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modes, the linear stability analysis indicates that Kinetic Ballooning Modes (KBM) dominate in the central region. A dedicated analysis performed at ρ = 0.15 reveals that the main parameters responsible for the destabilisation of KBMs in these hybrid H-modes are the high β and low magnetic shear values. The KBMs are driven by the main ion pressure gradient with little influence of the electron temperature gradient. Including fast-ions as a kinetic species in the simulations has a slight stabilising effect. The study is then extended to the non-linear regime. It is found that the turbulence induced by these KBMs drives a significant ion and electron heat flux. Interestingly, linearly stable micro-tearing-modes (MTM) are excited non-linearly and drive a sizeable magnetic flutter electron heat flux. Standard quasi-linear models are compared to the non-linear results. The standard reduced quasi-linear models work reasonably well for the E × B fluxes, but fail to capture magnetic flutter contribution to the electron heat flux induced by the non-linear excitation of the MTMs. An extension of the quasi-linear models is proposed allowing better capturing the magnetic flutter flux.

The present work has been carried out in collaboration with the doctoral school "École doctorale 352: Physique et Sciences de la Matière" at Aix-Marseille University and ITER Organization, France. Two thirds of this thesis were carried out at the PIIM laboratory (Physique des Intéractions Ioniques et Moléculaires) and the remaining third was conducted at ITER Organization under the memorandum of understanding (LGA-2017-A-76). Disclaimer: ITER is the nuclear facility INB no. 174. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Résumé

Un des principaux objectifs du projet ITER est de démontrer qu'un tokamak peut générer une puissance de fusion supérieure à la puissance injectée. Dans ITER, les composants face au plasma sont métalliques (diverteur en tungsten, mur en béryllium) pour garantir une faible rétention du tritium et une haute résistance au flux d'énergie provenant du plasma. L'opération d'un tokamak en environnement métallique soulève cependant des difficultés. L'accumulation des impuretés lourdes telles que le tungstène (Z=74) dans le coeur du plasma provoque des pertes par rayonnement et une détérioration conséquente du confinement de l'énergie. Le transport du tungstène dans la partie centrale d'ITER est induit par les collisions (transport néoclassique) et la turbulence. Il dépend intrinsèquement des gradients de densité et de température des ions principaux. Une compréhension fine des mécanismes de transport actifs dans le centre du plasma est à cet égard cruciale pour pouvoir prédire précisément l'accumulation du tungstène. Les études précédentes se sont principalement focalisées sur la zone à mi-rayon et le bord du plasma (ρ > 0.3), la partie centrale restant, pour le moment, un territoire relativement inexploré.

Dans la région centrale, les gradients de température et densité sont plus faibles et la turbulence pourrait s'en trouver réduite. Une question clef est donc d'abord de savoir si le plasma est linéairement stable ou non dans cette région. Si oui, la diffusion turbulente est-elle suffisante pour compenser le terme de pincement néoclassique du W ? Jusqu'à quel rayon et avec quelle dépendance sur les gradients de température et densité ? Une autre question clef est de savoir si l'approximation quasi-linéaire est valide dans la région centrale et si des modèles réduits quasi-linéaires classiques tels que QuaLiKiz ou TGLF peuvent y être utilisés. La compréhension du transport turbulent dans la région centrale est critique pour prédire le piquage des profils au coeur du plasma qui, eux-mêmes, influencent les réactions de fusion et le transport néoclassique du W. L'objectif de cette thèse et d'étudier ces questions et de tester les modèles réduits disponibles dans la région centrale de tokamak existants avant de pouvoir les appliquer sur ITER. L'étude est focalisée sur des cas sans activité MHD significative. Bien entendu, cette dernière peut aussi affecter le comportement du plasma dans la région centrale dans certaines conditions.

Le transport turbulent dans la région centrale est exploré dans un plasma à haut β en mode H hybride du tokamak JET au moyen de simulations linéaires et non-linéaires effectuées avec le code gyrocinétique GKW dans la limite locale. Par rapport aux travaux précédents, l'analyse est étendue à la région ρ < 0.3 et révèle que les Kinetic Ballooning Modes (KBM) y sont linéairement instables, contrairement à la région ρ > 0.3 où les modes Ion Temperature Gradient dominent. Des simulations spécifiques à ρ = 0.15 ont permis d'identifier le faible cisaillement magnétique et la haute pression normalisée du plasma, β, comme étant les deux principaux paramètres clefs permettant la déstabilisation des KBM par le relativement faible gradient de pression des ions principaux. Les ions rapides ont un effet légèrement stabilisant lorsqu'ils sont inclus dans les simulations. L'étude est ensuite étendue au régime non-linéaire. La turbulence induite par les KBM génère un flux significatif d'énergie thermique ionique et électronique. De manière inattendue, des modes de microdéchirement (MTM) linéairement stables sont excités non-linéairement et génèrent un flux non-négligeable d'énergie thermique électronique lié aux fluctuations du champ magnétique. Des modèles quasi-linéaires standards sont ensuite comparés aux résultats non-linéaires. Ces modèles reproduisent raisonnablement bien les flux E × B, mais mésestiment le flux d'énergie thermique électronique résultant de l'excitation non-linéaire des MTMs. Une extension des modèles quasi-linéaire est proposée qui permet de mieux reproduire le flux d'énergie lié aux fluctuations du champ magnétique.
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Abstract

One of the major goals of the ITER project is to demonstrate high fusion power gain in a tokamak. In ITER, metallic plasma-facing components are chosen for their low tritium retention and ability to sustain high heat loads. However, tokamaks operation with metallic plasma-facing components raises issues regarding the control of high-Z impurities since the accumulation of heavy impurities such as tungsten (Z=74) in the plasma core leads to significant radiation losses and deteriorates the energy confinement. Transport of tungsten (W) in the central part of ITER (ρ < 0.3), is expected to be determined by neoclassical and turbulent processes, which strongly depend on the main ion density, temperature, and rotation profiles. Thus, a reliable understanding of the dominant transport mechanisms in the central part is crucial to accurately predict W core accumulation. Previous studies mostly focused on the edge and core regions (ρ > 0.3) and the central part remains relatively unexplored so far.

In the central region, the gradients of density and temperature get smaller, and as a consequence, the level of turbulence may be reduced. In this region, a key question is therefore whether the plasma is linearly unstable. If yes, is turbulent diffusion sufficient to offset the neoclassical (inward) pinch of W, up to which radius and how sensitive is this to the background gradients? An auxiliary question is whether the quasi-linear approximation is valid in the inner core and up to which degree standard reduced quasi-linear models such as QuaLiKiz (QuasiLinear gyroKinetic) or TGLF (trapped gyro-Landau-fluid) can be used in the central zone. Understanding turbulent transport in the central region is crucial to predict core profile peaking that in turn will impact the fusion reactions and the tungsten neoclassical transport, in present devices as well as in ITER. The goal of this thesis is to address these questions and test the available turbulent transport models in the central region for existing tokamaks before applying them to evaluate turbulent transport in ITER. The study is focused on cases without MHD activity. Sawteeth, saturated kink modes or NTMs can also have a strong impact on the plasma behaviour in the central region and need to be considered in specific conditions.

Turbulent transport is investigated in the central region of the high-β JET hybrid H-mode discharge 75225 by means of linear and non-linear gyro-kinetic simulations using the gyro-kinetic code GKW in the local approximation limit. Compared to previous work, the analysis is extended towards the magnetic axis, ρ < 0.3, where the turbulence characteristics remain an open question. In contrast to the region ρ > 0.3 where Ion Temperature Gradient modes are the most unstable
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Nuclear fusion as a potential energy source

During the last two centuries, the world population has been increasing rapidly due to the advancement of technology, scientific knowledge and various other factors. The resulting large population requires a vast amount of energy and electricity for its rapid economic growth. Presently, most of the world energy demand (about 80%) is still sustained by burning enormous amounts of fossil fuels which includes coal, oil, and natural gas [1]. However, the supply of fossil fuels is limited and rapidly exhausted by massive consumption. Also, the use of fossil fuels emits carbon dioxide and other deleterious gases. It causes climate change problems such as global warming and air pollution that could be very harmful not only to our environment but also for human health. A change to renewable sources of energy such as wind, solar, and hydroelectric energy is attractive from an environmental point of view. However, the limitations associated with the low energy density, storage and transport make them not sufficient for long term on a large scale.

Therefore, additional options for abundant, reliable and clean energy production are needed. One of the possible solutions to this problem is the use of renewable, nuclear energy sources for electricity production. Nuclear energy is either produced by fission or fusion reactions. In nuclear fission, a massive radioactive element such as Uranium-235 is split into two lighter parts and releases a large amount of energy. The nuclear fission power plants are free from greenhouse gases emission and are already present in many countries for electricity production. However, the safe handling and storage of long-lived radioactive waste materials, health hazards problems in case of nuclear accidents, nuclear proliferation for illegal activities, limited uranium supplies and a considerable amount of capital cost to build these plants are still a big concern. Nuclear fusion energy, which consists in fusing two light nuclei into a heavier nucleus, 1.2. Basis of thermonuclear Fusion is considered as a viable option for a clean, vast, dense and safe source of energy and could play a decisive role in the long-term solution. However, scientific and technological challenges are hindering the experimental realisation of this technology for more than half a century. Consequently, a large portion of research in this field is mainly devoted to overcoming these scientific and technological challenges to build an experimental fusion device that can be used to demonstrate the scientific feasibility of nuclear fusion for electricity production. This thesis addresses some critical issues related to the understanding of turbulent transport, which limits the performance in the present as well as in future fusion devices. The fundamental concepts related to the fusion which are necessary to understand this thesis are introduced in the remainder of this chapter. The emphasis is placed on physical descriptions over detailed mathematical formalism (which is described in later chapters).

Basis of thermonuclear Fusion

One of the crucial applications of plasma physics is in controlled thermonuclear fusion to produce energy. Nuclear fusion is also the source of energy production in stars, including the Sun. It is a process where two light nuclei fuse together to form a heavier nucleus and subatomic particles (neutron or proton). The resulting heavier nuclei have slightly less mass than the fusing elements and this mass difference (∆m) also called mass defect in the process appears as energy (∆E) according to famous Einstein's relation

∆E = ∆mc 2 , (1.1)
where c is the speed of light. The strong nuclear interaction gives the physical energy source of nuclear fusion and the released energy is directly related to the nuclear binding energy. The binding energy is the amount of energy that would be released when individual protons and neutrons combine into a single nucleus or the minimum amount of energy that is required to break up its nucleus into individual constituents. Dividing the binding energy by its mass number A = Z + N , where Z and N being the atomic and neutrons number in the nucleus, binding energy per nucleon is obtained, which is shown in figure 1.1 for different atomic elements. Heavy atom, such as Uranium release energy through nuclear fission by splitting into lighter nuclei, whereas lighter nuclei release energy by fusing together. As illustrated in figure 1.1, the binding energy per nucleon for Helium-4 ( 4 He) fusion is 7.07 MeV/nucleon and for nuclear fission of Uranium-235 is 7.59 MeV/nucleon. A fusion process generating 4 He nuclei yields one of the most abundant energy gains possible via fusion.

To induce a fusion reaction, the two light nuclei need to be brought within the range of the short attractive nuclear force. In order to reach this distance, the fusing nuclei must have sufficiently high kinetic energy to overcome the electrostatic Coulomb repulsion between the two positively charged nuclei. This is achieved by heating the particles to a very high temperature (of the order of 100 million-degree Celsius), such that the thermal velocities of the particles are high enough. At these large temperatures, charged particles are fully ionised and form a new state of matter called the plasma state. Plasmas exhibit a wide variety of physical phenomena involving electromagnetic fluid and kinetic effects. 

Plasma: the fourth state of matter

The basic description of plasmas can be found in any standard textbook. In [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF], a plasma is defined as " a quasi-neutral gas of charged and neutral particles which exhibit collective behaviours". Here quasi-neutral refers to a condition in which plasma is considered neutral enough that n e n i approximately holds but not neutral enough that all electromagnetic forces vanish. In a plasma, the potential energy of a particle due to its nearest neighbours is much smaller than its kinetic energy. The plasma state is also known as the fourth state of matter. However, not every ionised gas can be called as plasma. For a gas to qualify as a plasma requires that the number of particles inside a sphere (called Debye sphere) with radius λ D must be sufficiently larger than one, i.e.

Λ ≡ n o λ 3 D 1, (1.2)
where λ D = (T /4πn 0 e 2 ) is called Debye length, which measures the shielding distance or thickness of the sheath. Here n 0 is the density of each species, T is the temperature in eV units, and e is the charge of an electron. Λ is called the plasma parameter.

Reaction rate and fusion cross-section

The fusion cross-section (σ), is the probability of obtaining a fusion reaction as a function of the relative velocity of the reactant nuclei. The reaction rate is the number of fusion reactions between two species of density n 1 and n 2 , taking place in 1.3. Plasma: the fourth state of matter the plasma per unit volume per unit time. Thus,

R = n 1 n 2 σv, (1.3)
with v is the relative velocity of the colliding particles. In a plasma, all particles do not have the same velocity and it is relevant to integrate the reaction rate over the velocity distribution to obtain the average number of reactions per unit volume and time R = n 1 n 2 σv .

(1.4)

Here, σv is the reaction parameter and represents an average over a Maxwellian velocity distribution function. For a given total density, the reaction rate is maximum when n 1 = n 2 . The reaction parameter σv for various fusion reactions as function of temperature is shown in figure 1.2. As seen, the DT -reaction has the highest reaction parameter as compared to other fusion reactions at low temperature with a broad maximum for ion temperatures T i between 20 keV1 and 100 keV. Below an ion temperature of 10 keV, there is a steep decrease in the reaction parameter, and the fusion plasma therefore needs to have a minimum temperature of 10 keV.

Fusion reactions

The most feasible thermonuclear reaction on Earth is the fusion of two hydrogen isotopes deuterium ( 2 1 D ) and tritium ( 3 1 T ), into Helium ( 4 2 He) and a neutron, see figure 1.3, because it has a high fusion cross-section at comparatively lower temperatures, 10-20 keV, as compared to other reactions of interest. The broad fusion cross-section of the D-T reaction arises due to the existence of a resonance between the kinetic energy and excited state of the 5 2 He nucleus. where n represents a neutron that carries 14.1 MeV (80% ) of the released energy and helium nucleus that gets 3.5 MeV (20% ) of the released energy. The released energy is available as the kinetic energy of the products. The cross-section of this reaction reaches a maximum value of σ DT,max = 4.9 × 10 -28 m 2 at a collision energy of 64 keV. Nuclear fusion can be achieved by confining a sufficiently hot D-T plasma and heating the mixture until the thermal velocity of the particles is sufficiently high to overcome the electrostatic repulsion. This process is referred to as thermonuclear fusion. The reactions come mainly from the tail of the Maxwellian velocity distribution. Thus, the actual temperature needed for the D-T thermonuclear fusion reaction is lower than the temperature corresponding to the maximum cross-section for the D-T reaction. (1.6)

The optimum energy required to initiate D-D reactions is higher than the optimum for D-T results. The second and third equations of 1.6 do not produce neutrons but charged particles. Therefore, the activation of the reactor wall is reduced, a neutron moderator is not required and the fusion products can be confined with the magnetic field. However, the second equation above produces tritium, so the D-D reaction will not be ultimately tritium free and D-T reactions will also occur.

The deuterium is very abundant, cheaply available and can be extracted naturally from ocean water. The available quantity of deuterium in seawater can provide 10 11 times more electrical energy than the annual world energy consumption. The tritium has a short half-life of 12 years and is practically non-existent in nature.

1.3. Plasma: the fourth state of matter Tritium, however, can be bred from Lithium by using the neutrons released in the fusion reaction. The Lithium is present naturally with two isotopes with a natural abundance of 7.4% for 6 3 Li and 92.6% for 7 3 Li. To capture a fast neutron (14.07 MeV) produced by the D -T reaction, the 7 3 Li can be used 

Conditions for a fusion reaction: Lawson criteria

As discussed above, very high temperatures are required in order to initiate fusion reactions, but to maintain these high temperatures, the various energy losses present in the system need to be compensated by external heating. Therefore, for a net energy gain, large temperature and fusion reaction rate alone are not sufficient, the energy losses need to be sufficiently small so that external input power supplied to maintain the plasma at the desired temperature remains less than the fusion output power. This is usually expressed by the energy confinement time (τ e ), which characterises the time required for the stored energy to leave the plasma, once all the external heating systems are switched off. It describes the ratio of total plasma energy to power losses:

τ e = W p P h -dW p /dt , ( 1.9) 
where W p is the total internal energy of plasma and P h is the net external heating power. The fusion power gain or the Q factor defined as the ratio of the fusion power output to the auxiliary input heating supplied from the outside to sustain the reaction in steady-state: Q = P output /P input = P fusion /P th . Thus, the minimum criterion for a successful fusion reactor is Q = 1. The condition Q = 1 is called the break-even condition, which implies output fusion power equals to the auxiliary input power. On the other hand, a self-sustaining fusion reaction to achieve ignition condition is possible when P h → 0 or Q → ∞, which means all energy losses of the plasma are balanced by the α-particles2 produced in a D-T reaction and no external heating power is required. This criterion is known as the famous Lawson's triple product [START_REF] Lawson | Some criteria for a power producing thermonuclear reactor[END_REF]. For a 50%-50% mix of deuterium and tritium, this condition reads nT τ e ≥ 3.0 × 10 21 m -2 keV s.

(1.10)

where n is the electron density of a pure D-T 50/50 mix.

This condition brings out the minimum requirements for the plasma density, energy confinement time and temperature to achieve ignition. For example, the ignition condition would be reached for n = 10 20 m -3 , T = 10 keV and τ E = 3 s. Therefore, great efforts have been devoted by the scientific community to maximise this product.

There are two main plasma confinement approaches subject to present-day research to achieve ignition condition on Earth. The first one consists of maximising the ion density (of the order of 10 31 m -3 ) with a decrease of energy confinement time (τ E ∼ 10 -11 s) and is referred to as inertial confinement fusion (ICF). In this scheme, a solid DT pellet with a small diameter of about 1 mm is compressed and heated using a laser or a beam of heavy ions. The two largest experimental facilities based on ICF are the National Ignition Facility (NIF) [5] in the US and the Laser Megajoule [6] in France. The other scheme is the magnetic confinement fusion in which magnetic fields confine the plasma. In this case, the ion density is much smaller (of the order of 10 20 m -3 ), but the energy confinement time is considerably larger (of the order of a s). In this thesis, interest has been focused on the magnetic confinement fusion scheme.

Brief historical review of nuclear fusion

Daniel Clery has well described the past 70 years of nuclear fusion history in his book "A piece of the Sun" [START_REF] Clery | A Piece of the sun: the quest for fusion energy[END_REF]. The concept of nuclear fusion was proposed for the first time in the 1920 s when the British astrophysicist Arthur Eddington suggested that the fusion of hydrogen nuclei into Helium could be the origin of energy production in stars. A significant breakthrough in this direction came in the 1930 s when Hans Bethe discovered that nuclear fusion is possible and is the source of energy in the Sun. In the beginning of 1940 s, researchers started looking at possibilities to control thermonuclear reactions to produce energy on the Earth. The race of nuclear weapons during the Second World War increased the interest in the nuclear fusion manifold. The first thermonuclear weapon, called H-bomb, was tested in 1952. The use of nuclear fusion to produce energy is a more demanding task because it has to be controlled a plasma reaching temperatures of hundreds of millions of degrees contained in a reactor. A significant breakthrough in this direction came in 1950 when soviet scientists Andrei Sakharov and Igor Tamm suggested a way to contain the hot plasma away from the chamber walls by the use of magnetic fields. They proposed a promising design of a magnetic confinement fusion device in the Kurchatov Institute in Moscow; this doughnut-shaped device was called a tokamak. The idea of this device was to confine the plasma in a toroidal chamber with the help of a toroidal magnetic field created by external field coils and to induce a toroidal current within the plasma to have a resulting helical magnetic field. Following the concept of a tokamak, Lyman Spitzer proposed a new magnetic confinement concept in 1951 for the confinement of plasma by the pinch effect, and later device called a Stellarator. By the mid-50s, several magnetic confinement devices were operating in the USA, United Kingdom, USSR, France and Japan. The development of fusion science was strongly impacted by the cold war and lack of knowledge sharing between the world countries until 1958 when the international IAEA meeting was held in Geneva. The idea of Stellarator dominated the fusion research throughout the 1950 and 1960 until Soviet scientist Lev Artsimovich ousted it by the more efficient tokamak concept. In 1969, he made an incredible announcement that experimental research on tokamak systems had reached a temperature of 1 keV (more than 10 million degrees Celsius) for the first time. This claim was later verified by UK scientists who visited their Soviets counterparts in Moscow. By the 1970s, the scientific community realised that attaining fusion energy would be one of science's greatest challenge and would require collaboration with other people. In this direction, European countries came together and proposed design work on the Joint European Torus (JET), in 1973. The JET tokamak (shown in the left of figure 1.4), built-in Culham in Oxford, UK, is currently the world's biggest tokamak, and is an example of international collaboration. In 1997, JET set the current world record for fusion output of 16 MW from an input of 25 MW of heating power and with a 50 -50 mix fuel of deuterium and tritium [START_REF] Keilhacker | Fusion physics progress on jet[END_REF]. The obtained fusion gain factor was Q = 0.63.

The next milestone is to achieve a break-even condition, where the produced energy is equal to the external heating supplied. To demonstrate the scientific and technical viability of nuclear fusion energy for peaceful use, the US president Ronald Reagan and General Secretary Mikhail Gorbachev of the former Soviet Union signed an agreement in November 1985 to construct a large-scale tokamak capable of producing net fusion power. This project, known as ITER 3 , was approved in 2006 and is currently under construction in the south of France. It will be the world's largest tokamak with a plasma volume 8 times larger than JET (shown on the right of figure 1.4). With the goal to demonstrate the feasibility of fusion as an energy source on the scale needed for a commercial power plant, ITER is designed to achieve Q = 10. It aims for the time, to produce more sustained fusion power than the input power, i.e., it will produce 500M W of fusion power for an injected power of 50M W during 400 to 600s [START_REF]What will ITER do?[END_REF]. Over the past 70 years, significant research on magnetic confinement lead to various tokamaks designs with different geometries, magnetic properties and heating and diagnostic systems. Considerable progress has been made during this period in the achievement of high fusion triple products, as shown in figure 1.5, in controlling the main plasma instabilities and in increasing the heating efficiency. However, in the presence of these extreme temperature conditions, strong gradients inevitably lead to the development of various instabilities which drive turbulent transport in the plasma and limit confinement. Understanding of the plasma instabilities that can give rise to turbulence in the central part, r/a < 0.3, of ITER plasmas is one of the motivations of this work.

Tokamaks and magnetic confinement 1.4.1 Introduction to tokamaks

In the last section, it has been seen that the plasma needs to be confined for a sufficiently long time to achieve ignition. The main difficulty lies in insulating the plasma from the external walls and maintain it at a high temperature. Since the external electromagnetic force influences the dynamics of charged particles, the present magnetic confinement experiments rely on strong magnetic fields to achieve this goal. Such a strong magnetic field confines the plasma by keeping the charged particle moving in a helical trajectory around the field lines as a result of the Lorentz force, F = q(E+v×B), where q is the charge of the particle, v is its velocity and E, B are the electric and magnetic fields respectively. The extent of the particle trajectory in the direction perpendicular to the magnetic field is called the Larmor radius, and defined as ρ s = mv ⊥ /qB, where v ⊥ is the component of velocity perpendicular to the magnetic field B and s represents the considered species of mass m and charge q.

The two main classes of magnetic confinement configurations are:

1.4. Tokamaks and magnetic confinement linear configurations: where the magnetic field lines are open and the plasma can leave the confinement zone at either end of the system (for example magnetic mirror system); toroidal systems: where the magnetic field lines are endless, i.e., completely contained within a toroidal confinement region (for example tokamak). In open magnetic field configurations, plasma is lost at both ends due to very large parallel transport in the magnetic field line direction. These end losses can be avoided by closing the magnetic field lines into circles as in a torus. However, since

∇ × B = µ 0 j c ⇒ 2πRB = µ 0 I c ⇒ B = µ 0 I c /2πR
, where j c and I c are the current density and current flowing in the toroidal field coils. A purely toroidal field varies as B ∼ 1/R (with R being the major radial coordinate of the torus). This implies a radial gradient in the magnetic field with increasing field strength towards the axis of the torus. Magnetic field gradients and the curvature of the field lines lead to an extra drift velocity of ions and electrons in opposite vertical directions (curvature and ∇B-drift). These drifts in turn lead to a separation of charges and to the build-up of an electric field. The resulting electric field is transverse to the toroidal magnetic field and causes a loss of the plasma due to a radial E × B drift. This outward drift motion can be avoided by making the field lines wind up over a toroidal surface, which is called a magnetic surface. This is produced by an additional poloidal field B p . The particles which follow the magnetic field lines drift alternatively inward and outward depending on the position of the field line with respect to the midplane. It leads to a cancellation of the vertical drifts on average. Therefore, a combination of toroidal and poloidal field can confine the plasma. The poloidal magnetic field can be produced either by external coils such as in Stellarator or by driving plasma current in toroidal direction, as in the tokamak.

Figure 1.6 shows a schematic of a tokamak configuration with its main elements. The tokamak is the acronym for the Russian word "Toroidalnaya Kamera Magnitnymi Katushkami", meaning toroidal chamber with magnetic coils. It is a toroidal plasma confinement system in which toroidal field coils generate a strong toroidal magnetic field (B ϕ ). A poloidal field (B θ ) is produced by a plasma current (I p ) flowing in the toroidal direction. In most tokamaks, the toroidal plasma current is driven inductively by a transformer, where the central solenoid acts as the primary winding while the plasma acts as the secondary winding of the transformer. This inductive drive inherently imposes a pulsed mode operation: the current cannot be maintained indefinitely. To achieve a steady-state operation, the plasma current must be driven non-inductively. The self-generated bootstrap current and auxiliary current drive system can provide non-inductive currents. The combined effect of toroidal and poloidal magnetic fields results in helical field lines spanning the closed nested toroidal surfaces. These nested surfaces of constant magnetic flux are called magnetic surfaces or flux surfaces as described in figure 1.7. Such a toroidal geometry under consideration along with the plasma pressure results in a hoop force trying to expand the plasma torus radially outward. To balance this force in order to achieve radial equilibrium, a vertical magnetic field is applied (B v ), which gives an inward radial force through interaction with toroidal plasma current. Moreover, to control the plasma shape as well as plasma position, tokamaks are equipped with additional poloidal field (PF) coils.

The helical magnetic field in an axi-symmetric tokamak is usually expressed as:

B = I(ψ)∇ϕ + ∇ψ × ∇ϕ, (1.11)
where ψ is the poloidal magnetic flux normalised to 2π, ϕ is the toroidal angle and I(ψ) = RB ϕ is a flux function, i.e. a quantity constant on a flux surface. In equation 1.11, the first term on the right-hand side represents the toroidal magnetic field component B ϕ , and the second term corresponds to the poloidal magnetic field B θ .

In equilibrium, the plasma pressure ∇p and the Lorentz (J × B) forces balance each other:

∇p = J × B, (1.12)
where p is the pressure and J is the current density. From the above equation 1.12 J • ∇p = 0, and B • ∇p = 0, (1. [START_REF]Magnetic confinement[END_REF] which shows that the J and B are perpendicular to the pressure gradient ∇p and must lie on surfaces of constant pressure. Flux surfaces are commonly labelled with the poloidal or toroidal magnetic flux. In the limit of large aspect ratio, = a/R << 1, and of circular and concentric flux surfaces, using the cylindrical coordinates (r, θ, ϕ)

as represented in the figure 1.7, the toroidal magnetic field can be simply written as:

B ϕ = B 0 R 0 R 0 + rcosθ ∼ B 0 (1 - r R 0 cosθ), (1.14)
with B = B ϕ e ϕ + B θ e θ and r is the minor radius of flux surface, B 0 is the reference magnetic field on the magnetic axis and R 0 is the major radius of the plasma. The helicity of magnetic field lines on a given flux surface is described by the so called safety factor q(ψ), which gives the number of toroidal turns for each poloidal turn [START_REF] Wesson | [END_REF] and is defined as:

q(ψ) = 1 2π 2π 0 B.∇ϕ B.∇θ dθ (1.15)
where θ is the poloidal angle. The safety factor profile is closely related to the current profile which determines B θ (ψ). For a large aspect-ratio tokamak of circular and concentric flux surfaces, the safety factor can be expressed as:

q(r) = rB ϕ R 0 B θ (1.16)
For a rational value of the safety factor, q = m/n, with m and n being integers, the field lines are closed, and they return to their initial position after m toroidal and n poloidal rotations around the torus. These particular surfaces are called resonant or rational magnetic surfaces and play an essential role in determining the stability of the plasma. The radial derivative of the safety factor is described by the magnetic shear ŝ(r) = (r/q)dq/dr. For a typical plasma parameters ŝ > 0, with q ∼ 1 in the plasma core and increases to q ∼ 3 -5 at the last closed flux surface.

Another important parameter that characterises the stability of magnetically confined plasmas is the β factor, defined as the ratio of the total kinetic (plasma) pressure to the magnetic pressure

β = < p > B 2 0 /2µ 0 , (1.17)
where < p >=< nT > is the volume average plasma pressure, n and T being the plasma density and temperature, and B 0 is the toroidal magnetic field at the plasma centre. The typical values of plasma beta in a tokamak is only a few percent β ∼ 1 -5%, though in spherical tokamaks it can exceed 30%. The maximum achievable beta in plasma is limited due to various MHD instabilities and technological constraints. Two main types of flux surfaces geometries are used to separate the confined inner plasma region from the vacuum vessel wall of the tokamak: the limiter configuration and the divertor configuration as illustrated by figure 1.8. The separatrix separates the inner confined region from the region of open field lines. The plasma region outside the Last Closed Flux Surface (LCFS) and before the vessel wall is known as the Scrape-Off-Layer (SOL). In the limiter plasma configuration, the LCFS connects to the wall and therefore the plasma core is in direct exposure to the first wall. This leads to particle fluxes on the first wall that can damage the wall and generate impurities. These impurities can enter directly into the core and affect the fusion performance by fuel dilution and radiative cooling. This issue can be partially alleviated by the divertor configuration that allows the separation of the confined plasma from the main wall. In this configuration, the magnetic field structure is modified to form a null (or X-point) of the poloidal field in the plasma, 1.4. Tokamaks and magnetic confinement that improves the screening of the confined plasma from the vessel wall. The central region of fusion plasma reaches temperatures of several keV while the divertor plasma has lower temperatures (1-100eV ). Thanks to the divertor configuration, the high core impurity contamination was reduced significantly, which allowed the tokamak operation to come back to metallic plasma-facing components. Existing fusion reactor designs are based on the divertor concept. The divertors of many operating tokamaks such as JET, ASDEX-Upgrade and WEST have replaced their carbon plasma-facing components by tungsten (W). W is chosen due to its high melting temperature, low erosion and low tritium retention.

As discussed earlier, a very high temperature is required for a fusion reaction to occur. Due to the finite plasma resistivity (η), the plasma current already provides Ohmic heating, P OH ∝ ηJ 2 . However, the Ohmic heating is limited at a higher temperature because the plasma resistivity scales as η ∝ T -3/2 e , with T e is the electron temperature. Therefore, several other auxiliary heating systems such as neutral beam injection (NBI) heating, electron cyclotron resonance heating (ECRH), ion cyclotron resonance heating (ICRH) and lower hybrid heating (LH) are employed to heat the plasma and achieve the desired fusion temperatures. NBI, LH, and ECRH can also be used to inject additional current. The use of these auxiliary heating systems has made it possible to reach new plasma regimes. Above a certain threshold in the heating power, a transition to a high confinement configuration is reached, called the H-mode [START_REF] Ryter | Hmode power threshold and transition in ASDEX upgrade[END_REF]. An edge transport barrier (ETB) is created due to a reduction in the turbulence level, decreasing the loss of particles and energy from the core, and thus steepening the gradients of density and temperatures as seen in figure 1.9, called a pedestal [START_REF] Hubbard | Edge energy transport barrier and turbulence in the i-mode regime on alcator c-mod[END_REF]. The plasma pressure and energy confinement time are much higher in H-mode than in L-mode (L and H stand for low and high confinement regime, respectively). However, the formation of H-modes also leads to magnetohydrodynamics (MHD) instabilities called Edge Localised Modes (ELMs) [START_REF] Zohm | Edge localized modes (ELMs)[END_REF]) that can release a significant amount of plasma energy in short bursts.

Transport in plasma: constraint to tokamak performance

The achievement of fusion requires good confinement, which is mainly limited by the cross-field transport of heat and particles from the system, as well as radiation. When there is no instability present in the system, the transport is described by neoclassical transport due to Coulomb collisions. However, experimentally the energy transport is higher than predicted by neoclassical theory. The excess of transport (also called anomalous) is due to turbulence caused by various instabilities present in the plasma.

In the plasma core, the energy, density and momentum follow local transport equations. The transport equation for particles and heat [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF] are:

∂n ∂t + ∇.Γ = S Γ , (1.18) 3nk B 2 ∂T ∂t + ∇.Q = S Q , (1.19)
where n is the particle density (m -3 ), Γ the particle flux (particles/m 2 s) and the particle source is S Γ (m -3 s -1 ), Q the heat flux (W m -2 ) and S Q is the heat source (W m -3 ).

In equation 1.18, the particle flux is often decomposed as a sum of two contributions, one proportional to the density gradients and one proportional to the density itself:

Γ = -D∇n + V n (1.20)
The diffusion and convection coefficients, D = D neo + D turb and V = V neo + V turb , are composed of a neoclassical and turbulent parts. A brief overview of neoclassical and turbulent transport is provided below.

Neoclassical transport

Classical transport describes the collisional transport in cylindrical geometry. This description is not appropriate for describing particle trajectories in a toroidal geometry where some particles are trapped on the outboard due to the non-uniform magnetic field. The collisional transport in a toroidal geometry is known as neoclassical transport [START_REF] Hinton | Theory of plasma transport in toroidal confinement systems[END_REF]. The neoclassical theory describes how energy, particle and momentum move within and across the flux surfaces due to Coulomb collisions and drifts between plasma species in a toroidal magnetic configuration.

To model neoclassical transport, there are several codes available such as NCLASS [START_REF] Houlberg | Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio[END_REF], NEO [START_REF] Belli | Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics[END_REF] with different level of complexity. NCLASS [START_REF] Houlberg | Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio[END_REF] is a multi-species fluid code with a simplified collision operator and does not account for the effects of toroidal rotation. The Hirschman-Sigmar collision operator used in this code is based on pitch angle scattering. NEO [START_REF] Belli | Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics[END_REF] is a first-principle calculation based model, which solves the drift kinetic equation. More details about neoclassical transport can be found in Helander's book [START_REF] Helander | Collisional Transport in Magnetized Plasmas[END_REF].

Turbulent transport

Turbulent transport results from small-scale fluctuations induced by various microinstabilities in a tokamak. Instabilities are primarily driven by different free energy sources such as the gradient of density or temperature present in any confinement device [START_REF] Horton | Drift waves and transport[END_REF]. When the phase difference between density and potential perturbations is finite, it leads to radial particle transport. The main plasma instabilities causing the turbulence transport in tokamaks are briefly reviewed in chapter 2. Understanding turbulence transport is considered as one of the most crucial issues in current devices as well as future fusion reactors such as in ITER. The understanding of turbulent transport in the central part of ITER plasmas close to the magnetic axis, ρ < 0.3 (where ρ is the normalised toroidal flux coordinate), is one of the main motivations of this thesis.

The choice of tungsten as a plasma-facing components

As discussed briefly in section 1.4, the first wall of magnetic confinement devices were initially made of high-Z materials in the limiter configuration. However, the significant radiation losses in the core induced by the impurity influx caused severe restrictions to plasma operation, and low-Z materials such as Carbon (C) replaced the metallic plasma-facing components. The use of these low-Z materials lead to an improved plasma performance by reducing central radiative losses. However, the use of low-Z materials has other serious issues such as large erosion rates due to low sputtering thresholds (figure 1.10), which limits the lifetime of the first wall materials. Carbon also has high tritium retention which is a problem for a tokamak operating with D-T, since tritium is radioactive and the amount of tritium circulating in a reactor is subject to strict regulations. The divertor configuration discussed earlier limits the erosion rate by allowing the plasma to be cooled down before reaching the target. Therefore, metallic materials became again a promising candidate for the walls. W is presently used as plasma-facing components in various tokamak devices such as JET (Joint European Torus) ITER-like wall [START_REF] Matthews | JET ITER-like wall-overview and experimental programme[END_REF], ASDEX Upgrade (AUG) [START_REF] Neu | Plasma wall interaction and its implication in an all tungsten divertor tokamak[END_REF] and in the ITER-like divertor of WEST [START_REF] Bucalossi | The west project: Testing iter divertor high heat flux component technology in a steady state tokamak environment[END_REF]. The future fusion devices such as ITER will also use W as plasma-facing components for the divertor. In contrast, Beryllium will be used for the first wall because the heat fluxes on these areas are lower. W is considered as a promising material for ITER divertor because it has high melting temperatures (∼ 3400 • C) hence a capacity to sustain large heat loads, high sputtering threshold (see figure 1.10), low erosion rate and low tritium retention. The price to pay for these properties is that the issue of radiation power losses in the plasma core becomes crucial. 

The W core accumulation issue: line radiation

Tungsten (W) is a heavy element with an atomic charge of Z = 74 and mass A = 183.84. W atoms are not fully ionised even at ITER fusion relevant temperatures. Partially ionised W radiates mainly through line emission and recombination, which depends on the electron and W density and is characterised by a cooling factor that is a function of the W charge state and electron temperature. The calculation of the cooling factor is based on the atomic data and the contribution of various radiative and collisional processes [START_REF] Pütterich | Calculation and experimental test of the cooling factor of tungsten[END_REF].

When the concentration of W exceeds a certain limit in the core of the plasma, radiative power losses cool down the plasma and the central plasma temperature drops, which limits the plasma operation and strongly reduces fusion performance. Figure 1.11 shows the impact of the W impurity concentration on the ignition conditions n e T τ E [START_REF] Pütterich | Calculation and experimental test of the cooling factor of tungsten[END_REF]. A black line shows the ideal burn condition with no fuel dilution and radiation due to impurities. The operation domain significantly reduces when the W concentration increases. It has been found that W develops very peaked core density profiles in some conditions in JET [START_REF] Joffrin | First scenario development with the JET new ITER-like wall[END_REF][START_REF] Angioni | Tungsten transport in JET h-mode plasmas in hybrid scenario, experimental observations and modelling[END_REF] and ASDEX-Upgrade [START_REF] Neu | Impurity behaviour in the ASDEX upgrade divertor tokamak with large area tungsten walls[END_REF]. Luckily, it has been demonstrated that W accumulation in the central region can be controlled by large gas injection which decreases the temperature in the SOL and lowers W sputtering at the divertor and other methods such as core auxiliary heating with ICRH or ECRH [START_REF] Neu | Tungsten as plasma-facing material in asdex upgrade[END_REF]. In ITER, the accumulation of W has to be avoided to keep concentrations in the plasma core less than n W ∼ 10 -5 n e and sustain high Q plasmas [START_REF] Neu | Tungsten as plasma-facing material in asdex upgrade[END_REF][START_REF] Kallenbach | Tokamak operation with high-z plasma facing components[END_REF]. The prediction and understanding of tungsten transport in the core of ITER plasmas is crucial and is the motivation of this thesis. 

Tungsten impurity transport

This section introduces the main characteristic of W transport. The transport of W impurity can be described by the continuity equation, Eq. 1.18. The particle flux in this equation can be computed by using fluid, drift-kinetic or gyrokinetic models describing neoclassical and turbulent transport.

Taking the volume integral of the continuity equation 1.18, the radial transport of impurity is described as:

∂ ∂t n W dV + V Γ.∇ρ = S W dV, ( 1.21) 
where V = ∂V ∂ρ , . is the flux surface average defined as A = 1 V AdS dr |∇r| (with dS the surface element) and V is the plasma volume enclosed by the flux surface at radial location ρ. The total impurity flux in equation 1.21 at a position ρ is the sum of neoclassical and turbulent contributions:

Γ ρ W = Γ.∇ρ = Γ neo W + Γ turb W , (1.22)
From equation 1.20, these fluxes can be decomposed into diffusive and convective part:

Γ ρ W = -(D neo + D turb )∇n W + (V neo + V tur )n W , (1.23)
with D the diffusion coefficient and V the pinch (convective) velocity. When W is in the Pfirsch-Schlüter regime and main ions are in the banana regime, one has

V neo = ZD neo - R L ni + 0.5 R L T i P model A -0.33P model B f c R L T i , (1.24)
where two geometrical coefficients P model A and P model A are defined as

P model A = 1 2ε 2 B 2 n W   n W B 2 - B 2 n W -1   , P model B = 1 2ε 2 B 2 n W   n W B 2 - B 2 n W -1   ,
and other symbols have their usual meaning as defined in reference [START_REF] Angioni | The impact of poloidal asymmetries on tungsten transport in the core of jet h-mode plasmas[END_REF]. In the limit of no poloidal asymmetry, P A = 1 and P B = 0. A large diffusion tends to flatten the profile, while the pinch velocity tends to peak (if directed inward V < 0) or flatten the W profiles (if directed outward V > 0).

Several theoretical and experimental studies have been carried out to characterise the diffusive and convective parts of the impurity flux whether it is neoclassical or turbulent

The magnitude of neoclassical and turbulent W impurity transport is illustrated for a JET-ILW plasma in figure 1.12 taken from reference [START_REF] Angioni | The impact of poloidal asymmetries on tungsten transport in the core of jet h-mode plasmas[END_REF]. Here, the red curve shows the turbulent and blue the neoclassical contributions simulated using the GKW and NEO codes for a JET-ILW hybrid pulse. The full and open symbols show the curves respectively with and without poloidal asymmetry effects.

For the diffusive part, neoclassical transport dominates in the central region, whereas turbulent transport dominates in the outer half. The neoclassical transport dominates the convective part of the W transport. In addition, neoclassical convection changes sign in the inner core and at the edge (negative), which leads to inward convection of W. Therefore, to predict W transport, both turbulent and neoclassical transport need to be modelled. 1.6. Thesis Motivation

Thesis Motivation

As discussed earlier, the understanding of impurity transport is crucial for the control of high-Z accumulation such as W in the inner core of present as well as future devices such as ITER. Present studies indicate that the transport of W in the central part of ITER is expected to be determined by neoclassical and turbulent processes, which strongly depend on the gradients of main ion density and temperature, as well as on rotation profiles (as discussed above in section 1.5.2). Therefore, the prediction of the transport processes that determine the density and temperature gradients of the main ions in the central core region of ITER plasmas is of crucial importance to determine the core behaviour of W in this region. Understanding of turbulent transport in the central part, ρ < 0.3, is crucial to this respect because this is the region where neoclassical transport becomes dominant and could lead to central W accumulation. Predicting core transport in the region ρ < 0.3 is also very important for the fusion reaction rate. It has, however, not been explored extensively so far, and previous studies mostly focused on the edge and core regions, ρ > 0.3.

In the very central region close to the magnetic axis, ρ < 0.3, gradients of density and temperature gets smaller and the level of turbulence may be reduced. In this region, some key questions are, is the plasma linearly unstable? If yes, is turbulent diffusion sufficient to offset the neoclassical pinch of W, up to which radius and how sensitive this is to the background gradients? An auxiliary question is whether the quasilinear (QL) approximation is valid in the inner core and up to which degree standard reduced quasilinear models such as QuaLiKiz (QuasiLinear gyroKinetic) [START_REF] Bourdelle | A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas[END_REF] or TGLF (trapped gyro-Landau-fluid) [START_REF] Staebler | A theory-based transport model with comprehensive physics[END_REF] can be used in the central zone.

This thesis aims to answer these questions and to advance our understandings of the dominant transport mechanism in the very central region close to the magnetic axis by first validating the available transport models that are applied to ITER with measurements in existing tokamak plasmas and then apply these models to evaluate turbulent transport in ITER. The existing experimental JET high-β MHD-free hybrid H-mode discharge #75225 has been selected for the first objective to investigate the characteristics of core micro-instabilities and to test the quasilinear approximation in the inner core. These results are compared with the radial region, ρ ∼ 0.3, where much of work has already been done previously [START_REF] Moradi | Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall[END_REF][START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF]. The MHD effects are not present in the selected hybrid (no sawteeth, q 0 > 1) discharge, though they can also be very important in this plasma region, particularly in normal (baseline) scenarios. MHD activity (sawteeth, saturated kink modes deforming the magnetic flux surfaces, or NTM) can also have a significant impact on the plasma behaviour in the central region [START_REF] Nave | and contributors to the JET-EFDA Workprogramme. Role of sawtooth in avoiding impurity accumulation and maintaining good confinement in JET radiative mantle discharges[END_REF][START_REF] Putterich | Observations on the w-transport in the core plasma of JET and ASDEX upgrade[END_REF][START_REF] Sertoli | Interplay between central ECRH and saturated (m,n) = (1, 1) MHD activity in mitigating tungsten accumulation at ASDEX upgrade[END_REF].

Thesis Outline

The rest of the thesis is organised as follow. In chapter 2, various plasma instabilities, which are responsible for turbulent transport of energy and particles in a tokamak are introduced. The two main plasma approaches to describe these instabilities, the fluid and the kinetic ones are briefly described. An overview of the gyrokinetic code GKW used to perform numerical simulations is presented in chapter 3. Here, the basic gyrokinetic equations solved by the code and normalisations of various parameters given as an input in the code are introduced.

Chapter 4 presents the linear simulation results of the JET hybrid H-mode plasma discharge 75225 inside ρ = 0.3. Dependencies of instabilities to various plasma parameters are investigated in the inner core of this selected discharge.

The non-linear simulation results are given in chapter 5. Here, a test of quasilinear approximation in the inner core region at ρ = 0.15 is presented. Various standard quasilinear models are tested against the non-linear results.

Finally, the conclusions and future perspectives of this thesis work are discussed in chapter 6.

2

Tokamak plasma instabilities

This chapter briefly describes the main plasma instabilities that can give rise to anomalous transport in a magnetically confined plasma. It focuses on the two main classes of instabilities: interchange and drift-waves, which include most of the instabilities found in tokamaks.

Overview of tokamak micro-turbulence

Particle motion and drift velocities in magnetised plasma

Cyclotron motion and guiding centre

The equation of motion of a charged particle "s" moving in an electric E and magnetic B field is:

m s dv s dt = e s (E + v s × B). (2.1)
where m s and e s are respectively the mass and the charge of the particle "s", and v s is its velocity.

For a homogeneous magnetic field directed in the z-direction and with zero electric field, the equation of motion becomes

dv s dt = e s B m s (v s × b), (2.2 
)

with b = B/B.
The projection of equation 2.2 on (x,y,z) coordinates leads to:

dv x dt = ω c,s v y , dv y dt = -ω c,s v x , dv z dt = 0. (2.
3)

The solution of the above equations describes a circular orbital motion around the magnetic field lines with angular frequency ω c . This motion is called Larmor motion. The angular frequency ω c,s = e s B/m s is called cyclotron (angular) frequency. The typical cyclotron frequency for a Deuterium in a magnetic field of B = 5 T is about 7.5 MHz.

Solving further above equations 2.3 by simple substitutions and separation of variable and using v x = dx/dt and v y = dy/dt, the solution in x and y directions becomes:

x = -ρ s cos(ω c,s t), y = ρ s sin(ω c,s t) (2.4)
where ρ s = msvs esB is called the Larmor radius, and the center of gyration of the particle (Larmor motion) is called the guiding-center. For a Deuterium with B = 5 T and v ⊥ = 7 × 10 5 m/s, the Larmor radius is around 2.5 mm.

Drift of guiding centre

The dynamics of charged particles in a non-uniform magnetic field lead to drifts of the guiding centre. Details about particle trajectories and these drifts can be found in any standard plasma textbook such as [START_REF] Chen | Introduction to Plasma Physics and Controlled Fusion[END_REF][START_REF] Wesson | [END_REF][START_REF] Miyamoto | Plasma Physics and Controlled Nuclear Fusion[END_REF], so it will not be discussed here. We simply remind the evolution of the guiding center given by:

dv G dt = e(E + v G × B) -µ∇B. (2.5)
with v G the drift velocity of guiding centre.

Solving equation 2.5 in the parallel and transverse directions gives the drift velocities of the guiding center:

The E × B drift velocity due to the presence of an electric field

v E×B = E × B B 2 (2.6)
The ∇B drift due to gradients of the magnetic field

v ∇B = µ e b × ∇B B (2.7)
The curvature drift due to the bending of magnetic field lines, which causes a centrifugal acceleration on individual particles as they follow the field lines

v c = mv 2 || eB b × (b.∇)b (2.8)
The polarisation drift which is due to a time-varying electric field

v p = m eB 2 dE ⊥ dt (2.9)
These drifts govern the evolution of charged particles in an inhomogeneous electric and magnetic field.

In magnetised plasmas, the magnetic field generated by the gyro-motion of each charged particle is in the opposite direction to the external applied magnetic field; therefore, the plasma is diamagnetic in nature. For each species, a collective fluid velocity results due to the presence of pressure gradients. It is called the diamagnetic velocity and defined as

v dia = B × ∇p ZenB 2 .
(2.10)

The fluid motion in equilibrium for single plasma species plus stationary fields can be written as

v fluid = v dia + v E .
(2.11)

Drift wave and interchange instability

Drift waves become unstable in tokamaks due to the various guiding centre drifts discussed above. These waves propagate perpendicular to temperature and density gradients in the plasma. Only some fundamental properties of drift waves are introduced here; for a complete discussion see the reference [START_REF] Horton | Drift waves and transport[END_REF].

Drift waves are the result of collective plasma oscillations that arise in magnetised plasmas when considering the dynamics of electron and ion motion separately. These independent dynamics are coupled through the electrostatic force, conspiring to ensure that plasma is always quasi-neutral. The frequencies of drift-waves are much smaller than the ion gyro-frequency. These modes are unstable at wavelengths of the order of the ion gyroradius. Finite gyroradius effects tend to stabilise the shorter wavelength.

The simplest picture of drift wave is obtained by assuming the ion fluid limit with an adiabatic electron response to the electrostatic potential fluctuations. Let's consider a homogeneous magnetic field in the Z-direction B = Be Z , a wave vector of perturbation k = ke y and a radial density gradient with length scale L n such that ∇n 0 /n 0 = (-1/L n )e x . The electron and ion temperature are assumed to be equal and uniform T e ≈ T i . The diamagnetic ion velocity is given by v dia,i = (T e /eBL n )e y . The continuity equation for ions is

∂n i ∂t + ∇.(n i v fluid ) = 0, (2.12) 
with

v fluid = v dia + v E and ∇.(n i v dia ) = 0.
Assuming a small density perturbation n i = n 0 + δn i with |δn i | << n 0 , where n 0 is the equilibrium density and δn i is a time dependent perturbed density written in the form

δn i (x, t) = n i0 exp(i[k.x -ωt]), (2.13)
where ω is the complex frequency ω = ω + iγ. The E × B drift induced by the perturbed electrostatic potential δφ is written as

δv E = b × ∇δφ B = - ikδφ B e x .
(2.14)

Linearizing the continuity equation (δn i << n 0 ) gives

∂δn i ∂t = δv E .∇n 0 . (2.15)
where ∇.v E = 0 has been used.

Substituting Eq. 2.13 and 2.14, in Eq. 2.15 yields (2.17)

-iωδn i = - ikδφ B n 0 L n . ( 2 
Here the dominant terms are the electric field E || = -∇ || δφ and the pressure gradient

∇ || p e = T e ∇ || n e .
The thermal velocity of electrons is much higher than the ions and it can be assumed in the first approximation that the electrons respond to the potential fluctuations instantaneously. Neglecting the temperature fluctuations, the parallel force balance can be written as

∇ || p e = en e ∇ || δφ ⇒ T e ∇n e = en e ∇δφ, (2.18) 
which upon integration gives a linear Boltzmann relation for the electron response

n e = n 0 exp(eδφ/T e ) ⇒ δn e = n 0 [exp(eδφ/T e ) -1], (2.19) 
where the condition n e = n 0 when φ = 0 was used. The adiabatic electron response follows as

δn e n 0 = eδφ T e . ( 2.20) 
Finally, imposing the quasineutratlity condition δn i = δn e and from equation (2.13), the frequency of the drift wave is

ω = kT e eBL n = ω * . (2.21)
This drift wave has a phase velocity v ph = v dia = ω * /k, which is equal to the diamagnetic velocity.

When the electron response is adiabatic (eq. 2.20), the electrostatic potential and the electron density fluctuations are in phase and perturbations propagate in phase. A simple description of this mechanism is presented in figure 2.1. An initial perturbation in density is associated with an initial perturbation in potential (adiabatic electron response). This generates a vertical electric field and causes a radial E × B drift of ions and electrons. The radial drift causes a denser plasma to move into the region of lower density and rarer plasma to higher density region. The perturbation thus propagates upwards, in the electron magnetic direction. However, if there is a certain phase difference between the potential and density fluctuations, the electron response to potential perturbations can be written as δn e /n = (1-iδ)eδφ/T e . The non-zero phase shift iδ causes the density to follow the potential maxima with a delay. When the phase shift is unfavourable, the radial component of the E × B drift results in a feedback loop which will bring higher density plasma into already denser plasma leading to an exponential growth e γt of the initial perturbations driven by the free energy present in the density gradient. For a favourable phase shift, the initial perturbations will decay. Such a phase shift can occur in tokamak plasmas due to the non-adiabatic electron response and wave-particle kinetic resonances.

A coupling between density and temperature perturbations due to the magnetic drifts leads to another class of instabilities even if the potential and density perturbations are in phase. These instabilities are the pressure-driven interchange modes present in the core of tokamak plasmas. This kind of plasma instability is also called Rayleigh-Taylor instability, whose origin is analogous to hydrodynamics where a low-density fluid supports a dense fluid against gravity. These interchange instabilities tend to dominate the dissipative instabilities in the tokamak core, due to the low collisionality at hot temperatures. The origin of interchange instability in a tokamak is a combination of the inhomogeneity of the magnetic field (analogy with the gravity) and on departure from the thermodynamical equilibrium through the presence of large pressure gradients (analogy with the temperature gradient). An interchange mode is unstable only when the magnetic field inhomogeneity is unfavourable, i.e. ∇B, is aligned with the pressure gradient ∇p which is satisfied on the low-field side of the torus. The interchange modes are stable on the high-field side. The stability condition can be written as ∇p.∇B > 0. 

Scale separation of instabilities

The main instabilities found in the core of tokamak plasmas, which are assumed to be responsible for the anomalous particles and energy transport, are now introduced.

The drift-wave and the interchange mechanism can describe most of these instabilities. The characteristics scale length of different tokamak instabilities in the order of increasing wave vector are given as trapped ion modes (TIM), ion temperature gradient (ITG), trapped electron modes (TEM) and electron temperature gradient (ETG) as illustrated in figure 2.2. ITG: ITG is an electrostatic instability destabilised due to finite ion temperature gradients in the system. ITG modes include two branches namely (1) slab branch [START_REF] Dong | Finite beta effects on ion temperature gradient driven modes[END_REF][START_REF] Idomura | Gyrokinetic theory of slab ion temperature gradient mode in negative shear tokamaks[END_REF], when there is a resonance between the wave and parallel motion, and (2) toroidal branch [START_REF] Weiland | Electromagnetic and kinetic effects on the ion temperature gradient mode[END_REF][START_REF] Kim | Electromagnetic effect on the toroidal ion temperature gradient mode[END_REF], when there is a resonance between the wave and the perpendicular magnetic drift. The characteristic wavelength of these modes is larger or comparable to the ion Larmor radius, such that k θ ρ i ≤ 1.0.

TEM: an electrostatic mode driven by the resonance between the wave and the toroidal precession of trapped electrons. They can be excited by finite electron temperature gradients (∇T e ) and electron density gradients (∇n e ). Their characteristic wavelength limit is approximately k θ δ b,e ≤ 1.0 [START_REF] Nordman | Simulation of toroidal drift mode turbulence driven by temperature gradients and electron trapping[END_REF][START_REF] Hahm | Weak turbulence theory of collisionless trapped electron driven drift instability in tokamaks[END_REF][START_REF] Dannert | Gyrokinetic simulation of collisionless trapped-electron mode turbulence[END_REF]. Here δ b,e is the typical banana orbit width of the trapped electrons and can be calculated from the conservation of the toroidal kinetic momentum and is given as δ b,s ≈ 2m s Rv ϕ /(e s RB θ ), with v ϕ the toroidal velocity. Using the definition of the safety factor from equation 1. [START_REF] Zohm | Edge localized modes (ELMs)[END_REF] and the Larmor radius

ρ s = msv ⊥ esBϕ from equation 2.3, we get δ b,s ≈ 2q √ r/R
ρ s . The banana width is larger than the Larmor radius of the considered species.

ETG: electrostatic electron modes similar to ion ones. These are again excited due to (∇T e ), however they have typical wavelengths of the order of electron scale rather than ions scale, i.e., k θ ρ e ≤ 1.0 [START_REF] Idomura | Gyrokinetic theory of slab electron temperature gradient mode in negative shear tokamaks[END_REF][START_REF] Jenko | Electron temperature gradient driven turbulence[END_REF][START_REF] Dong | Gyrokinetic study of the electron temperature gradient instability in plasmas with slightly hollow density profiles[END_REF].

KBM: Kinetic Ballooning Mode is an electromagnetic interchange instability driven by the kinetic resonance between the wave and magnetic drift. The pressure gradient destabilises these modes in high-β plasmas [START_REF] Tang | Kinetic-ballooning-mode theory in general geometry[END_REF][START_REF] Cheng | Kinetic theory of collisionless ballooning modes[END_REF]. As seen in figure 2.2 several branches may coexist. In this thesis, the focus is on two dominant instabilities that are known to be crucial for determining transport in typical tokamak conditions: the ion temperature gradient (ITG) driven mode, and the kinetic ballooning modes (KBM). The ITG modes are the most widely known unstable modes found in typical tokamak conditions at low plasma β (figure 2.3), and their linear drive mechanisms are given in appendix A. However, the plasma core is characterised by a high plasma pressure hence higher β, which is favourable for the excitation of electromagnetic modes such as the kinetic ballooning modes (figure 2.3) which is discussed here. It should be noted that KBM is also destabilised in the pedestal and spherical tokamaks. 

Kinetic ballonning modes (KBMs)

The ballooning mode [START_REF] Connor | Shear, periodicity, and plasma ballooning modes[END_REF] is an electromagnetic instability driven primarily by the interaction of the plasma pressure gradient with local regions of unfavorable magnetic curvature making the plasma bulge out in these regions. The kinetic ballooning mode is considered as one of the most important instabilities present in the high confinement mode (H-mode) plasma discharges, which limits the maximum plasma pressure that can be sustained in a magnetic fusion device. Since it leads to a bending of the field lines, magnetic tension is stabilising and a minimum pressure gradient is required before the instability develops. Ballooning modes are high toroidal mode number perturbations in toroidal systems characterised by short-wavelength perpendicular to the magnetic field and long wavelengths parallel to field lines. The ballooning mode driving force is approximately given by the ballooning parameter, α = -2µ 0 (Rq 2 /B 2 )p (r) = βq 2 (R/L p ), with R, q, B, β, p (r) and R/L p represent the major radius, safety factor, toroidal magnetic field, plasma beta, pressure gradient and its radial scale length, respectively. From this relation, it appears that the ballooning mode threshold in the pressure gradient can become very small when the q-value or the plasma β are high. The critical value of α can be calculated from ideal magnetohydrodynamics equations which are based on the assumptions that the parallel electric field perturbations E || vanish. However, when kinetic effects such as magnetic drift, finite Larmor radius, wave-particle resonances, collisional effects and trapped particles are included, E || may become finite. In the presence of these kinetic effects, ballooning modes are known as Kinetic Ballooning Mode (KBM) [START_REF] Tang | Kinetic-ballooning-mode theory in general geometry[END_REF][START_REF] Cheng | Kinetic theory of collisionless ballooning modes[END_REF][START_REF] Tsai | Theory of kinetic ballooning modes excited by energetic particles in tokamaks[END_REF]. KBM mode plays an important role in the stability and confinement of fusion plasmas and can cause cross-field transport of plasma. These modes are localised on the outboard side of the torus and rotate in the ion diamagnetic direction.

It should be noted that in the literature KBMs are also referred to as shear-Alfvenic ion temperature gradient modes (AITG) [START_REF] Zhao | Gyrokinetic particle-in-cell simulation of alfvénic iontemperature-gradient modes in tokamak plasma[END_REF][START_REF] Falchetto | Global-gyrokinetic study of finite β effects on linear microinstabilities[END_REF] excited due to waveparticle interactions with thermal ions. Though, later considered as unstable branch connecting KBM [START_REF] Tang | Kinetic-ballooning-mode theory in general geometry[END_REF][START_REF] Cheng | Kinetic theory of collisionless ballooning modes[END_REF] and the Beta-induced Alfven Eigenmode (BAE) [START_REF] Zonca | Kinetic theory of low-frequency alfvén modes in tokamaks[END_REF][START_REF] Heidbrink | What is the "beta-induced alfvén eigenmode?[END_REF], both belong to the shear Alfven branch. However, the general fish-bone-like dispersion relation (GFLDR-E) reveals that the most unstable AITG mode can be destabilized when the BAE and KBM branches are strongly coupled [START_REF] Zonca | Kinetic theory of low-frequency alfvén modes in tokamaks[END_REF], this occurs when the condition Ω * pi ≡ (ω * pi /ω ti ) ∼ (7/4 + τ )q is satisfied, where

ω * pi = (T i /eB)k θ (∇ ln n i )(1+η i ) core plasma ion diamagnetic frequency, η i = ∇ ln T i /∇ ln n i ,
ω ti is the thermal ion transit frequency defined as ω ti = 2T i /m i /qR 0 (T i is the ion temperature in units of energy and m i the ion mass) and τ = T e /T i [START_REF] Zonca | Kinetic theory of low-frequency alfvén modes in tokamaks[END_REF]. Therefore KBM is unstable when the diamagnetic effects are dominant Ω * pi >> (7/4 + τ )q and BAE when ion compression effects are dominant Ω * pi << (7/4 + τ )q. These modes are destabilised by the thermal ion temperature gradient when the plasma β is above a certain threshold. The source of KBM instability is in the interchange drive term due to the combination of unfavorable magnetic curvature and pressure gradient. The threshold in β comes from the fact that at higher β the Alfven speed V A = ω A qR, with ω A the Alfvén frequency and V A = B 2 /µ 0 ρ m the Alfvén velocity where ρ m is the mass density, decreases and the stabilising magnetic tension is reduced. The β threshold of KBM is generally smaller than the ideal MHD limit, β crit < β MHD crit [START_REF] Cheng | Kinetic theory of collisionless ballooning modes[END_REF][START_REF] Hirose | Erratum: "ion temperature gradient-driven ballooning mode in tokamaks[END_REF]. It has been shown that at higher β values, β crit > β M HD crit , KBM can be driven unstable [START_REF] Rewoldt | Collisional effects on kinetic electromagnetic modes and associated quasilinear transport[END_REF]. Here β crit is the critical β limit for which Kinetic Ballooning Modes (KBM) are unstable and β M HD crit is the ideal MHD β limit.

The normalized parallel structure of the perturbed electrostatic potential (φ) and vector potential (A ) for ITG and KBM unstable modes and for standard tokamak parameters: k θ ρ i = 0.4, = 0.16, ŝ = 1.0, q = 2.0, R/L T D = 9.0, R/L nD = 3.0, R/L T e = 0.0, R/L ne = 3.0, no collisions and no toroidal rotation nor toroidal rotation gradient are given in figure 2 As illustrated in figure 2.3, when the β value increases, ion temperature gradient (ITG) modes are stabilised and above a threshold in beta KBMs become dominant. The frequency of KBMs is much higher than their ITG counterpart (Fig. 2.3 (b)). Both KBM and ITG modes are characterised by an even parity of electrostatic potential perturbation φ and odd parity of parallel vector potential perturbation A || along the magnetic field lines [START_REF] Hatch | Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes[END_REF] as illustrated in figure 2.4 for a standard tokamak case.

Models for tokamak micro-turbulence

In the last section, basic mechanisms of various instabilities, which can give rise to anomalous transport of heat and particle in the tokamak core are presented. To formulate a transport model able to predict the turbulence level in plasmas, the dynamics of waves and particles need to be solved self-consistently. The generation of electromagnetic fields by charge and current particle densities is described by Maxwell equations. The dynamics of the plasma response to the fluctuations of electromagnetic potentials φ and A || can be described by a fluid or a kinetic description. Three approaches in the order of decreasing complexity can be distinguished as:

Particle description: A direct approach where trajectory of each j single particle is governed by the equation of dynamics m j dv j /dt = q j (E j + v j × B j ).

Models for tokamak micro-turbulence

These equations are coupled through the field equations (Maxwell). The treatment of this kind of problem which is the origin of the Klimontovich and Liouville equation requires tracking the trajectories of ∼ 10 23 particles, which appears far from being solvable for practical purposes and unnecessary.

Kinetic description:

A more reasonable way of describing the dynamics of this large number of charged particles consists in adopting a statistical approach where the time evolution of particles is described by a single distribution function (for each plasma species). The evolution of the distribution function is obtained by solving the Boltzmann's equation (or the Vlasov equation [START_REF] Vlasov | THE VIBRATIONAL PROPERTIES OF AN ELEC-TRON GAS[END_REF] if collisions are not retained) given as:

∂f s ∂t + v. ∂f s ∂x + q s m s (E + v × B). ∂f s dv = C s (f s ), (2.22) 
where C s (f s ) is the collision operator, x and v are the position and the velocity respectively of the particles. Depending upon the choice of collision operator, the equation 2.22 is also referred to as the Fokker-Planck equation.

Here, the number of degree of freedom is 6: 3 in real space and 3 in velocity space per plasma species, namely electrons, main ions and impurities. Therefore, a full kinetic description of plasma is still numerically expensive. When the evolution of the magnetic field is smooth in space and time with respect to the fast cyclotron motion, the fast cyclotron timescale is removed by averaging over the gyro-motion. The phase space is reduced from 6 dimensions to 5 dimensions. This approach is called the gyro-kinetic theory [START_REF] Robert | Variational principles of guiding centre motion[END_REF][START_REF] Hahm | Nonlinear gyrokinetic equations for tokamak microturbulence[END_REF][START_REF] Brizard | Nonlinear gyrokinetic maxwell-vlasov equations using magnetic co-ordinates[END_REF][START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF].

More details about the gyro-kinetic theory and the gyro-kinetic code used in this work is presented in chapter 3.

Fluid description:

The kinetic and in particular the gyrokinetic approximation have been quite successful in explaining the various experimental phenomenon in magnetic fusion plasmas and will be used extensively in this work. However, this approach is still cumbersome from the analytical as well as from the numerical point of view. This complexity has led to another major step in the simplification process by defining a fluid approach. In this approach, only the hierarchy of moments of the distribution function is considered, obtained by taking the different velocity integrals of f on the velocity basis (1, v, v 2 , ..., v n ). This route is even more tractable from both the analytical and numerical point of view than the gyro-kinetic approach since the reduction of dimensional space is from 6D to 3D per species due to integration over velocity space dv 3 . Nonetheless, the fluid approach suffers from two critical drawbacks. It can hardly account for the interactions between waves and particles, as long as they are resonant in the velocity space due to velocity space integration. The linear Landau mechanism is the most relevant example of this issue. This is especially true for the hot thermonuclear plasmas, where collisions are infrequent. For the same reason, fluid equations have difficulties in differentiating between various classes of particles, namely passing, trapped and supra-thermal particles and to account for the finite Larmor radius effects. Furthermore, the infinite hierarchy of fluid equations obtained by higher-order moments on the kinetic equations requires some closure assumption to truncate this. The closure of fluid problem remains an open issue in nearly collisionless plasmas, characterised by the larger mean free path and is still a subject of active research nowadays.

Despite these drawbacks, the fluid description remains of beneficial interest, especially near the colder tokamak edge which is more collisional.

Summary

Various class of instabilities found in tokamaks and their properties are introduced in this chapter with a focus on the ITG mode, unstable at low beta and the KBM mode which dominates at high beta. KBMs are electromagnetic instabilities driven by the pressure gradients that can drive a significant part of turbulent transport and can limit the maximum achievable plasma pressure in a tokamak.

3

Overview of the gyrokinetic code GKW

This chapter gives an overview of the gyro-kinetic code GKW used to perform numerical simulations in the present thesis. The basic gyrokinetic equations solved by the code and their ordering is presented. A description of the coordinate system and the definition of various input parameters and their normalisation are given.

Additional details about the code can be found in the original paper [START_REF] Peeters | The nonlinear gyro-kinetic flux tube code gkw[END_REF] as well as in the GKW manual [START_REF] Peeters | GKW How and Why[END_REF]. All the material presented in this chapter is summarised from ref. [START_REF] Peeters | The nonlinear gyro-kinetic flux tube code gkw[END_REF], and discussed here to introduce the input parameters used later in chapter 4.

Gyrokinetic orderings

Gyro-Kinetic Workshop (GKW) [START_REF] Peeters | The nonlinear gyro-kinetic flux tube code gkw[END_REF] is a nonlinear gyro-kinetic flux tube code used to study micro-instabilities and turbulent transport in tokamak plasmas. It solves the gyro-kinetic (GK) Boltzmann equation coupled to Maxwell's equations (Poisson's and Ampere's equations) in the 5-dimensional space. It uses a combination of finite difference and pseudo-spectral methods with explicit time integration to solve the equations.

The gyrokinetic theory in magnetised plasma exploits the temporal scale separation between the fast gyromotion and the slow drift frequency, ω ∼ ω d ∼ ω * (see equation 2.21) of the wave destabilized in the plasma:

ω ω c ∼ << 1. (3.1)
where ω c = eB/m is the cyclotron frequency (equation 2.3).

Gyrokinetic equation solved in GKW

The typical length scale over which the solution varies in the direction perpendicular to the magnetic field is assumed to be of the order of the small parameter ρ * = ρ i /R (ρ i = m i v thi /(eB) being the ion Larmor radius and R the major radius of the device, see figure 1.7). Along the magnetic field, the solution is assumed to have a length scale of the order of the machine size due to the fast streaming motion of particles, giving the following relations:

R∇ || ≈ 1, (3.2 
)

R∇ ⊥ ≈ 1/ρ * . (3.3)
These basic orderings (ω/ω c and ρ * ) are the origin of the formulation of gyrokinetic theory in ref. [START_REF] Robert | Variational principles of guiding centre motion[END_REF][START_REF] Brizard | Nonlinear gyrokinetic maxwell-vlasov equations using magnetic co-ordinates[END_REF][START_REF] Brizard | Foundations of nonlinear gyrokinetic theory[END_REF].

Finally, a δf approximation is employed in GKW, which assumes that the fluctuation of the perturbed distribution function (f ) is small in comparison to the equilibrium distribution function F .

f F ∼ ρ * . ( 3.4) 
The background quantities are also assumed to have slow spatial variations. As a result, the turbulence can be considered as homogeneous in the perpendicular plane. This approximation is known as the local approximation and has a particular interest since it allows a Fourier decomposition to apply and the simulation domain to be restricted to a flux-tube aligned with magnetic field lines. GKW uses this local limit in which only a small region is simulated, and the background quantities and their gradients are constant across this domain. Unless otherwise stated, the local version of GKW has been used in all the simulations presented in this thesis; however, a global GKW version is also available [START_REF] Peeters | The nonlinear gyro-kinetic flux tube code gkw[END_REF][START_REF] Peeters | GKW How and Why[END_REF].

Gyrokinetic equation solved in GKW

In GKW, the evolution of the perturbed gyrocenter distribution function f is solved in the gyro-centre coordinates (X, µ, v || ) along with the perturbed electrostatic potential φ and perturbed vector potential A. Here X is the gyro-centre position, v || the parallel velocity along the magnetic field, and µ the magnetic moment µ = mv 2 ⊥ /2B. The equations are formulated in the co-moving frame by assuming rigid body rotation in the toroidal direction and includes inertial effects (centrifugal and Coriolis forces).

The time evolution of the total gyro-centre distribution function f tot = F + f in the gyro-centre coordinates is written as:

∂f tot ∂t + dX dt . ∂f tot ∂X - dv || dt ∂f tot ∂v || = 0. (3.5)
The evolution equations for the gyro-centre position X and for the parallel velocity are:

∂X ∂t = v || b + v D + v χ , (3.6) mv || dv || dt = ∂X ∂t . ZeE -µ∇B -mΩ 2 R∇R , ( 3.7) 
where Ω is the toroidal rotation frequency of the moving frame in which equations are formulated, and b is the unit vector in the parallel magnetic field direction. E is the gyro-averaged perturbed electric field given as:

E = ∇ φ gy - ∂ A || gy ∂t b -∇Φ, (3.8) 
where Φ is the equilibrium (background) electrostatic potential and brackets .. gy represent the gyro-average.

The velocities defined in equation 3.6 are as follows: v || b the parallel motion along the unperturbed magnetic field, v D the drifts due to inhomogeneous magnetic field (curvature (see equation 2.8), ∇B (equation 2.7), centrifugal and Coriolis drifts):

v D = 1 Ze mv 2 || B + µ B × ∇B B 2 + mv 2 || 2ZeB β b × ∇ε + 2mv || ZeB Ω ⊥ + 1 ZeB b × ∇ξ. (3.9)
Where the centrifugal energy ξ is defined from the background electrostatic potential and the centrifugal drift as:

ξ = ZeΦ - 1 2 mΩ 2 (R 2 -R 2 0 ). (3.10) 
Here ε = r/R 0 is the normalized radial coordinate (flux label), Ω ⊥ = Ω -(Ω.b)b is the angular (toroidal) rotation vector perpendicular to the magnetic field, and β = 2µ 0 B 2 ∂p ∂ε . In equation 3.9, the first term on the right-hand side corresponds to the combination of ∇B and curvature drifts, the second term is the correction to the curvature drift due to modification of the equilibrium associated with the pressure gradient. The last two terms are the Coriolis drift [START_REF] Peeters | Toroidal momentum pinch velocity due to the coriolis drift effect on small scale instabilities in a toroidal plasma[END_REF] and the combination of the background potential and the centrifugal drift [START_REF] Peeters | Erratum: "influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak[END_REF][START_REF] James | Turbulent transport in rotating tokamak plasmas[END_REF]. The total distribution function f tot is split into a slowly varying (in time and space) background part F and fast varying perturbed part f , f tot = F +f . Employing the δf approximation and using equations 3.6 and 3.2, the general evolution equation for f solved in GKW from 3.5 is written as:

The drift v χ is a sum of the E × B drift ( v E = b × ∇ φ gy /B )
∂f ∂t + (v || b + v D + v χ ).∇f - b m .(µ∇B + ∇ξ Ω ) ∂f ∂v || = S, (3.12)
where S is described by the background distribution function F :

S = -(v χ + v D ).∇F - Ze T [v || b + v D ].∇ φ gy F, ( 3.13) 
where R 0 is the reference major radius of the flux surface at which the densities of the background Maxwellian is defined.

The background Maxwellian distribution function (F M ) is defined as:

F = F M = n 0 π 3/2 v 3 th exp - (v || -(RB t /B)ω φ ) 2 + 2µB/m v 2 th -ξ/T , ( 3.14) 
with v th = 2T /m being the thermal velocity of the considered species, ω φ is the plasma toroidal rotation frequency in the rotating frame. The plasma rotation ω φ by definition zero in the rotating frame, but it has a radial gradient.

Finally, to form a closed set of equations, the gyrokinetic equations need to be combined with the field equations. The fields φ, A || and B || are obtained by solving the Poisson equation and the Ampere's law. In GKW units the gyrokinetic Poisson equation is written as:

sp Z sp n R 0 ,sp 2πB dv || dµJ 0 (k ⊥ ρ sp )ĝ sp + Z sp T R,sp [Γ(b sp ) -1] φ = 0, (3.15) 
where

b = 1 2 m R T R (k ⊥ ρ * R ref /ZB 2 ) 2 = in original units 1 2 k 2 ⊥ m 2 v 2 th e 2 B 2 . (3.16)
On the left-hand side of the above equation, the sum is over the plasma species and the integral over velocity space. Here a . represents the Fourier representation of a quantity.

The vector potential is calculated from the Ampere's law as:

k 2 ⊥ + β sp Z 2 sp n R 0 ,sp m R,sp Γ(b sp ) = β sp Z sp v R,sp n R 0 ,sp × 2πB dv || dµv || J 0 ĝsp . (3.17)
Here g is a new distribution function defined as

g = f + Ze T v || A || gy F M (3.18)
By solving for this new distribution function, the time derivative of the vector potential appearing in the parallel acceleration and presenting a numerical difficulty is avoided.

Normalisations in GKW

All quantities used in GKW are normalised using a reference quantity. The important parameters used in this thesis and their respective normalisations are presented in this section. The reference quantities are related to each other:

T ref = 1 2 m ref v 2 thref , (3.19 
)

ρ ref = m ref v thref eB ref . ( 3.20) 
These reference values are used to define dimensionless quantities such as mass m N , density n N , temperature T N , magnetic field B N , major radius R N , and time t N as:

m N = m m ref , n N = n R ref n ref , ( 3.21 
)

T N = T T ref , B N = B B ref , ( 3.22 
)

R N = R R ref , t N = tv thref R ref . (3.23)
where the subscript N denotes a normalised quantity. The velocity space coordinates are normalised using the thermal velocity of each species independently

v || = v ||N v th , µ = mv 2 th B ref µ N . (3.24)
The normalised Larmor radius ρ * and toroidal rotation velocity (indicated by u in the following chapters) are given as:

ρ * = ρ ref /R ref (3.25) u = R ref Ω/v thref (3.26)

Normalisations in GKW

with u > 0 for a plasma flowing in the direction of B. The normalised gradients for density, temperature and toroidal rotation are defined in the following ways:

1 L n,N = R ref L n = - R ref n ∂n ∂r , (3.27) 1 L T,N = R ref L T = - R ref T ∂T ∂r ,
(3.28)

u N = R 2 ref v thref ∂ω φ ∂r .
(3.29)

It should be noted that these normalized gradients lengths are denoted by R/L n , R/L T and u in the thesis and they are normalized with R ref . The normalized radial coordinate ε is also normalized with R ref :

ε = R max -R min 2R ref , ( 3.30) 
where R max and R min are the maximum and minimum major radius of each flux surface, respectively.

The fields are normalised with the reference values

φ = ρ * T ref e φ N , A || = B ref R ref ρ 2 * A ||N ,, χ = ρ * T ref e χ N , Φ = T ref e Φ N . (3.31)
It should be noted that a factor of ρ * has been added in the above definitions of the normalised perturbed fields such that these normalised quantities are of order 1. The mode growth rates (γ) and real frequencies (ω r ) are normalized with v thref and R ref :

γ = γ N v thref /R ref , ω r = ω rN v thref /R ref . (3.32)
Finally, the heat (Q s ), particle (Γ s ) and momentum (Π s ) fluxes in GKW are normalized as:

Γ N,s = Γ s R ref n R 0 ,s ρ 2 * v thref (3.33) Q N,s = Q s R ref n R 0 ,s T s ρ 2 * v thref (3.34) Π N,s = Π s m s n R 0 ,s v th,s ρ 2 * v thref (3.35)
These fluxes are the radial contravariant components of the flux.

In the rest of the thesis, parameters are presented in their normalised form and subscript N is dropped for simplicity. In the thesis, the deuterium ion mass is chosen as reference m ref , the equilibrium electron density on the flux surface as n ref , the ion temperature as T ref , and reference major radius R ref will be used as R 0 and is defined as

R 0 = 1/2(R max + R min ). B ref = B t (R 0 ).

Geometry

Following the introduction of the basic equations solved in GKW and their normalisations, the geometry employed to solve these equations is described briefly in this section. A field-aligned coordinates system which follows the magnetic field lines is used to take advantage of the scale separation of the turbulent structures in the parallel and perpendicular directions (k || < k ⊥ ).

The main results are summarised as:

The coordinate system (ε, ζ, s) is used in GKW. Where ε is the radial coordinate, ζ the bi-normal coordinate and s is the parallel coordinate aligned with the magnetic field. The domain [-1/2, 1/2] in s corresponds to one poloidal turn. The main properties and sign conventions in this coordinates system are:

B • ∇ε = 0 (flux surface definition)
To make coordinates field aligned, B ζ = 0 and B ε = 0

The mode frequency is positive for a perturbation flowing in the direction opposite to ∇ζ, which corresponds to the ion ∇B drift direction if s j = 1 and to the electron ∇B drift direction if s j = -1.

ε is always increasing from the plasma center to the plasma edge.

s is increasing upwards from the low field side midplane.

The toroidal rotation is assumed positive for a plasma flowing the direction of B

Miller parameterisation

The calculation of the various drifts and metric terms in the gyrokinetic equation requires the magnetic field geometry to be specified. Different geometry models are implemented in GKW such as a simplified s-α equilibrium [START_REF] Connor | Shear, periodicity, and plasma ballooning modes[END_REF], an improved circular equilibrium [START_REF] Lapillonne | Clarifications to the limitations of the s -α equilibrium model for gyrokinetic computations of turbulence[END_REF], Miller geometry [START_REF] Miller | Noncircular, finite aspect ratio, local equilibrium model[END_REF] and coupling to a MHD equilibrium solver code CHEASE [START_REF] Lütjens | The chease code for toroidal mhd equilibria[END_REF]. In the present thesis, the Miller flux surface parametrisation is used.

The Miller parameters used to describe a magnetic flux surface in the (R,Z) plane are: κ the elongation, δ the triangularity, ζ the squareness, R mil and Z mil the flux surface center and their radial derivatives s κ , s δ , s ζ , R mil and Z mil [START_REF] Miller | Noncircular, finite aspect ratio, local equilibrium model[END_REF].

The flux surfaces are defined as: R = R mil + r cos (θ + arcsin δ sin θ), (3.36)

Z = Z mil + rκ sin (θ + ζ sin 2θ), (3.37) 
and

s κ = r κ dκ dr , s δ = r √ 1 -δ 2 dδ dr , s ζ = r dζ dr .
(3.38)

Geometry

The radial derivative of the flux surface center major radius (R mil ) and elevation (Z mil ) are given as:

R mil = R mil dr , Z mil = dZ mil dr . (3.39)
The impact of these Miller parameters on the flux surfaces can be seen in figure 3.1. Additional parameters such as dp dε (the pressure gradient), q (safety factor), ŝ (magnetic shear) and = r R mil ( inverse aspect ratio) are also required to get a complete description of the equilibrium.

The radial derivative of the plasma pressure entering the Miller parametrisation is given by β = (2µ 0 R 0 /B 2 ref )(dp/dr), (3.40) and the magnetic shear is defined as ŝ = (r/q)dq/dr. (3.41)

Spectral representation in GKW

A combination of finite difference techniques and pseudo-spectral methods is used in GKW to solve the equations. The turbulence is assumed homogeneous in the direction perpendicular to the magnetic field in the local limit, this allows periodic boundary conditions to be employed, and a sum over discrete Fourier modes can represent all perturbed quantities.

The Fourier decomposition in the perpendicular plane (ε ,ζ) is written as:

f (ε, ζ, s) = k ζ ,kε f (k ε , k ζ , s)exp[ik ζ ζ/ρ * + ik ε ε/ρ * ]. (3.42)
where a factor of ρ * (normalised Larmor radius) has been added such that

T ρ * ∂f ∂x α = ik α f , (3.43)
and is consistent with the normalisation discussed earlier.

Here a . represents the Fourier representation of a quantity and T indicate the respective forward discrete Fourier transform operations.

Another advantage of the Fourier representation is that gyro-average becomes an algebraic operation in Fourier space:

φ gy = J 0 (k ⊥ ρ) φ (3.44)
with J 0 being the Bessel function.

The condition of toroidal periodicity implies

f (ε, ζ + 1, s) = f (ε, ζ, s) ⇒ k ζ 2πρ * = N, ( 3.45) 
with N an integer. Because ρ * is small, the above condition is satisfied for a minimal change to k ζ or ρ * , which is equivalent to the condition that the toroidal mode number is large enough. In the local limit, the final equations obtained are independent of ρ * , and it is considered that the above relation is satisfied. The poloidal periodicity implies:

f (ε, ζ + q/2, 1/2) = f (ε, ζ -q/2, -1/2), (3.46) 
3.5. Spectral representation in GKW which translates to Fourier spaces as

k f (k ε , k ζ , 1/2)exp ik ζ ρ * + ik ε ε ρ * + iqk ζ 2ρ * (3.47) = k f (k ε , k ζ , -1/2)exp ik ζ ρ * + ik ε ε ρ * - iqk ζ 2ρ * . (3.48)
Expanding the safety factor around a reference value q R (the value at the centre of the radial domain)

qk ζ ρ * = q R k ζ ρ * + k ζ ∂q ∂ε ε ρ * + 1 2 k ζ ρ * ∂ 2 q ∂ε 2 ε ρ * 2 , ( 3.49) 
and neglecting the second derivative correction, this condition is satisfied when q R k ζ /2πρ * is an integer, and if

f k ε , k ζ , 1 2 = f k ε + k ζ ∂q ∂ε , k ζ , - 1 2 , (3.50) 
which connects a mode to the appropriate higher k ε mode at the boundary of the s domain. Thus, increasing the length of the field line simulated is equivalent to increasing the number of k ε modes. This formulation is close to the ballooning representation [START_REF] William Connor | High mode number stability of an axisymmetric toroidal plasma[END_REF].

This boundary condition for the Fourier amplitudes implies that a convenient option for the spacing of the k ε modes in the discrete Fourier representation is

∆k ε = k ζ,min
∂q ∂ε

1 i k , ( 3.51) 
with i k some integer. The i k allows control over the radial resolution by changing the spacing between the radial modes.

The normalised wave number k θ ρ ref is given as an input in the simulations performed throughout this thesis, whereas k ζ is effectively used in the code. The link between the two wave numbers is given by:

(k θ ρ ref ) 2 = g ζζ k 2 ζ , (3.52)
with g ζζ is a contravariant metric tensor element evaluated at the low field side midplane (s = 0) to determine k ζ from the value of k θ ρ i provided in input. The two-poloidal wave numbers are related to the toroidal mode number n by:

n = k θ ρ ref 2πρ * g ζζ | s=0 = k ζ 2πρ * .
(3.53)

The complete perpendicular wave vector which will be used later in chapter 5 for the quasilinear approximation is given by

k 2 ⊥ = g εε k 2 ε + 2g εζ k ε k ζ + g ζζ k 2 ζ . (3.54)
The flux surface average particle, heat and angular momentum fluxes are given by the equations: The total mode growth rate and real frequencies of the linear Fourier modes are obtained as:

Γ.∇ε s = v E .∇εf d 3 v s + v A || .∇εf d 3 v s + v B || .∇εf d 3 v s , (3.55) Q.∇ε s = v 2 2 v E .∇εf d 3 v s + v 2 2 v A || .∇εf d 3 v s + v 2 2 v B || .∇εf d 3 v s , ( 3.56) 
Π.∇ε s = mv || v E .∇εf d 3 v s + mv || v A || .∇εf d 3 v s + mv || v B || .∇εf d 3 v s . ( 3 
γ(t) = ln   | φ(t)| 2 + | Â|| (t)| 2 + | B|| (t)| 2 ds | φ(t -∆t)| 2 + | Â|| (t -∆t)| 2 + | B|| (t -∆t)| 2 ds   /∆t (3.58) ω(t) = Arg | φ(t)| 2 ds -Arg | φ(t -∆t)| 2 ds /∆t (3.59)
where, in the frequency equation, the magnetic flutter and magnetic contributions are dropped in the definition for simplicity. γ(t) is the growth rate defined for one linear mode only.

For the normalisation of these fluxes, growth rates and frequencies, see section 3.3.

4

Linear stability analysis of a JET hybrid H-mode plasma

This chapter presents the linear stability analysis of the JET hybrid H-mode discharge #75225. Linear gyrokinetic simulations are performed using the gyrokinetic code GKW [START_REF] Peeters | The nonlinear gyro-kinetic flux tube code gkw[END_REF] in the local approximation limit. The dominant instability in the central region ρ < 0.3 is identified and its parametric dependencies are investigated.

Comparisons with the radial region, ρ > 0.3, where previous work has already been done [START_REF] Moradi | Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall[END_REF][START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF] are also presented.

Input parameters of JET hybrid H-mode discharge 75225

An experimental JET hybrid H-mode discharge #75225 has been selected for the purpose of investigating turbulent transport and validating available transport models in the plasma central region. A hybrid or improved H-mode plasma is halfway between a baseline H-mode plasma and an Advanced Tokamak plasma [START_REF] Shimada | Chapter 1: Overview and summary[END_REF][START_REF] Mcdonald | JET confinement studies and their scaling to high β n , ITER scenarios[END_REF][START_REF] Gormezano | Chapter 6: Steady state operation[END_REF]. In these plasmas, an enhanced normalized confinement time can be achieved by optimizing the current density profile. The resulting safety factor profile in the central region is flat but above unity, which prevents the destabilization of large MHD instabilities [START_REF] Gormezano | Chapter 6: Steady state operation[END_REF]. In addition, the plasma current is driven by inductive and non-inductive drive with a high fraction of bootstrap current that allows a longer pulse duration.

Experimental profiles

The selected JET pulse corresponds to the 2008-2009 JET experimental campaign with Carbon plasma-facing components (CFC). The profiles for electron density and temperature are obtained by measurements from High-Resolution Thomson Scattering (HRTS) while Charge Exchange Recombination Spectroscopy (CXRS) is used to measure the carbon density, temperature and toroidal rotation. This hybrid discharge of the Carbon wall era was analyzed for ρ > 0.33 in details in [START_REF] Hobirk | Improved confinement in JET hybrid discharges[END_REF][START_REF] Garcia | On the different physical mechanisms for accessing hybrid scenarios on JET[END_REF][START_REF] Moradi | Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall[END_REF][START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF] and has been selected for the following reasons: it has high-quality core profile measurements for electron and of carbon (CXRS), no sawteeth (q on axis > 1) and no other significant core MHD activity in the selected time interval, t = 6.0 -6.5 s. Even though the ultimate goal of this thesis is to understand the W transport, however, we have selected these specific well-diagnosed discharges of the carbon wall era first. Because turbulent transport in the central region remains largely unexplored so far, so it is important to understand the physical mechanism first. That is why we are using carbon discharges first which have better diagnostic measurements and well documented. In practice, the tolerable concentration of W in a tokamak plasma is very low n W /n e ∼ 10 -5 due to radiation losses. At such low concentration, the impurity behaves as a trace and does not impact turbulent transport or linear stability. Actually, even for carbon whose concentration is n C /n e = 0.01 at ρ = 0.15, we have verified that removing the carbon impurity (red curve) has only a moderate impact on the linear stability as seen in the figure 4.21.

Numerical simulations are performed using the δf (the perturbed distribution function) gyro-kinetic (the kinetic Vlasov equation averaged over the fast gyromotion) code GKW [START_REF] Peeters | The nonlinear gyro-kinetic flux tube code gkw[END_REF] in the local approximation limit. The input parameters for the simulation are calculated using plasma profiles obtained from Gaussian process regression (GPR) of experimental measurements [START_REF] Ho | Application of gaussian process regression to plasma turbulent transport model validation via integrated modelling[END_REF].

The experimental input plasma profiles with GPR fits for the electron density n e , electron temperature T e (the data combines measurements from HRTS and LIDAR which is an older Thomson scattering system in JET), ion temperature T i (assuming T D = T C ), toroidal rotation frequency Ω tor and safety factor (q) are illustrated in figure 4.1. Here, the blue points represent the experimental measured data points with error bars and the red (solid) lines show the GPR fit. The shaded area represents the error bars for the GPR fits, and all errors are depicted as ±2σ. The magnetic equilibrium is computed with the EFIT (Equilibrium FITing) [START_REF] Lao | Reconstruction of current profile parameters and plasma shapes in tokamaks[END_REF] based on magnetic measurements and constrained with MSE measurements and the total kinetic pressure, including fast ions (table 4.2). Simulations are performed for three species (deuterium, electron, and Carbon), including parallel magnetic vector potential (δA ) and parallel magnetic field (δB ) fluctuations, rotation (drive from parallel velocity gradient and inertial effects) and collisions. In some cases, the fast ion population from the Neutral Beam Injection (NBI) is added as a fourth species, with a Maxwellian distribution function. The impact of approximating the fast ion population as a Maxwellian was shown to be of the order of 10% on the growth rate of ITG modes [START_REF] Di Siena | Non-maxwellian fast particle effects in gyrokinetic gene simulations[END_REF]. The magnetic equilibrium for the plasma shape is specified using the Miller parametrization [START_REF] Miller | Noncircular, finite aspect ratio, local equilibrium model[END_REF]. A linearised Fokker-Planck collision operator is used to model collisions including the pitch-angle scattering, energy scattering and collisional friction terms. The centrifugal and Coriolis drifts are taken into account and all species collisions are retained in the simulations. The corresponding local plasma input parameters normalized in GKW units are listed in table 4.1 and the Miller parameterisation is given in table 4.2. In table 4.1, ν is the reference normalized collisionality from which inter-species collisionalities are computed: ν = n i e 4 ln Λ e/i 4π 2 0 m 2 e v 3 the R 0 v thref , with ln Λ e/i the Coulomb logarithm. The actual electron to ion collisionality used in the code is enhanced to take into account the impact of impurities not included as a kinetic species (the Z ef f value obtained with the C impurity alone is lower than the actual Z ef f value measured from Bremsstrahlung emission). The electron plasma β is defined as β e = 2µ 0 n e T e /B 2 ref .

In the simulations, the ion mass (m i ) is taken as the reference mass, the electron density (n e ) as the reference density and the ion temperature (T i ) as the reference temperature, therefore the beta value given as input in GKW is 2µ 0 n e T i /B 2 ref , which differs from the electron β by a factor T i /T e . The other normalized parameters and their definitions are given in chapter 3. Table 4.1 -Normalized input parameters used in GKW simulations for the JET 75225 discharge selected in the time interval 6.0-6.5 s. 
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Magnetic equilibrium reconstruction

The Miller parameterization is used for the magnetic equilibrium description, see table 4.2. A separate magnetic equilibrium without the fast ion pressure has been calculated with the CHEASE code [START_REF] Lütjens | The chease code for toroidal mhd equilibria[END_REF] and the corresponding Miller parametrization for this case is listed in table 4.3. As seen in figure 4.2, the main difference between the two equilibria is a larger radial derivative of the total pressure, β , and of the center flux surfaces R mil for ρ > 0.3 when the fast ion pressure is included in the magnetic equilibrium, see figure 4.1 (f). The fast ion characteristics from NBI is modelled using the PENCIL code [START_REF] Challis | Non-inductively driven currents in JET[END_REF] which solves a simplified version of the Fokker-Planck equation and includes ionization by charge exchange, ionization by plasma electrons and ions. It should be noted that for the fast ion profile calculations, Monte-Carlo NEMO-SPOT [START_REF] Schneider | Simulation of the neutral beam deposition within integrated tokamak modelling frameworks[END_REF] simulation within CRONOS [START_REF] Artaud | The CRONOS suite of codes for integrated tokamak modelling[END_REF] is also available for the selected JET discharge. Since the focus of the present analysis is not on the impact of fast ions, we chose to use the default "chain2" analysis performed with PENCIL [START_REF] Challis | Non-inductively driven currents in JET[END_REF].

Grid convergence

Grid convergence tests have been carried out to determine the required grid as illustrated in figure 4.3. In this figure, the linear growth rate is plotted for the most unstable mode at k θ ρ i = 0.35 for ρ = 0.15 as a function of the number of grid points for the magnetic moment N µ (a), the parallel velocity N v (b) and the number of points in the parallel direction per poloidal turns N s (c). The reference values for the scans were: N µ = 16, N v = 64, N s = 32. After linear grid convergence tests, the numerical grid parameters chosen are presented in table 4.4. The number of poloidal turns is varied from 5 to 50 depending on the value of the magnetic shear and k θ ρ i (more extended mode structure at low magnetic shear and low k θ ρ i ). The The blue curve represents the case when fast ion pressure is included in the magnetic equilibrium and red line is for the case when the fast ion pressure is neglected in the magnetic equilibrium. linear stability analysis is carried out from radial location ρ = 0.15 to ρ = 0.6, where ρ is the normalised toroidal flux coordinate.

At ρ = 0.15, the nominal value of the magnetic shear is 0.01. At such a low magnetic shear, the distance between resonant flux surfaces δ = 1 nq , with q = ∂q/∂r and n the toroidal mode number, becomes comparable to the minor plasma radius Table 4.4 -Numerical grid parameters used for simulations of JET discharge 75225.

N µ N v N s 16 64 32
and the validity of the ballooning representation may be questioned (although the relevant criterion is the radial mode extent rather than the distance between resonant flux surfaces). To be on the safe side, the value of the magnetic shear at this location has therefore been increased to 0.05, which is well within the uncertainty on this quantity. The validity of the ballooning approximation is checked a posteriori in section 4.3 and the impact of the magnetic shear value on the mode growth rate is explored in figure 4.13 and 4.14.

Linear unstable modes across the minor radius and impact of fast ions

The objective of this section is to determine which kind of instabilities dominates in the inner core of the selected discharge and compare the results with other radial locations. To do so, linear gyrokinetic simulations have been performed across the plasma minor radius using the input parameters given in tables 4.1, 4.2, 4.3 and the results are presented in figure 4.4. Here, the linear growth rate and real frequencies spectra are shown at three radial locations ρ = 0.15, ρ = 0.33 and ρ = 0.60, as a function of k θ ρ i , where k θ is the binormal wave vector and ρ i = m i v thref /(eB ref ) is the reference ion Larmor radius. In this figure, the impact of the fast ion population is investigated by performing three sets of simulations: 1) with fast ions as a kinetic species and with the fast ion pressure in the magnetic equilibrium (red curve), 2) without fast ions as a kinetic species and without the fast ion pressure in the magnetic equilibrium (green line), 3) without fast ions as a kinetic species but with fast ion pressure in the magnetic equilibrium (blue line). In this thesis's framework, including the kinetic fast ions means that this particle population has been included as a new species in the evolution of the gyrokinetic equation.

At ρ = 0.15, all the linearly unstable modes rotate in the ion diamagnetic drift direction (ω r > 0) and have a real frequency much larger than their linear growth rate. These unstable modes are identified as Kinetic Ballooning Modes (KBM); this point will be clarified later in the chapter (section 4.3). At the lowest k θ ρ i , stable Micro-Tearing Modes (MTM) are also observed, characterized by their negative frequency and the even parity of the vector potential fluctuations. These are stable linearly but will matter for the quasi-linear analysis of section 5.2. Including fast ions as a kinetic species decreases the KBMs mode growth rate by about 20%, whereas the fast ion pressure in the magnetic equilibrium has almost no impact on the mode growth rate, simply because it has nearly no impact on the Miller parameters at this location as seen in figure 4.2.

At the radial location, ρ = 0.6, the most unstable modes are Ion Temperature Gradient (ITG) modes. Including the fast ions as a kinetic species is found to reduce the mode growth rate, consistently with the previous gyrokinetic analysis performed using the gyrokinetic code GENE [START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF]. When the fast ion pressure is included in the magnetic equilibrium reconstruction, the ITG mode growth rate increases, which is typical at high β, as observed earlier in [START_REF] Bourdelle | Stabilizing impact of high gradient of β on microturbulence[END_REF], where increasing β in the local Grad-Shafranov equilibrium (i.e. increasing β keeping the other Miller parameters fixed) first leads to a destabilization of the ITG modes.

At the intermediate position, ρ = 0.33, the situation is more complex. Without fast ions as a kinetic species and fast ions pressure in the magnetic equilibrium, the most unstable mode is an ITG at high k θ ρ i and a KBM mode at low k θ ρ i , as indicated by the jump in the mode frequency. Including the fast ion pressure in the magnetic equilibrium significantly stabilizes the KBM modes and has no impact on the ITG modes. When fast ions are included as a kinetic species, the KBM and ITG modes are stabilized, consistently with the picture at ρ = 0.15 and ρ = 0.6, except at low k θ ρ i where a mode with a higher frequency is excited. This mode is driven by fast ions and was identified as a hybrid BAE (Beta induced Alfvén Eigenmode)/KBM mode in [START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF]. The growth rate of this mode significantly decreases when the kinetic fast ion pressure gradient is lowered by 30% (red dashed line in figure 4.4 (c) and (d)) as noted in [START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF]. Note that the inputs used in the present gyrokinetic simulations are slightly different from those used in [START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF]. For the main species, this is mostly due to the fact that here fits have been done using the recently developed GPR tools [START_REF] Ho | Application of gaussian process regression to plasma turbulent transport model validation via integrated modelling[END_REF]. For the fast ion population, the difference is larger since the present profiles are from the standard PENCIL [START_REF] Challis | Non-inductively driven currents in JET[END_REF] analysis of JET whereas the ones used in [START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF] were obtained from higher fidelity Monte Carlo NEMO-SPOT [START_REF] Schneider | Simulation of the neutral beam deposition within integrated tokamak modelling frameworks[END_REF] simulations. The dominant instabilities and qualitative behaviour concerning the impact of fast ions are nevertheless similar.

The linear stability analysis is then extended to additional radial locations, and the maximum linear growth rate and corresponding frequency of the most unstable modes are shown as a function of the radial position in figure 4.5. In the inner core region (ρ < 0.4), the dominant mode is found to be a KBM (full symbol). At the mid and outer radius (ρ ≥ 0.4) it changes to an ITG mode (open symbol). Including fast ions as a kinetic species has a stabilizing impact on the mode growth rate (the difference between blue and red curve) at all radial locations except at ρ = 0.33, where it destabilizes a BAE/KBM mode (full star symbol) as discussed earlier.

Taking into account the fast ions pressure in the magnetic equilibrium stabilizes KBMs and slightly destabilizes ITGs, consistent with the examples discussed in figure 4.4. The fast ion stabilization of ITG modes has already been seen earlier in an ITG dominated JET plasmas [START_REF] Romanelli | Fast ion stabilization of the ion temperature gradient driven modes in the joint european torus hybridscenario plasmas: a trigger mechanism for internal transport barrier formation[END_REF][START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF] and ASDEX Upgrade [START_REF] Tardini | Thermal ions dilution and ITG suppression in ASDEX upgrade ion ITBs[END_REF]. The detailed investigation of the impact of kinetic fast ion on KBMs is itself an area of research and is not a focus of this work. However, it will be interesting to explore it in the future. This thesis primary goal is to study the dynamics of microinstabilities leading to turbulent transport in the inner core ρ < 0.3, which is a rather uncharted territory so far; therefore, fast ions will now be neglected for simplicity.

To identify the KBM threshold a linear β scan is performed from ρ = 0.15 to ρ = 0.6. Figure 4.6, shows the variation of linear growth rate and frequency as β e is varied at three radial locations ρ = 0.15, ρ = 0.33 and ρ = 0.60. Here, the β e scans are performed for the wave-vector corresponding to the most unstable mode at each β value, as in figure 4.5. These wavevectors are k θ ρ i = 0.35, 0.35 and 0.5 for ρ = 0.15, 0.33 and 0.6. At ρ = 0.15, no mode is unstable at low β e . At higher β e values, KBMs are destabilized and their growth rate increases with β. At ρ = 0.33, for low β e values, the dominant instability is an ITG mode. The growth rate of this mode decreases with increasing β e until a KBM takes over with a sharp jump in frequency. The threshold in β e decreases when fast ion pressure is neglected in the magnetic equilibrium (the green curve). This decrease in threshold is due to the decrease in the total pressure gradient (β ) at this location (seen in figure 4.2). At radial location ρ = 0.6, the ITG growth rate decreases with β e until a tearing parity mode with negative frequency is destabilized. At higher values of β e KBMs take over.

As discussed above, the KBM modes become linearly unstable only when a certain threshold in β e is exceeded. This threshold is called β crit for KBMs [START_REF] Pueschel | Gyrokinetic turbulence simulations at high plasma beta[END_REF]. Here β crit e is found higher than β crit MHD , but depending on the conditions, the KBMs can also be destabilized at β e values significantly below β crit MHD [START_REF] Chu | Kinetic analysis of the localized magnetohydrodynamic ballooning mode[END_REF][START_REF] Cheng | Kinetic theory of collisionless ballooning modes[END_REF][START_REF] Zonca | Existence of ion temperature gradient driven shear alfvén instabilities in tokamaks[END_REF]. 

Q sN = Q s /A 2
L , where the mode amplitude is defined as:

A L = |φ| 2 + |A | 2 + |B | 2 ds ds.
Here, the normalized linear fluxes of heat and particle are decomposed into electrostatic (due to E × B drift (blue curve)) and electromagnetic (due to magnetic flutter (red curve) and compression (green curve)) fluxes, respectively (Eq. 3.56). The normalized E × B fluxes are dominant in both ITG and KBM regimes. The normalized magnetic flutter fluxes are negligible even for the electron channel in the KBM regime with some inward convection at high β in the ITG range. The normalized ion heat flux in the KBM regime is ∼ 70% lowers than in the ITG turbulence even though KBM have larger linear growth rates (Fig. 4.6 (c)). The normalized electron heat and particle fluxes also show similar behaviour than the ion heat fluxes. The phase shifts between fluctuating fields are therefore less favorable to transport for KBMs than ITGs, as seen earlier in reference [START_REF] Maeyama | Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence[END_REF]. Linear simulations were also performed up to electron scales for ρ = 0.15 and ρ = 0.33. Interestingly, Electron Temperature Gradient modes (ETG) that can be destabilized at high wavenumbers are found to be stable at both radii and there is no evidence of ETG mode destabilization at these locations. This observed behaviour could be understood by looking at a proxy for the linear threshold of ETG modes as given in reference [START_REF] Jenko | Critical gradient formula for toroidal electron temperature gradient modes[END_REF] and defined as:

(R/L T e ) crit = max (1 + Z ef f T e T i )(1.33 + 1.91 ŝ q )(1 -1.5 ), 0.8R Ln , (4.1)
where is a correction factor 0 ≤ ≤ 0.3 due to finite aspect ratio. The (R/L T e ) crit values at radial locations ρ = 0.15 and ρ = 0.33 is ∼ 3.1 and ∼ 4.0 respectively, which is higher or close to the nominal values of R/L T e at these locations.

Linear stability analysis at ρ = 0.15

In the following section, the focus is on the radial location ρ = 0.15. The identification of the most unstable mode as a KBM will be supported, and its parametric dependencies further documented. Unless otherwise stated, all linear simulations will be performed without fast ions as a kinetic species and with the fast ion pressure included in the equilibrium. The eigenmode structure of the perturbed electrostatic potential (φ), vector potential (A ) and magnetic compression (B ) for the most unstable mode (k θ ρ i = 0.35 ) is given in figure 4.9 as a function of the parallel coordinates s at ρ = 0.15. The perturbed fields δφ, δA and δB are normalised as follows:

φ = α L eδφ ρ * T i , A = α L δA ρ 2 * B ref R 0 and B = α L δB ρ * B ref with ρ * = ρ i /
R 0 and α L an additional normalising factor used in linear simulations to have Re[φ] = 1 and Im[φ] = 0 at the s position where |φ| is maximum (for the definition of perturbed fields φ and A , see section 2.1.3.1). One poloidal turn corresponds to ∆s = 1. The eigenfunctions have ballooning parity as seen earlier in the section 2.1.3 in chapter 2. The electrostatic perturbation amplitude is higher than the magnetic perturbation amplitude. Note that as a result of the up-down asymmetry of the magnetic equilibrium and the finite values of the background toroidal flow u and parallel flow shear u which break the parallel symmetry, the parity of the eigenfunction is only approximate. It is important to note that the mode structures are extremely elongated along the field lines especially for low wavenumbers and therefore a very high radial resolution was needed (up to 50 poloidal turns at low k θ ρ i ) to resolve the modes properly. The corresponding radial mode width in real space is obtained from a Fourier transform along the parallel coordinate and the 2D poloidal cut of the real part of φ r is shown in figure 4.10 using the local ρ * = 0.0033 value. The KBM tends to be less ballooned than ITG with a ratio of the amplitude at the LFS (Low Field-Side) and HFS (High Field-Side) of 40% compared to that for ITG at ρ = 0.33 of 60% difference. The radial mode width is about 5 cm and therefore much smaller than the minor radius a ∼ 1 m or L T i = 0.74m at this location. This validates a posteriori the use of the local approximation at this low magnetic shear values. In order to further investigate the drive mechanism of these KBM modes, the main ion pressure gradient has been scanned around the experimental value by keeping the main ion density gradient constant (R/L nD = const) and varying the main ion temperature gradient (R/L T i ) in one case, or by varying the main ion density gradient and keeping the main ion temperature gradient constant (R/L T i = const) in another. As shown in figure 4.11, varying R/L T i at fixed R/L n (blue curve) or R/L n at fixed R/L T i (red curve) has almost the same impact on the mode growth rate, which suggests that the mode is driven by the ion pressure gradient.

The mode growth rate is weakly dependent on the normalized electron temperature gradient R/L T e , as shown in figure 4.12.

Impact of magnetic shear and plasma beta

The impact of magnetic shear and the plasma beta is investigated in this section. In figure 4.13, the mode growth rates and frequencies for the magnetic shear ŝ scans are plotted, where the nominal value of ŝ is represented by a vertical dotted line. The growth rate decreases when the absolute value of the magnetic shear increases until complete stabilization. The frequency is weakly affected. The low absolute value of the magnetic shear appears to be critical for the existence of KBM modes in the inner core of these hybrid plasmas. To illustrate the impact of the magnetic shear on the parallel mode structure, the real component of the perturbed electrostatic potential φ r is shown in figure 4.14 as a function of the parallel coordinate s for various values of the magnetic shear with the nominal value of β e . The mode extension along the field line gets reduced as the magnetic shear is increased.

A plasma beta β e scan is then performed for three magnetic shear values, and the respective growth rates and mode frequencies are shown in figure 4.15. When electromagnetic effects are absent (β e = 0), γ = 0, hence there is no electrostatic instability present. When the beta is increased, there is no instability until a threshold in beta is reached. Above the β e threshold, the mode growth rate increases with the β, and after a sharp jump at the threshold, the mode frequency slowly decreases. The threshold in β increases with the magnetic shear consistently with figure 4.7. Thus, the low magnetic shear in the core of these hybrid plasmas results in a low β threshold.

The role of the pressure gradient β

An important parameter responsible for the stabilisation of core micro-instabilities is the pressure gradient, β ∼ dp/dr, correction to the curvature drift (see Eq. 3.9). Its impact has been examined by varying β and keeping fixed the kinetic species gradients and the other magnetic equilibrium parameters. This is equivalent to an α scan for an s -α equilibrium, where α = -R 0 q 2 β . As seen from the comparison of Table 4.1 and 4.3, a β scan differs from the self-consistent calculation of the magnetic equilibrium since in that case, the Shafranov shift is also modified. As shown in Fig. 4.16, increasing |β | has a strong stabilizing impact on the mode as expected due to the interchange nature of the KBM. 

Impact of T e /T i ratio and safety factor q

Now, the impacts of the T e /T i ratio and safety factor q on the mode growth rate are examined. A scan of the T e /T i ratio is plotted in figure 4.17, showing that an increase of T e /T i leads to a moderate increase of the mode growth rate.

The growth rate and frequencies for the q-profile scans are illustrated in figure 4.18. The mode growth rate is found to be maximum around the experimental values q ∼ 1 (shown with vertical line), as also pointed out in [START_REF] Moradi | Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall[END_REF]. However, KBM remains the dominant instability within the range of q variations considered here with decreased growth rate as q increases above its experimental value. For low q values growth rate of KBM increases as q increases as expected since β crit decreases as q increases. 

Additional parameter scans

Scan of toroidal rotation (u) and its gradients (u )

In this section, the impact of toroidal rotation and its gradient on the KBM growth rates are discussed.

Two scans in u are performed one where the toroidal rotation gradient is set to zero u = 0 (red curve) and for the other the nominal value u = 0.59 is kept (blue curve), as plotted in the figure 4.19. The toroidal rotation has a moderate impact (< 10%) on the KBM mode growth rate.

A scan over the toroidal rotation gradients u has been performed for a fixed value of u and is shown in figure 4.20. The toroidal rotation gradient u has a significant effect on the stability of KBM mode growth rate for the nominal value of u and surprisingly has no impact on the growth rate (red curve) when u is set to the heavy elements such as W mainly increase radiation losses of the plasma. The deleterious effect of the various elements depends on the charge of the impurity species.

The impact of Carbon impurity on the growth rate is studied by performing k θ ρ i scans, as illustrated in figure 4.21. In this figure, the red curve shows the case when C impurity is neglected in the simulations and collisions are included. The green line corresponds to the case when both collisions and impurities are excluded in the simulation. These results are compared with a standard case with nominal parameters, including collisions and impurities in the simulations (the blue curve). The effects of collisions and impurities have negligible effects on mode growth rates and frequencies. 

Identification of unstable mode as KBM

To summarise, the most unstable mode at ρ = 0.15 propagates in the ion magnetic drift direction with a real frequency much larger than the growth rate. The mode is driven by the ion pressure gradient and has an even (respectively odd) parity of the eigenfunction in φ (respectively A ) with an extended mode structure at low magnetic shear. Above a critical value β crit e , the mode is destabilized and its growth rate increases with β e . In addition, the mode is stabilised at high magnetic shear and high |β | ∼ α, as observed in [START_REF] Hirose | Erratum: "ion temperature gradient-driven ballooning mode in tokamaks[END_REF] for KBMs. The stabilizing effect of |β | is expected for ballooning modes as it reduces the curvature drift. All these features lead to the identification of this mode as a KBM, consistently with [START_REF] Moradi | Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall[END_REF]. Note that due to the low magnetic shear value, the MHD ballooning limit is relatively low β crit MHD = 0.26% (value at nominal parameters) and the threshold for the KBM is higher than the MHD ballooning limit, β crit e > β crit MHD , as observed at low R/L T i in [START_REF] Pueschel | Gyrokinetic turbulence simulations at high plasma beta[END_REF].

The presence of this unstable mode has already been detected in global gyrokinetic simulations [START_REF] Moradi | Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall[END_REF][START_REF] Falchetto | Global-gyrokinetic study of finite β effects on linear microinstabilities[END_REF], however, by retaining the global profile variations a significant reduction of the mode growth rate was found previously.

As discussed in section 2.1.3.1 KBMs are also referred to as shear-Alfvenic ion temperature gradient modes (AITG) [START_REF] Zhao | Gyrokinetic particle-in-cell simulation of alfvénic iontemperature-gradient modes in tokamak plasma[END_REF][START_REF] Falchetto | Global-gyrokinetic study of finite β effects on linear microinstabilities[END_REF] driven by the finite ∇T i excited due to wave-particle interactions with thermal ions. This section can be concluded by remarking that the destabilization of KBMs at high β, low magnetic shear and higher T e /T i ratio suggests that these results are directly relevant for the prediction of inner core transport in ITER scenarios. 

Summary

The main results of the chapter are briefly summarised here 1. Linearly it is found that in spite of lower gradients close to the magnetic axis, the plasma is linearly unstable in the central part ρ = 0.15.

2. The pressure-driven instability arising in this region has been identified as a Kinetic Ballooning Mode (KBM). It has an extended poloidal mode structure due to the low magnetic shear. The low magnetic shear and high plasma beta are the main parameters responsible for the destabilization of KBM in this region. The KBM is found to be the most unstable mode in the inner core plasma region up to ρ = 0.33, whereas at mid and outer radius, ρ > 0.4, ITG is the dominant instability. The β e threshold, β crit e , of KBMs increases across the minor radius mostly due to an increase in magnetic shear that is not fully compensated by the increase in q 2 when moving outwards while the experimental β e decreases when moving outward.

3. Various parametric dependencies of KBM are studied. The unstable mode has a peaked growth rate at experimental values of q ∼ 1 and a higher T e /T i ratio tends to destabilize the modes. The toroidal rotation has a small impact on the KBM mode growth rate. However, an increase of the toroidal rotation gradient tends to increase the mode growth rate only, provided u = 0. Carbon impurities and collisions have a negligible impact on the mode growth rate.

4. The linear heat and particle fluxes are mostly carried by the E × B convection with a small inward contribution from magnetic flutter for the electron heat flux.

In the next chapter, non-linear GKW simulations will be performed and the non-linear fluxes compared to quasi-linear predictions.

5

Nonlinear gyrokinetic simulations and test of the quasi-linear approximation

In the previous chapter, the linear stability of the central region of the JET hybrid H-mode 75225 discharge at 6-6.5 s has been studied showing that KBMs are linearly unstable in this region. The linear simulations provide insight about KBM stability and its dependence on various physical parameters. However, understanding the nonlinear saturation of KBM turbulence and the resulting transport is required. Moreover, to validate the present available reduced quasi-linear turbulent transport models, their predictions need to be compared to simulated nonlinear heat and particle fluxes.

In this chapter, gyrokinetic simulations are performed in order to compute the level of turbulent transport driven by KBM modes for the selected JET 75225 discharge at t = 6.0 -6.5 s and at ρ = 0.15 in the nonlinear regime. The parametric dependence scans for plasma beta and magnetic shear confirm the destabilisation of KBMs with higher β and stabilisation with higher magnetic shear.

The quasi-linear approximation is also tested in the inner core of the selected discharge. Computed quasi-linear fluxes due to KBM turbulence have been compared with nonlinear simulations.

Non-linear simulations at ρ = 0.15

The simulations are performed with N mod = 16 binormal modes and N x = 509 radial modes with a perpendicular box size of [L radial , L bi-normal ] = [START_REF] Wenzel | Neoclassical analysis of impurity transport following transition to improved particle confinement[END_REF][START_REF] Ho | Application of gaussian process regression to plasma turbulent transport model validation via integrated modelling[END_REF] in units of ion Larmor radii. The poloidal wave vectors range from k θ ρ i = 0.1 to 1.5 and the radial wave vectors extend up to k r ρ i = ±12.3. The high value of N x was required to capture the elongated mode structures at low magnetic shear. A rather small time step of ∆t = 1.5 × 10 -4 (R 0 /v thi ) was required to guarantee numerical stability in these high beta simulations. The other simulation parameters, briefly summarized in Table 5.1, are the same as described earlier in chapter 4: ion, electron and carbon as kinetic species, no kinetic fast ions, magnetic equilibrium with fast ion pressure, inter-species collisions with Z ef f = 1.74, no E × B shearing (γ E = 0), with parallel velocity gradient drive and inertial effects (Coriolis and centrifugal forces). Even though the kinetic fast ions have a stronger effect linearly on the KBM instability, these are not included in nonlinear simulations for simplicity.

Table 5.1 -Normalized input parameters used in GKW simulations for the nonlinear gyro-kinetic simulations at ρ = 0.15. For the detailed list see table 4 The time trace of the normalised nonlinear electron and ion heat fluxes for the experimental input values of magnetic shear and plasma beta is presented in figure 5.1. The heat, particle and momentum fluxes are normalized as:
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Q N,s = Q r s nsTsρ 2 * v thi , Γ N,s = Γ r s nsρ 2 * v thi , Π N,s = Π r s msnsv ths ρ 2 * v thi , where ρ * = ρ i /R 0 is the normalized Larmor radius.
The fluxes are decomposed into E × B (blue), magnetic flutter (red) and magnetic compression (green) contributions. Horizontal dotted lines illustrate the corresponding time averages with the same colour coding as in the left figure. As seen here, the ion heat flux is dominated by the E × B contribution, with almost negligible contributions from the magnetic flutter and magnetic compression, consistently with the linear fluxes ratio, see Fig. 5.7. For the electron heat flux, the E × B contribution is still dominant, but the magnetic flutter also contributes significantly. Here, the most striking observation is that the magnetic flutter contribution in the nonlinear phase has an opposite sign (outward convection) and is much larger than that in the linear phase. This point will be further investigated in the section dedicated to the quasi-linear modelling. This suggests that the impact of magnetic flutter component has a crucial impact on the total electron heat transport and cannot be neglected in interpretive transport simulations in the inner core.

The zonal flows (ZFs) are a well-known saturation mechanism for ITG turbulence [START_REF] Diamond | Zonal flows in plasma-a review[END_REF]. To investigate the saturation mechanism in KBM turbulence, the time trace of electrostatic potential |φ| for the zonal modes (all k θ = 0 modes) for different radial modes are plotted in figure 5.2 (a). Here, the blue curve represents the lowest k r modes (k min r ), the red curve for the second-lowest radial mode and the green for the third-lowest mode. In figure 5.2 (b), the amplitudes of the zonal flows are plotted as function of radial modes k r . The zonal flows are found to have a significant amplitude and the temporal correlation of their evolution with respect to the heat fluxes suggest that they may play a role in the saturation of KBM turbulence. Nonetheless, the presence of other saturation mechanisms cannot be excluded at this stage. To know the impact of zonal flows on KBM turbulence saturation precisely, the interplay between the energy transfer between the zonal modes and drift waves also needs to be 5. Nonlinear gyrokinetic simulations and test of the quasi-linear approximation 97 known. This detailed study is out of the scope of the present thesis. Therefore, more work is still required to get a clear picture of the dominant saturation mechanism of KBM turbulence in the central region of these hybrid discharges. The time-averaged heat, particle and momentum fluxes in physical units are then shown as a function of β e in figure 5.4. The local value of ρ * = 0.0033 was used for converting the normalised fluxes to SI units at ρ = 0.15. The time interval for the temporal average was from 120 and 300R 0 /v thi for all cases. Here, the total fluxes due to sum of all contributions are indicated by a black line and the E × B, magnetic flutter and magnetic compression contributions by coloured dotted lines blue, red and green respectively. All fluxes are observed to increase with increasing plasma beta. For the ion heat transport channel, the fluxes are dominated by the E × B contribution. For the electron heat transport, the magnetic flutter contribution increases with the plasma beta and becomes comparable to the E × B contribution at β e = 3.8%. The higher heat and particle fluxes with β e in figure 5.4 are qualitatively consistent with the linear destabilization of the KBMs at higher beta seen in figure 4.15. The ion momentum flux shows a similar trend as the particle flux. To calculate the momentum diffusivity, the effective Prandtl number

P r = Π iN Q iN R/L T i u
is shown as a function of β e in figure 5.4 (f). Prandtl number varies slightly (∼ 3%) with increasing beta.

In figure 5.5, the fluxes dependence on the magnetic shear ŝ is illustrated in a two-point scan. The nonlinear heat and particle fluxes for both the ion and the electron channel and ion momentum fluxes are reduced with increasing magnetic 5. Nonlinear gyrokinetic simulations and test of the quasi-linear approximation 99 shear, which is also in qualitative agreement with the KBMs stabilisation observed at higher ŝ in the linear simulations of figure 4.13.

The quantitative comparison of the nonlinear fluxes with the experimental values would require to include the impact of fast ions, which have been seen to be slightly stabilising linearly in chapter 4 and known to non-linearly stabilise ITG turbulence [START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Citrin | Nonlinear stabilization of tokamak microturbulence by fast ions[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF]. The impact of profile shearing effects, which by assumption is not included in the local approximation, has been shown to decrease the linear growth rate of KBM modes in hybrid H-modes [START_REF] Moradi | Core micro-instability analysis of JET hybrid and baseline discharges with carbon wall[END_REF] and should also be assessed. Finally, a scan in the main KBM drive, R/L T i and/or R/L n , would also be required as in any comparison of gradient-driven simulation predictions with the experiments. Such a study is beyond the scope of the present thesis, but it is nevertheless interesting to give the value of the experimental fluxes for reference. The particle and heat fluxes at ρ = 0.15, computed from power balance analysis with CRONOS in [START_REF] Citrin | Electromagnetic stabilization of tokamak microturbulence in a high-β regime[END_REF][START_REF] Garcia | Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios[END_REF], are Q e = 16 kW/m 2 , Q i = 47 kW/m 2 and Γ = 3.6 × 10 18 m -2 s -1 . The neoclassical ion heat flux, Q neo i = 13kW/m 2 , accounts for about a third of the experimental ion heat flux. The computed turbulent fluxes are, however, almost two orders of magnitude larger than the experimental ones, which strongly invites to extend the study and perform a scan in the KBM drives (R/L n and R/L T i ). The quasi-linear model is used to test the sensitivity of these fluxes to the KBM drives in section 5.3.

Test of the quasilinear approximation in the inner core

In the last section, nonlinear gyrokinetic simulations of KBM turbulence were presented. The cost of these simulations is too high for extensive parameter scans and use in integrating modelling. As an example the runs for the reference case with β e = 3.2% shown in figure 5.1 alone required around 1.2 million CPU hours of simulation time to reach up to t[R 0 /v thi ] = 600. Therefore, reduced models are developed for the prediction of heat, particle and momentum fluxes to alleviate the expensive numerical cost of nonlinear simulations [START_REF] Casati | Validating a quasi-linear transport model versus nonlinear simulations[END_REF][START_REF] Kinsey | The first transport code simulations using the trapped gyro-landau-fluid model[END_REF][START_REF] Angioni | Density response to central electron heating: theoretical investigations and experimental observations in ASDEX upgrade[END_REF][START_REF] Dannert | Gyrokinetic simulation of collisionless trapped-electron mode turbulence[END_REF]. Standard quasi-linear models work reasonably well in the core region, 0.3 ≤ ρ ≤ 0.7, though, their validity still needs to be tested in the inner core ρ < 0.3. The purpose of the present section is to test the validity of standard quasi-linear models based on the nonlinear simulations of section 5.1 featuring KBM turbulence in the inner core of the JET 75225 discharge at t = 6.0 -6.5s and ρ = 0.15.

Quasi-linear approximation

The quasilinear approximation assumes that the phase difference between fluctuating fields (e.g. n and φ for the E × B particle flux) is similar in the linear and the non-linear regimes. This is usually observed for ITG and TEM turbulence and was more recently shown to also be valid for KBM turbulence [START_REF] Maeyama | Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence[END_REF]. When this approximation holds, the quasi-linear fluxes can be computed as [START_REF] Dannert | Gyrokinetic simulation of collisionless trapped-electron mode turbulence[END_REF][START_REF] Bourdelle | A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas[END_REF]:

Q QL s,E×B = kr,k θ Q N s,E×B A 2 QL ,
(5.1)

Q QL s,A = kr,k θ Q N s,A A 2 QL , (5.2)
where the first term on the right-hand side is the flux surface average linear flux normalised to the mode amplitude, Q N s = Q s /A 2 L , and the second term is an approximation of the nonlinear saturation amplitude: A QL ∼ A NL . This saturated potential is usually constructed based on nonlinear simulations and experimental observations [START_REF] Bourdelle | A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas[END_REF][START_REF] Casati | Validating a quasi-linear transport model versus nonlinear simulations[END_REF].

In linear runs, the mode amplitude is defined as:

A L (k r , k θ , t) = |φ| 2 + |A | 2 + |B | 2 ds ds (5.3)
where s is the parallel coordinate and the integral is performed over the full flux-tube domain, i.e. it includes several poloidal turns. In non-linear runs, an extra temporal average is added and the integral in the parallel direction is performed for one poloidal turn only:

A NL (k r , k θ , t) = 1 ∆t |φ| 2 + |A | 2 + |B | 2 dsdt (5.4)
with ∆t the length of the interval used for the temporal average.

In most quasi-linear models, the linear fluxes are computed at k r ρ i = 0 only, which is what is done here. We verified in Fig. 5.6 that the KBM growth rate and the linear fluxes vary very little with the radial wave vector.

Mixing length model

A common choice for the quasilinear model is to define the saturated mode amplitude based on a mixing length estimate [START_REF] Dannert | Gyrokinetic simulation of collisionless trapped-electron mode turbulence[END_REF]: and assume A 2 QL = W 1 to compute the quasi-linear fluxes using Eq. (5.1). Here, k 2 ⊥ is an effective perpendicular wave vector which takes into account the extended structure of electrostatic potential along the field line and is defined as:

W 1 = C 1 max γ k 2 ⊥ , 0 , (5.5) 
k 2 ⊥ = k ⊥ (s) 2 |φ| 2 ds |φ| 2 ds , (5.6)
where the integral is performed along the whole flux tube.

In GKW coordinates, k ⊥ can be written as:

k 2 ⊥ = k 2 r g rr + 2k θ k r g rθ + k 2 θ g θθ , (5.7)
where g is the contravariant metric tensor.

The main drawback of this model is that linearly stable modes will never contribute to the quasi-linear fluxes. As it will be seen in the present case, this prevents from capturing the magnetic flutter fluxes at low k θ ρ i .

QuaLiKiz model

Another widely used quasilinear model is the one integrated into QuaLiKiz [START_REF] Bourdelle | A new gyrokinetic quasilinear transport model applied to particle transport in tokamak plasmas[END_REF]103]. In this model, the saturated mode amplitude is approximated by:

W n = C n S k max γ k 2 ⊥ 1 k θ ρ max i ,
(5.8)

5. Nonlinear gyrokinetic simulations and test of the quasi-linear approximation 103 with spectral form factor S k given as

S k = k θ ρ i k θ ρ max i xn for k θ ρ i < k θ ρ max i ,
(5.9)

S k = k θ ρ i k θ ρ max i -3 for k θ ρ i > k θ ρ max i , ( 5.10) 
where the maximum of γ/ k 2 ⊥ is taken over the k θ ρ i spectrum and k θ ρ max i is the wave vector at which this maximum is reached. Here, we will test two different spectral shapes: W 2 and W 3 with x 2 = 1 and x 3 = 2, respectively, to highlight the sensitivity of the magnetic flutter fluxes to the spectral rule used at low k θ ρ i . W 2 is the current choice in QuaLiKiz. W 3 has the values closest to the nonlinear exponent as seen in the nonlinear spectra (figure 5.3). Note that the QuaLiKiz model includes other-dimensional terms that are absorbed in the C n factor since they do not vary in the present study. The QuaLiKiz model also offers the possibility to account for the contributions of several eigenmodes per wave vector. In the present work, only the contribution from the most unstable modes has been considered.

Linear heat and particle fluxes

In chapter 4, figure 4.22 and 4.23, we have focused on the linear heat and particle fluxes for the most unstable mode k θ ρ i = 0.35 only. Here we are investigating fluxes for the whole k θ ρ i range. The linear heat and particle fluxes normalised to the mode amplitude are presented in figure 5.7 as a function of k θ ρ i for the nominal parameters at ρ = 0.15. The flux contribution due to magnetic flutter and compression part for particle and heat (electrons, ions) is negligible compared to the E × B part, except at low k θ ρ i modes. At k θ ρ i = 0.1, the electron heat flux from magnetic flutter contributions is about 9.4 (this point cannot be seen in the figure 5.7 (b)) and largely exceeds the E × B contribution. The large (normalised) electron heat flux from magnetic flutter is observed in the spectral region where micro-tearing modes are identified in figure 4.4. These micro-tearing modes are linearly stable (γ < 0) but are nevertheless the modes with the largest growth rate at low k θ ρ i values. The particle flux generated by KBMs in hybrid plasmas are positive (outward) directed with the maximum located at the k θ ρ i = 0.40 for the E × B part. The higher heat fluxes as compared to electrons indicates the main channel of transport for KBMs is the ion heat flux.

Comparison of nonlinear and quasi-linear spectra

The non-linear k θ ρ i spectra of φ and A are compared to the various quasi-linear weights introduced above for different plasma beta and magnetic shear in figures 5.8 and 5.9. Here, figure 5.8 (a) is for β e = 2.4%, (b) for β e = 3.2%, (c) corresponds to β e = 3.8% at nominal magnetic shear (ŝ = 0.05) and (d) is for higher magnetic shear ŝ = 0.1 at nominal beta (β e = 3.2%). The values of A 2 A ,N L are much lower than that of A 2 φ,N L , but the φ and A non-linear spectra have a very similar shape. At higher beta, the peak of non-linear spectra are shifted towards low k θ ρ i values, as previously observed in [START_REF] Candy | Beta scaling of transport in microturbulence simulations[END_REF]. Note that the non-linear spectra are much less peaked than those observed in [START_REF] Maeyama | Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence[END_REF] for the Cyclone Base Case at R/L Te = 0 and are more typical of those observed for ITG turbulence. Here, the quasi-linear spectra are normalised to the peak of the nonlinear spectrum to focus on how accurately they reproduce the shape of the nonlinear spectra. As anticipated, the standard mixing length model does not capture the finite amplitude of the fields for k θ ρ i < 0.3 since all linear modes are stable in this region. The QuaLiKiz-like model performs much better to this respect, especially the W 3 variant. All models fail to capture the variation of the spectral width and peak location with β.

Comparison of quasi-linear fluxes with non-linear simulations

To finally test the quasi-linear predictions based on the various saturation rules discussed here, the resulting quasi-linear heat, particle and momentum fluxes obtained with the three quasi-linear models W 1 , W 2 and W 3 are now compared with the nonlinear fluxes, using the same k θ ρ i grid as in the nonlinear simulations to compute the normalised linear fluxes. A scalar multiplication factor of C 1 = 12.4, C 2 = 4.24 and C 3 = 4.32 is used to match the computed quasilinear ion heat flux with the non-linear simulations at β e = 3.2%. 

Comparison of E × B fluxes

The corresponding E × B heat, particle and momentum fluxes are plotted in figure 5.10 for the beta scan. As illustrated in figure 5.10 (a), all quasi-linear models yield comparable results for the E × B part of the electron and ion heat fluxes. The general trend of increasing E × B heat flux with β is captured, but the steeper increase at high β is underestimated by 20 to 25% by all models. The same situation is observed for the E × B particle and momentum fluxes, i.e. the increase of the flux with β is well captured at low β but underestimated by some 25% at β e = 3.8%. Quantitatively, the quasilinear particle flux amplitude is underestimated at β e = 3.8% by ∼ 25% for weight W 1 and by ∼ 31% for weights W 2 and W 3 . For the momentum flux, the W 3 model performs significantly better than the others.

The comparison is then extended to the magnetic shear scan in figure 5.11. The quasi-linear heat, particle and momentum E × B fluxes decrease with a higher absolute value of magnetic shear, in qualitative agreement with the nonlinear results due to stabilisation of KBM at higher magnetic shear values. Quantitatively, the mixing length model W 1 performs the worst and underestimates the nonlinear ion heat flux by ∼ 42% and the electron heat flux by ∼ 53% at higher magnetic shear 5. Nonlinear gyrokinetic simulations and test of the quasi-linear approximation 107 ŝ = 0.1. The best results are obtained with the W 3 model which underestimates the ion heat flux by ∼ 14% whereas it is in good agreement for the electron heat flux at higher magnetic shear. The same trend is obtained for the particle and momentum flux, with W 3 performing significantly better than the other models. 

Comparison of magnetic flutter fluxes

As seen in figure 5.4 and 5.5, the only non-negligible magnetic flutter contribution is to the electron heat flux. Therefore, now we will focus on this channel for the comparison with the quasi-linear models. To start with, we examine the parity of the modes as a function of k θ ρ i . The magnetic flutter fluxes obtained with the W 1 , W 2 and W 3 models for the electron are then compared to the non-linear fluxes in Fig. 5.13.

The parity factor is defined as [START_REF] Hatch | Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes[END_REF]:

P A = | Re[A ] ds| |Re[A ]| ds (5.11)
The parity factor is zero (A is odd) for pure ballooning parity (KBM) and may be as high as one (A is even) for tearing parity modes (MTM). Figure 5.12 illustrates the parity factor for the A and φ fluctuations for the nominal parameters at ρ = 0.15. At the lowest k θ ρ i , there is a marked increase in the parity factor for A and decrease for φ, suggesting a nonlinear excitation of the stable MTM at this location.

As illustrated in figure 5.13, for the electron heat flux, the mixing length model W 1 strongly underestimates the magnetic flutter contribution, as anticipated, since it cannot capture the contribution from the linearly stable micro-tearing modes at k θ ρ i = 0.1. In contrast, the W 2 and W 3 models strongly overestimate the magnetic flutter heat flux. The factor of 3 difference between the electron heat flux predictions To better understand the discrepancy for the electron magnetic flutter part, the ratio of the A fluctuations amplitude to the total fluctuation amplitude is shown in figure 5.14 as a function of k θ ρ i for linear and non-linear simulations.

For k θ ρ i > 0.2, this ratio is observed to be comparable in linear and non-linear simulations (∼ 40% difference at k θ ρ i = 0.9), but at k θ ρ i = 0.1 the linear ratio is more than 10 times larger than the non-linear one. Linearly, the ratio A 2 A /A 2 at low k θ ρ i is governed by the most unstable mode, i.e. micro-tearing modes (MTM) in the present case. Since these modes are linearly stable, the evolution of their amplitude tends to be dominated by the non-linear interactions in the non-linear regime, which results in a much smaller value of A 2 A /A 2 at k θ ρ i = 0.1. In an attempt to capture this effect in the QuaLiKiz-like quasi-linear model, an extra normalisation of the magnetic flutter fluxes has been introduced. First, it is assumed that:

A A ,N L A NL ∼ A A ,L (k θ ρ max i ) A L (k θ ρ max i ) (5.12)
and then, the following quantity is introduced:

A ratio = A L (k θ ρ i ) A A ,L (k θ ρ i ) A A ,L (k θ ρ max i ) A L (k θ ρ max i ) , ( 5.13) 
that is used to renormalise the amplitude of A in the magnetic flutter fluxes based on the assumption in Eq. (5.12):

Q QL s,A = k θ Q N s,A A 2 QL A ratio (5.14)
This model will be referred as W * 2 and W * 3 and is compared to the non-linear results for beta in Fig. 5.15 (a).

The renormalisation of A in the linear magnetic flutter fluxes makes the prediction of the QuaLiKiz-like model for the electron magnetic flutter contribution much closer to the values of the fluxes obtained in the nonlinear simulations, in particular for W * 3 . The extreme sensitivity to the assumption used for the low k θ ρ i part of the spectrum is again visible when by comparing W * 2 and W * 3 : more than a factor of three difference on the magnetic flutter electron heat flux can be obtained with a modest change in the quasi-linear spectrum. The extra normalisation of magnetic flutter part has no impact on the quasi-linear ion heat, particle and momentum parts since the only non-negligible magnetic flutter contribution is to the electron heat flux. The quasilinear electron fluxes for magnetic shear scans due to magnetic flutter contributions with this new normalisation are plotted in figure 5. 15 (b). The magnetic flutter contribution to the electron heat flux for W * 2 is overestimated at ŝ = 0.05 and underestimated at ŝ = 0.1. For the QL rule W * 3 , QL fluxes are overestimated by ∼ 50% at lower magnetic shear and underestimated at higher magnetic shear by more than ∼ 90%.

Sub-dominant MTMs and their contribution to magnetic flutter transport is an area of research on its own [START_REF] Hatch | Origin of magnetic stochasticity and transport in plasma microturbulence[END_REF][START_REF] Hatch | Magnetic stochasticity and transport due to nonlinearly excited subdominant microtearing modes[END_REF][START_REF] Jian | Role of microtearing turbulence in diii-d high bootstrap current fraction plasmas[END_REF] and it is clear that more work is required to predict the magnetic flutter fluxes in a quasi-linear model accurately. It is nevertheless encouraging to see that once the saturated level of A is captured, standard quasi-linear models predictions are of the right order of magnitude compared to nonlinear results.

Sensitivity of the quasilinear ion heat fluxes to input gradients

In this section, the sensitivity of the nonlinear ion heat fluxes to the main KBM drives (R/L T i and R Ln ) is investigated using the reduced quasi-linear models. The most accurate QL model W 3 (described in section 5. 

Summary

To summarise this chapter, the quasi-linear ion and electron heat fluxes, particle and momentum fluxes estimation for three different QL models are found in reasonable agreement with nonlinear fluxes amplitude for the E × B contribution with some departure at higher beta and high magnetic shear, especially for the basic mixing length model (W 1 ).

For the magnetic flutter contribution to the electron heat flux, which represents about half of the total electron heat flux, capturing the contribution of linearly stable micro-tearing modes excited in the nonlinear regime is essential. This proves to be a difficult exercise, extremely sensitive to the exact value of the saturated A values at low k θ ρ i . The QuaLiKiz-like mixing length model (W *

3 ) yields the best results, even though further improvements would be desirable to capture both the β e and ŝ impacts. Reducing the KBM drives R/L T i and R/L ne by about 20% and including kinetic fast-ion strongly reduces the quasi-linear in heat flux to the point where it matches with the experimental value.

6

Conclusions and future perspective Accumulation of tungsten (W) in the plasma central region is a key issue which can limit the performances of the present as well as future fusion devices such as ITER. Tungsten accumulation in the central part of ITER (ρ<0.3) is expected to be determined by neoclassical and turbulent processes. Understanding turbulent transport in this region is crucial to predict the turbulent W fluxes and the background plasma profiles which determine W neoclassical transport. Predicting core transport in the region ρ<0.3 is also very important for the fusion reaction rate. In this thesis, the available reduced transport models that can be applied to ITER are tested based on existing plasma discharges of the JET tokamak.

To better characterise turbulent transport and to test the quasi-linear approximation in the central region close to the magnetic axis, a linear gyro-kinetic investigation has first been carried out for JET high-β MHD-free hybrid H-mode discharge 75225 in the time interval t = 6.0 -6.5s at ρ = 0.15 as well as on other radial locations using the gyrokinetic code GKW in the local approximation. The role of MHD activity that was not present in these selected hybrid discharges can be crucial in the central region, especially in baseline scenarios with q < 1 and sawteeth. In spite of lower gradients close to the magnetic axis, the plasma is found linearly unstable. The pressure-driven instability arising in this region has been identified as a Kinetic Ballooning Mode (KBM) with an extended mode structure along the magnetic field line in ballooning space due to the low magnetic shear. The low magnetic shear and high plasma beta values are responsible for the onset and destabilisation of KBM in this region. It is found that the low magnetic shear of these hybrid plasmas can lead to a shift of the KBM threshold towards low β e values. It is also found that the KBM instability dominates up to ρ = 0.33. At mid and outer radius, ρ > 0.4, ITG becomes the dominant instability. This is due to the fact that the critical beta for the destabilisation of KBMs increases across the minor radius from ρ = 0.15 to ρ = 0.6, mostly due to the increased magnetic shear. Furthermore, the impact of kinetic fast ions is always stabilising at all radial locations except at ρ = 0.33 where a fast ion driven mode is excited. Including the fast ion pressure in the magnetic equilibrium leads to stabilisation of KBM modes and destabilisation for ITG modes. The higher T e /T i ratio leads to an increase of the KBM growth rate. In comparison to the impact of magnetic shear, β or β , the impact of the electron to ion temperature ratio T e /T i and safety factor q is smaller but tend to favour the destabilisation of KBM modes in electron heated plasmas with a q profile just above unity. A scan of toroidal rotation (u) and toroidal rotation gradient (u ) indicates that the toroidal rotation has a moderate impact (< 10%) on the KBM mode growth rate but increasing the toroidal rotation gradient significantly destabilises the KBM. The collisions and impurities have negligible effects on the KBM growth rate and frequency. Non-linearly, the excitation of KBMs drives heat and particle fluxes increasing with higher beta and lower magnetic shear consistently with linear results. Nonlinearly, the E × B contribution to the ion heat flux is found to be dominant. For the electron heat flux, the most striking observation is that the magnetic flutter contribution to the nonlinear heat flux is much larger and with an opposite sign to what is observed in linear simulations. This contribution possibly arises from stable micro-tearing modes at k θ ρ i <0.2 that are excited non-linearly. The nonlinear excitation of MTM modes at low k θ ρ i is supported by the parity factor of magnetic fluctuations. Accounting for these micro-tearing modes is necessary to predict the mechanisms for energy and particle turbulent transport in the inner core of high-performance plasmas. The nonlinear heat flux values for electron and ion for nominal parameters at ρ = 0.15 are found to be much larger than the experimental power balance values. Additional simulations including kinetic fast ions, background E × B shearing and scans in the main KBM drives (R/L T i and R/L n ) within the experimental uncertainties are now required to test whether the nonlinear fluxes values can be compatible with the experimental ones.

The validity of standard quasi-linear (QL) models has also been tested for the selected JET discharge. At ρ = 0.15, it is found that the quasi-linear fluxes estimates are in good agreement with nonlinear fluxes for the E × B contributions with some departure at high beta. However, these models fail to capture the magnetic flutter contribution to the electron heat flux due to the non-linearly excited micro-tearing modes. An extension of the model used in QuaLiKiz is shown to improve the description of the magnetic flutter contribution, even though further work would be required to obtain a robust model. The QL model was used to test the sensitivity of these fluxes to the KBM drives. A decrease of R/L T i and R/L n by about 20% was sufficient to match the experimental fluxes, demonstrating the strong sensitivity of the QL fluxes to the input gradients.

A sizeable level of turbulent transport in the inner core is favourable to avoid W accumulation. Tungsten turbulent diffusion can mitigate the neoclassical inward pinch of W in the inner core and help in preventing W accumulation. This mechanism could be particularly relevant for ITER where the level of neoclassical transport to overcome is low. To test this mechanism, the gyrokinetic analysis has been extended to the ITER conventional H-mode scenario in DT with 15 MA plasma current and Q=10. Reference profiles for this case were obtained from ASTRA simulations using a scaling based transport model for the core and with EPED1+SOLPS pedestal for the H-mode Hy2, 98 = 1 [START_REF] Polevoi | Integrated simulations of h-mode operation in ITER including core fuelling, divertor detachment and ELM control[END_REF]. It is found that KBM is also unstable for this predicted ITER H-mode case. Future work will extend this evaluation to other ITER low Q scenarios, such as the Q = 5 steady-state one, and will compare turbulent heat and particle fluxes with neoclassical fluxes to predict W accumulation in the inner core of ITER.

A

Simplified dispersion relation for ITG instability

A simplified analytical dispersion relation for ITG instabilities and their physical picture is described in this appendix. Two kinetic and fluid models are used to build the linear dispersion relation to describe the toroidal and slab ITG.

A.1

The δf gyrokinetic equation in the slab-like approximation

A.1.1 Reference gyro-kinetic equation

The starting point is the gyrokinetic equation in the local approximation 3.12, described in chapter 3. In this equation, we neglect the vector potential fluctuations to make the model electrostatic and further neglect the Coriolis, centrifugal term, parallel rotation gradient, and β correction to the curvature drift.

After these assumptions the gyrokinetic equation is 

A.1.4 Linearized one-point gyro-kinetic equation

On rewriting the reference gyrokinetic equation A.1 in a simplified form after putting the values of all the terms, we get the equation: This linearized equation is then written in a more compact form using the following definitions: 

-iωf + v k z f i - mv 2 ZeBR 0 + mv 2 ⊥ 2ZeBR 0 if k y - k x -k y B φf = k y B ∇n 0 n 0 φiF m + k y B φi v 2 v 2 th + µB T - 3 
ω D = v th D k y = -
E D = v 2 || v 2 th + 1 2 v 2 ⊥ v 2 th , E T = v 2 v 2 th - 3 2 (A.23)
Also, it is seen that ω D = -2ω E and v 2 = v 2 + v 2

⊥

Here, v th is the thermal velocity, ω D is the characteristic frequency of the curvature and ∇B drift at the thermal velocity over a wavelength of the perturbed quantities, and ω E is the characteristic frequency of the radial E × B drift over the reference length R 0 for an electrostatic potential perturbation of wave vector k y and amplitude T e /e (neglecting the gyro-average).

So, the final reduced gyro-kinetic equation in slab like approximation is written as:

ωf + -v k z -E D ω D f = R L n + E T R L T ω E e T e F m φ + Ze T v k z + E D ω D φF M .
(A.24)

A.1.5 Quasi-neutrality and adiabatic electron approximation

The quasi-neutrality equation, states that the sum of the gyro-center density and of the polarization density is zero: Assuming two species only, main ions and electrons and neglecting the gyroaverage for the electrons (i.e. assume ρ e = 0), J 0 (0) = 1

Z i J 0 (k ⊥ ρ i )f i dv + Z 2 i n i [Γ(b) -1] eφ T i -f e dv + n e [1 -1]
eφ T e = 0 (A.27)

Z i J 0 (k ⊥ ρ i )f i dv + Z 2 i n i [Γ(b) -1] eφ T i
-δn e = 0 (A.28)

Using the adiabatic electron approximation δne ne = eφ Te to further simplify the quasi-neutrality equation

Z i J 0 (k ⊥ ρ i )f i dv + Z 2 i n i [Γ(b) -1] eφ T i
n e eφ T e = 0 (A.29)

A.1.6 Final set of equations

Simplifying the model even further by assuming an ion charge of unity Z = 1, equal electron and ion temperature T e = T i , and neglecting the gyro-average for ions. The final linearized gyrokinetic equation is:

ωf + -v k z -E D ω D f = R L n + E T R L T ω E e T e F m φ+ Ze T v k z + E D ω D φF M (A.32)
In the section A.2, we will take moments of this equation to derive a fluid dispersion relation for the ITG and compare it to the kinetic solution in section A.3.

A.2 Fluid Model

A.2.1 Moments of distribution function

The first three moments of the perturbed distribution functions are ñ = f dv, (A.33) ñṽ = f v dv, (A.34)

δp = f 1 2 mv 2 dv. (A.35)
Here the integral is performed over the velocity space. The perturbed temperature δT is defined from the linearization of the perturbed pressure.

The perturbed distribution function is defined as:

f = F M ñ n 0 + 2 ũ v th v v th + T T v 2 v 2 th - 3 2 . (A.36)
The Maxwellian distribution function is:

F = F M = n 0 π 3/2 v 3 th exp - v 2 + v 2 ⊥ v 2 th .
(A.37)

I. Zeroth Moment (continuity equation)

We first integrate the linearized equation with respect to velocity space 

ωf dv + -v k z -E D ω D f dv = R L n + E T R L T ω E e

II. First Moment (parallel velocity moment)

Multiplying by v and integrate over the velocity space. 

ω v f dv + -v k z -E D ω D f v dv = v R L n + E T R L T ω E e T e F m φdv + v v k z + E D ω D eφ T F M dv (A.
ω v 2 f dv -v 2 v k z f dv -E D ω D v 2 f dv = v 2 R L n + E T R L T ω E e T e F m φdv + v 2 v k z + E D ω D eφ T F M dv (A.43)
{v 2 } f = 3 2 n 0 v 2 th (n+ T ); {v 2 v || } f = 5 2 ũ n 0 v 2 th ; {E D v 2 } f = 5 2 v 2 th n 0 (n+ 2T ) {v 2 } F = 3 2 v 2 th n 0 ; {E T v 2 } F = 3 2 v 2 th n 0 ; {v 2 v || } F = 0; {v 2 E D } F = 5 2 v 2 th n 0
Putting all these values in the equation A.43: As illustrated in figure A.2, starting from a small temperature perturbation, the temperature dependence of the ∇B drift will generate a density perturbation (by compression) as can be seen from the first equation. Because density perturbation is directly proportional to electrostatic potential as from the third equation, perturbation of electrostatic potential will follow the same direction as density. From the second equation we can see that this electrostatic potential perturbation will act on the background distribution function and because of E × B drift this hotter plasma will move towards hotter plasma and cold plasma will move towards cold plasma side which will enhance the perturbation on the low field side.

ω 3 2 v 2 th n 0 (n + T ) -k z 5 2 ũ v 2 th n 0 -ω D 5 2 v 2 th n 0 (n + 2T ) = R L n 3 2 v 2 th n 0 + R L T
Whereas on high field-side, the hotter plasma will move towards the colder side and colder plasma will move towards the hotter side that will suppress the perturbation. This is another simplified dispersion relation for toroidal ITG. The solution of this equation will give the growth rate. From this equation we can see clearly on keeping all the terms, we would have found that Eigenvalues are not just imaginary (as in the previous model), but complex numbers in which the imaginary part (growth rate) is positive provided that the normalized logarithmic temperature gradient R/L T exceeds a particular value (threshold).

Steps to derive Toroidal ITG

The solution to the above equation is From figure A.3, we can see that the density gradient is stabilizing the toroidal ITG, whereas temperature gradient is enhancing the linear growth rate, which causes instability in the plasma. Also, for a particular value of density gradient, there will be a minimum threshold value of temperature gradient for perturbation to grow below which it is stable. This is the final dispersion relation for Slab ITG with adiabatic electrons and electrostatic case. This is a cubic polynomial, and analytical solution of this equation is nontrivial. However, it can be solved numerically.

Contour plots of growth rate (γ) as function of normalized logarithmic temperature gradient (R/L T ) and density gradient (R/L n ) for q = 1.1, k Z = 1/q and different values of k y ρ (ω E = k y /2) is given in figure A.5. As we can see from figure on increasing k y ρ, i.e., increasing ω E (k y ρ = ω E /2), growth rate threshold decreases. For k y ρ = 0.3 and for different values of q(k Z = 1/q), contour plots of growth rate (γ) as function of normalized logarithmic temperature gradient (R/L T ) and density gradient (R/L n ) is given in figure A.6. As seen, the threshold of growth rate decreases with increasing q value. Also, for higher values of q density gradient stabilizing the slab ITG, however, temperature gradient enhancing the growth rate. As can be seen from the figure, above a threshold, the density gradient stabilized the slab ITG; however, temperature gradient increases the growth rate that will destabilize the mode.

A.3 Kinetic model

Combining the final linearized quasi-neutrality equation and the linearized gyrokinetic equation of section A.1.6 to write a dispersion relation n = φ (A.59)

ωf + -v k z -E D ω D f = R L n + E T R L T ω E e T e F m φ + v k z + E D ω D eφ T F M (A.60)
The distribution function in an un-normalized form is given as

f = (R/L n + E T R/L T ) ω E + [v k z + E D ω D eφ T F M ω -v k z -E D ω D (A.61)
Normalizing the equation with the quantities using the relation v th for velocities, R 0 for lengths and v th /R 0 for frequencies. It can be seen from figure A.9 that in the region far away from the threshold value of temperature gradient scale length, both fluid model and kinetic models are in good agreement to predict growth rate. However, close to threshold value fluid models predicts zero growth rate, whereas the kinetic model indicates a finite growth rate in the system. Therefore, the fluid model fails to give a growth rate at close to a threshold value; hence, we need a kinetic model to explain it.
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 11 Figure 1.1 -Binding energy per nucleon versus mass number plots for various atomic elements. Fig. courtesy: Pearson Prentice Hall.
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 12 Figure 1.2 -Reaction parameter σv as a function of temperature. Courtesy [3].
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 1323234 Figure 1.3 -Schematic of a D-T fusion reaction forming a helium nucleus.
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 14 Figure 1.4 -Schematic diagram of JET (on left side) and ITER (on right side) tokamak. Source: https://www.iter.org/
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 15 Figure 1.5 -Core ion temperature as a function of fusion triple product [10].
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 16 Figure 1.6 -Illustration of a tokamak configuration (Courtesy: Eurofusion [11]).
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 17 Figure 1.7 -Schematic of a circular concentric magnetic flux surfaces of a tokamak.
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 18 Figure 1.8 -Schematic view of poloidal cross-section of a tokamak with limiter and divertor geometries.
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 19 Figure 1.9 -Schematic diagram showing the formation of L and H modes plasma pressure with edge transport barrier [13].
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 110 Figure 1.10 -Sputtering yield of various materials as function of incident energy of deuterium ions. Courtesy [25].
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 1 Figure 1.11 -Ignition curves as function of temperature for different concentrations of W for the case that τ He = 5τ E along with the curve for no He and no W . Figure from reference [26].
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 112 Figure 1.12 -Neoclassical (NEO) and turbulent (GKW) diffusion (left) and convective (right) contribution to W transport at 10.42 s for JET-ILW discharge 83351 [32].
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 16 The parallel electron fluid force balance equation in the collisionless limit is m e n e dv ||,e dt = -∇ || p e + en e ∇ || δφ.
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 21 Figure 2.1 -Simplified picture of drift waves in a slab geometry with k x << k y . ( Courtesy: [41])
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 22 Figure 2.2 -A typical characteristics length scale of the linear growth rates for the ITG, TEM and ETG tokamak plasma instabilities. (Courtesy: [54]).
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 23 Figure 2.3 -A typical dependence of linear growth rates γ (a) and real frequency ω r (b) on the plasma beta for a standard tokamak parameters: k θ ρ i = 0.4, = 0.16, ŝ = 1.0, q = 2.0, R/L T D = 9.0, R/L nD = 3.0, R/L T e = 0.0, R/L ne = 3.0, no collisions and no toroidal rotation.
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 24 Figure 2.4 -Parallel mode structure of electrostatic potential φ and vector potential A || for ITG mode (a) and (b), and KBM modes (c) and (d) as a function of parallel coordinate s for standard tokamak parameters given in figure 2.3.

  and of the parallel motion along the perturbed field lines ( v δB = -b × ∇v || A || gy /B), i.e. : v χ = b × ∇χ B with χ = φ gy -v || A || gy +

  First, the reference values are defined such as a reference mass m ref , a reference density n ref , a reference temperature T ref , a reference thermal velocity v thref , a reference major radius R ref , a reference vacuum magnetic field B ref and a reference gyroradius ρ ref . The reference magnetic field is defined as B ref = B t (R ref ) on the considered flux surface when the Miller parametrisation is used.
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 31 Figure 3.1 -Miller flux surfaces centred on R 0 = R mil = 1.0 and Z = 0 plane with a minor radius of r = 0.5.

. 57 )

 57 These fluxes are the sums of the flux contributions due to the electrostatic (E × B velocity v E ), the magnetic flutter (v A || ) and the magnetic compression (v B || ) parts. Here v B is drift velocity due to perturbations of magnetic field in the parallel direction, v B = b × ∇µ B gy /B 0 .
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 41 Figure 4.1 -Plasma input profiles for the JET discharge #75225 at 6-6.5 s obtained from GPR fits of experimental measurements as a function of the normalized toroidal flux ρ for (a) electron density, (b) electron temperature, (c) ion temperature, (d) toroidal rotation frequency, (e) safety factor q and (f) fast ion pressure profile obtained from PENCIL. In figure (b), the measurements are from two diagnostics HRTS and LIDAR and three offset points are from ECE measurements.
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 42 Figure 4.2 -The radial derivatives of the total pressure β (a) and center flux surfaces R mil (b) as a function of radial location ρ.The blue curve represents the case when fast ion pressure is included in the magnetic equilibrium and red line is for the case when the fast ion pressure is neglected in the magnetic equilibrium.

Figure 4 . 3 -

 43 Figure 4.3 -The linear growth rate for the most unstable mode at k θ ρ i = 0.35 for ρ = 0.15 as a function of the number of grid points for the magnetic moment N µ (a), the parallel velocity N v (b) and the number of points in the parallel direction per poloidal turns N s (c).
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 44 Figure 4.4 -Linear growth rate (left) and real frequency (right) spectra as a function of k θ ρ i , at different radial locations: (a) and (b) at ρ = 0.15, (c) and (d) at ρ = 0.33, (e) and (f ) at ρ = 0.60.The green curve represents the case without kinetic fast ions and without fast ion pressure in the magnetic equilibrium. The blue line correspond to the case without kinetic fast ions but the magnetic equilibrium includes the fast ion pressure. The red curve indicates the case with kinetic fast ions and fast ion pressure in the magnetic equilibrium, with the nominal fast ion pressure for the kinetic species (full line) or reduced by 30% (dashed line).
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 45 Figure 4.5 -Growth rate and frequency of the most unstable modes as a function of radial location ρ. Full symbols are used for KBM modes and open symbols for ITG modes. The (red) full star symbol at ρ = 0.33 corresponds to a hybrid BAE/KBM mode destabilised due to kinetic fast ions. Same color code as in figure 4.4.
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 46 Figure 4.6 -Linear growth rate (left) and real frequency (right) spectra as a function of β e , at different radial locations: (a) and (b) at ρ = 0.15, (c) and (d) at ρ = 0.33, (e) and (f ) at ρ = 0.60. The vertical dotted arrow shows the experimental β e value at the reference location. Same colour coding as in figure 4.4
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  and is obtained by extrapolating the KBM growth rate by a quadratic fit and finding the value at which the KBM fit function becomes zero. The β crit e values at various radial locations are plotted in figure 4.7 (a). The β crit e threshold is less than 1% in the inner core and increases when moving further outwards. The increase in the β e threshold is closely linked to the increase of the magnetic shear across the minor radius (Fig. 4.7 (b) ) which is reminiscent of the dependence of the MHD ballooning limit β crit MHD ∼ 0.6ŝ/[q 2 0 (2R/L n + R/L T i + R/L T e )] (shown by the dotted red line in Fig. 4.7 (a)) expected to approximately reproduce the dependencies of β crit e
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 47 Figure 4.7 -β e (a) and magnetic shear ŝ values (b) as a function of the radial location ρ. In figure (a), the blue curve corresponds to the critical beta β crit e threshold of KBM, the red (dotted) curve represents the MHD β crit MHD limit and the green curve experimental beta β exp e values.
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 48 Figure 4.8 -Normalised linear ion and electron heat fluxes (a) and (b), and electron particle flux (c) as function of β e for k θ ρ i = 0.35 at ρ = 0.33. The blue curves corresponds to fluxes due to E × B contribution, red due to magnetic flutter (A ) and green due to magnetic compression (B ). The vertical dotted line represents the transition from ITG to KBM range and vertical dotted arrow shows the experimental β e value.
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 49 Figure 4.9 -Parallel mode structure of φ (a), A (b) and B (c), as a function of the parallel coordinate s for the most unstable mode k θ ρ i = 0.35 at ρ = 0.15. The blue curve corresponds the real part and the red line indicates the imaginary part.
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 410 Figure 4.10 -2D poloidal cut of real part of electrostatic potential (φ r ) on the R and Z plane for the most unstable mode k θ ρ i = 0.35 at ρ = 0.15.
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 411 Figure 4.11 -Growth rate as a function of the main ion pressure gradient for the most unstable mode k θ ρ i = 0.35. Blue (open circle) curve for the case when the main ion density gradient (R/L nD ) is constant and the main ion temperature gradient (R/L T i ) is varied, (red square) represents the case when the main ion temperature gradient is constant and the main ion density gradient is varied. The vertical (dotted) line indicates the experimental pressure gradient.
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 412 Figure 4.12 -Growth rate as a function of the normalized electron temperature gradient for the most unstable mode k θ ρ i = 0.35 at ρ = 0.15.
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 413414 Figure 4.13 -Linear growth rate (a), and mode frequencies (b) as a function of magnetic shear ŝ for the most unstable mode k θ ρ i = 0.35 at ρ = 0.15.
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 415 Figure 4.15 -β e scans for various values of ŝ, for the most unstable mode k θ ρ i = 0.35. The left panel (a) shows the linear growth rates and the right panel (b) shows the corresponding frequencies for the most unstable mode. The blue curve is for experimental value of ŝ and vertical (dotted) line represents the corresponding nominal value of β e (3.2%).
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 416 Figure 4.16 -Growth rate as a function of |β |, for the most unstable mode at ρ = 0.15 and k θ ρ i = 0.35. The vertical dotted line indicates the nominal value of |β |.
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 417418 Figure 4.17 -Growth rate as a function of T e /T i , for k θ ρ i = 0.35. The vertical dotted line indicates the nominal value of T e /T i .
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 421 Figure 4.21 -Growth rate (a) and frequency (b) as function of k θ ρ i . The blue curve represents the standard case, the red curve corresponds to the case where collisions are retained and Carbon impurity is neglected in the simulations and the green curve where both C impurity and collision are neglected in the simulations.
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 422 Figure 4.22 -Normalised linear ion and electron heat flux (a) and (b), and electron particle flux (c) as function of β e for k θ ρ i = 0.35 at ρ = 0.15. The blue curves corresponds to fluxes due to E × B contribution, red due to magnetic flutter (A ) and green due to magnetic compression (B ).

4. 4

 4 Linear heat and particle fluxes at ρ = 0.15Following the identification of the dominant unstable modes in the inner core of JET hybrid discharge 75225, we now look at the heat and particle fluxes driven linearly by KBM modes. The normalized linear heat and particle fluxes (as defined in section 4.2) at radial location ρ = 0.15 for the β e scans are presented in figure 4.22. As in figure4.8 where the normalized linear fluxes were plotted versus β e at ρ = 0.33, the contribution due to the magnetic flutter and compression part to the particle and ion heat fluxes is negligible as compared to the E × B part, so the total linear fluxes are essentially due to electrostatic contribution. Unlike the cases at ρ = 0.33, figure 4.8, for the electron heat flux, the contribution due to E × B part and A part are both important. The magnetic flutter fluxes for the electron heat flux has a negative sign and tends towards zero when β e increases. Heat and particle fluxes due to E × B 4.5. Summary contribution for all channels (electron and ion) increase with an increase in β e . This increase in fluxes is due to linear destabilisation of KBMs at higher β e as seen in figure4.15.
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 4423 Figure 4.23, illustrates the normalized linear heat and particle fluxes for the magnetic shear scans. Similar to the β e scans, the magnetic flutter electron heat flux is non-negligible and inward for the magnetic shear scans. The heat and particle fluxes for both ion and electron channel decrease with an increase in absolute values of magnetic shear |ŝ| due to stabilization of KBMs at high |ŝ| as seen in figure 4.13.
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 51 Figure 5.1 -Time trace of nonlinear ion (a) and electron (b) normalised heat fluxes for the JET 75225 discharge at ρ = 0.15 for the reference case. The blue curve represents the E × B contribution to the fluxes, the red curve the magnetic flutter contribution (A ) and the green curve the magnetic contribution (B ).
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 52 Figure 5.2 -Time trace of flux-surface averaged zonal modes (k θ = 0 modes) for the three lowest radial modes (a) and the amplitudes of zonal modes as function of radial (k r ) modes (b) for the JET 75225 discharge at ρ = 0.15 for the reference case.
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 53 Figure 5.3 -|φ| 2 and |A | 2 spectra as a function of poloidal wave vector k θ ρ i (a) and (b) and radial wave vector k r ρ i (c) and (d) for the reference case at ρ = 0.15. The blue curve represents the nonlinear simulations results, the red and magenta curves are the k 2 θ and k -3 θ fit, and the green curve is k -3.3 r
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 54 Figure 5.4 -Nonlinear ion heat fluxes (a), electron heat fluxes (b), electron particle fluxes (c), ion momentum fluxes (d) and effective Prandtl number (Pr) (e) as a function of β e , at ρ = 0.15. The solid black line represents the total fluxes. Other colour coding is same as in figure 5.1.
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 55 Figure 5.5 -Nonlinear ion heat fluxes (a), electron heat fluxes (b) and electron particle fluxes (c) as a function of magnetic shear ŝ, at ρ = 0.15. Same colour coding as in fig. 5.1.
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 56 Figure5.6 -Linear growth rate as a function of radial wave vector (k r ρ i ) for three different values of k θ ρ i . The blue curve corresponds to k θ ρ i = 0.3, the red curve for k θ ρ i = 0.4 and the green represents k θ ρ i = 0.5.
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 57 Figure 5.7 -Linear ion (a), electron heat fluxes (b), and particle fluxes (c) normalised with the mode amplitude as a function of k θ ρ i , at ρ = 0.15. The blue ( * ) curve corresponds to flux contribution due to E × B, the red (×) for magnetic flutter and green (+) for magnetic compression part.
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 58 Figure 5.8 -Normalized quasilinear spectra and GKW non-linear saturated electric potential for different plasma beta β e = 2.4% (a), β e = 3.2% (b), β e = 3.8% (c) with nominal magnetic shear (ŝ = 0.05), and for higher magnetic shear ŝ = 0.1 at nominal plasma beta (β e = 3.2%)(d) as function of k θ ρ i , at ρ = 0.15. The quasi-linear spectra are normalized to the maximum of the nonlinear ones. The red curve (square) corresponds to nonlinear, the blue (+) to the quasi-linear model W 1 , the green (×) for W 2 and the magenta ( * ) for W 3 .
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 59510 Figure5.9 -Normalized quasilinear spectra and GKW non-linear saturated vector potential for different plasma beta β e = 2.4% (a), β e = 3.2% (b), β e = 3.8% (c) with nominal magnetic shear, and for higher magnetic shear ŝ = 0.1 at nominal plasma beta (d) as function of k θ ρ i , at ρ = 0.15. The quasi-linear spectra are normalized to the maximum of the nonlinear ones. The red curve (square) corresponds to nonlinear, the blue (+) to the quasi-linear model W 1 , the green (×) for W 2 and the magenta ( * ) for W 3 .

Figure 5

 5 Figure 5.11 -E × B ion and electron heat fluxes (a) and particle and ion momentum flux (b) as a function of the magnetic shear ŝ, at ρ = 0.15. The solid lines are for the non-linear results and the dashed lines for the quasilinear models. The plus signs + corresponds to the QL model W 1 , the crosses × are for W 2 and the star * are for W 3 .

Figure 5 . 12 -Figure 5 . 13 -

 512513 Figure 5.12 -Parity factor for the A fluctuations and Φ fluctuations as a function of k θ ρ i in non-linear simulations, at ρ = 0.15.
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 514 Figure 5.14 -Ratio of the A fluctuations amplitude, A 2A to the total fluctuation amplitude A 2 as a function of k θ ρ i in linear and non-linear simulations, at ρ = 0.15.
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 3515 Figure 5.15 -Magnetic flutter ion and electron heat fluxes as a function of β e (a) and magnetic shear (b) at ρ = 0.15. The solid lines are the non-linear results and the dashed lines are for the quasi-linear models. The plus signs + corresponds to the model W 1 , the crosses × are for W * 2 and the star * are for W * 3 .
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 2 is used to test if variations in input parameter can lead to a significant reduction of predicted turbulent fluxes down to the experimental levels or not. Linear simulations are performed with reduced gradients and corresponding plots are shown in figure5.[START_REF] Zohm | Edge localized modes (ELMs)[END_REF]. Here in figure5.16 (a), the blue curve corresponds to the case with no kinetic fast ions in the simulation, and the red curve is with kinetic fast ions for the nominal value of R/L ne . The red curve in figure5.16 (b) represents the case with kinetic fast ions and reduced R/L T i = 3.2. Including kinetic fast ions and reducing R/L T i by 20% with nominal R/L ne decreases the quasi-linear ion heat fluxes by a factor of 10. Further reducing R/L ne by 20% yields quasi-linear ion heat fluxes values close to the experimental power balance heat fluxes values. This shows that the quasi-linear heat fluxes are extremely sensitive to the main KBM drives and that a reduction of these drive within the experimental uncertainties is sufficient to match the power balance fluxes.
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 516 Figure 5.16 -Quasilinear ion heat heat fluxes for the QL model W 3 as a function of R/L T i for the nominal value of R/L ne (a) and R/L ne with kinetic fast ions and R/L T i = 3.2 (b) at ρ = 0.15. The blue curve is for the case without kinetic fast ions and nominal value of R/L ne = 1.5 and the red curve is for the case with kinetic fast ions.

0 e

 0 b + v D + v E ).∇fgiven as S = -(v E + v D ). Ze T [v b + v D ].∇ φ gy F M . (A.2) Φ gy = J 0 (k ⊥ ρ)Φ (A.16)Noting that the Bessel function of the first kind J 0 can be written asJ 0 (z) = π iz cos θ dθ (A.17) When k ⊥ ρ = 0, the value of J 0 (k ⊥ ρ) = 1 and when k ⊥ ρ = ∞ , J 0 (k ⊥ ρ) = 0.The expression for v E can be written asv E = b × ∇ φ gy B v E = i k x ey -k y e x B φ gy (A.18)

spZ

  sp J 0 (k ⊥ ρ)f sp dv + Z 2 sp n sp [Γ(b) -1]normalized version with the inertial term neglected. The sum is over the plasma species and the integral over velocity space. AlsoΓ(b) = I 0 (b)e -b = -x dx (A.26)where I 0 is the modified Bessel function of the first kind.

f

  i dv = n e eφ T (A.30) ñ = n e0 φ = n 0 φ where n = ñ/n 0 and φ = eφ/T The final quasi-neutrality equation is: n = φ (A.31)

  z + E D ω D φF M dv.(A.[START_REF] Putterich | Observations on the w-transport in the core plasma of JET and ASDEX upgrade[END_REF] Noting the various moments:{G} f = f Gdv we have {v || } f = n 0 ũ ; {E D ω D } f = ω D ñ + n 0 T T ; {1} F = n 0 ; {v || } F = 0; {E T } F = 0; {E D ω D } F = ω D n 0 .With these values the equation A.38 becomesωñ + -n 0 ũ k z -ω D ñ + n 0 T kz = k z RThe final equation for the continuity equation is ωnkz û -ωD (n + T ) = [ω E R/L n + ωD ] φ (A.40)
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 41 Here dv = dv dv ⊥ {v || } f = n 0 ũ ; {v 2 || } f = v 2 th n 0 2 (n+ T ); {v || E D } f = 2n 0 ũ ; {v || } F = 0 {v || E T } F = 0; {v 2 || } F = n 0 v 2 th 2 ; {v || E D } F = 0
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 48 respect to ωD = -2 and using ω D = -2ω E ; we get ω E This equation is a normalized version of the energy balance equation when taking the value of ωD = -2.

  Neglect the parallel motion (strong inertia) û = 0 and put kz = 0 = k .Writing continuity and energy balance equations together with quasi-neutrality equation-ωD (n + T ) = [ω E R/L n + ωD ] ωD ( φ + T ) = [ω E R/L n + ωD ] φ(value in the equation A.52 and solving for φ we get the final equation as :

  relation we can see the variation of growth rate γ as a function of R/L n and R/L T for a fixed value of ωD and ωE . For k y ρ = 0.4, ωD = -k y ρ, ωE = k y ρ/2 the variation of growth rate γ as a function of R/L n and R/L T is given in figure A.3 and a 2D contour plot is represented in figure A.4.

Figure A. 3 -

 3 Figure A.3 -Growth rate (γ) as a function of density gradient scale length (R/L N ) for a fixed value of (R/L T ) (a) and temperature gradient scale length (R/L T ) for a fixed value of (R/L N ) (b) for toroidal ITG using fluid model.

Figure A. 4 -

 4 Figure A.4 -Growth rate (γ) as a function of density gradient scale length (R/L N ) and temperature gradient scale length (R/L T ) for toroidal ITG using fluid model.

8 (b) k y ρ = 0. 7 Figure A. 5 -

 875 Figure A.5 -Growth rate (γ) as a function of density gradient scale length (R/L n ) and temperature gradient scale length (R/L T ) for k y ρ = 0.3 (a) and k y ρ = 0.7 (b), for slab ITG using fluid model and for a fixed value of q=1.1.
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 6 Figure A.6 -Growth rate (γ) as a function of density gradient scale length (R/L n ) and temperature gradient scale length (R/L T ) for q = 1.1 (a) and q = 5.5 (b), for slab ITG using fluid model and for a fixed value of k y ρ = 0.3.
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 7 Figure A.7 -Growth rate (γ) as a function of density gradient scale length (R/L N ) for a fixed value of (R/L T ) (a) and temperature gradient scale length (R/L T ) for a fixed value of (R/L N ) (b) for slab ITG using the fluid model for k y ρ = 0.3 and q = 1.1.

Figure A. 8 -

 8 Figure A.8 -Growth rate (γ) as function of R/L T for a fixed value of R/L n = 1 ( blue curve) and R/L n = 3 (red curve) for the kinetic model. Other parameters are k y ρ = 0.3, k z = 0, ω D = -k y ρ, ω D = k y ρ/2.

Figure A. 9 -

 9 Figure A.9 -Comparison of growth rate (γ) as function of R/L T for a fixed value of R/L n = 3, k y ρ = 0.3, k z = 0, ω D = -k y ρ, and ω D = k y ρ/2 for fluid model (blue curve) and kinetic model(red curve).

  

  

Table 4 . 2 -

 42 Miller parameters for the magnetic equilibrium including the fast ion pressure.

	ρ	q	ŝ	β	κ	δ	ζ	s κ	s δ	s ζ	R mil	Z mil
	0.15 0.05 1.10 0.05 -0.37 1.35 0.02 0.001 -0.004 0.01 0.003 -0.08 -0.005
	0.20 0.07 1.10 0.02 -0.48 1.35 0.02 0.001 -0.007 0.02 -0.00 -0.10 -0.008
	0.25 0.09 1.11 0.05 -0.57 1.35 0.03 0.001 -0.01 0.03 0.001 -0.12 -0.007
	0.33 0.11 1.14 0.21 -0.66 1.34 0.04 0.001 -0.01 0.04 -0.002 -0.16 -0.017
	0.40 0.14 1.22 0.49 -0.64 1.34 0.05 0.001 -0.002 0.05 0.001 -0.19 -0.022
	0.50 0.17 1.42 0.98 -0.50 1.35 0.06 0.00	0.03 0.09 -0.004 -0.23 -0.026
	0.60 0.21 1.74 1.42 -0.37 1.36 0.08 -0.001 0.09 0.14 -0.01 -0.28 -0.063

Table 4 . 3 -

 43 Miller parameters for the magnetic equilibrium without including the fast ion pressure.

	ρ	q	ŝ	β	κ	δ	ζ		s κ	s δ	s ζ	R mil	Z mil
	0.15 0.05 1.08 0.05 -0.36 1.31 0.02 0.0024 -0.008 0.02 0.005 -0.08 -0.006
	0.20 0.07 1.08 0.02 -0.42 1.30 0.02 0.0003 -0.005 0.02 -0.003 -0.10 -0.006
	0.25 0.09 1.09 0.05 -0.45 1.30 0.03 0.0010 -0.008 0.02 0.002 -0.11 -0.007
	0.33 0.12 1.12 0.20 -0.42 1.30 0.04 0.0007 -0.00 0.03 -0.002 -0.13 -0.014
	0.40 0.14 1.20 0.47 -0.36 1.30 0.04 0.0004 0.015 0.04 -0.002 -0.14 -0.018
	0.50 0.18 1.39 0.95 -0.26 1.31 0.06 -0.0003 0.060 0.08 -0.008 -0.17 -0.023
	0.60 0.21 1.70 1.40 -0.20 1.33 0.07 -0.0022 0.127 0.13 -0.021 -0.20 -0.053
	-0.1	(a)				0			(b)			
	-0.2					-0.1						
	-0.3					-0.2						
	-0.4					R mil						
						-0.3						
	-0.5											
	-0.6					-0.4		W FI mag. equil pressure		
								W/O FI mag. equil. pressure		
	-0.7					-0.5						
	0	0.2	0.4	0.6	0.8	1	0	0.2	0.4	0.6	0.8	1

  15 4.23 1.99 0.69 1.51 0.01 3.19 0.05 1.1 1.74 0.015 0.32 0.59 0

  Dividing whole equations by -i and neglecting terms quadratic in the perturbed quantitiesωf -v k z f + mv 2 + mv 2

	2	∇T T	F m -	Ze T	v k z -mv 2 + mv 2 ⊥ /2	k y ZeBR 0	φiF M
														(A.19)
	⊥ /2	f k y ZeBR 0	= -	∇n 0 n 0	-	v 2 v 2 th	+	mv 2 ⊥ 2T	-	3 2	∇T T	k y B	F m φ
					+	Ze T	v k z -mv 2 + mv 2 ⊥ /2	k y ZeBR 0	φF M
														(A.20)

Here temperature T is expressed in energy units, i.e. kT , where k is the Boltzmann's constant

Helium nuclei with +2 charge ( 4 2 He +2 ) are called α particles.

ITER was also known as International Thermonuclear Experimental Reactor before, but now replaced by the acronym "The way" in Latin

zero. This may be due to the existence of cross-terms proportional to u and u that affect the linear stability, as discussed in [START_REF] Camenen | Interplay between toroidal rotation and flow shear in turbulence stabilisation[END_REF] for the ITG. 

Impact of collisions and impurity

The presence of impurities in the plasma can strongly lower the fusion reaction rate and lead to difficulties in achieving high-performance plasmas. The light impurities such as Carbon (C) are fully ionized in the plasma at fusion temperatures. In contrast,

A.1. The δf gyrokinetic equation in the slab-like approximation F M is the Maxwellian distribution function (equation 3.14) reduces to:

and v D , v E are the drifts due to inhomogeneous magnetic fields, and E × B drifts

A.1.2 Coordinate system and magnetic geometry

The model is derived using the orthogonal coordinate system (x; y; z) which is related to the toroidal coordinate system (R; Z; ϕ) (see figure A.1) by:

with R 0 a reference major radius, taken to be the major radius at the low field side mid-plane of the flux surface of interest. The magnetic field is assumed to be purely toroidal and all quantities are evaluated at the low field side mid-plane (one-point model):

With this, the drift velocity from equation A.4

(A.9)

A.1.3 Perturbed quantities and gyro-average

The simulation domain is assumed to be homogeneous in the x, y, and z direction in the local limit and assuming solutions of the form.

where ω = ω r + iγ is the complex frequency.

∇f = f 1 e -iωt (ik x x)e (ikxx) + (ik y y)e (ikyy) + (ik z z)e (ikzz) , ∇f = f ik. The gyro-average of φ is defined as

where X is the gyro-center position and ρ is the Larmor radius, see section 2.1.1 (which depends on the gyro-angle ζ).

The gyro-averaging operator in guiding-center phase space is simply an integral over the gyro-phase ζ ... gy = 1 2π 2π 0 ... dζ (A.13) ρ = ρa; with ρ -larmor radius vector and a = x cos ϕ + y sin ϕ -unit vector

A.2.2 Toroidal ITG and SLAB ITG

Writing a full set of equations together with the quasi-neutrality equation again

Toroidal ITG Physical Picture of Toroidal ITG

Considering the simplest case by keeping temperature and temperature gradient R/L T and neglecting all the other terms.

On solving above equation, we can find the growth rate of unstable mode as:

We can see clearly from this equation that the growth rate is directly proportional to the normalized logarithmic temperature gradient. Therefore, the growth rate increases with an increase in the temperature gradient. The normalized background distribution function is defined as FM = F M v 3 th /n 0 , and the perturbed distribution function is : f= f v 3 th /n 0 .

where dv is defined as dv = dv dv y dv

where ω = ω r + iγ,

There is no analytical solution exist for this equation (at least without approximation). So, to find the solution of above equation (eq: A.67), it need to be solved numerically. On plotting (∫ f dv -1) as function of γ and ω r , zeros of the contour represents the solution.

Linear growth rate γ as a function of temperature gradient scale length (R/L T ) for the fixed value of density gradient scale length R/L n = 1 and R/L n = 3, with k y ρ = 0.3, k z = 0, ω D = -k y ρ, ω D = k y ρ/2 is shown in figure A.8. The figure shows that there is minimum threshold value of R/L T for growth rate to start and after that it increases as value of the R/L T increases.