation of the sentence given syntactic
structure and the other features of tokens).

Additional tasks are often considered, such as named entity tagging and linking – marking token
sequences with direct references to real world entities such as persons, organization, places, time refer-
ences or amounts (Galibert et al. 2011), and resolving their identity by linking them to entity databases
such as freebase (Bollacker et al. 2008) –, coreference resolution – linking together textual references to
entities such as pronouns, nominal phrases or named entities), or word sense disambiguation (finding
for each word in a text its actual sense given a sense inventory. In a more general framework, NLP
tasks often require as input elements predicted by other tasks, which has led to the development of
processing chains.

Dividing to conquer the NLP processing chain was a wise choice because it allowed to study the
problems separately, under a linguistic model umbrella, and come up with well-engineered solutions of
the individual problems. The main advantage of modularizing the processing pipeline is that expertise
can focus on subproblems, and therefore better leverage linguistics as a source of inspiration for system
design, in particular to better control the generalization of each module. For example, a part-of-speech
tagging model can benefit from specialized lexicons which list possible part-of-speech labels for each
word. Another advantage is that models can have different nature, i.e. rule-based or statistical,
depending on the ambiguity of the processed task. They can also be trained on different labeled
datasets according to availability, or datasets of different sizes according to the ambiguity of the
problem at stake. Finally, modules later in the pipeline can benefit from the output of modules
that came earlier in the pipeline and use the generated annotations as their input. Syntactic parsing
can benefit from knowing word classes (such as part-of-speech tags) instead of fully modeling lexical
relations which would require very large amounts of training data, just to be able to cover a reasonable
subset of the lexicon.

Unfortunately, the main problem with this approach is that, given realistic input data, submodules
inevitably make mistakes, errors which propagate along the processing chain, and eventually undermine
the final result. In particular, a mistake in part-of-speech tagging directly impacts a syntactic parser
which relies blindly on the nature of the underlying annotations9. For example, in English most verb
tokens can be nouns, and an unusual sentence might confuse the part-of-speech tagger to label a verb
as a noun, which will preclude the parser from associating it with a subject or an object, and therefore
render the syntactic analysis incorrect. In the same way, an error in lemma or syntactic structure
will impact semantic parsing, and even an error in sentence splitting (a task which is considered easy
but often overlooks the ambiguity of punctuation symbols) can lead to degraded results at the end
of the chain. The problem of error propagation is also exacerbated by the so-called snowball effect,
well known in the automatic speech recognition community, in which a small error in the early stages
of processing also impacts neighboring predictions due to the fact that structured predictions are
the result of the combination of features that span the neighborhood of the symbol to be predicted.
In automatic speech recognition, this effect is seen when words absent from the lexicon have to be
recognized, leading to their misrecognition and a misestimation of the probability of all the n-grams
that overlap with them (under an n-gram language model). This generally leads to misrecognition of
neighboring words as well. In syntactic parsing, the same effect operates when a word is mistagged
as it impacts all the features related to its governor and dependents in first order models, and even
further in higher order models.

Another problem with the processing chain approach is that a conditional independence is assumed
on subsequent tasks. Sentence splitting is assumed conditionally independent of syntactic parsing, but
a syntactic parser could help disambiguate abbreviations that are also sentence endings by comparing
the likelihood of the two sentences resulting from the split with the unsplitted sentence (Favre et
al. 2008a†). Another problem is prepositional phrase (PP) attachment in syntactic parsing which is
itself a semantic problem, and could benefit from semantic constraints. Additionally, in spoken sentence
segmentation, where a split can occur after each word, attaching a PP to the current sentence or the

9The parser could be trained on predicted part-of-speech tags to limit the problem.
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next sentence also requires syntactic, semantic and even discursive information, although non-lexical
cues such as prosody can help disambiguate the PP attachment when the speaker uses them.

Processing chains following the pipeline approach propagate errors, and preclude the use of sub-
sequent high-level decisions to inform earlier low-level decisions. Fortunately, several techniques can
improve upon this assessment.

3.4.2 Composing Hypothesis Spaces
One way to get around the problems of the pipeline approach is to generate multiple decision hypotheses
for a given task and pass them as input of the subsequent tasks, postponing the actual decision to
downstream processes. This allows to reconsider early decisions when higher-level context is available.

Naive hypothesis spaces can be created through n-best lists (Stolcke et al. 1997). They have been
used a lot at the confluence of ASR systems and natural language understanding (NLU) applications.
A NLU system is run on each of the ASR n-best hypotheses and an application module decides which
hypothesis is best. The problem with n-best lists is that they are very inefficient in a pipeline context as
the number of hypotheses grows exponentially with the depth of the pipeline. They also lack diversity,
especially in the context of structured predictions or natural language generation where the number
of hypotheses grows with the size of the possible substructures or the lexicon, and even large n-best
lists may only be variants of very few decisions (Gimpel et al. 2013).

In sequence prediction problems, hypothesis lattices (graphs with a DAG structure) have been
proposed as compact representations of decision spaces in the well-studied framework of weighted finite
state automata. In particular, the hypothesis space across tasks can be represented as weighted finite
state transducers and the pipeline as the composition of a number of transducers, each achieving one
task. The MACAON NLP processing chain (Nasr et al. 2011†), developed in the TALEP group, is built
on this framework and can perform lexical analysis, part-of-speech tagging, named entity recognition
and chunking of word lattices. The syntactic and semantic parsing modules it contains cannot, however,
process lattices as they generate non-sequential structures and therefore their hypothesis space cannot
be easily represented by weighted finite state transducers (WFST), but would rather have to resort
to tree and graph automata (Fülöp et al. 2009). Note that decision lattices benefit from the range
of pruning and approximation algorithms available for WFSTs and composition can be implemented
lazily which leads to efficient space representations and computations in the processing chain (Allauzen
et al. 2007).

Another representation for hypothesis spaces was proposed in the ASR community. Confusion
networks (CN) are an approximation of lattices which are created by aligning hypotheses to a pivot
hypothesis while imposing input constraints (such as time for ASR) and rescore decisions to reflect
ambiguity (Hakkani-Tür et al. 2006). This leads to an input-synchronous sausage-like structure where
each bucket represents competing decisions, and are only useful when the predicted labels are not
synchronous by nature. One benefit of CNs is that they can represent rich hypothesis spaces compactly
by adding paths which do not exist in the original decision space, and are therefore less prone to the
snowball effect. They have proved effective for NLU applications on top of ASR hypotheses (Tur
et al. 2002). Their drawback is that they might generate exponentially many paths when composed in
a processing chain because of the exit fanout of the states which is much larger than in a lattice.

The main issue of composing hypothesis spaces is that the system needs a joint model over all the
tasks to decide the best path, a decision often left to the end-user application. A kind of naive Bayes
approach would consist in considering the tasks as independent and compute the joint model score as
the product of the probabilities returned by each task, but this approach is not satisfactory for the
reasons aforementioned. Another approach would be to consider the joint model trained explicitly on
all tasks, but it would require large datasets annotated in all modalities. In addition, hypothesis spaces
for individual modules are built with independently trained models, which might be problematic if the
relevant information for deciding which hypotheses to keep depends on decisions that will be made by
other modules.
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3.4.3 End-to-end models
Recent development in deep learning has given traction to the idea that predicting actual symbolic
representations for intermediate tasks (predicting intermediate linguistic representations) might not
be necessary, entailing that high level tasks such as machine translation, summarization, speech recog-
nition, information retrieval or dialogue systems, could be learned directly from raw input features.
Given enough training data, deep neural networks should be able to learn latent intermediate repre-
sentations and leverage them to make sensible decisions in the target task domain.

The end-to-end training approach has not been possible prior to the advent of deep learning because
non-deep models learn disjoint weights for similar phenomena. Feature-based models such as linear
SVMs, Naive Bayes or MaxEnt (or Struct-SVM, HMMs and CRFs for structured predictions) learn
independent weights for each feature, and therefore cannot recognize nor leverage features which have
a similar behavior because of a shared linguistic phenomenon. Kernel-based methods with non-linear
kernels are able to account for the similarity between instances, but not at the feature level. These
limitations result in large amounts of annotated data being required to achieve good performance
on high-level tasks directly from input features. Models with latent variables, such as LDA (Blei
et al. 2003) or Hidden-CRFs (Quattoni et al. 2007), correspond to a first step towards models which
learn intermediary representations to model the complex phenomena of NLP.

Each layer in a deep neural network performs a linear transformation of the input followed by
a non-linear activation function. Stacking such layers builds non-linear latent representations of the
input, thanks to chain-rule differentiation which allows to back-propagate the supervision signal across
layers. This results in systems that can learn to build representations and combine them to more
abstract representations along layers. The output at each layer can be seen as latent variables which are
learned along the system. This was apparent in the computer vision community where the composition
of hand-designed features was replaced by deep convolutional networks for single-input single-output
end-to-end systems (Krizhevsky et al. 2014). In the NLP community, the variety of structure outputs
made the emergence of end-to-end methods less straightforward, but encoder-decoders, especially with
attention mechanisms, have been key to building successful end-to-end systems.

For machine translation, in the phrase-based era of statistical MT, word-alignment was considered
a latent variable and learned separately of the translation model generally with unsupervised models
such as the IBM family of models, in order to devise an independent phrase translation model and
use a decoder to find the most likely sequence of phrases to translate a given source sentence (Koehn
et al. 2007). The SMT community has put a lot of effort to improve translation models with lin-
guistic features such as syntactic and semantic parsing (Quirk et al. 2005; Wu et al. 2009) and such
systems fared well in competitions (Callison-Burch et al. 2011). Neural machine translation com-
pletely replaces the different stages of SMT by a single sequence-to-sequence model which reads words
or characters one by one from the source sentence, and produces words or characters one by one in
the output (Bahdanau et al. 2014). Attention mechanisms over LSTMs or without recurrent units
(but multiply stacked) (Vaswani et al. 2017) can learn a latent alignment and often produce better
translations than SMT systems.

Automatic summarization has been dominated by extractive approaches which select sentences
from an input, while efforts to build abstractive systems which construct novel text resulted in sub-
part performance. Advances in neural machine translation led to the emergence of neural summarizers
that treat the input document as a source language sentence, and generate text conditioned on that
input following the encoder-decoder framework, learning to summarize directly from pairs of texts and
corresponding summaries (Rush et al. 2015). Early attempts were limited by the length of the input
they could consider, and would not generalize to never-seen words. Current attempts at neural sum-
marization include copy mechanisms and estimation of coverage through attention mechanisms (Zeng
et al. 2016; See et al. 2017; Nallapati et al. 2016).

Another application where end-to-end modeling is a success in automatic speech recognition (ASR).
The traditional ASR pipeline includes parameter extraction from the waveform (typically Mel fre-
quency cepstral coefficients, MFCCs), followed by an HMM modeling of phoneme sequences such as
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triphones, a lexicon which converts phoneme sequences to words, and a language model which scores
word sequences. Neural networks were used for estimating the HMM emission probabilities (Waibel
et al. 1990; Hermansky et al. 2000) and for language model estimation (Bengio et al. 2003; Schwenk
et al. 2002), but still in a HMM framework. Only recently have end-to-end methods emerged for speech
recognition which learn directly to map parameter vectors to a sequence of characters without explicit
supervision on the intermediary representations (Hannun et al. 2014; Amodei et al. 2016; Bahdanau
et al. 2016; Collobert et al. 2016).

There are many other examples of end-to-end processing beyond the classical NLP applications
presented here and in other fields. The main idea is that feature engineering, which requires expertise
and is idealised by linguistic theories that might not completely explain the data, can be learned directly
by end-to-end models. In a sense, this approach is a great success, but deep models tend to be black
boxes, and the expressive power gained by more model complexity results in a lack of explainability: by
not having access to a symbolic representation of intermediary decisions, it is hard to understand and
explain system errors. More importantly, the independence assumptions between features assumed by
shallow models is still present in deep models in more lenient form. For example, character-level CNNs
cannot represent exactly words longer than the size of their input window, yet they are successful in
many tasks. Sometimes, constraining model capacity also favors learning general representations, at
the cost of less representative modeling assumptions. What kind of linguistic phenomena cannot be
represented by a given neural architecture remains understudied and shall be explored more thoroughly
by the community. Better mapping neural network architectures with observed linguistic properties
might also be an interesting research avenue.

3.5 Conclusion
There are a number of questions left open in the domain of dependency assumptions. For example,
we have seen that using the right input representations is very important in NLP and that feature
engineering is important to tackle all the aspects of a problem. Even if deep learning will find good
feature combinations and drop irrelevant inputs, it is unable to leverage features not available in the
input even if they might be easy to capture. This advocates more research in the multimodal setting,
to extend typical work on textual representations of language. One crucial question is whether we
need to reconsider the value of the human-level sensing assumption, stating that if a human can solve
a problem from a set of inputs, the machine should be able to do as well. Our simulations of the
human input and cognitive systems are still rather poor, and therefore a system might be blind of
phenomena actually perceived by humans. Conversely, some features might look irrelevant to humans
while having statistical properties that can be accounted for by ML systems.

In the domain of structured predictions, there seem to exist a strong relationship between modeling
power and decoding strategies. An ideal input model would not need any decoding because it would
have all elements available to make the right decision on a given item of the output structure, and an
ideal decoding process would require only minimal modeling (like log-linear feature models). Yet, the
current research seems to choose different compromises depending on which input model or decoding
process becomes favorable in the community. The idea of learning this compromise is not new (Daumé
et al. 2009; Kim et al. 2017), but it seems evident that future models will embed the sequence of
decisions made by the decoding process in the modeling stage, and make a choice of strategy based
on the data itself. Policy estimation with deep models in reinforcement learning might be a way of
exploring this avenue. Another interesting question regarding the compromise between modeling and
decoding is that of the existence of similar compromises in the human brain. Do we sacrifice modeling
power on the input for better accounting for distributional properties on the output?

The pipeline approach was very popular in NLP because it allowed to decompose problems to easier
subproblems, and to train different parts on different datasets. They were, however, riddled with error-
propagation problems and an inability to model jointly all phenomena. Deep learning has brought
end-to-end approaches which don’t assume the existence of intermediary symbolic representations,
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and can build continuous intermediary representations without direct supervision and produce directly
predictions for an end task. Yet, end-to-end methods typically require large amounts of training data,
even if they can benefit from some sort of pretraining. How to build end-to-end systems that benefit
from the same modularization advantages as pipelines? Can we build a good enough understanding
of data distributions which would allow us to train systems piecewise on subsets of tasks?

Modeling assumption, and in particular independence, are very important to the success of nat-
ural language processing systems that rely on machine learning. We have seen in this chapter that
in addition to the classic assumptions made by ML approaches (such as independence between in-
stances), NLP might suffer from forward independence of processing levels, conditional independence
in the decision-making process essentially to build efficient inference algorithms, and independence
at the representation level, by not accounting for the full context in which a linguistic event occurs.
There are solutions to overcome those independence assumptions, such as end-to-end models, global
exact inference through ILP, or multimodal processing. Deep learning seems to remove a lot of those
assumptions with models such as bidirectional LSTMs which can move information around from po-
tentially long distances. Yet, even if independence is not assumed anymore, the type of transformation
performed by the model between intermediary representations is the new assumption. For example,
in the computer vision community, CNNs have been proposed to neutralize the position of detected
patterns, multilayer and multi-resolution CNNs also neutralize the size of patterns, but there is no
practical solution for neutralizing the orientation in 3D space of objects within a 2D image. This kind
of assumption is currently addressed by training models with very large quantities of data which span
the distribution of object orientations. The question is whether NLP is affected by similar phenom-
ena and if there are invariants that can be correctly modeled in order to reduce the quantity of data
necessary to properly cover a phenomenon.

PhD student work relevant to this chapter
• Olivier Michalon worked on statistical models for predicting semantic frames. Frame structures

model surface semantics as graph structures anchored to text. Generating such structures is
a good example of a compromise between modeling and decoding. Olivier proposed various
statistical models from log-linear local models which build the structure from bottom to top,
to constraint-based global inference through integer linear programming on maximum-likelihood
weights. He also proposed representations based on paths in the inference graph to reduce
computational requirements while keeping interesting modeling properties (Michalon et al. 2016).

• Jérémie Tafforeau worked on multitask inference for natural language processing. His con-
tribution was centered on exploring how deep learning models could be used to reconsider the
pipeline approach. He built an end-to-end model based on stacked LSTMs and trained with a
multitask loss to perform all tasks of the NLP pipeline from part-of-speech tagging to simplified
semantic frame parsing. Jérémie experimented with loss functions in order to build represen-
tation spaces for a target task, and explored error propagation in comparison to the pipeline
approach, especially in regard to automatic speech recognition (Tafforeau et al. 2016).

• Sébastien Delecraz worked on multimodal language understanding. He proposed two contri-
butions relevant to this chapter. The first one is multimodal embeddings, which allow pretraining
of deep systems on separate modalities, and merging their hypothesis space at the representation
level instead of the typical early/late fusion dichotomy (Rouvier et al. 2015a). The second one
looks specifically at naturally ambiguous syntactic decisions which cannot be resolved only using
text and have to resort to external knowledge. He proposed a method for generating image-level
representations and leveraging them in the context of a syntactic parser for improving prepo-
sitional attachments that can only be resolved by looking at an image representing the scene
described in the analyzed text (Delecraz et al. 2017).
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• Jeremy Auguste works on learning conversation-level representations. Conversations have
been so far modeled either at the turn level, or globally through bag representations (bag of
terms, global features). Jeremy’s work consists in generating representations from hierarchical
deep learning models that encompass both word-level and turn level content. Learning these
representations is supervised from the content of the conversations in term of linguistic phenom-
ena (e.g. dialog acts) as well as the external factors, such as the satisfaction of a customer in a
contact center (Auguste et al. 2018).
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Chapter 4

Generalization

4.1 Introduction
Generalization is the concept that a system can work in conditions that are novel compared to those
for which it was designed. The first target for generalization is that a system works well on inputs
it has never seen, by modeling the phenomenon it has been defined to model well. Additionally, a
system that generalizes well may obtain good accuracy on domains, tasks, or types of inputs it has
never seen. A system should recognize that the phenomenon it is looking at is conceptually similar
to inputs it has already seen, and be able to process it. In machine learning, generalization is linked
to the fact that good performance on training data does not necessarily lead to good performance
on test data, for example because either training or test data are not a representative sample of the
underlying distribution. It is admitted that adding model complexity leads ML systems to overtrain
by “memorizing” the training data (especially when the training set is small), which decreases the
expected performance on a test set. So, from that point of view, a system which generalizes well
should have good performance on unseen test data. But generalization is also concerned about the
scope of the underlying distribution we work with, be it narrowly tied to a specific context, or broadly
defined.

Another interesting aspect linked to generalization is that systems should recognize when they are
processing data that is outside the scope of their capabilities, that is inputs for which they cannot
generalize. Confidence estimation and explainability are both reminiscent of this aspect and therefore
strongly linked to generalization properties of a system.

In NLP, the degree of generalization of a system could be defined according to various directions
of increasing difficulty. The generalization level of a system can be described according to whether
the training data and the test data come from:

• level 1: the same distribution (i.e. varying the amount of training data);

• level 2: a different time frame (trained with past data, processing present and future data);

• level 3: a different genre, language register or modality (i.e. text vs speech);

• level 4: a different topic or specialty domain (i.e. medical vs sports);

• level 5: a different language (i.e. French vs Chinese);

• level 6: a different task (i.e. POS tagging vs semantic parsing).

These levels can also be extended to any combination of the aforementioned generalization conditions.
While some of these conditions have been explored, higher levels such as language and task gener-
alization have only recently been focused on, and seem much harder to achieve, and are argued not
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to be fully reachable without general artificial intelligence (or could be interpreted as a path towards
general AI).

This definition of generalization levels is not completely satisfactory as some NLP tasks may be
strongly dependent on some aspects, and less dependent on others. For example, POS tagging is
not very sensitive to time shifts while name entity recognition is much more; or a speech-only task
such as speaker identification is not very dependent on language, although it is harder to recognize a
speaker speaking a different language (Wang et al. 2012). Also, depending on the selected condition
at a given level, generalization might be easier or much more difficult: historical data separated by
several centuries from a source of training data is more difficult to process than texts dated a month
after training data; generalizing to a subtopic of the same topic might be easier than two very different
domains; a language from the same family as the one used in training data might also be easier
to assess. In particular, some conditions in a given level might be harder than the conditions in a
higher level. Therefore, to address these shortcomings, generalization at a given level could be recast
as measuring performance in an adversarial fashion for which the most difficult condition has to be
studied. This extends to whether the set of conditions is bounded and whether adversarial conditions
can be described in a given setting.

Once a level is selected, given an adequate measure of performance, it is possible to measure
generalization (or lack of generalization) through the drop in performance of a NLP system by fixing
all conditions except for those of the target level, and varying the difficulty at that level. The literature
contains many examples of studies emphasizing “adaptation” or presenting contrastive experiments on
different domains, size of training data, etc. It is also worth noting that the framework for estimating
a system’s generalization may allow for a small quantity of training data in the target condition (often
called adaptation data), or data from the general distribution from which the condition is drawn (such
as leave-one-out setting on languages). Most work presented in the literature focuses on the first level
of generalization, i.e. presenting performance on a test set drawn from the same distribution as training
data. Also, the generalization problem is often tied to an error in experimental setup design which
can be called “test distribution spill” where some factor of the test condition is present in the training
data allowing a system to train on it. The classical error is to include actual test data in training,
leading to spectacular performance improvements, but more subtle problems, such as using the same
speaker, source, time frame, etc. in training data can result in performance gains non-representative
of the generalization capabilities of a system.

We have already seen in Chapter 3 that independence assumptions may hamper the modeling power
of NLP systems by not allowing them to see the range of inputs or decisions they might need to see (in
a sense, generalizing on contexts which are considered independent at training is also an interesting
level of analysis). This often results in mismatched conditions between training and test, and therefore
a need for good generalization. Another example is training according to a loss function which is an
approximation of the true loss, like in summarization where the true loss is hard to express.

This chapter is an overview of a few generalization studies, constructed around a somewhat broader
setup to test generalization: systems are often built for a known target condition, without keeping
performance on the source condition, but using data or linguistic knowledge from that last condition.
It is organized as follows. First we look at generalizing NLP systems in the genre space, in particular to
process speech. Then, we consider generalization from a task point of view, and in particular creating
representations that are suitable for multiple NLP tasks, and how such representations can benefit a
particular task. Finally, we look at how NLP systems can be generalized at the language level, seeking
true language independence.

4.2 Generalizing Across Genres
In NLP, a genre is defined by a source of linguistic data that differs in nature. A genre is different from
a domain which is more linked to applications (such as the medical domain), and is often characterized
by specificities in terms of topics, terminology, and often language register. By contrast, a genre covers
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much broader differences in terms of phenomena such as spontaneous versus edited, or narrative versus
conversational linguistic material. In this section, we focus on the difference between text and speech,
and how to generalize from the former to the latter. The degree of generalization according to the
taxonomy given in 4.1 is Level 2.

Speech is one of the most efficient means of communication for us, the first we learn and probably
the most natural one. Yet, the NLP community largely focuses on textual representations, such as
found in email, reports, websites or news. Speech transcripts can be very different from idealized text
for the following reasons:

• conversational speech is often spontaneous, including disfluencies such as hesitations, repeti-
tions, revisions, etc.;

• conversational speech might involve multiple speakers who cooperatively build meaning: a
speaker might finish the sentence of another speaker;

• multi-speaker conversations reflect the evolution of the social status and relationship of the
speakers: convergence, divergence, competition for the floor, etc.;

• linguistic phenomena observed in text are an idealized or canonicalized version of what is
observed in speech, and many phenomena, such as sentential units, are much less defined in
speech;

• para-linguistic phenomena, such as prosody or the emotional state of the speaker, participate
to the semantics of the message;

• each speaker is differently affected by the above phenomena, resulting in a varying degree of
speaker specificity;

• automatic processing leads to errors due to noisy conditions, and channel effects (microphone
placement or quality).

Each of these differences from clean text has led to a large body of work in the research community,
specifically in the area of spoken language understanding (SLU). Even though SLU is often framed
as intent classification or slot tagging tasks with application-specific tagsets, the recurrent challenge
lies in training models to recognize open-domain representations, such as syntactic dependency parses,
semantic role labels or semantic frames.

There are many possibilities for addressing the genre mismatch between written text and speech.
The first one consists in training systems on similarly looking data, whether it comes from a similar
genre or it is simulated. For example, for the ASR error detection work described in (Bechet et
al. 2013†), we trained a dependency parser on simulated speech from text by lowercasing all the words
and removing punctuation. As reported in (Kirchhoff et al. 2015), the macaon parser resulted in
10% accuracy improvement of verb morphology prediction over the (off-the-shelf) Stanford parser for
a speech machine translation task. Another interesting aspect is that we trained a 1st order parser
instead of a 2nd order parser because it was less affected by the snowball effect of ASR errors, and
higher order would not benefit as much the short sentences of speech compared to longer sentences in
text. Simulation of a target genre (as well as data augmentation such as cropping and mirroring used
for computer vision) is limited by the quality of the simulation. It is well known in the community that
generating texts with a language model in order to train a new language model on more data will not
outperform the original language model even though LM interpolation might be beneficial (Bellegarda
2004). While vocal tract normalization (Pitz et al. 2005) is successful at simulating a neutral speaker
for ASR, such invariants are harder to find in natural language processing, and simulating dialog from
texts or generating paraphrases are open problems that could help genre-level generalization.

A second approach to ensure generalization of NLP systems on speech consists in including non-
textual modalities in the decision. Prosody, for example, can help discriminating whether a preposi-
tional phrase is attached to the previous or next sentence (Favre et al. 2008a†). It can also inform
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extractive summarizers by boosting sentences with more emphasis (Xie et al. 2009a†). Yet, prosodic
features are speaker-dependent and normalizing them is difficult for infrequent speakers. Using images
as a source of information is also a way of better generalizing decisions on speech. In our work on
speaker role recognition described in Section 3.2.1, adding image and sound representations resulted in
an improvement in classification accuracy (Rouvier et al. 2015a†). For prepositional-phrase attachment
resolution in multimodal context, we showed that adding image features would better resolve cases
which were not well represented by text-only semantics (Delecraz et al. 2017†). The problem of ex-
tracting accurate features from image is even more prominent than for prosody: in that pp-attachment
work, object detection in images suffered from a recall of 50%, which tended to cripple the benefit
from derived features for the final task (due to error propagation in the pipeline).

The decision strategy implemented in a system can also increase the robustness to genre changes,
especially in the context of erroneous inputs such as generated by automatic transcription. The
established strategy in the spoken language processing community is to account for multiple hypotheses
(ASR n-bests, word graphs, confusion networks...) as input to a system and extend them as output
of the system. In the sequence tagging framework, implementing a pipeline of systems as finite state
transducers, and inference as their composition, leads to the potential exploration of the complete
space of combination of inputs with potential labels. While it may effectively reduce the problem of
error propagation, it is affected by an explosion of the number of hypotheses, requiring clever pruning,
and it assumes a joint model over the tasks which requires synchronous training data in all subtasks. In
addition, even though efficient algorithms are available for hypothesis spaces expressed over sequences
(regular languages), inference is harder on more general structures such as trees or graphs, and even
harder for NP-complete formulations such as those used in summarization. An alternative approach is
found in end-to-end training which leverages deep learning for modeling intermediate representations.
In (Tafforeau et al. 2016†), we showed that the end-to-end approach was more robust to ASR errors than
the pipeline approach at most word error rates. The way the problem is expressed might also influence
the effect of genre mismatch on a system. In (Trione et al. 2016a†) we showed that although extractive
summarization is affected by ASR errors, an alternative way to model the conversation summarization
problem is to perform extraction in well-formed reference summaries, and adjust conversation-specific
information to match the target conversation. The benefit comes from selecting well-formed sentence
templates even though the selection process is based on erroneous transcripts. The trade-off resides
in how general the gold-standard summaries are in regards to novel conversations. Conversations
addressing a non-standard event, or a new topic would not be well covered by segments from the
training corpus.

To summarize, even if speech is very different from text, there are a number of approaches to
transfer models trained on the latter to the former: simulate or directly model invariants shared by
text and speech, such as the absence of case or punctuation; include side-modality phenomena, such as
prosody, video, etc.; build robust strategies such as representing multiple hypothesis, using and end-
to-end approach instead of a pipeline approach, or make predictions in a space less affected by ASR
errors. Reducing the problem of genre generalization to speech is, of course, naive. There are many
areas where language is used, which could be called genres, and for which cross-genre generalization
might be beneficial: non-verbal communication, body language, cognitive process tracking through
neuro-imaging, social signals, arts…

4.3 Generalizing Input Representations
The typical input for non-multimodal NLP systems is text as a sequence of words. Due to morphology,
spelling errors, proper names and speciality domains, the size of the vocabulary for a given language
increases almost sublinearly with sample size. When annotated corpora are of limited size, it is
indispensable for systems to generalize to new unseen words. While characters can be accounted for
to build surrogate word representations, the meaning of words (or their role in a given task) is not
fully compositional from characters and therefore it is often beneficial to use word types and character-
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based representations as input of a system. Normalization through morphological analysis and spelling
correction are another way of addressing the generality of input representations, but both are affected
by non-regular words.

As we have already seen in previous sections, using multimodal cues such as prosody when process-
ing speech, is another way of better generalizing input representations. Prosodic features are typically
computed from an estimation of voicing, F0 (or pitch), energy and rhythm by measuring the timing
of individual phonemes. Although a large quantity of side information is conveyed through prosody,
it is hard to estimate due to the composed effect of speaker and channel. Some of that effect can
be neutralized by normalizing the previously mentioned features by speaker-level statistics (assuming
speaker segments are available, or using a moving window), with the median of the feature, or esti-
mation of a baseline value with a specific model (Sönmez et al. 1997). Nonetheless, such features are
often less reliable than textual input, and bring marginal performance improvements.

In this section, we look at one particular problem when using word representations: how represen-
tations can be generated at test time for unknown words. The degree of generalization according to
the taxonomy given in 4.1 is Level 3 as unknown words is an issue mostly observed when changing
domains or topics.

Word embeddings are compact vector representations for words that place words with the same
properties close together in the embedding space. Depending on how they have been trained, they
can reflect syntactic, semantic or topical proximity. Embeddings based on the distributional semantics
hypothesis (Harris 1954), which assumes that word meaning can be defined by which words they tend
to cooccur with, depending on their training regime, will lead to different kinds of representations.
The most popular techniques, CBOW and skip-gram (Mikolov et al. 2013), or GloVe (Pennington et
al. 2014), are reminiscent of Latent Semantic Analysis (Deerwester et al. 1990) and correspond to a low-
rank version of the cooccurrence matrix which counts the number of times two words cooccur in a given
text window. For example, GloVe explicitly trains representations so that the scalar product between
vectors representing two words is close to the normalized log-cooccurrence of the pair. Even though
word embeddings can be trained on very large corpora (several billion words), devising representations
for out-of-vocabulary words can be difficult.

Word embeddings can be used as is as features of an NLP systems, or they can initialize the
embedding layers of a neural network and be fine-tuned for a target task. Therefore, it is reasonable
to assume different types of OOVs:

1. words without a representation because they were not part of the embedding training corpus,
and not part of the task-specific training corpus;

2. words which have a representation but are not present in the task-specific training corpus;

3. words which do not have a representation but are present in the task-specific training corpus.

In the simple case where no fine-tuning is performed (cases 1 and 3), rare words can be replaced by a
special ⟨unk⟩ symbol which corresponds to the 0 vector that cancels the transformation applied to the
input in the first layer of the embedding layer, and therefore a representation is completely devised from
the bias associated to that layer. At test time, those words, such as proper names, can be reasonably
handled with a single class of OOVs (case 1). However, for case (3), it might be problematic to collapse
relatively frequent tokens for which representations are unavailable to a single ⟨unk⟩ representation.
For example, tokenization of frequent multiword expressions such as particle verbs, set phrases, might
induce OOVs which would benefit from a specific representation. Therefore, it is always advised to
retokenize the embedding training data with the same rules that pertain to the tokenization of the
task-learning corpus. Using approximate match or composition from known token representation is an
option but it remains heuristic.

Fine-tuning embedding layers initialized with pre-trained representations induces another problem.
Case 3 OOVs (in training data but no pre-trained representation) are not a problem anymore because
the system can learn a representation for them as long as their initialization is random and they are not
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collapsed to 0. If rare enough, words which have no representation and are not in training data can be
collapsed to a single ⟨unk⟩ symbol1. Words which have an embedding but are not seen in training data
(case 2) are problematic because the fine-tuning process might have transformed the embedding space
by a large-enough amount for them to induce wrong classification decisions. We have shown that given
a small text sample containing an OOV, it is possible to compute a distribution similarity with other
words of the lexicon, and borrow their embeddings (or an interpolation of embeddings from multiple
close neighbors) and use them before or after finetuning resulting in performance improvement on a
POS tagging task (Tafforeau et al. 2015a†).

More recent work, such as Fasttext embeddings (Joulin et al. 2016), train jointly skip-gram model
for word forms and character n-grams (morphological units). If a representation is not available
for an OOV, then it can be devised from morphological units. This type of representation is very
successful at handling morphology-rich languages, but it fails to generalize for words which have
uninformative morphology but follow distinguished distributional patterns. Another trend is to build
contextual embeddings, that are not fixed for a given word, but recomputed from the context it occurs
in (Peters et al. 2018). The principle of ELMo, embeddings from language models, is to train a
multilayer bidirectional RNN (such as Bi-LSTMs) on a language modeling task (predict the current
word given neighboring words) on a very large set of texts. The embeddings are the activations of
the network before the decision layer. To use those embeddings for an NLP system, one must process
its training and test data to collect the corresponding activations and use them instead of regular
fixed word embeddings. The contextualization of the representations has been shown to improve on
a range of tasks, probably due to the capacity to adjust representation to the actual sense used in a
context. The ELMo implementation also addresses the problem of OOV by using a character CNN layer
which models basic word representations with character-level convolutions (similar to n-grams), a fairly
standard practice in recent systems. One should note that the ELMo approach could be generalized
to any task, and in particular it has been known for some time in the deep learning community that
the first few layers of a system should benefit from pre-training on large corpora on an “unsupervised”
task, such as auto-encoding (Vincent et al. 2010), which is effectively what ELMo does. The question
is that what tasks having large quantities of training data might be beneficial to the task of interest for
which the system is pre-trained, and are there generic pre-training tasks, beyond language modeling,
which would be beneficial for any kind of end task?

Even though it is possible to devise representations for out-of-vocabulary words from their mor-
phology or the context in which they appear, there are three cases for which word embeddings do not
generalize well: small corpora, novel senses, and new languages. A rule of thumb is that a corpus of
roughly 10 million words is necessary for training reasonable embeddings, and adaptation methods are
necessary to leverage existing embeddings. Many methods have been proposed for training sense-aware
embeddings (Qiu et al. 2016; Li et al. 2015; Chen et al. 2015), yet they either assume a set of topics
(under the assumption that words have a single sense in a given specialty domain) or a set of senses,
and cannot account for new senses. What makes novel word senses emerge and how much data is
needed for evidencing this emergence remains an open question (Hamilton et al. 2016) even though
changes can be evidenced after the fact2. In the context of domain adaptation, this is again difficult.
Those problems can be extended to the training of multilingual embeddings which, assuming bijective
translation, can be used to train language-neutral systems and therefore generalize across languages.
The dream of universal embeddings is an elusive one because an expression might be translated to a
single word in a different language, and because some syntactic words have no translation in other
languages.

In addition, the meaning of expressions can be captured from individual word representations by

1Alternatively, multiple symbols such as POS tags could be used to represent OOVs as long as their distribution in
training data is representative of their occurrence in test, since the corresponding representations, randomly initialized,
can be trained towards the target task.

2In unpublished work, we showed with A. R. Balamurali that aligning embeddings trained on temporally disjoint
corpora would result in a set of words being far apart compared to the general population, evidencing a change of sense
for those words.
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compositional models such as RNNs, but how they process non-compositional meaning is still not very
clear although we know that coocurrence models such as word2vec are able to capture some of the
meaning of non-compositional expressions if they are trained at that level of granularity. How do these
phenomena combine and how they match the degrees of non-compositionality processed by humans
remains an open question.

4.4 Generalizing Across Tasks
Often, when performing NLP tasks, we look at a single problem. For instance, parsers are trained on
treebanks for the purpose of parsing, a text genre classification system is trained on a categorization
dataset, etc. Hypothesizing that tasks are independent from one another is compelling because the user
is only interested in a particular task, training data may be annotated for a single task (treebanks may
not be annotated for genre), the structure of the problem might be specific to the task (predicting trees
for parsing, genres for categorization), etc. Yet, there are cases for which tasks share common factors
which could be leveraged. A well-known example is the benefit from performing speaker adaptation
in automatic speech recognition (Leggetter et al. 1995); (Rouvier et al. 2014a†), or topic adaptation
for the same task (Lecorvé et al. 2008). Although speaker identity or topic are not the end problem,
making predictions (or generating representations conveying those factors) is beneficial to the task.
For the example of parsing and genre categorization, it is known that written text yields a different
distribution of syntactic phenomena than spoken text, starting with sentence length and punctuation
distribution, therefore a genre categorization system might benefit from syntactic features, and a parser
targeting a multi-genre domain might benefit from a genre feature. This is true for many language-
related tasks, and especially at the task composition level: sentence segmentation may benefit from
parsing (Favre et al. 2008a†) and (for obvious reasons) conversely; parsing may benefit from word sense
disambiguation (Agirre et al. 2008) and conversely (Navigli 2009); word embedding training (a variant
on the language modeling task) may benefit from parsing (Levy et al. 2014) and parsing may benefit
from pretrained word embeddings (Chen et al. 2014). There are so many studies of the co-benefit for
NLP tasks that it would be unreasonable to list them all. Yet, truly joint models for non-trivial tasks
have only been flourishing recently thanks to advances in deep-learning. Even though early attempts
looked at joint optimization techniques such as dual decomposition (Le Roux et al. 2014), the turning
point occurred with the “NLP from scratch” work (Collobert et al. 2011) which advocates sharing
model architecture and weights across tasks.

The work described in this section considers a degree of generalization of Level 6 according to the
taxonomy in 4.1. However, we do not consider an unknown task but rather share model subsets among
multiple tasks in order to improve generalization on a target task.

In (Tafforeau et al. 2016†), we proposed to predict Framenet labels from noisy ASR transcripts using
a multitask system. Compared to a pipeline approach, the two motivations of that work are that the
ASR output generates noisy text which impacts decisions in the pipeline and precludes robust results,
suggesting that an end-to-end approach might be less prone to errors, and that linguistically relevant
intermediate representations from the pipeline drive generalization and should still be accounted for
when training the system. Therefore, we create a system that would jointly predict part-of-speech
tags, disfluency markers, named entities, dependency parses and finally framenet parses, all being
predicted from the input words. The first tasks were considered as auxiliary tasks supposed to help
the frame generation system generalize, by learning intermediate representations useful for all tasks
without relying on actual symbolic representations of the linguistic phenomena, and therefore being
less prone to input and pipeline errors.

The problem was set up as a word-synchronous prediction problem where for each word a vec-
tor of symbols are predicted with one symbol per task. While part-of-speech tagging was naturally
represented in this framework, the other tasks required adjustment: disfluency and named entity seg-
mental predictions were cast as begin-inside-outside predictions (which allows recovering the original
labeling), and dependency parsing was degraded to labeling each word with the dependency link label
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and relative index to its governor (which is hard to generalize for long-range dependencies). Frame
parsing was also cast as a begin-inside-outside tagging task with specific segment categories for the
frame, the trigger and the frame elements (assuming a one-frame-per-word hypothesis which was true
on the corpus, but is not true in general). The predictor was a bidirectional LSTM inputing word
embeddings and outputting task-general representations which were then fed to task-specific decisions
layers. This system is equivalent to building a separate model for each task and then sharing the
weights of all layers up to the task-general representation generating layer. The system is then trained
by minimizing the sum of the losses for all of the tasks.

One problem with synchronous joint training is that some tasks might be easier than others or
some tasks might be less important than others (i.e. auxiliary tasks) yet they all contribute the same
to the loss function. We have shown in this work that, in addition to outperforming the pipeline and
single task approaches, the losses of the auxiliary tasks could be weighted non-uniformly in order to
increase performance on the main task. The system also turned out to be more robust to ASR errors
across a range values of WER. Some questions remain on how to choose task weights (are they another
hyperparameter?) and how to size the number of parameters of the single task systems versus the
multitask system in order to get fair comparisons.

Multitask learning is a great way of incorporating co-dependencies across tasks in representations.
Even though we explored synchronous multitask settings, it is possible to train each task separately
on different corpora, sparing the annotation cost of building ground truth for joint training. Multitask
learning has seem a lot of developments in the machine learning community with generative adversarial
networks (Goodfellow et al. 2014; Gulrajani et al. 2017) which joint train a system to generate samples
from a distribution and to discriminate between human-generated and machine-generated samples,
and in reinforcement learning where auxiliary tasks can help learning hard to explore long-range
objectives (Jaderberg et al. 2016). An interesting question was raised by researchers exploring the idea
of building a single neural network for solving all problems (not necessarily related tasks): as tasks
are switched, a system tends to forget what it learned when confronted to previous tasks; how can we
prevent this forgetting from happening (Lopez-Paz et al. 2017)?

It is noteworthy that word embedding pretraining is another kind of task generalization (Level
6). Word representations are trained on a language modeling task (predicting the cooccurrence of
two words, predicting a word given its context…) but used for a different task, such as semantic
parsing. The point is that sharing a subset of parameters across tasks has proved to be beneficial
but sharing the whole model (including input and output representations) is much more challenging
and would probably fail to generalize to novel tasks in a zero-shot setting (McCann et al. 2018).
Howard et al. (2018) give high-level approaches for fine-tuning a general language model to obtain a
multitask system by using a combination of layer-specific learning rate schedules, and integration of
contextual representations through pooling. The Generative Pre-training Transformer (GPT) approach
extends those representations by training a language model that builds prediction on multiple layers of
“transformer” blocks which are essentially multi-head attention mechanisms. Then, this architecture
is pre-trained as a language model on a large corpus, and fine-tuned with an addition projection layer
for specific tasks. It can be used by encoding the input as a sequence of words, for tasks such as text
classification, textual inference, or multiple-choice questions, and use a task-specific linear classifier for
generating decisions. In order to improve generalization, other auxiliary tasks can be devised, such
as a masked language model (where some input words are masked and must be predicted), or next-
sentence predictor (whether two sentences are consecutive or not), which yields very good unsupervised
representations on top of which simple task-specific classifiers can achieve good performance on many
tasks (Radford et al. 2019). Generative tasks, such as machine translation or summarization can be
tackled this way by using the representation to rescore a word-sequence generator3.

3Maximizing prediction score in that framework is, however, very expensive.
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4.5 Generalizing Across Languages
Some argue that machine-learning based NLP systems are language independent because they are
functions with free parameters that can be retrained on a new language or domain. It is true to the
extent that assumptions on the language or language family the system was trained on hold for the
target language. For example, assuming an easy tokenization based on spaces and punctuation works
for western languages but fails on Sino-Tibetan languages which do not have spaces. Conversely,
sentence segmentation is trivial in these languages because they have dedicated punctuation (only
since the 20th century) while it is a harder matter in languages with ambiguous punctuation. Another
example is rich morphology which can greatly increase the number of word types in a language,
rendering token-based modeling less useful, and which often comes with less constrained word order
that renders constituency modeling of syntax not as effective as dependency-based modeling. In ASR,
languages which have a high degree of heterographic homophony such as French are more difficult to
process than languages with low level of phoneme-to-grapheme ambiguity such as Spanish.

Most NLP research was and is still driven by the English-speaking community and correspondingly
most empirical evidence in NLP-related communications is presented on English reference corpora first,
and later on other languages. The machine learning community being less interested in linguistics,
this bias will get stronger, with results presented on old reference corpora such as the Penn Treebank
which have been over-fitted for years. Recent efforts emphasize language independence by bridging
annotation formalisms across languages, and creating coherent resources which span many languages.

The American agencies such as DARPA and IARPA were the first to push multilingualism for
strategic reasons. For example, the DARPA GALE or BOLT programs systematically targeted non-
English languages such as Chinese and various dialects of Arabic. However, until recently the best
strategy for processing a new language was collecting data in that language and retraining or fine-
tuning a model on that data. The only option for truly fostering research on language-independent
NLP is to cast the problem as one where no training data is available on the target language although
some is available in potentially many languages different from the target language.

The Multiling summarization evaluation series is a community-organized research initiative which
focuses on truly language independent NLP by providing summarization evaluation data in 40 lan-
guages for single document summarization. Featured articles from Wikipedia and their translation in
diverse languages are provided to the participants who have to automatically generate summaries with
a single method. The absence of large quantities of training data precludes the use of supervision,
and every subtask necessary for extractive summarization, such as tokenization and sentence splitting,
become hard. In 2011, we participated to the TAC pilot track which became later Multiling with a
system focused on removing language-dependent assumptions in sentence splitting, tokenisation, and
stop-word lists, within the framework of a baseline extractive summarizer (Hmida et al. 2011†). For
sentence splitting, we relied on the crude heuristic that all languages have punctuation and the last
character of the input must be a sentence-ending character, and used that character to devise splitting
points. Existing “language-independent” sentence splitters, such as Punkt (Kiss et al. 2006) could
not be used because they assume knowledge of punctuation characters, and availability of large cor-
pora. For addressing tokenization, our system relied on character n-grams (with n=5 determined on
a development set). Frequent words such as determiners and prepositions are typically ignored when
computing the relevance of a sentence, hence the need for stopword lists to be able to ignore them. With
high-order n-grams, those words tend to be ignored or covered as part of expressions, and no stop-list is
needed anymore. Results in terms of ROUGE evaluation show that the language-independent system is
not worse than a language-dependent baseline which uses language-specific resources (sentence splitter,
tokenizer, stop lists) and even better in some cases (Hmida et al. 2011†). As an extension, it would be
interesting to test if those results hold with more recent evaluation data covering more languages, and
with other sentence selection algorithms. Performing abstractive (which generates new text) instead
of extractive (which selects sentences) summarization in a language-independent framework is an open
problem which would be interesting to explore in the context of the recent development of abstractive
summarizers built on the deep learning encoder-decoder framework (See et al. 2017).
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Another great effort for multilingual NLP is the Universal Dependencies (UD) initiative which aims
at building a unique representation of syntax (including part-of-speech tags, morphological features, de-
pendency tree and label structure), by converting existing resources such as the French Treebank (Nivre
et al. 2016) to the UD standard and annotating new resources. UD is an ongoing effort gathering more
than 200 contributors, 100 treebanks on 70 languages4. The CoNLL2017 and 2018 shared tasks have
focused on building parsers for the UD data but organizers seem to be less interested in the idea of
evaluating language independence on unseen languages. However, in the 2017 edition, there were a
small number of surprise languages which had little training data (only enough for a development
set), and a number of participants have explored training on close languages, or training delexicalized
parsers (parsers which only see POS tags and morphological features as input) as a means of processing
such challenging cases.

“Zero-shot” syntactic parsing, which means training a parser on a set of languages and testing it on
an unseen language, is mainly motivated by the cost of building treebanks for uncovered languages. It
has been addressed in the past with two main approaches. Unsupervised parsing consists in learning
a grammar from statistical regularities in a corpus of sentences annotated with POS tags (Sankaran
2010; Bod 2007; Naseem et al. 2010; Jiang et al. 2016). It often relies on an application of the
EM algorithm which infers a labeling of the data with an initial model, reestimates that model from
the inferred labeling, and loops over the process until convergence. Even though they only require
unlabeled data, those approaches are computationally expensive on larger datasets, yield relatively
low accuracy compared to supervised parsing, and the produced analyses are often hard to interpret.
The second category of approaches is based on transfer learning which uses a full parser on a close
language and then translates the source language automatically so that it matches the properties
of the target language (Lynn et al. 2014). The transfer can be operated through various machine
translation techniques, such as transliterating words. Those two categories of approaches suffer from
not accounting for the large number of annotated treebanks in a variety of languages, such as available
in UD.

Recent trends, fostered by the aforementioned CoNLL shared tasks, consist in building parsers
from the concatenation of all UD languages in order to parse unseen languages. Multiple challenges
need to be accounted for:

• Pre-processing such as sentence segmentation and tokenization need to be language independent.
We have already discussed that matter in the framework of summarization but real tokens are
needed here, and unsupervised word segmentation techniques or a general sequence tagging model
could be used to infer word starts and ends from characters (Cai et al. 2017).

• Word representations need to be language-independent, by using for instance multilingual word
embeddings (Duong et al. 2017; Artetxe et al. 2017; Conneau et al. 2017), which can be trained
independently on all languages, and mapped together by learning or using a given bilingual
dictionary5. However, the challenge is that this approach assumes a bijection between the lexicons
of each language pair, which is a crude approximation of reality. An interesting question is how
to deal with multiword expressions which are often non-compositional.

• Recognize and leverage linguistic invariants such as word order, and markers at the token of
morphological level (for instance plural, gender, genitive…). Such invariants are described in
resources such as the World Atlas of Linguistic Structures (Comrie et al. 2005) for a large
number of languages, and could inform a parser when learning from many languages (Ammar
et al. 2016a).

• Account for the noise and distributional specificities in UD. UD is the concatenation of many
treebanks built independently from different data sources, with different rules, annotator expe-
rience, etc. The normalization process is often automatized with corner cases which are difficult
to tackle. In addition, the level of coverage for morphological features varies across languages.

4As of 2019 (https://universaldependencies.org/).
5Such as PanLex https://panlex.org.

https://universaldependencies.org/
https://panlex.org
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In (Scholivet et al. 2019†), we have shown that multilingual generalization of a syntactic parser,
the discovery of multilingual invariants during training on a concatenation of UD corpora, was not as
straightforward as it seemed. Linguistics has long sought universals in the use of language by humans.
It is hypothesized that an underlying parametrable grammar exists, and that each language corresponds
to a configuration of that grammar (Greenberg 1963; Chomsky 1995). Under that assumption, we
trained a delexicalized parser (in which words are replaced with part-of-speech categories augmented
with morphological features) augmented with language-level features supposed to inform the parser
on languages sharing properties such as word order.

The parser is a standard shift-reduce feed-forward neural network which predicts parsing actions
given a configuration of the automaton. It is trained on the concatenation of balanced UD annota-
tions for 40 languages. We compared a baseline system with a system augmented with a vector 22
language-level features from the WALS (Comrie et al. 2005). Results show that the performance of
the augmented model is significantly better than that of the baseline model by 4 points of LAS on
average. An interpretation of this result is that linguistic configuration features are indeed improving
the generalization of the parser. However, and alternative interpretation could be that the parameter
space of the parser is just split among languages, and that the system first predicts the identity of the
language and then uses that identity in order to select the subspace of parameters which correspond
to that language.

In order to untangle those two interpretations, we trained a parser augmented with a single feature
which identifies the language. Its performance is significantly lower than of the parser trained WALS
features, but better than the baseline model. This tends to indicate that there is some truth in both
interpretations. Furthermore, a simple language classifier trained from the neural activations of the
parser’s MLP show that language identity can be predicted with very high accuracy when the WALS
features are present, while basic parser configuration features do not allow such prediction. This use
case shows that generalization is not just a matter of giving the right inputs to a system, it is also
linked to the topology of learned parameter space. How to efficiently use conditioning such as linguistic
knowledge for helping systems generalize remains an open problem.

Even though the issues associated with training language-independent parsers are challenging, there
are ways of casting the problem which might lead to breakthroughs. For example, one could imagine a
setup where a system needs to be independent of the alphabet of the input. One simple way of testing
the generalization of such system would be to create a permutation of the alphabet of a language used
in training, and apply it to the test data. The system would have to recover its original performance
on that permuted dataset. While at first glance, a typical deep learning system (for POS tagging for
instance) would fail catastrophically because it assumes the identity of characters to remain at test
time, one could try to interpose a transformation between the input and the first (character embedding)
layer of the network, and seek the transformation that best matches the distribution of activations in
the network on an unmodified test set.

Formally, let X be the distribution of original inputs, X ′ = PX is the distribution of permuted
inputs according to an unknown permutation P . Let N(X) be the distribution of activations over the
original input space. We can apply to X ′ the transformation T as TX ′ and try to recover T which
minimizes a distance over distributions (such as KL) between the activations of the original inputs
N(X) and the transformed permuted inputs N(TX ′).

T̂ = argmin
T

DKL (N(X)||N(TX ′)) (4.1)

The distance should be minimal when T̂ = P−1 since X = P−1PX = P−1X ′ = TX ′. The approach
described here is very similar to the approach used to map two word embedding spaces from different
languages so that words which are translations of each other lie in the same place (Conneau et al. 2017).
Unless you are a cryptographer, a permutation over the alphabet is a naive way of thinking of the
difference between two languages. However, the idea could be extended to transformations on non-
trivial parts of the input such as character n-grams which can encode morphological phenomena.
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4.6 Conclusion
Generalization in NLP is very important to the community, as evidenced by the NAACL 2018 workshop
on New Forms of Generalization in Deep Learning and Natural Language Processing which tackled the
questions of measuring generalization, and building systems that generalize better. The conclusions
of that workshop were that more inductive bias should be used so that models can better capture
linguistic invariants, that systems should make use of common sense reasoning in order to better
generalize, and that they should be tested on unseen distributions and tasks6. Those conclusions are
in line with the arguments developed here and the study of generalization is still a mostly unexplored
area of NLP.

We have seen in this chapter that for a range of generalization levels, given a good understanding
of the properties of the distributional shift studied, specific systems could be created that are able to
address some of the challenges associated with adversarial test data. However, composing generaliza-
tion conditions increases the difficulty and it is not clear how the human expertise which was efficient
on single conditions can be automatically composed to generalize well on those conditions. Recent
research looks at how visual deep learning systems can generalize to new attribute pair or triples in
tests similar to IQ tests (Barrett et al. 2018) and show that comparing instances is critical to cap-
turing higher-level invariants. This observation probably means that kernel methods, which build on
measures of similarity between examples, will probably play an interesting role to tackle the problem.
Nevertheless, the theoretical question behind such conditions is whether general artificial intelligence
needs to be solved before they can be approached.

In addition to studying the composition of distributional shifts, there are other very attractive
avenues of research that are linked to generalization. The first one is how we can generalize across
modalities. Can invariants learned on a visual task be exploited to process an NLP task? Can problem
characteristics learned on a NLP task be accounted for to process a physical haptic problem (in the
context of a robot). Humans can perform such generalizations, and systems should be able to do so as
well. The benefit of studying this type of problems is that it should also help us build a better model
of how the human brain processes multimodal information on how sensory information is converted
into linguistic assertions, potentially tackling the frontier between thought and sensory input.

Another prospect is to leverage user interactions to enhance system generalization. The closed
environment induced by scientific methodology tends to remove the user from the loop, to ensure
repeatable research, but there are large potential gains by allowing the user to interact with a system.
The user could input some adversarial training examples in an active learning loop, or could use
interactions to discover system weaknesses. This area of research is still unpaved and requires much
more effort than the traditional experimental setup which excludes the user.

To conclude this chapter, before building more general systems, the challenge to come is to build
adequate methodological artifacts to show the good generalization of NLP systems, and as we will see
in the next chapter, it is not evident that current methodology is suitable even when addressing the
first level of generalization.

PhD student work relevant to this chapter
• Jérémy Trione worked on abstractive and extractive summarization of speech conversations

from call centers. One particular problem with the extractive approach for speech summarization
is that there is a mismatch between the source content (errorful automatic speech transcripts),
and the target content (fluent narratives). Jérémy proposed a method for transferring between
those genres in a scarce data scenario by extracting template sentences from a set of reference
summaries for a training set and patching them with information from the target conversa-
tion (Trione et al. 2016a).

6Gen-Deep18: https://newgeneralization.github.io/. A good summary of the workshop can be found here: https:
//thegradient.pub/frontiers-of-generalization-in-natural-language-processing/

https://newgeneralization.github.io/
https://thegradient.pub/frontiers-of-generalization-in-natural-language-processing/
https://thegradient.pub/frontiers-of-generalization-in-natural-language-processing/
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• Manon Scholivet works on language-independent natural language processing. In particular,
she has been interested in training syntactic parsers that can learn from a set of languages
and generalize to unseen languages. In particular, she questions whether deep methods can
recognize and leverage linguistic invariants across languages when concatenating training data
from multiple languages. First results have shown that deep models tend to isolate languages,
resulting in sub-par generalization with regard to what would be expected (Scholivet et al. 2019).

• Thibault Magallon works on contextual inference for optical character recognition. In par-
ticular, he proposed a method for detecting and correcting errors in OCR systems output, and
is exploring models that go beyond the local visual context typically tackled by OCR systems,
leveraging non-local CNN representations of pixels and text hypotheses (Magallon et al. 2018a).
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Chapter 5

Methodological challenges in
Natural Language Processing

5.1 Introduction
How do we prove the success of an approach in natural language processing? In chapter 2, we have
seen that the most commonly adopted approach is to create annotated corpora and benchmark our
systems according to an evaluation metric on these corpora. We make sure that such evaluation is
the most rigorous, by using appropriate test splits, meaningful evaluation metrics and significance
testing. If sufficient effort is put into documenting the process1, the work presented in articles might
be reproducible (given data and code, obtain the same results), but does it make it replicable (if we
were to recollect the corpus, would we obtain the same result)? When scientists compete for research
funding, there is an inevitable bias towards publishing the most exciting results, at the cost, sometimes,
of fraudulent behavior2. What can we do to preclude such behavior?

The community has resorted to shared tasks, which separate the evaluator from the evaluee, provid-
ing independent judgments on newly collected data. Although there is a certain interest to organizing
such evaluation campaigns, do they present all the expected benefit? Another important aspect is
the objective function of the field: improve performance according to a specific metric that assesses
system quality. What are the choices associated with selecting a particular metric, and how do they
impact the results of research? Can we build more relevant metrics by extending the scope of what
they evaluate? What are the compromises associated with such practices?

This chapter relates a few aspects linked to my research in the methodological areas of NLP.
Section 5.2 reports how the community uses shared tasks as a way of obtaining reliable estimates of
progress at a task scale. It outlines some of the problems linked to that approach and discusses a
few potential solutions. Section 5.3 focuses on evaluation metrics that account for how end users of a
system perform their own task with its help. It discusses that topic under the umbrella of two studies
and tries to outline some of the challenges and benefits of that approach.

5.2 Independent Evaluation Through Shared Tasks
Natural language processing is a discipline balanced between science and engineering in which non-
theoretical advances are supported by empirical evaluation, and extensive comparison. The standard
setup to engage with a scientific hypothesis is to define a test set, annotate it with gold standard

1By making data, annotations, source code available.
2Scientists may fake data to obtain more compelling results (Simonsohn 2013), or may interfere with the review

process leading to spurious article acceptance (Haug 2015). Our community is even interested in the linguistic aspects
of fraudulent behavior (Markowitz et al. 2016; Braud et al. 2017).
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labels and compare the performance of a system on that test set according to various setups. In
order for test results to be unbiased, parameters and hyper-parameters of the system shall not be
tuned according to performance on the test set. For comparison purposes, one will often reimplement
previous work systems or quote previous work results on the same test set. This leads to two biases
which may undermine the breath of scientific findings: the lesser effort put in creating the baseline
can lead to underestimated baseline performance, and reusing test sets may lead to system selection,
and test-informed hyper-parameter tuning.

The first effect is due to the engineering effort required to build strong baselines, and is often
exceeded by that put in building the system supporting the hypothesis. The second effect is well
documented as evidenced thereafter. In the artificial vision field, datasets such as MNIST or CIFAR
have been overfitted for several years. A recent study has shown that on newly collected data, a range of
object identification systems perform worse by 4 to 10 percentage points (Recht et al. 2018) compared to
the figures reported on the original corpora test sets. In the NLP community, the ATIS dataset is used
for benchmarking Spoken Language Understanding systems (Price 1990). Although many benchmark
papers are calibrated on this dataset, it has been shown that it may be too simple for requiring fancy
systems, and that above 95% accuracy the remaining errors are mostly annotation errors (Béchet
et al. 2018). When training POS taggers on the Penn Treebank (Manning 2011) reached a similar
conclusion that remaining errors above 97.3% accuracy were manly due to annotation choices. So it
seems important to periodically produce new test sets in order to prevent overfitting old corpora. It also
seems equally important to create reference points (by evaluating on well-understood tasks/corpora)
for comparing very novel approaches to well-established approaches in order to better understand the
benefits of novelty.

Shared tasks, also called scientific competitions, have been organized for decades in the NLP com-
munity in order to decouple system creation from evaluation. They guarantee that a system was not
tuned on a test set by building a new test set at each iteration, and allow multiple participants to sub-
mit results generated by systems showcasing their respective scientific hypotheses. It is admitted that
shared tasks remove both the weak baseline and the test set reuse evaluation biases because groups
who compete put most effort in their approaches, and the test set is novel. Therefore they provide a
snapshot of the state of research on a particular task at a given time.

I participated in many shared tasks, as a system designer or as an organizer. In 2005, I participated
in collaboration with F. Bechet to the ESTER named entity recognition in speech competition (Favre
et al. 2005a†; 2005b†), and more recently in 2012 to the ETAPE structured NER task. These evaluation
campaigns featured a post-evaluation adjudication phase in which participants were tasked to improve
the gold standard of the test set. This lead to a lot of discussions, in particular over the 2012 results,
which were not always beneficial to the competition. In 2006-2009, and 2011, I participated to the
DUC/TAC summarization shared task which consisted in producing 100 word summaries from a set of
news articles (Favre et al. 2006a†; Favre et al. 2007b†; Gillick et al. 2008†; Gillick et al. 2009b†; Hmida
et al. 2011†). My 2008 and 2009 entries, conjointly engineered with D. Gillick, B. Bohnet, D. Hakkani-
Tür and Y. Liu were very successful thanks to the modeling of summarization as a budgeted set cover
problem of word bigrams over sentences, while the trend at the time was to learn sentence-level scores.
The model turned out to be successful for three reasons: it simulated somewhat accurately the scoring
unit in ROUGE evaluations, it focused on readability with a trained sentence splitter and parsimonious
rules for sentence compression candidate generation, and was tuned extensively to optimize for the
ROUGE metric. In 2009 and 2010, I participated to the GREC referential expression generation
shared task (Favre et al. 2009a†; Favre et al. 2010b†). Only few participants from the natural language
generation community were interested in this task, and the success of my participation resulted from
framing the problem as a sequence prediction problem and train a CRF to perform the task. In
2007-2009, and 2012-2015 I was involved with the DARPA GALE and BOLT programs under the
SRI lead teams, and participated to the evaluations organized through NIST on machine translation.
For those, I was only in charge of a small sub-problem, and the challenge was more in building a
coherent system from multiple pieces, and training it towards a global objective with always changing
bricks. In 2012-2014, I was part of the PERCOL team for the REPERE person identification in videos
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challenge (Favre et al. 2013a†; Bechet et al. 2014a†). It turned out to be a very interesting competition
and our success was mainly due to bypassing the direct objective of the task3 by identifying the context
in which certain categories of people would occur, and specializing systems according to the TV show
they were targeting. It defeated the aim of the shared task in that the proposed approach would
not generalize well to TV shows not seen in training. This resulted in our team underperforming at
the related evaluation campaign from MEDIAEVAL 2015 (Bendris et al. 2015†). In 2015 and 2016, I
collaborated with M. Rouvier while he participated to the DEFT, TASS and Semeval sentiment analysis
campaigns, designing a very competitive and often winner system based on multiple representation
learning strategies (Rouvier et al. 2015c†; Rouvier et al. 2016a†).

My take on these shared-task experiences is that they require a lot of engineering effort, often
beyond what a team of researchers can be expected to do given the constraints, and that although
innovation is the key to success, bugs can undermine the success of methods which are otherwise quite
sound. Even though all participants are subject to the same constraints and issues, it is hard to
untangle the appropriateness of an approach to solve a problem, and the related engineering issues.

As an organizer, I first proposed a meeting transcript summarization track at TAC 2010 which was
supported by the community but did not happen due to the cost of manual evaluation. I then helped
with the annotation and evaluation effort of the Multiling summarization evaluation shared task in
2011 and 2013 (Giannakopoulos et al. 2011†), and organized its meeting summarization pilot track
in 2015 (Favre et al. 2015†) in the framework of an EU-funded project. These experiences were very
interesting and discussion with organizers of other shared tasks show that beyond typical organizational
problems, the issues encountered are similar to that of participating to a shared task: bugs in dataset
preparation or evaluation scripts can delay and undermine the results of evaluation campaigns.

Although shared tasks are a true benefit for the community, they are subject to a number of
problems. The first and most important problem is that shared tasks are a competition and the
incentive to rank well can harm the scientific benefit. It puts a lot of emphasis on engineering the
approach, which is driven by performance, not necessarily on explainability, and therefore may generate
systems which work well but are not of great scientific value to the community. DARPA machine
translation evaluation campaigns or Kaggle competitions are a good example in which winning entries
end up being combinations of many systems. For example, it is not clear how Netflix benefited from
the winner entry to their prize which was a combination of many systems (Bell et al. 2007; Bennett
et al. 2007). Model ensembles, the combination of different parameter optimization results for the
same model (Schapire et al. 1999; Zhou et al. 2002b), have also been shown to outperform single
optimization runs in recent work (Jozefowicz et al. 2016), which in a competition puts more emphasis
on computation power than scientific results. Another aspect often encountered in the NLP community
is the effect of corpora on participating systems. Many competitions create different tracks for open
and closed resources, which correspond to allowing the participants to leverage any resource such as
corpora or lexicons, or limiting the set of authorized resources so that every participant uses the same
input. Although this approach is a step in the right direction, it does not preclude the use of previous
experience, such as the choice of heuristics or initial conditions when designing systems. Imposing
a computational environment, as in the TIRA evaluation as a service initiative (Gollub et al. 2012),
could limit the effect of resources on results and force participants to open-source their systems, and
combined with guidelines on prior knowledge usage, might improve the outcome of shared tasks. At
least it enforces the reproducibility of research, but it comes at a higher cost for organizers and
engineering cost for participants (because they do not choose the computation platform). Another
benefit of packaging systems as stand-alone repeatable runtime bundles is that from year to year the
same systems can be rerun on newly collected data at a very low human cost, resulting in stable
comparisons regardless of the availability of participants.

The second problem is that by having many research groups compete towards the same objective,
shared tasks tend to reduce diversity. In order to monitor progress, shared tasks are often repeated
multiple years in a row, and one of the best strategies for succeeding is to study participants systems

3Modeling the identity of a person in videos.
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from previous years and replicate the ideas of the top participants. This effect was prominent in the
TAC evaluations where most participants would implement variants of extractive methods, resulting in
little significant differences between systems (Dang et al. 2008). Ensuring diversity could be achieved
by organizing shared tasks for as many scientific problems as possible, and this approach is encouraged
by the European Commission and Agence nationale de la recheche (ANR) in the projects they fund.
Nevertheless, it is hard to find funding for recurring events outside of typical project duration of 3–5
years (for example, Multiling is organized every two years, and is self-funded by participants), and the
more shared tasks are organized, the less research groups are available to participate. The additional
work represented by the participation to a scientific competition is significant and has to be balanced
against other research activities. The problem of diversity is hard to address without a global view on
the inter winded effect of the numerous shared tasks on research groups. Maybe a central international
organization body, such as the role played at some occasions by NIST in the USA or LNE in France,
would be an interesting option to explore?

5.3 End-User Evaluation
The quality of a system can be measured by estimating its performance on a set of tasks. Generally
speaking, there is a tradeoff between performing well on a particular task and performing well on many
tasks. The choice of an evaluation metric is therefore what drives the choice of system designers along
that tradeoff. As outlined in Section 2.4, there are many ways of evaluating system performance, and
even on a particular task, multiple evaluation metrics are possible. However, all metrics presented
in that section have in common that they compare a system output to a gold-standard behavior, be
it defined through annotations, or through humans’ preferences. Eventually, we are not interested in
the performance of NLP systems, what we generally care about is whether those systems solve human
problems or help solve them.

In that context, the best way to evaluate a system is probably to measure how helpful it is in a real,
meaningful task. This means that instead of measuring a system’s performance, we should evaluate
the performance of humans using this system to perform their own tasks, tasks that are meaningful to
them. This outlines an evaluation framework where humans are given a realistic task, that they would
perform during their work hours for instance, and evaluation consists in computing the difference
between how they perform when they use the system, versus when they don’t, or how they perform
given two systems. This kind of evaluation, called end-user or utility evaluation, is better than intrinsic
evaluation (measure the performance of a component of the whole system) and downstream evaluation
(measure the impact of that component on the performance of the whole system) because it directly
measures the utility of the system for humans.

5.3.1 Evaluating utility
There are a number of challenges posed to construct end-user evaluation frameworks:

• the ecological validity of the task;

• the choice of a metric to evaluate subject performance;

• the definition of the baseline condition;

• the control of variability;

• the impact of the system on the task.

An ecologically valid setup is an experimental setup where the participants are not subject to any
artificial constraint, and perform a task meaningful to their objectives. Ecological validity is hard to
obtain because it contradicts variability control. In so-called lab experiments, the comparison between
two systems is framed so that variability is controlled and cancels out across subjects and evaluation
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conditions. Ecologically valid conditions will ignore those factors and focus on the data and subject
distribution to be as representative of the real distribution as possible. For example, if you want to
assess how journalists use information collected from the web as background for writing an article,
you would want to control how much of the web they can access, and (for replicability and to get IID
samples) provide them with the same set of inputs. This contradicts the ecological constraint as it does
not represent how they work in real life (where they have access to the whole of Internet). Addressing
the other challenges tends to reduce ecological validity as we will see.

The choice of the evaluation metric is also challenging. In a professional context, evaluation metrics
have been defined, such as the return on investment (ROI) which is very abstract and requires to
invest something and measure how much money can be gathered from customers in response to that
investment. The problem is that it is hard to guarantee independence in that context since the
investment has an impact on the market and the market is a whole, and it takes a lot of time and
resources to run such kinds of experiments. Human resources have also defined metrics for evaluating
the work of employees, but they are often computed against an inadequate time span (for example
number of successful projects yearly), and they are too subjective to allow for replication. As an
evaluation metric, there is often a tradeoff between the time required to perform the task and the
quality of the performance. One way to address that problem is to impose a time limit to pressure
subjects to perform the task, and then only evaluate quality. Putting pressure on subjects will increase
the difference between conditions, but it decreases ecological validity (unless the time pressure is
realistic) and it is hard to enforce for tasks where you typically don’t have strong time constraints.
In addition to task evaluation, it is common to pass the subjects through self-assessment subjective
questionnaires (did you like system A better than system B? do you think you did better on task A
or B? etc.)

It is important to define a baseline condition that is most similar to the target condition so that it
does not impact how subjects perceive the task. Ideally, both conditions should be run under the same
user interface (and similar user experience) so that subjects cannot identify the target and perform
better just because they figured they should (similar to the placebo effect). In addition, if the user
interfaces between the baseline and the target are different, the evaluation will inevitably focus on
which UI is better, not which underlying technology is better. There is also an ecological validity
problem with technology which provides novel features. The baseline condition should be as similar
as possible to that of existing tools to support the task, but exposing novel features provided by the
target technology will drive the setup away from ecological validity.

Variability control is hard as in all experimental sciences. It is often associated with psychological
biases which shall affect experiment design4. The first problem is the effect of order. If a subject passes
the test under different conditions, then the fact that a better-performing system is first presented will
have an impact on the system presented after it. If subjects are not proficient with the system before
using it, there will be a learning effect after each trial, which will make subjects perform better and
better. These two effects can be canceled out by adopting a per-subject Latin square design in which
the set of all permutations of condition / trial number are tested. With many conditions, Latin
squares can get very expensive to run. Subject proficiency in the task is also a problem as it may incur
variability in how the subject perform independent of the system. Factors to explain such variability
are often collected as cognitive proficiency and attention tests run before the experiment. Variability
can also be found in the difficulty of the trials. Let’s assume subjects have to process documents, for
better ecological validity the trials should be designed to represent the natural distribution of document
length and topic difficulty, but this will incur additional variability which will impact the results.

The last challenge is that the variability incurred by the system on subject performance should be
large enough to measure a significant difference. And if that system comes early in the pipeline, or the
difference between the baseline and target conditions is too small, then the outcome of the experiment
will be difficult to interpret. It is therefore very important to calibrate the setup so that differences
have a chance of being significant (by choosing a task linked to the system output, by comparing

4There are many cognitive biases that affect a range of human capabilities. It is hard to imagine designing systems
that are not affected by, or account for all those biases (Benson 2017).
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systems with a range of performance…). In addition to impacting ecological validity, this selection
of the evaluation setup is more problematic as it is driven by the significance of the differences and
therefore biased towards showing that significance exists which would invalidate the breadth of the
finding.

So, under the light of those challenges, the perfect experimental conditions is something that should
be aimed for, but that is hard to achieve in practice. We will now see two experiments that I have
been involved with which exemplify end-user evaluations, their challenges and what to expect from
them.

5.3.2 Lessons Learned from two Experiments
In this subsection, I will describe two projects in which we tried to perform an end-user evaluation
of NLP technologies. The first one was developed during the Johns Hopkins’s summer workshop in
2012 in order to create better measures of automatic speech transcription quality. The second one was
explored during the FP7 SENSEI project in order to evaluate conversation summarization technologies.

Johns Hopkins Workshop The objective of the Complementary Evaluation Measures for Speech
Transcription (CEMST) team at the JHU workshop organized by the CSLP group in summer 2012
was to come up with improvements over word error rate (WER) as an evaluation metric for automatic
speech transcription. At the time, the main disadvantage of WER as an evaluation metric was that it
would treat equally “small errors” that did not impact that much how understandable the transcript
was and “big errors” that would harm how one could understand the result. While there had been
many studies of the impact of ASR on subsequent tasks, such as (Jannet et al. 2015; Zhou et al. 2007),
studies of the impact of ASR on end-user performance were few, and generally not aimed at ecological
validity.

The CEMST approach was an extension of a study which had set up an extrinsic evaluation of
speech summarization technologies under different ASR conditions (Murray et al. 2009). The idea was
to pitch several ASR systems, each tuned under different settings in order to yield a range of WER,
as input of a meeting summarization system on the AMI dataset. That dataset contains meeting
recordings of people role-playing the design of a new product (a remote control) with simulated market
feedback. Students then played the role of a newly hired manager which was tasked with listing the
design decisions adopted during the meetings by using a meeting summarization system fed with ASR
output. Users were evaluated according to their capacity to recover a gold-standard list of decisions
and provide evidence from the meetings to support that list. The complete setup is presented in (Favre
et al. 2013b†).

The outcome of that experiment was that WER and its variants were not good predictors of user
performance but that a system could be trained to combine evidence from a range of features involving
the transcript, but also designed to try to factor out user and task effects. In a leave-one-ASR-out
experiment, this system proved to be better than WER at predicting user performance but far from
perfect (an F-score of about 40% whereas WER was under 5%).

The complexity of running such experiment, the potentially small impact of the ASR transcript on
user performance and the improvable ecological validity (non-natural meetings from the AMI corpus
and students playing the role of a manager) show the importance of well-preparing such studies.

SENSEI One of the corner stone propositions of the SENSEI project was to run an end-user evalu-
ation of the proposed technology using real-world professionals performing a task that they were used
to do as part of their daily work, thereby achieving better ecological validity than the JHU workshop
project.

The SENSEI project studied methods for textual and spoken conversation analysis using a struc-
turation chain spanning syntax, semantic, discourse and para-semantic parsing. Here, by para-semantic
we mean features of a conversation which do not fit in classic semantic models such as FrameNet, like
sentiment and emotion analysis, leveraging user-provided annotations such as “likes”, user-provided
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moderation, and authorship analysis. The goal was then to leverage the predicted conversation struc-
ture in order to summarize them under the angle of one of two use cases: speech analytics in a call
center, and user comments of online news (the speech and social media use cases).

For the speech use case, end-user evaluation involved Quality Assurance professionals from a call
center whose job is to assess the behavior of agents by listening to conversations in the background and
filling evaluation forms with criteria that range from waiting time and agent politeness to customer
satisfaction and problem resolution status. The proposed end-user evaluation was to confront a baseline
condition where QA professionals had access to the audio and ASR transcript of a conversation and
a simple search engine, as provided by standard analytics software, and a so-called SENSEI condition
which included features from the semantic and para-semantic pipeline, an advanced search engine
and summaries generated for the purpose of the task. Under those two conditions, the subjects
had to perform agent behavior assessment and complex information gathering tasks from call-center
conversation recordings from the RATP-DECODA corpus (public transportation hotline) and the
LUNA corpus (computer help desk at a company).

The first challenge in this setup was that the QA professionals employed were not used to having
analytics software available in their daily work, so they had to learn how to use the technology. The
technological novelty of the SENSEI conditions also meant that the user experience would play a large
part in the experiment, and that subjects could easily recognize in which conditions they were being
evaluated, imposing a bias towards the target condition. Finally, the industrial context of outsourced
call centers precluded the use of real customer data, which imposed the use of pre-existing corpora
such as DECODA and LUNA. It turned out to be a problem because the kind of call centers they
were recorded in did not involve a large turnover with agents of variable seniority, and therefore QA
professionals found it difficult to evaluate the conversations under the typical criteria they were used
to work with. Even though we had them annotate a large set of conversations with evaluation forms,
the relatively low inter-annotator agreement resulted in difficulties to build prediction systems for the
particular criteria they were evaluating.

The social-media use case was faced with a different challenge. It involved journalists who were
tasked to write a summary of the reader comments originated from a news article. Leveraging online
readers’ comments is a relatively novel activity in the news industry who tries to foster a two-way
connection between journalists and their readership. So the main challenge was to build a manual
comment summarization methodology in which subtasks could be performed by a system (such as
comment clustering, cluster labeling, and summary generation). Such a methodology was necessary in
order to rationalize the steps taken by journalists to perform the task and ensure minimum agreement
in their understanding of the task. For this end-user evaluation, the main challenge turned out to be
the fact that journalists were not used to having NLP technology available for performing their daily
work, and therefore had to carry the experiment in a setup that was different from their usual setup.
Another limitation of that experiment was that we were not able to recruit actual journalists, but had
to fallback to journalism students, due to factors which might have been linked to the novelty of the
project and the busy schedule of the profession.

To conclude on the two experiments that I was involved in, the SENSEI project addressed eco-
logical validity in a much more sensible way than the JHU workshop, but it exposed the differential
between the baseline and target conditions (creating a bias towards the latter), and had trouble with
the technological gap between the professional reality and the state of the art of research-built sys-
tems. Another strong challenge was to build the incentive for professionals to take part in end-user
experiments.

5.3.3 Impact on machine learning
If ecologically valid end-user evaluation can tell us more than traditional evaluation to which extent
a system is able to concretely solve real-world problems, it remains very complex and tedious to run.
Complexity comes from the fact that many biases may have an impact on subject performance, due to
human factors which are not well appreciated in the NLP community. In particular, creating a good
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experimentation setup is difficult and requires multiple iterations before it is able to show any kind of
effect. Building collaborations with other communities such as Human Computer Interaction (HCI)
would probably help in that regard. The approach is also much more demanding than corpus-based
evaluation as it requires collecting novel data every time a system parameter is changed.

In the framework of machine learning, subject performance could be minimized as a loss. However,
several problems have to be addressed. The first problem is to untangle the effect of the system and the
effect of the subject, experimental setup or the task. One way to obtain better supervision signal may
be to work on the residual resulting from a prediction of subject performance from known factors (akin
to multiple regressions). If these effects are not untangled, the machine learning model will have to use
modeling power to account for them. The second problem is the low reliability of the loss function. Data
collected from human experiments typically shows variability beyond the factors accounted for, leading
to noise in the data series that would be used as a supervision loss. The machine learning community
has long worked on the problem of noisy supervision, and results from the area of semi-supervision or
reinforcement learning might be interesting (Gao et al. 2018). Another problem is the generality of the
experimental setup. Ecological validity implies the choice of a range of applications of the NLP system
being evaluated in a reasonable scenario. This results in other applications being ignored, and the
applicability of the learned system as a module of a more general system being reduced. Introducing a
smooth transition between corpus-based evaluation and ecological evaluation, through pretraining for
example, could be a way of reducing this effect. The last problem we discuss is the problem of the cost
of evaluating the loss function. Machine learning typically performs extensive number of evaluations
of the loss function, in order to progressively improve models. However, for ecological evaluation, the
loss function involves humans performing a task and is therefore quite expensive to perform. Several
options are possible for addressing the cost of evaluating the loss function. Black-box optimization
allows to perform function optimization with very few samples by, for example, assuming a locally
quadratic surrogate (Berghen et al. 2005). Another way of tackling the issue would be to integrate the
cost of evaluation in the loss function and jointly optimize for good system performance and reduced
evaluation cost. It would be, however, rather difficult to balance the two objectives. Finally, one could
also use a proxy loss updated infrequently from the real loss, as we proposed in (Favre et al. 2013b†).

In (2013b†), we built a classifier that predicts user performance from a range of features extracted
from the task, the users, and the ASR system being evaluated. This classifier was based on boosted
decision stumps for their robustness to irrelevant features, an expected phenomenon when generating as
many features as possible. As already stated, the experiment showed that intrinsic evaluation metrics
alone were poor predictors of user performance. It is a step in the right direction, but inferring system
performance outside of the range of evaluated systems is difficult as is any extrapolation problem, and
the system sample size was probably too small to draw any conclusion. A lot of work is required in
this area in order to find a definitive approach.

5.4 Conclusion
Evaluation is at the heart of the scientific methodology for measuring progress in NLP. The traditional
approach consists in creating annotated corpora, specifying metrics and computing the performance of
proposed systems given those metrics. In this chapter, we have seen that there are challenges with this
methodology. The first is that relying on the same corpora, even if it ensures reproduction of scientific
results (same data and software lead to same results), it does not ensure replication (collecting new data
in the same conditions leads to the same results). Shared tasks associate third-party judgments and
tests on unseen data, and even though they do not aim at reproduction, they provide a good framework
for system benchmarking. Nevertheless, they focus on engineering5 over addressing research questions,
and the absolute results they generate depend on high participation rates, at a cost of diversity. By
over-relying on the community, shared tasks also remove one of the benefits they were created for:

5I am not aware of any study showing the effect of over-engineering a proposed approach versus the baseline it is
confronted to. It would be interesting to research that area.
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the evaluators are not truly third parties anymore but members of the community which have built
sometimes conflicting interests over time.

Secondly, even if exemplary experimental conditions can be obtained, the value of results highly
depends on the task being benchmarked. We advocate for ecologically valid measurement of the impact
of NLP systems on user performance, on tasks that matter to them. However, this setting is hard
to exploit in the context of machine-learning and it suffers from hard-to-obtain generality. How to
untangle the effect of presentation (user experience) and the effect of technology? Users performance
is affected by design issues, which might explain more variability than the technology being evaluated.
How can we evaluate systems that allow to do tasks that subjects did not do before? For example,
measuring the impact of Internet searches on journalists work at the times when no Internet search
was available would have been hard because the technology being evaluated bring new uses which were
not possible before.

The industry might be better armed to tackle the evaluation problem, given for instance the
pervasively used A/B testing or multi-armed bandit approach when developing web applications. In
a world of continuous integration, randomly drawn sets of users are presented with different versions
of an approach (design, features, underlying algorithms), and the one selected for large deployment.
Under valid evaluation metrics, such approaches are known to improve the technological outcome, but
how can we follow them in the NLP community if we have neither the platforms nor the user base?

As for devising a good methodology in the context of machine learning, back-propagating user
success to algorithms seems to be an interesting direction, and a call for even tighter integration with
the underlying statistical frameworks and assumptions. Can we imagine including significance tests in
the loss function?

PhD student work relevant to this chapter
• Thibault Magallon participated to the ICDAR 2017 post-OCR error detection and correction

shared task (Magallon et al. 2018a†). Most of my students have worked with shared-task data,
experiencing the traction of engineering challenges, and the difficulty of replicating published
work.

• Jérémy Trione contributed to the extrinsic evaluation framework in the SENSEI project, in
particular he created the system for automatic summarization of french conversations (Trione
et al. 2016a).

• Simone Fuscone works on the characterization of conversational interpersonal dynamics. He
has replicating past speaker convergence work and addressing the gaps left out in published
papers on the topic (Fuscone et al. 2018†).

• Sebastien Delecraz released an annotated corpus of preposition attachments in image captions
with alignments between texts and visual data (Delecraz et al. 2018a†).
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Chapter 6

Conclusion & Prospects

Natural language is pervasive in a society of information and communication. Content on the Internet,
be it for work or leisure, mostly consists of unstructured natural linguistic exchanges between humans.
Even though video is progressively replacing text as a medium, and may eventually replace it, both are
intrinsically made of constructed narratives expressed through natural language. Be it for automation,
marketing, governance or art, the need for natural language processing is increasing, especially in an
era of renewed interest for artificial intelligence.

This document first summaries my activity in the field of NLP. Then, it develops arguments around
the idea that to move forward, the NLP community needs to look at the problems it tackles from a more
contextual point of view. These arguments are partly based on my experience and results obtained
through my work, and partly based on an analysis of the findings presented in the community.

A first chapter introduces the main concepts of NLP as an empirical science, and its current
rooting in statistical modeling and in particular machine learning. This primer explains the virtuous
loop which allows progress in the field (which I call TCGASE for task, corpus, guide, annotation,
system, evaluation). It then abstracts the typical NLP tasks as a set of five underlying tasks: labeling,
segmentation, regression, relation detection and generation, which can be framed as machine learning
problems with relative ease. This sets the frame for presenting how machine learning is applied to NLP
and how it evolved in the past 15 years, from shallow models to deep models. The latest developments
in deep learning, which have often been driven by NLP problems and the NLP community, allow
a much more straightforward global learning of the parameters of composed system blocks. Machine
learning relies on a cost function evaluating how well the parameters of a system allow it to replicate an
expected output. In NLP, evaluation of the success of a system is not always straightforward because
multiple outputs may be acceptable, and because judges may not agree on what a good output will look
like. This leads to convoluted evaluation functions which are difficult to approximate with derivable
cost functions appraised in the context of machine learning.

The next chapter questions the typical assumptions behind NLP models and systems, in part in-
herited from statistical machine learning, and often necessary for ensuring computational tractability.
It assesses whether the typical dependencies assumed at the input, decision and phenomenon levels
are the most representative of reality and the most effective for performant systems. The human-
performance hypothesis states that systems modeled after human cognition should only require input
representations that are necessary for a human to perform the task. This hypothesis leads to sub-
par performance because systems are much less sensitive than humans to stimuli and because human
cognition heavily relies on past experience and is the result of an evolution process which cannot
be replicated in controlled lab conditions. We show that for multimodal NLP tasks, contextualizing
decisions with input representations that go beyond the conventional monomodal input leads to perfor-
mance improvements in a set of tasks. The second assumption studied is that of structured predictions
which compose a labeling of the input from elemental labels. Models under the Markov assumption
are a good example of models that account for a local set of predictions when seeking for a global
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optimal structure. These models have dominated a lot of fields in NLP where structured predictions
are necessary, but are fading in the context of deep learning, in a movement to trade weak models with
strong decoders for strong models with weak decoders, maybe at a constant computational require-
ment. However, when structure constraints are complex and modeling is hard, such as in automatic
summarization, weak models with strong inference might continue to be necessary. The last explored
assumption is that of processing chains which sequentially solve tasks addressing different phenomena
depending on each other. We show that end-to-end learning of deep models which assume implicit
decomposition of the phenomena can be improved by supervising them to recognize all phenomena in
a single model, in a multitask fashion.

The third chapter is dedicated to the generalization of NLP findings. It first defines a difficulty
scale for generalizing (distributional sample, time frame, genre, topic, language, task) and explores,
through a set of examples, how systems can be said to generalize at each of those levels. We first
describe how speech is a particular genre for NLP that requires specific processing compared to text,
the de facto most common modality for NLP, and show a few directions for better generalizing when
crossing the boundary of the genre. At the input level, word embeddings, a technique for creating
word representations based on frequent associations, need to be synthesized for low-frequency and
unknown words. The community has also shown that building on characters (or parts of the input,
which would be acoustics for speech), and contextualizing representations is a good way to obtain
generalizable input representations. In the context of deep learning, a well-established technique is
to build on characters, and pretrain lower layers of the systems on language modeling tasks on very
large unlabeled text corpora. In terms of generalizing across tasks, multitask learning which shares
the parameters of systems trained to perform different tasks may lead to universal parameter spaces
that are good for many tasks. Two questions arise: how to find an optimal weighting of the tasks, and
whether the compromise of learning a general system, leading to lower performance on a particular
task, can be alleviated on unseen tasks. Finally, generalizing across languages is explored. This
problem, which is of great interest for the community, requires exploiting multilingual invariants that
both allow modeling cross-lingual phenomena and modeling the specifics of individual languages.

The last chapter questions the methodology used by the NLP community to foster progress. First,
it looks into shared tasks as a way of insuring independent evaluation of system performance. Shared
tasks suffer from over focusing on engineering, putting less effort on scientific understanding and more
effort on the outcome, often leading to a closer-sighted scientific vision. Shared tasks also put too much
light on specific problems, reducing diversity at a constant effort, and the tendency to advocate the
organization of shared tasks by project funding agency, which has a positive effect on diversity, tends to
lower participation rates, and therefore reduce the scope of results. We promote the reconsideration of
the TCGASE loop by evaluating systems not on annotated corpora, but by measuring the performance
of users of those systems in the context of ecological tasks. The experience from two use cases shows
that although more representative, such evaluation methodology is costly and difficult to run in a
community not used to work with human subjects.

To conclude, natural language processing is a field with great societal expectations. It fuels the
field of artificial intelligence, and might be key to developing artificial though processes. It also fuels a
range of sciences, be it linguistics which use it to develop theories grounded in corpora, or psychology
and cognitive sciences aiming at developing a better understanding of how the brain manipulates
language, and it also bears a great applicative potential in fields such as medicine, law, history which
would benefit from better modeling of documents and interactions. And of course, in the industry,
applications will continue to thrive as language is one of the main forms of communication enjoyed by
humans. We have seen in this document that achieving progress in natural language processing will
require a rigorous methodological framework that encompasses the study of linguistic and applicative
invariants and the generalization properties of systems. It will only be possible with a collaboration
between the numerous fields that breed to form contextual NLP.
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Chapter 7

Curriculum Vitæ

Identity Benoit Favre
Date of birth 1980-07-14
Job lecturer / associate professor (MCF Section CNU 27)
University Aix-Marseille Université
Lab Laboratoire d’Informatique et Systèmes (LIS), data science group
Doctoral school École Doctorale en Mathématiques et Informatique de Marseille - ED184
Website https://pageperso.lis-lab.fr/benoit.favre

7.1 Summary
• Associate professor at Aix-Marseille University (France) since 2010
• Research

– Head of the data science group at LIS, member of the scientific piloting committee of LIS
– PEDR 2016-2020
– 112 scientific publications
– Projects:

∗ coordinator: 1 FP7 EU
∗ participant: 3 DARPA, 9 ANR, 1 AMIDEX, 1 ERC

– PhD students: 8 (4 graduated)

• Teaching

– Head of the Artificial Intelligence and Machine learning MSc track at AMU
– ≥ 1, 300h experience in computer science in BSc and MSc degrees

• Keywords: automatic conversation understanding, automatic summarization, natural language
processing, deep learning, representation learning, machine learning, evaluation

7.2 Scientific activity
7.2.1 Awards

• PEDR scientific excellence 2016-2020.

• Best paper at TALN 2011 (Roux et al. 2011†)

• Best paper at IWANN 2019 (Delecraz et al. 2019†)
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7.2.2 PhD Students
I advised or am advising 8 PhD students (4 graduated):

• Manon Scholivet, 2017+, “Language-independent natural language processing”, funded by doc-
toral school ED184 (33% with C. Ramisch & A. Nasr) – Leveraging language structure rep-
resentations and language-independent input representations to process never-seen languages.
Application to parsing.

• Simone Fuscone, 2017+, “Linguistic Underpinnings of Conversational Interpersonal Dynamics”,
DOC2AMU (50% with L. Prevot) - We explore the evolution of convergence and divergence
phenomena in conversational context, in order to discover interpersonal behavior profiles.

• Jeremy Auguste, 2016+, “Conversation representations”, funded by ANR Datcha (50% with F.
Bechet) - This thesis aims at devising compact and relevant conversation representations from
raw and analyzed goal-oriented dialogs.

• Thibault Magallon, 2015+, “Global features for optical character recognition”, CIFRE funded
with Numericompta (50% with F. Béchet) – The objective of this thesis is to create global
inference methods for analysing documents with optical character recognition.

• Sébastien Delecraz, 2015-2018, “Multimodal language understanding”, AMU-DGA funding (50%
with F. Béchet) – This thesis explores multimodal natural language processing, and document
understanding from multimodal sources.

• Olivier Michalon, 2013-2017, “Semantic frame parsing of French”, funded on ANR project AS-
FALDA (50% with A. Nasr) – This thesis explores Framenet parsing with global inference and
exogenous representations.

• Jérémie Tafforeau, 2013-2017, “Multitask inference for natural language processing”, funded
by FP7 project SENSEI (33% with T. Artières and F. Béchet) – In this thesis, we explore a
generic neural network topology for learning multitask sequence predictions and apply it to NLP
problems.

• Jérémy Trione, 2013-2017, “Automatic abstractive summarization of conversations”, funded on
FP7 project SENSEI (50% with F. Béchet) – this thesis proposes abstractive summarization
methods based on template generation and filling.

7.2.3 Master Students
I also supervised 6 MSc students:

• Marjorie Armando, 2018, “Interpretable textual inference models”
• Manon Scholivet (co-supervised with C. Ramisch), 2017, “Polylexical expression detection with

RNNs”
• Jeremy Auguste (co-supervised with F. Bechet), 2016, “Conversation representations for analyt-

ics”
• Sébastien Delecraz (co-supervised with F. Bechet), 2015, “Multimodal understanding of video

documents”
• Jérémy Ollivier, 2013, “Paraphrase detection”
• Firas Hmida, 2011, “Language-independent automatic summarization”

7.2.4 Projects
I have been involved in multiple French ANR projects, one EU FP7 project, and 3 DARPA projects:
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• DATCHA, ANR, 2015-2019. Automatic analysis of text conversations from customer care cen-
ters. Partners: Aix-Marseille Université, IRIT, Orange. In this project, I work on representation
learning of gold-oriented conversations, as well as the relationship between semantic and discourse
representations.

• PARSEME-FR, ANR / COST PARSEME, 2015-2020. Syntactic parsing and multiword ex-
pressions in French. Partners: Aix-Marseille Université (LIF), LIGM, INRIA, LI, LIFO. I was
involved in the study of novel machine learning techniques for MWE detection and discovery.

• ADNVideo, A*midex (IDEX from Aix-Marseille Université) for technology transfer towards the
industry, 2014-2017. Multimodal recommendation of videos. Partners: Aix-Marseille Université
(LIF, LSIS), Kalyzee. I was involved in the transfer of video content analysis modules mainly
designed during the PERCOL project.

• SENSEI, European FP7, 2013-2016 Making sense of human-human interactions. Partners: Aix-
Marseille Univ., U. Trento, U. Sheffield, U. Essex, Websays, Teleperformance. I was the local
coordinator for this project. I have contributed to evaluation organization, semantic parsing of
conversations, abstractive summarization of call-center conversations.

• ORFEO, ANR, 2012-2016. Creation of a transcribed and annotated corpus of spoken and written
French. Partners: Aix-Marseille Univ., LATTICE, MODYCO, ATILF, LORIA, CLLE-ERSS,
ICAR. I was involved in automatic sentence segmentation as well as automatic processing of
conversations with the Macaon chain.

• ASFALDA, ANR, 2012-2015. Semantic parsing of French. Partners: Aix-Marseille Univ., Alpage,
CEA, IRIT, LLF. I was involved in designing automatic inference techniques for semantic parsing
with the Framenet framework, as well as in the introduction of exogenous sources in parsers.

• PERCOL, ANR, 2011-2014. Person recognition in videos. Partners: Aix-Marseille Univ., Or-
ange, LIA, LIFL. I designed multiple modules of the video processing chain, and a multimodal
fusion system for person recognition.

• DECODA, ANR, 2010-2013. Spoken conversation processing in call centers. Partners: Aix-
Marseille Univ., UAPV, RATP, SONEAR. I was involved in building syntactic parsers adapted
to spoken language.

• SEQUOIA, ANR, 2010-2013. Syntactic parsing of French. Partners: Aix-Marseille Univ., Al-
page, LIA, LaLIC. My contribution consisted in designing CRF-based part-of-speech taggers, as
well as graph-based dependency parsers.

• ThunderBOLT, DARPA, 2012-2015. Speech-to-speech translation with clarification dialogs.
Parters: SRI International, U. Washington, U. Rochester, U. Columbia. I was involved in ASR
and MT error detection, as well as transcript correction after clarification dialogs.

• PORTMEDIA, ANR, 2009-2012. Robustness, portability of semantic parsing in dialog systems.
Partners: LIA, LIG, LIUM, LORIA, ELDA. I worked on concept detection and ASR.

• CALO, DARPA, 2003-2008. Cognitive assistant that learns and organizes. Partners: ICSI, SRI
International (and others). I contributed automatic summarization techniques.

• NightinGALE, DARPA, 2005-2010. Distillation from multilingual, multigenre speech and text.
Partners: ICSI, SRI International, U. Columbia, U. Washington, NYU (and others). I was
involved in designing multilingual sentence segmentation and punctuation prediction models.

7.2.5 Shared tasks
I participated to and organized shared tasks (scientific competitions) in the natural language processing
community.

• Sentiment analysis: Semeval 2016 (ranked 2/34), DEFT 2015 (1st), TASS 2015 (2nd). With M.
Rouvier.
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• Multimodal person identification in videos: REPERE 2013-2015. Ranked 1st with the PERCOL
consortium.

• Automatic summarization: organizer of Multiling 2011, 2015, participant to TAC 2006, 2007,
2008 (ranked 2/33), 2009 (ranked 1/30)

• Referential expression generation: GREC evaluation in 2009 (ranked 1st) and 2010 (1st).
• Named entity recognition: ESTER and ETAPE evaluations in 2005 and 2012.
• Speech-to-speech translation: DARPA BOLT 2012-2014 with the Thunderbolt team.
• Multimodal, multilingual document retrieval: DARPA GALE 2007-2009, with the Nightingale

team.

7.3 Teaching
I am the head of the artificial intelligence and machine learning track of the computer science
Master at the CS department of Aix-Marseille University. I have led the creation of this track in
2017-2018.

In 2017, I was awarded a full teaching service reduction by CNRS (delegation). In 2015, I was
awarded a partial teaching service reduction of 69h by the department (service modulation).

I have performed a full service of teaching at Aix-Marseille University since 2010 (192h per year +
overtime). Main classes:

• Deep learning for NLP – 2016+ (35h/y), MSc level (M2), RNNs, Language models, MT, repre-
sentation learning, applications.

• Web programming – 2012-2015 (30h/y), BSc level (L2), Javascript, node.js, html5.
• Languages theory – 2011-2015 (50h/y), BSc level (L2), Finite state automata, regular languages.
• Data structures – 2015 (20h/y), BSc level (L3 pro), Algorithms, complexity, basic data structures.
• Programming methodology – 2011-2014 (38h/y), MSc level (M2), UML, design patterns, contin-

uous integration.
• C programming – 2016 (128h), 2010-2015 (50h/y), BSc level (L1), Basics of programming, data

structures, pointers, sorting algorithms, linear data structures.
• Natural language processing – 2010-2014 (35h/y), MSc level (M1), Statistical approaches, method-

ology, evaluation, machine learning, sequence predictions, machine translation, automatic sum-
marization.

• New applications of NLP – 2013-2014 (35h/y), MSc level (M2), machine translation, sentiment
analysis, parsing, summarization.

• Computing tools 2010-2011, 2014 (30h/y), BSc level (L1), OpenOffice, latex, shell, certification
training (C2i).

• XML – 2010-2011 (33h/y), MSc level (M1), DTD, schemas, stylesheets, Java api.
• Digital sciences (ISN) – 2012-2015 (12h/y), secondary teachers (math, physics, CS), language

theory, python.
• Student projects – since 2010, MSc level (M1/M2), multiple projects per year on a variety of

topics.

In 2017, I taught a Deep learning for NLP class at IIT Mizoram at Aizwal in India (GIAN program).
In 2018, I have organized two sessions of that class with CNRS Formation towards the industry1.

1https://cnrsformation.cnrs.fr/stage-18289-Deep-learning-pour-le-traitement-automatique-des-langues.
html

https://cnrsformation.cnrs.fr/stage-18289-Deep-learning-pour-le-traitement-automatique-des-langues.html
https://cnrsformation.cnrs.fr/stage-18289-Deep-learning-pour-le-traitement-automatique-des-langues.html
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In 2017, I obtained a AMU FIP Grant for the GPU-Training program which supported the ac-
quisition of GPU servers for organizing a range of classes under the computer science MSc (Deep
learning, GPU programming, distributed computing...). The budget of the project was about 60k
euros (co-funded by the CS dept, the Economy and management dept, ILCB and the FIP).

I am a member of the teaching committee of the Institute for Language, Communication and the
Brain (ILCB).

7.4 Administration and scientific animation
Since 2018, I am the head of the data science group at LIS, gathering 5 research teams (44 per-
manent researchers). Duties include defining and implementing a scientific policy, organizing scientific
animation for the members of the group, managing the budget of the group, interfacing with the head
of the lab, and involvement in the governing body of the lab. Since 2017, prior to the creation of LIS
(which results from the fusion of LIF and LSIS), I acted as head-elect to define and implement the
governance of the new lab.

I am part of the machine learning and deep learning “question transverse” group at the Institute
for Language and the Brain (ILCB), a convergence institute under Amidex. I have been working on
multiple projects relevant to ILCB, and have been repeatedly presenting my work in that context. I
obtained two grants from ILCB (one in collaboration with A. Rey from LPC and one with multiple
members of LIS).

I contributed to building a computation cluster at LIF, including getting hardware grants, defining
and managing a use policy, becoming a NVIDIA teaching and research center (which granted 2 GPUs).
Since 2018, I am responsible for the “commission cluster” at LIS, in charge of defining a strategy for
building a viable computation platform for the members of the lab, including relations with institutional
efforts for computation (AMU mesocentre and regional centers).

In 2018, I contributed to the emergence of a CNRS GDR (Groupement de Recherche) on natural
language processing. I was in charge with P. Sebillot (IRISA, Rennes) of writing a report on the state
of the art and future trends of intermodal and multimodal natural language processing.

I was part of the board of AFCP (French speech society) 2014-2016, in charge of student grants,
and since 2017 I have been part of the board of ATALA (French NLP society).

I co-organize a deep learning reading group at Aix-Marseille University since 2017 with T. Artieres.
In 2017, I was a member of the “commission web” of LIS tasked with defining the web presence of

the merged lab.
I was responsible for organizing the seminar of the NLP group at LIF in 2015-2016.

7.4.1 Conference committees
I was part of the organization for the following conferences:

• Summer school of the Institute for Language, Communication and the Brain (ILCB), Marseille
(France). 2018.

• SemDial 2018, Aix (France). Area chair.

• TALN 2018, Rennes (France). Area chair.

• TALN 2014, Marseille. Local organizer and publication chair.

• SLAM 2013 (Workshop Speech, Language and Audio in Multimedia), Marseille. Local organizer
and publicity chair.

• SLT 2010, Berkeley. Publicity chair.
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7.4.2 Reviews
I regularly review papers for conferences and journals:

• Journals: IEEE transactions on speech and language processing, Speech Communication, IEEE
Signal Processing Letters (4 per year)

• International Conferences: ACL, EMNLP, COLING, NAACL, ICASSP, Interspeech, SLT, ASRU,
NIPS (5 per year)

• National conferences: TALN, JEP, ReciTAL, CORIA (3 per year)

7.4.3 Expert
I have been an expert for ANR since 2013 (5 projects evaluated). I was an expert for the EU ERC
program (2015).

I was an expert for the following associate professor hiring committees in French universities (com-
puter science, CNU 27):

• Paris Sud, 2018
• Ecole Centrale Marseille, 2017
• Orléans, 2015, 2016
• AMU, 2012, 2013
• Paris 1, 2012

I participated to the following thesis defense committees:

• Qi Wong (LIS, AMU), 2018
• Sahar Ghannay (LIUM, Le Mans), 2017
• Mohammed Bouaziz (LIA, Avignon), 2017
• Raheel Kader (IRISA, Lannion), 2017
• Jeremy Trione (LIS, AMU), 2017
• Jeremy Tafforeau (LIS, AMU), 2017
• Olivier Michallon (LIS, AMU), 2017
• Anca Simon (IRISA, Rennes), 2015
• Pierre Gotab (LIA, Avignon), 2012

I was a member of the thesis steering committees (comité de suivi de thèse) of:

• Julien Dejasmin (LIS, AMU, 2019-)
• Luc Giffon (LIS, AMU, 2017-)
• Antoine Caubrière (LIUM, Le Mans, 2017-)
• Ozan Caglayan (LIUM, Le Mans, 2015-2019)
• Sahar Gannay (LIUM, Le Mans, 2015-2017)
• Xavier Bost (LIA, Avignon, 2015-2017)

I was an external expert for the doctoral grant committee at UAPV (Avignon) in 2013.
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7.5 Dissemination

7.5.1 Invitations & scientific talks
I was invited as a research scholar at Queensland University of Technology for 9 months in 2018-2019.

I gave a talk at the PARSEME ANR project on deep learning for polylexical expression detection
in 2018.

I gave a talk on the current state of deep learning and its link with the origins of language in the
brain at the ILCB workshops in 2015 and 2017.

I have joined a pan-European group on multilingual summarization in order to federate the com-
munity and organize a COST network (2015-2017).

I was invited to the Johns Hopkins University workshop for 6 weeks in 2012 as a mentor on the
CEMST project on speech transcription evaluation measures. I supervised students and postdocs on
the topic.

I was an invited speaker at an NSF workshop on the future of automatic summarization in 2012.
I repeatedly presented my scientific work at LIS and at the scientific days of LIS.

7.5.2 Dissemination towards the general public
I was invited to a panel on the ethics of artificial intelligence by LICA at EMC in Marseille in 2017.

I participated to meetups on machine learning in the local area of Marseille in 2016-2017.
I have collaborated with artists from the Pulso company since 2015 on the relationship between

humans and machines. I supplied the technical framework of the Homeostatis dance show in 2016-2018,
participated to the Ergonomics performance at the CDA of Enghen-les-bains in 2017, co-authored the
IAgotchi installation at Experimenta in 2018. I was also invited to a workshop on Art-Science in 2017
on the topic of artificial intelligence.

I participated to the European night of researchers in September 2017 and 2018 for the city of
Marseille.

7.5.3 Software
I commit to delivering as often as possible open-source implementations and data related to my sci-
entific work. I created or contributed to a number of software libraries and applications, such as:

• ICSIBoost: open-source implementation of Boostexter (Adaboost based classifier, used by many
researchers in the NLP community)

• Macaon: NLP processing chain (tagging, parsing...)

• ADNVideo: multimodal video analysis tools

• ICSISumm: extractive summarizer based on the budgeted set-cover problem (ranked 1st at TAC
2009)

My contributions are available in the following repositories:

• https://github.com/benob

• https://gitlab.lif.univ-mrs.fr/u/benoit.favre (listed as archived projects)

• https://gitlab.lis-lab.fr/u/benoit.favre

https://github.com/benob
https://gitlab.lif.univ-mrs.fr/u/benoit.favre
https://gitlab.lis-lab.fr/u/benoit.favre
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7.5.4 Publications
I am the co-author of 112 publications: 4 book chapters, 9 peer-reviewed international journal articles
(+1 submitted), 69 peer-reviewed international conference articles, 16 peer-reviewed French conference
articles, 14 other publications including theses and reports. H-Index of 22.

Chapter 9 lists my publications according to those categories.



Chapter 8

Detail of PhD students’ work

8.1 Olivier Michalon
Statistical models for predicting semantic frames 2013–2017, funded on ANR project AS-
FALDA (50% with A. Nasr)

Summary Semantic parsing consists in predicting actionable representations of the sense of an
utterance based on the words it contains. The many semantic models that have been proposed over the
years make different compromises between deepness of the representation, coverage and applicability,
robustness that can be expected from a system implementing it, and availability of annotated training
data. The FrameNet model assumes a sweet spot in that landscape with a high coverage, relatively
surfacic representations, and availability of training corpora, in particular thanks to the ASFALDA
project which has the objective of building a large scale FrameNet corpus for French. A frame describes
a semantic situation that can be expressed through a text. It is evoked by a trigger word and linked to
a number of arguments subject to constraints. There can be many frames evoked in an utterance, and
frames are organized in an ontology. Even though a number of systems have been proposed for frame
parsing, their robustness regarding certain design decisions remains unknown. This thesis explores the
link between syntax and semantics through the use of syntactic paths and generalization of syntactic
paths as features for semantic parsing. It also compares a number of architectures for implementing
task constraints in inference, such as context-free semantic grammars, integer linear programming
inference and neural networks. The last contribution is a study of how exogenous data, such as word
embeddings trained on a very large raw corpus, impact semantic parsing performance, in particular in
terms of training parameters such as window size, input representation and inference mechanism.

Status Graduated on October 4, 2017.

Co-publications

Michalon, Olivier, Corentin Ribeyre, Marie Candito, and Alexis Nasr. 2016. “Deeper syntax for better
semantic parsing”. In Coling 2016 - 26th International Conference on Computational Linguistics.
Osaka, Japan.

8.2 Jérémy Trione
Automatic abstractive and extractive summarization of speech conversations from call
centers 2013–2017, funded on FP7 project SENSEI (50% with F. Béchet).
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Summary Call centers process millions of calls every day to provide information, booking or cus-
tomer care services. Understanding what happens during the conversations between agents and cus-
tomers has become a major issue for businesses that use call centers, and great efforts are fostered
towards better speech analytics in that context. While state of the art methods propose keyword search
on automatic transcripts of what was said in the conversations and prediction of classes of emotions
and behaviors of the participants, those techniques do not allow to get a full understanding of what
occurred in a conversation. This thesis looks as automatic summarization as a novel way of processing
conversational data: the generation of a short textual representation of what was said, and how the
participants behaved. While many techniques for extractive summarization had been proposed for
speech conversation, they do not respect the style of the expected summaries (well-built narrative vs
spontaneous speech transcript) and therefore perform poorly. The main innovation developed in this
thesis is an abstractive summarization technique which can create narratives that respect the expected
style. The approach relies on a corpus of summaries as training data which have been generalized
with concepts to allow them to represent generic situations. Concepts can then be detected in new
conversations, and associated with templates automatically extracted from the training summaries.
In a sense, this approach shifts the extractive paradigm to use generalized summaries instead of di-
rect transcripts. Experiments show that it outperforms traditional extraction and baseline abstractive
techniques. A system based on the approach was also evaluated in the context of the SENSEI project
in an extrinsic setup where call-center operators use the generated summaries, showing their benefit
in an ecological manner.

Status Graduated on October 5, 2017.

Co-publications

Favre, Benoit, Evgeny Stepanov, Jérémy Trione, Frédéric Béchet, and Giuseppe Riccardi. 2015. “Call
Centre Conversation Summarization: A Pilot Task at Multiling 2015”. In Sigdial.

Stepanov, E., B. Favre, F. Alam, S. Chowdhury, K. Singla, J. Trione, F. Bechet, and G. Riccardi. 2015.
“Automatic Summarization of Call-Centre Conversations”. In IEEE ASRU Demo.

Trione, Jeremy, Frederic Bechet, Benoit Favre, and Alexis Nasr. 2015. “Rapid FrameNet annotation
of spoken conversation transcripts”. In Joint ACL-ISO Workshop on Interoperable Semantic An-
notation.

Trione, Jérémy, Benoit Favre, and Frederic Bechet. 2016a. “Détection de concepts pertinents pour le
résumé automatique de conversations par recombinaison de patrons”. In Actes de la conférence
TALN 2016. Paris, France: ATALA.

Trione, Jérémy, Benoit Favre, and Frédéric Béchet. 2016b. “Beyond utterance extraction: summary
recombination for speech summarization”. In Interspeech, San Francisco (USA).

8.3 Jérémie Tafforeau
Multitask inference for natural language processing 2013–2017, funded by FP7 project SEN-
SEI (33% with T. Artières and F. Béchet)

Summary Natural language processing is often considered as a sequence of tasks which add layers
of more and more abstract representations: tokenization, part-of-speech tagging, syntactic parsing,
semantic parsing… Delivering those tasks in sequence often leads to suboptimal results for two reasons:
the propagation of errors from one level to the next and the fact that the information required to
disambiguate decisions at a given level is often only available after processing the next levels. Classical
natural language processing models in the processing pipeline are also affected by the quality of the
feature engineered, as well as domain adaptation. End-to-end models have been proposed to directly
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generate labels at the highest level, for instance semantic parsing, directly from words. However, those
approaches tend to perform lower than the pipeline approach since they do not have explicit supervision
on the intermediary representations, and are not fed with labeled enough data to learn from scratch
the involved linguistic phenomena. This thesis proposes a multitask modeling for end-to-end NLP
systems which consists in training the model to generate the intermediary labels from the same shared
recurrent state, and therefore learn a linguistically informed representation even for the higher-level
task. The approach is shown to be more robust to automatic speech recognition phenomena such as
word errors and disfluencies. Another contribution lies in the adaptation of input representations in
order to generate surrogate word embeddings for unseen words that may occur in novel domains.

Status Graduated on November 20, 2017

Co-publications

Tafforeau, Jeremie, Thierry Artieres, Benoit Favre, and Frederic Bechet. 2015a. “Adapting lexical
representation and OOV handling from written to spoken language with word embedding”. In
Interspeech.

Tafforeau, Jeremie, Frederic Bechet, Thierry Artiere, and Benoit Favre. 2016. “Joint syntactic and
semantic analysis with a multitask Deep Learning Framework for Spoken Language Understanding”.
In Interspeech, San Francisco (USA).

Tafforeau, Jeremie, Frederic Bechet, Benoit Favre, and Thierry Artieres. 2015b. “Lexical embedding
adaptation for open-domain spoken language understanding”. In NIPS Workshop on Spoken Lan-
guage Understanding (SLUNIPS).

8.4 Sébastien Delecraz
Multimodal language understanding 2015+, AMU-DGA funding (50% with F. Béchet)

Summary While the natural language processing community has mainly focused on textual lan-
guage, natural language is by definition multimodal, because humans use verbal as well as non-verbal
cues in communication, and because our understanding of the real world comes from a multisensorial
experience. While there have been many attempts at modeling phenomena which involve another
modality such as speech or sign language, there is no definitive approach to multimodal language
processing. The main challenges of multimodal language processing are as follows: asynchronicity
between phenomena in multiple modalities, difference of annotation, modeling and detection difficulty
across modalities, annotator availability in disjoint corpora, lack of theoretical model on multimodal
phenomena… This thesis makes two main contributions in that regard. First, a multimodal embedding
modeling and fusion approach is proposed and applied to the task of speaker role prediction in video
shows using audio, image and transcript-based representations pre-trained on external tasks, fine-tuned
on the target task and finally merged to form multimodal representations. The second contribution
consists in an approach for supporting syntactic parsing, a task historically developed in a unimodal
context, with non-textual modalities. Prepositional attachments, one of the most difficult problems
and most common source of errors for syntactic parsers, can be ambiguous for semantic reasons. The
proposition is to use an image depicting the text being analyzed in order to resolve ambiguity, and in
particular account for the relative position of objects mentioned in the text and visible in the image.
Experiments with a system which detects objects in both images and corresponding texts, aligns them
to extract features for a preposition attachment error correction module show that when semantic
categories of words are not available, a significant portion of attachments can be resolved.

Status Graduated on December 10, 2018
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Co-publications
Delecraz, Sebastien, Leonor Becerra-Bonache, Benoit Favre, Alexis Nasr, and Frederic Bechet. 2018a.

“Correction automatique d’attachements prépositionnels par utilisation de traits visuels.” In TALN.
Delecraz, Sebastien, Leonor Becerra-Bonache, Alexis Nasr, Frederic Bechet, and Benoit Favre. 2019.

“Visual Disambiguation of Prepositional Phrase Attachments: Multimodal Machine Learning for
Syntactic Analysis Correction”. In International Work-Conference on Artificial Neural Networks,
632–643. Springer.

Delecraz, Sebastien, Frederic Bechet, Benoit Favre, and Mickael Rouvier. 2016. “Fusion d’espaces
de représentations multimodaux pour la reconnaissance du rôle du locuteur dans des documents
télévisuels”. In Actes de la conférence JEP 2016. Paris, France: AFCP.

Delecraz, Sebastien, Alexis Nasr, Frederic Bechet, and Benoit Favre. 2018b. “Adding Syntactic Anno-
tations to Flickr30k Entities Corpus for Multimodal Ambiguous Prepositional-Phrase Attachment
Resolution”. In LREC.

— . 2017. “Correcting prepositional phrase attachments using multimodal corpora”. In Proceedings of
the 15th International Conference on Parsing Technologies, 72–77.

Rouvier, Mickael, Sebastien Delecraz, Benoit Favre, Meriem Bendris, and Frederic Bechet. 2015b.
“Multimodal Embedding Fusion for Robust Speaker Role Recognition in Video Broadcast”. In
IEEE ASRU.

8.5 Thibault Magallon
Contextual inference for optical character recognition 2015+, CIFRE with Numericompta
(50% with F. Béchet)

Summary Optical character recognition (OCR) consists in transforming images containing printed
or handwritten text into a digitized form of that text as a sequence of character codes. The task
consists in the following steps: global layout understanding which corresponds to detecting text zones,
images or tables, followed by line and character detection which locate them from pixels, and finally
character recognition which aims at identifying a character given the pixels in the area where it is
supposed to be. It is a very relevant task for processing scanned historical documents, and a range
of documents which still live a paper trail, such as invoices, receipts, etc. The main objective of
this thesis is to improve the quality of OCR output by accounting for the global context in which
characters are printed. For example, in an invoice, the recognized numbers of individual items must
sum up as the total which is associated to that category. The global context that can be accounted
for is mostly constraints dependent on the document type, linguistic constraints such as how words
follow each other, and co-variates between linguistic information and global document features such
as its color, layout and elements it contains. This thesis outlines two main contributions: the first
contribution is the integration of global image representations along with automatic transcripts in a
document classification task, leveraging task-specific constraints in order to improve the understanding
of the document content, and the second contribution is a strategy for detecting errors in OCR output
based on linguistic and visual models, as well as proposing corrections to these errors.

Status As of 2018, Thibault is writing his thesis document and should graduate before the end of
the year.

Co-publications
Magallon, Thibault, Frederic Bechet, and Benoit Favre. 2018a. “Détection d’erreurs dans des tran-

scriptions OCR de documents historiques par réseaux de neurones récurrents multi-niveau.” In
TALN.
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— . 2018b. “Fusion multimodale image/texte par réseaux de neurones profonds pour la classification
de documents imprimés.” In CORIA.

8.6 Jeremy Auguste
Learning conversation representations 2016+, funded by ANR Datcha (50% with F. Béchet)

Summary Contact centers are a tool used by businesses to reach out to their customers and offer
services such as customer care and product support. Interactions in that framework take the form of
human-human conversations over the phone or over textual discussion channels. Many conversations
can be collected this way, but it is difficult to mine their content to improve the service, or for training
agents. While there have been efforts to build representations for words, paragraphs and full texts,
the generation of representations tailored for the specifics of conversations has not been explored.
Such conversation representations could be used to find similar conversations or similar subsets of
conversations, and in the context of conversations classifiers. The aim of this thesis is to propose and
evaluate the benefit of conversation representations that are suitable to convey topical, structural, and
behavioral aspects of the underlying conversations.

Status As of July 2018, Jeremy has proposed methods for representing conversations through recur-
rent and convolutional neural networks trained to predict post-hoc satisfaction of the customer. He
has explored various sources of information such as words, dialog acts, and various architectures such
as hierarchical models, and attention-based models. He is now focusing on contributing representa-
tions that can highlight similarities between parts of conversations, and the evaluation of proposed
representations in the context of application tasks such as agent training.

Co-publications

Auguste, Jeremy, Delphine Charlet, Géraldine Damnati, Benoit Favre, and Frederic Bechet. 2018.
“Evaluation automatique de la satisfaction client à partir de conversations de type « chat » par
réseaux de neurones récurrents avec mécanisme d’attention.” In TALN.

Auguste, Jeremy, Arnaud Rey, and Benoit Favre. 2017. “Evaluation of word embeddings against cog-
nitive processes: primed reaction times in lexical decision and naming tasks”. In Proceedings of the
2nd Workshop on Evaluating Vector Space Representations for NLP, 21–26.

8.7 Manon Scholivet
Language-independent natural language processing 2017+, funded by doctoral school ED184
(33% with C. Ramisch & A. Nasr)

Summary More than 6,000 spoken and/or written languages exist in the world. The current ap-
proach to natural language processing which consists in manually annotating texts with structures and
training systems to predict them is not sustainable at the scale of all languages. The previous approach
to tackle this problem was to revert to unsupervised learning in order to discover structures based on
raw texts or speech, but those approaches were still applied language by language. However, on one
hand, there exist language families, and shared properties across languages which one may leverage to
model invariants that will generalize well across languages. On the other hand, Chomsky’s theory that
the brain contains universals to implement any kind of language, of which a particular language is just
a configuration, has not been disproved. Those observations give confidence that it should be possible
to create NLP systems that are able to process a never-seen language given the amount of supervised
or unsupervised knowledge they have been exposed to. The objective of this thesis is to take advantage



94 CHAPTER 8. DETAIL OF PHD STUDENTS’ WORK

of the universal dependency treebank (UD), which contains annotated syntactic trees for 60 languages
in a unique representation of syntactic phenomena, in order to build a language-independent syntactic
parser.

Status As of July 2018, Manon has tested the effect of including language-level features (such as
subject-verb-object order) from the World Atlas of Language Structures in a delexicalized syntactic
parser trained on the concatenation of all UD treebanks, and shown that it can benefit from them on
seen and unseen languages. In the near future, she will relax the delexicalized input hypothesis (which
assumes that a part-of-speech tagger and morphological analyzer are available for all languages) by
proposing universal word embedding learning strategies, which project observed tokens to a common
language-independent representation space and can be learned from raw text only. She will also look
for ways of modeling invariants linked to morphological analysis in order to project morphology from
character sequences to language-neural representations in a way that is generalizable to never-seen
languages.

Co-publications

Scholivet, Manon, Franck Dary, Alexis Nasr, Benoit Favre, and Carlos Ramisch. 2019. “Typological
Features for Multilingual Delexicalised Dependency”. In NAACL.

Zampieri, Nicolas, Manon Scholivet, Carlos Ramisch, and Benoit Favre. 2018. “Veyn at PARSEME
Shared Task 2018: Recurrent neural networks for VMWE identification”. In LAW-MWE-CxG Work-
shop at COLING.

8.8 Simone Fuscone
Linguistic Underpinnings of Conversational Interpersonal Dynamics 2017+, DOC2AMU
(50% with L. Prévot)

Summary Co-adaptation is a well-known phenomenon in dialog and multi-party conversations.
Speakers tend to adopt the same speaking style, use the same words, in order to improve the effi-
ciency of the communication channel. Convergence and entrainment phenomena have been shown to
exist in many linguistics studies through measures of the conditional variation of parameters such as
speech rate, phonetic choices, backchannel use, etc., of one speaker given the speech from another
speaker at the conversation level. The objective of this thesis is to study how co-adaptation evolves
during a conversation, as speakers tend to know each other’s position and social roles tend to emerge.
The first question is whether convergence and divergence dynamics can be demonstrated within a
conversation, and how social roles and their evolution affect such phenomenon. Another interesting
question is whether, as an economy, conversation participants tend to select a subset of channels for
expressing co-adaptation, and whether intensity of the co-adaptation can be devised across multiple
parameters. Finally, the thesis will explore co-adaptation prediction models in order to perceive and
generate co-adaptation in the framework of automated agents.

Status As of July 2018, Simone has replicated a landmark work on convergence on speech rate based
on data from the Switchboard corpus. He extended the protocol in order to be able to demonstrate the
existence of convergence patterns within a conversation at a crude granularity. He proposed a novel
methodological tool for showing co-adaptation by contrasting classifiers predicting a co-adaptation
target with different set of features that include, or not the interlocutor of a conversation. He will also
explore finer grained models for addressing the other questions in his thesis.
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Co-publications

Fuscone, Simone, Benoit Favre, and Laurent Prévot. 2018. “Replicating Speech Rate Convergence
Experiments on the Switchboard Corpus”. In 4REAL workshop at LREC.
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Chapter 9

List of personal publications

This chapter contains a list of my personal publications. Self citations in the rest of the document are
excluded from the general bibliography (page 105).

9.1 Book chapters
Hakkani-Tür, Dilek, Gokhan Tur, Benoit Favre, and Elizabeth Shriberg. 2011. “Finding the Structure

of Documents”. In Multilingual natural language processing applications, ed. by I. Zitouni and D.M.
Bickel, 21–48. IBM Press.

Favre, Benoit. 2011. “Navigation dans les documents audio par le résumé automatique”. In Vers une
recherche d’information contextuelle, assistée et personnalisée, ed. by Patrice Bellot. Hermes.

Ji, Heng, Benoit Favre, Wen-Pin Lin, Dan Gillick, Dilek Hakkani-Tur, and Ralph Grishman. 2011.
“Open-domain Multi-Document Summarization via Information Extraction: Challenges and Prospects”.
In Multi-source Multilingual Information Extraction and Summarization. Lecture Notes in Com-
puter Science, ed. by H. Saggion, T. Poibeau, and R. Yangarber. Springer.

Ostendorf, Mari, Benoit Favre, Ralph Grishman, Dilek Hakkani-Tur, Mary Harper, Dustin Hillard,
Julia B. Hirschberg, Heng Ji, Jeremy G. Kahn, Yang Liu, Evgeny Matusov, Hermann Ney, Elizabeth
Shriberg, Wen Wang, and Chuck Wooters. 2008a. “Speech segmentation and spoken document
processing”. In Handbook of Natural Language Processing and Machine Translation, ed. by John
McCary Joseph Olive Catlin Chrisianson. Springer.

9.2 International peer-reviewed journals
Riccardi, G., F. Bechet, M. Danieli, B. Favre, R. Gaizauskas, U. Kruschwitz, and M. Poesio. 2016.

“The SENSEI Project: Making Sense of Human Conversations”. Ed. by J.F. Quesada et al. Lecture
Notes on Artificial Intelligence LNAI 9577 (): 10–33.

Liu, Shuhua, and Benoit Favre. 2013. “Understand the Global Economic Crisis: A Text Summarization
Approach”, 20.2:89–110.

Ji, H., J. Liu, B. Favre, D. Gillick, and D. Hakkani-Tur. 2010. “Re-ranking Summaries Based on
Cross-Document Information Extraction”. Information Retrieval Technology: 432–442.

Riedhammer, Korbinian, Benoit Favre, and Dilek Hakkani-Tur. 2010. “Long story short-Global un-
supervised models for keyphrase based meeting summarization”. Speech Communication 52 (10):
801–815.
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Tur, Gokhan, Andreas Stolcke, Lynn Voss, John Dowding, Benoit Favre, Raquel Fernandez, Matthew
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Meeting Assistant System”. IEEE Transactions on Audio, Speech and Language Processing.

Shriberg, Elizabeth, Benoit Favre, James Fung, Dilek Hakkani-Tür, and Sébastien Cuendet. 2009.
“Prosodic Similarities of Dialog Act Boundaries Across Speaking Styles”. Ed. by Shu-Chuan Tseng.
Language and Lingusitics Monograph Series: Linguistic Patterns in Spontaneous Speech, no. A25:
213–239.

Guz, Umit, Benoit Favre, Dilek Hakkani-Tür, and Gokhan Tur. 2009. “Generative and Discriminative
Methods using Morphological Information for Sentence Segmentation of Turkish”. IEEE Transac-
tions on Audio, Speech and Language Processing, Special Section on Processing Morphologically
Rich Languages 17, no. 5 (): 895–903.
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processing”. Signal Processing Magazine, IEEE 25 (3): 59–69.
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isons for Spoken Sentence Segmentation”. International Journal on Semantic Computing 1:3:335–
346.

9.3 International peer-reviewed conferences
Rouvier, Mickael, and Benoit Favre. 2016a. “SENSEI-LIF at SemEval-2016 Task 4: Polarity embedding

fusion for robust sentiment analysis.” In SemEval@ NAACL-HLT, 202–208.
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Conference in Acoustics, Speech and Signal Processing (ICASSP), Dallas (USA).
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“Multimodal Embedding Fusion for Robust Speaker Role Recognition in Video Broadcast”. In
IEEE ASRU.

Rouvier, Mickael, Pierre-Michel Bousquet, and Benoit Favre. 2015b. “Speaker diarization through
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