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Résumé

Un des principaux objectifs du projet ITER est de démontrer qu’un tokamak peut
générer une puissance de fusion supérieure à la puissance injectée. Dans ITER,
les composants face au plasma sont métalliques (diverteur en tungsten, mur en
béryllium) pour garantir une faible rétention du tritium et une haute résistance au
flux d’énergie provenant du plasma. L’opération d’un tokamak en environnement
métallique soulève cependant des difficultés. L’accumulation des impuretés lourdes
telles que le tungstène (Z=74) dans le cœur du plasma provoque des pertes par
rayonnement et une détérioration conséquente du confinement de l’énergie. Le
transport du tungstène dans la partie centrale d’ITER est induit par les collisions
(transport néoclassique) et la turbulence. Il dépend intrinsèquement des gradients
de densité et de température des ions principaux. Une compréhension fine des
mécanismes de transport actifs dans le centre du plasma est à cet égard cruciale pour
pouvoir prédire précisément l’accumulation du tungstène. Les études précédentes se
sont principalement focalisées sur la zone à mi-rayon et le bord du plasma (ρ > 0.3),
la partie centrale restant, pour le moment, un territoire relativement inexploré.

Dans la région centrale, les gradients de température et densité sont plus
faibles et la turbulence pourrait s’en trouver réduite. Une question clef est donc
d’abord de savoir si le plasma est linéairement stable ou non dans cette région. Si
oui, la diffusion turbulente est-elle suffisante pour compenser le terme de pincement
néoclassique du W ? Jusqu’à quel rayon et avec quelle dépendance sur les gradients
de température et densité ? Une autre question clef est de savoir si l’approximation
quasi-linéaire est valide dans la région centrale et si des modèles réduits quasi-linéaires
classiques tels que QuaLiKiz ou TGLF peuvent y être utilisés. La compréhension du
transport turbulent dans la région centrale est critique pour prédire le piquage des
profils au cœur du plasma qui, eux-mêmes, influencent les réactions de fusion et le
transport néoclassique du W. L’objectif de cette thèse et d’étudier ces questions et
de tester les modèles réduits disponibles dans la région centrale de tokamak existants
avant de pouvoir les appliquer sur ITER. L’étude est focalisée sur des cas sans activité
MHD significative. Bien entendu, cette dernière peut aussi affecter le comportement
du plasma dans la région centrale dans certaines conditions.

Le transport turbulent dans la région centrale est exploré dans un plasma à
haut β en mode H hybride du tokamak JET au moyen de simulations linéaires et
non-linéaires effectuées avec le code gyrocinétique GKW dans la limite locale. Par
rapport aux travaux précédents, l’analyse est étendue à la région ρ < 0.3 et révèle que
les Kinetic Ballooning Modes (KBM) y sont linéairement instables, contrairement à
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la région ρ > 0.3 où les modes Ion Temperature Gradient dominent. Des simulations
spécifiques à ρ = 0.15 ont permis d’identifier le faible cisaillement magnétique et la
haute pression normalisée du plasma, β, comme étant les deux principaux paramètres
clefs permettant la déstabilisation des KBM par le relativement faible gradient de
pression des ions principaux. Les ions rapides ont un effet légèrement stabilisant
lorsqu’ils sont inclus dans les simulations. L’étude est ensuite étendue au régime
non-linéaire. La turbulence induite par les KBM génère un flux significatif d’énergie
thermique ionique et électronique. De manière inattendue, des modes de micro-
déchirement (MTM) linéairement stables sont excités non-linéairement et génèrent
un flux non-négligeable d’énergie thermique électronique lié aux fluctuations du
champ magnétique. Des modèles quasi-linéaires standards sont ensuite comparés
aux résultats non-linéaires. Ces modèles reproduisent raisonnablement bien les
flux E×B, mais mésestiment le flux d’énergie thermique électronique résultant de
l’excitation non-linéaire des MTMs. Une extension des modèles quasi-linéaire est
proposée qui permet de mieux reproduire le flux d’énergie lié aux fluctuations du
champ magnétique.

Keywords: plasma, fusion magnétique, transport de turbulence, quasi-linear, gyroki-
netic, tokamak
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Abstract

One of the major goals of the ITER project is to demonstrate high fusion power
gain in a tokamak. In ITER, metallic plasma-facing components are chosen for their
low tritium retention and ability to sustain high heat loads. However, tokamaks
operation with metallic plasma-facing components raises issues regarding the control
of high-Z impurities since the accumulation of heavy impurities such as tungsten
(Z=74) in the plasma core leads to significant radiation losses and deteriorates the
energy confinement. Transport of tungsten (W) in the central part of ITER (ρ < 0.3),
is expected to be determined by neoclassical and turbulent processes, which strongly
depend on the main ion density, temperature, and rotation profiles. Thus, a reliable
understanding of the dominant transport mechanisms in the central part is crucial
to accurately predict W core accumulation. Previous studies mostly focused on the
edge and core regions (ρ > 0.3) and the central part remains relatively unexplored
so far.

In the central region, the gradients of density and temperature get smaller, and
as a consequence, the level of turbulence may be reduced. In this region, a key question
is therefore whether the plasma is linearly unstable. If yes, is turbulent diffusion
sufficient to offset the neoclassical (inward) pinch of W, up to which radius and
how sensitive is this to the background gradients? An auxiliary question is whether
the quasi-linear approximation is valid in the inner core and up to which degree
standard reduced quasi-linear models such as QuaLiKiz (QuasiLinear gyroKinetic) or
TGLF (trapped gyro-Landau-fluid) can be used in the central zone. Understanding
turbulent transport in the central region is crucial to predict core profile peaking
that in turn will impact the fusion reactions and the tungsten neoclassical transport,
in present devices as well as in ITER. The goal of this thesis is to address these
questions and test the available turbulent transport models in the central region for
existing tokamaks before applying them to evaluate turbulent transport in ITER.
The study is focused on cases without MHD activity. Sawteeth, saturated kink modes
or NTMs can also have a strong impact on the plasma behaviour in the central
region and need to be considered in specific conditions.

Turbulent transport is investigated in the central region of the high-β JET
hybrid H-mode discharge 75225 by means of linear and non-linear gyro-kinetic
simulations using the gyro-kinetic code GKW in the local approximation limit.
Compared to previous work, the analysis is extended towards the magnetic axis,
ρ < 0.3, where the turbulence characteristics remain an open question. In contrast
to the region ρ > 0.3 where Ion Temperature Gradient modes are the most unstable
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modes, the linear stability analysis indicates that Kinetic Ballooning Modes (KBM)
dominate in the central region. A dedicated analysis performed at ρ = 0.15 reveals
that the main parameters responsible for the destabilisation of KBMs in these hybrid
H-modes are the high β and low magnetic shear values. The KBMs are driven by the
main ion pressure gradient with little influence of the electron temperature gradient.
Including fast-ions as a kinetic species in the simulations has a slight stabilising
effect. The study is then extended to the non-linear regime. It is found that the
turbulence induced by these KBMs drives a significant ion and electron heat flux.
Interestingly, linearly stable micro-tearing-modes (MTM) are excited non-linearly
and drive a sizeable magnetic flutter electron heat flux. Standard quasi-linear models
are compared to the non-linear results. The standard reduced quasi-linear models
work reasonably well for the E × B fluxes, but fail to capture magnetic flutter
contribution to the electron heat flux induced by the non-linear excitation of the
MTMs. An extension of the quasi-linear models is proposed allowing better capturing
the magnetic flutter flux.

Keywords: plasma, magnetic fusion, turbulence transport, quasi-linear, gyrokinetic,
tokamak
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colour coding as in fig. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Linear growth rate as a function of radial wave vector (krρi) for three
different values of kθρi. The blue curve corresponds to kθρi = 0.3, the
red curve for kθρi = 0.4 and the green represents kθρi = 0.5. . . . . . 102

5.7 Linear ion (a), electron heat fluxes (b), and particle fluxes (c) nor-
malised with the mode amplitude as a function of kθρi, at ρ = 0.15.
The blue (∗) curve corresponds to flux contribution due to E×B, the
red (×) for magnetic flutter and green (+) for magnetic compression
part. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



LIST OF FIGURES 19

5.8 Normalized quasilinear spectra and GKW non-linear saturated elec-
tric potential for different plasma beta βe = 2.4% (a), βe = 3.2% (b),
βe = 3.8% (c) with nominal magnetic shear (ŝ = 0.05), and for higher
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1
Introduction

1.1 Nuclear fusion as a potential energy source
During the last two centuries, the world population has been increasing rapidly due
to the advancement of technology, scientific knowledge and various other factors. The
resulting large population requires a vast amount of energy and electricity for its rapid
economic growth. Presently, most of the world energy demand (about 80%) is still
sustained by burning enormous amounts of fossil fuels which includes coal, oil, and
natural gas [1]. However, the supply of fossil fuels is limited and rapidly exhausted
by massive consumption. Also, the use of fossil fuels emits carbon dioxide and other
deleterious gases. It causes climate change problems such as global warming and
air pollution that could be very harmful not only to our environment but also for
human health. A change to renewable sources of energy such as wind, solar, and
hydroelectric energy is attractive from an environmental point of view. However, the
limitations associated with the low energy density, storage and transport make them
not sufficient for long term on a large scale.

Therefore, additional options for abundant, reliable and clean energy produc-
tion are needed. One of the possible solutions to this problem is the use of renewable,
nuclear energy sources for electricity production. Nuclear energy is either produced
by fission or fusion reactions. In nuclear fission, a massive radioactive element such as
Uranium-235 is split into two lighter parts and releases a large amount of energy. The
nuclear fission power plants are free from greenhouse gases emission and are already
present in many countries for electricity production. However, the safe handling and
storage of long-lived radioactive waste materials, health hazards problems in case of
nuclear accidents, nuclear proliferation for illegal activities, limited uranium supplies
and a considerable amount of capital cost to build these plants are still a big concern.
Nuclear fusion energy, which consists in fusing two light nuclei into a heavier nucleus,
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is considered as a viable option for a clean, vast, dense and safe source of energy
and could play a decisive role in the long-term solution. However, scientific and
technological challenges are hindering the experimental realisation of this technology
for more than half a century. Consequently, a large portion of research in this field is
mainly devoted to overcoming these scientific and technological challenges to build an
experimental fusion device that can be used to demonstrate the scientific feasibility
of nuclear fusion for electricity production. This thesis addresses some critical issues
related to the understanding of turbulent transport, which limits the performance in
the present as well as in future fusion devices. The fundamental concepts related
to the fusion which are necessary to understand this thesis are introduced in the
remainder of this chapter. The emphasis is placed on physical descriptions over
detailed mathematical formalism (which is described in later chapters).

1.2 Basis of thermonuclear Fusion
One of the crucial applications of plasma physics is in controlled thermonuclear
fusion to produce energy. Nuclear fusion is also the source of energy production in
stars, including the Sun. It is a process where two light nuclei fuse together to form
a heavier nucleus and subatomic particles (neutron or proton). The resulting heavier
nuclei have slightly less mass than the fusing elements and this mass difference (∆m)
also called mass defect in the process appears as energy (∆E) according to famous
Einstein’s relation

∆E = ∆mc2, (1.1)
where c is the speed of light. The strong nuclear interaction gives the physical energy
source of nuclear fusion and the released energy is directly related to the nuclear
binding energy. The binding energy is the amount of energy that would be released
when individual protons and neutrons combine into a single nucleus or the minimum
amount of energy that is required to break up its nucleus into individual constituents.
Dividing the binding energy by its mass number A = Z + N , where Z and N
being the atomic and neutrons number in the nucleus, binding energy per nucleon is
obtained, which is shown in figure 1.1 for different atomic elements. Heavy atom,
such as Uranium release energy through nuclear fission by splitting into lighter nuclei,
whereas lighter nuclei release energy by fusing together. As illustrated in figure 1.1,
the binding energy per nucleon for Helium-4 (4He) fusion is 7.07MeV/nucleon and
for nuclear fission of Uranium-235 is 7.59MeV/nucleon. A fusion process generating
4He nuclei yields one of the most abundant energy gains possible via fusion.

To induce a fusion reaction, the two light nuclei need to be brought within
the range of the short attractive nuclear force. In order to reach this distance, the
fusing nuclei must have sufficiently high kinetic energy to overcome the electrostatic
Coulomb repulsion between the two positively charged nuclei. This is achieved by
heating the particles to a very high temperature (of the order of 100 million-degree
Celsius), such that the thermal velocities of the particles are high enough. At these
large temperatures, charged particles are fully ionised and form a new state of matter
called the plasma state. Plasmas exhibit a wide variety of physical phenomena
involving electromagnetic fluid and kinetic effects.
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Figure 1.1 – Binding energy per nucleon versus mass number plots for various
atomic elements. Fig. courtesy: Pearson Prentice Hall.

1.3 Plasma: the fourth state of matter
The basic description of plasmas can be found in any standard textbook. In [2], a
plasma is defined as " a quasi-neutral gas of charged and neutral particles which
exhibit collective behaviours". Here quasi-neutral refers to a condition in which
plasma is considered neutral enough that ne ' ni approximately holds but not
neutral enough that all electromagnetic forces vanish. In a plasma, the potential
energy of a particle due to its nearest neighbours is much smaller than its kinetic
energy. The plasma state is also known as the fourth state of matter. However, not
every ionised gas can be called as plasma. For a gas to qualify as a plasma requires
that the number of particles inside a sphere (called Debye sphere) with radius λD
must be sufficiently larger than one, i.e.

Λ ≡ noλ
3
D � 1, (1.2)

where λD =
√

(T/4πn0e2) is called Debye length, which measures the shielding
distance or thickness of the sheath. Here n0 is the density of each species, T is the
temperature in eV units, and e is the charge of an electron. Λ is called the plasma
parameter.

1.3.1 Reaction rate and fusion cross-section
The fusion cross-section (σ), is the probability of obtaining a fusion reaction as a
function of the relative velocity of the reactant nuclei. The reaction rate is the
number of fusion reactions between two species of density n1 and n2, taking place in
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the plasma per unit volume per unit time. Thus,

R = n1n2σv, (1.3)

with v is the relative velocity of the colliding particles. In a plasma, all particles do
not have the same velocity and it is relevant to integrate the reaction rate over the
velocity distribution to obtain the average number of reactions per unit volume and
time

R = n1n2〈σv〉. (1.4)

Here, 〈σv〉 is the reaction parameter and 〈〉 represents an average over a
Maxwellian velocity distribution function. For a given total density, the reaction
rate is maximum when n1 = n2.

Figure 1.2 – Reaction parameter 〈σv〉 as a function of temperature. Courtesy [3].

The reaction parameter 〈σv〉 for various fusion reactions as function of tem-
perature is shown in figure 1.2. As seen, the DT−reaction has the highest reaction
parameter as compared to other fusion reactions at low temperature with a broad
maximum for ion temperatures Ti between 20 keV1 and 100 keV. Below an ion tem-
perature of 10 keV, there is a steep decrease in the reaction parameter, and the fusion
plasma therefore needs to have a minimum temperature of 10 keV.

1.3.2 Fusion reactions
The most feasible thermonuclear reaction on Earth is the fusion of two hydrogen
isotopes deuterium (2

1D ) and tritium (3
1T ), into Helium (4

2He) and a neutron,
see figure 1.3, because it has a high fusion cross-section at comparatively lower
temperatures, 10-20 keV, as compared to other reactions of interest. The broad
fusion cross-section of the D-T reaction arises due to the existence of a resonance

1Here temperature T is expressed in energy units, i.e. kT , where k is the Boltzmann’s constant
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between the kinetic energy and excited state of the 5
2He nucleus.

2
1D + 3

1T → 4
2He (3.5MeV) + 1

0n (14.1MeV), (1.5)

where n represents a neutron that carries 14.1 MeV (80% ) of the released energy and
helium nucleus that gets 3.5 MeV (20% ) of the released energy. The released energy
is available as the kinetic energy of the products. The cross-section of this reaction
reaches a maximum value of σDT,max = 4.9× 10−28 m2 at a collision energy of 64 keV.
Nuclear fusion can be achieved by confining a sufficiently hot D-T plasma and heating
the mixture until the thermal velocity of the particles is sufficiently high to overcome
the electrostatic repulsion. This process is referred to as thermonuclear fusion. The
reactions come mainly from the tail of the Maxwellian velocity distribution. Thus,
the actual temperature needed for the D-T thermonuclear fusion reaction is lower
than the temperature corresponding to the maximum cross-section for the D-T
reaction.

Figure 1.3 – Schematic of a D-T fusion reaction forming a helium nucleus.

Some other thermonuclear fusion reactions of interest are based on the deu-
terium. These are:

2
1D + 2

1D → 3
2He (0.82MeV) + 1

0n (2.45MeV),
2
1D + 2

1D → 3
1T (1.01MeV) + p (3.03MeV),

2
1D + 3

2He → 4
2He (3.67MeV) + p (14.67MeV).

(1.6)

The optimum energy required to initiate D-D reactions is higher than the
optimum for D-T results. The second and third equations of 1.6 do not produce
neutrons but charged particles. Therefore, the activation of the reactor wall is
reduced, a neutron moderator is not required and the fusion products can be confined
with the magnetic field. However, the second equation above produces tritium, so the
D-D reaction will not be ultimately tritium free and D-T reactions will also occur.

The deuterium is very abundant, cheaply available and can be extracted
naturally from ocean water. The available quantity of deuterium in seawater can
provide 1011 times more electrical energy than the annual world energy consumption.
The tritium has a short half-life of 12 years and is practically non-existent in nature.
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Tritium, however, can be bred from Lithium by using the neutrons released in the
fusion reaction. The Lithium is present naturally with two isotopes with a natural
abundance of 7.4% for 6

3Li and 92.6% for 7
3Li. To capture a fast neutron (14.07 MeV)

produced by the D − T reaction, the 7
3Li can be used

7
3Li + n (2.5MeV) → 4

2He+3
1 T + n′, (1.7)

and this slow neutron n′ is again captured with the reaction

6
3Li + n′ → 4

2He+3
1 T + 4.8 MeV. (1.8)

1.3.3 Conditions for a fusion reaction: Lawson criteria
As discussed above, very high temperatures are required in order to initiate fusion
reactions, but to maintain these high temperatures, the various energy losses present
in the system need to be compensated by external heating. Therefore, for a net
energy gain, large temperature and fusion reaction rate alone are not sufficient, the
energy losses need to be sufficiently small so that external input power supplied
to maintain the plasma at the desired temperature remains less than the fusion
output power. This is usually expressed by the energy confinement time (τe), which
characterises the time required for the stored energy to leave the plasma, once all
the external heating systems are switched off. It describes the ratio of total plasma
energy to power losses:

τe = Wp

Ph − dWp/dt
, (1.9)

where Wp is the total internal energy of plasma and Ph is the net external heating
power. The fusion power gain or the Q factor defined as the ratio of the fusion
power output to the auxiliary input heating supplied from the outside to sustain
the reaction in steady-state: Q = Poutput/Pinput = Pfusion/Pth. Thus, the minimum
criterion for a successful fusion reactor is Q = 1. The condition Q = 1 is called
the break-even condition, which implies output fusion power equals to the auxiliary
input power. On the other hand, a self-sustaining fusion reaction to achieve ignition
condition is possible when Ph → 0 or Q→∞, which means all energy losses of the
plasma are balanced by the α-particles 2 produced in a D-T reaction and no external
heating power is required. This criterion is known as the famous Lawson’s triple
product [4]. For a 50%-50% mix of deuterium and tritium, this condition reads

nTτe ≥ 3.0× 1021 m−2 keV s. (1.10)

where n is the electron density of a pure D-T 50/50 mix.

This condition brings out the minimum requirements for the plasma density,
energy confinement time and temperature to achieve ignition. For example, the
ignition condition would be reached for n = 1020 m−3, T = 10 keV and τE = 3 s.
Therefore, great efforts have been devoted by the scientific community to maximise
this product.

2Helium nuclei with +2 charge (4
2He

+2) are called α particles.
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There are two main plasma confinement approaches subject to present-day
research to achieve ignition condition on Earth. The first one consists of maximising
the ion density (of the order of 1031 m−3) with a decrease of energy confinement
time (τE ∼ 10−11 s) and is referred to as inertial confinement fusion (ICF). In this
scheme, a solid DT pellet with a small diameter of about 1mm is compressed and
heated using a laser or a beam of heavy ions. The two largest experimental facilities
based on ICF are the National Ignition Facility (NIF) [5] in the US and the Laser
Megajoule [6] in France. The other scheme is the magnetic confinement fusion
in which magnetic fields confine the plasma. In this case, the ion density is much
smaller (of the order of 1020 m−3), but the energy confinement time is considerably
larger (of the order of a s). In this thesis, interest has been focused on the magnetic
confinement fusion scheme.

1.3.4 Brief historical review of nuclear fusion
Daniel Clery has well described the past 70 years of nuclear fusion history in his book
"A piece of the Sun" [7]. The concept of nuclear fusion was proposed for the first
time in the 1920′s when the British astrophysicist Arthur Eddington suggested that
the fusion of hydrogen nuclei into Helium could be the origin of energy production
in stars. A significant breakthrough in this direction came in the 1930′s when
Hans Bethe discovered that nuclear fusion is possible and is the source of energy in
the Sun. In the beginning of 1940′s, researchers started looking at possibilities to
control thermonuclear reactions to produce energy on the Earth. The race of nuclear
weapons during the Second World War increased the interest in the nuclear fusion
manifold. The first thermonuclear weapon, called H-bomb, was tested in 1952. The
use of nuclear fusion to produce energy is a more demanding task because it has
to be controlled a plasma reaching temperatures of hundreds of millions of degrees
contained in a reactor. A significant breakthrough in this direction came in 1950 when
soviet scientists Andrei Sakharov and Igor Tamm suggested a way to contain the hot
plasma away from the chamber walls by the use of magnetic fields. They proposed a
promising design of a magnetic confinement fusion device in the Kurchatov Institute
in Moscow; this doughnut-shaped device was called a tokamak. The idea of this
device was to confine the plasma in a toroidal chamber with the help of a toroidal
magnetic field created by external field coils and to induce a toroidal current within
the plasma to have a resulting helical magnetic field. Following the concept of a
tokamak, Lyman Spitzer proposed a new magnetic confinement concept in 1951 for
the confinement of plasma by the pinch effect, and later device called a Stellarator.
By the mid-50s, several magnetic confinement devices were operating in the USA,
United Kingdom, USSR, France and Japan. The development of fusion science was
strongly impacted by the cold war and lack of knowledge sharing between the world
countries until 1958 when the international IAEA meeting was held in Geneva. The
idea of Stellarator dominated the fusion research throughout the 1950 and 1960 until
Soviet scientist Lev Artsimovich ousted it by the more efficient tokamak concept. In
1969, he made an incredible announcement that experimental research on tokamak
systems had reached a temperature of 1 keV (more than 10 million degrees Celsius)
for the first time. This claim was later verified by UK scientists who visited their
Soviets counterparts in Moscow.
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Figure 1.4 – Schematic diagram of JET (on left side) and ITER (on right side)
tokamak. Source: https://www.iter.org/

By the 1970s, the scientific community realised that attaining fusion energy
would be one of science’s greatest challenge and would require collaboration with
other people. In this direction, European countries came together and proposed
design work on the Joint European Torus (JET), in 1973. The JET tokamak (shown
in the left of figure 1.4), built-in Culham in Oxford, UK, is currently the world’s
biggest tokamak, and is an example of international collaboration. In 1997, JET
set the current world record for fusion output of 16 MW from an input of 25 MW
of heating power and with a 50 − 50 mix fuel of deuterium and tritium [8]. The
obtained fusion gain factor was Q = 0.63.

The next milestone is to achieve a break-even condition, where the produced
energy is equal to the external heating supplied. To demonstrate the scientific
and technical viability of nuclear fusion energy for peaceful use, the US president
Ronald Reagan and General Secretary Mikhail Gorbachev of the former Soviet Union
signed an agreement in November 1985 to construct a large-scale tokamak capable
of producing net fusion power. This project, known as ITER3, was approved in 2006
and is currently under construction in the south of France. It will be the world’s
largest tokamak with a plasma volume 8 times larger than JET (shown on the right
of figure 1.4). With the goal to demonstrate the feasibility of fusion as an energy
source on the scale needed for a commercial power plant, ITER is designed to achieve
Q = 10. It aims for the time, to produce more sustained fusion power than the input
power, i.e., it will produce 500MW of fusion power for an injected power of 50MW
during 400 to 600s [9].

3ITER was also known as International Thermonuclear Experimental Reactor before, but now
replaced by the acronym "The way" in Latin

https://www.iter.org/
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Figure 1.5 – Core ion temperature as a function of fusion triple product [10].

Over the past 70 years, significant research on magnetic confinement lead to
various tokamaks designs with different geometries, magnetic properties and heating
and diagnostic systems. Considerable progress has been made during this period in
the achievement of high fusion triple products, as shown in figure 1.5, in controlling
the main plasma instabilities and in increasing the heating efficiency. However, in
the presence of these extreme temperature conditions, strong gradients inevitably
lead to the development of various instabilities which drive turbulent transport in
the plasma and limit confinement. Understanding of the plasma instabilities that
can give rise to turbulence in the central part, r/a < 0.3, of ITER plasmas is one of
the motivations of this work.

1.4 Tokamaks and magnetic confinement
1.4.1 Introduction to tokamaks

In the last section, it has been seen that the plasma needs to be confined for a
sufficiently long time to achieve ignition. The main difficulty lies in insulating the
plasma from the external walls and maintain it at a high temperature. Since the
external electromagnetic force influences the dynamics of charged particles, the
present magnetic confinement experiments rely on strong magnetic fields to achieve
this goal. Such a strong magnetic field confines the plasma by keeping the charged
particle moving in a helical trajectory around the field lines as a result of the Lorentz
force, F = q(E+v×B), where q is the charge of the particle, v is its velocity and E, B
are the electric and magnetic fields respectively. The extent of the particle trajectory
in the direction perpendicular to the magnetic field is called the Larmor radius, and
defined as ρs = mv⊥/qB, where v⊥ is the component of velocity perpendicular to the
magnetic field B and s represents the considered species of mass m and charge q.

The two main classes of magnetic confinement configurations are:
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� linear configurations: where the magnetic field lines are open and the plasma
can leave the confinement zone at either end of the system (for example
magnetic mirror system);

� toroidal systems: where the magnetic field lines are endless, i.e., completely
contained within a toroidal confinement region (for example tokamak).

Figure 1.6 – Illustration of a tokamak configuration (Courtesy: Eurofusion [11]).

In open magnetic field configurations, plasma is lost at both ends due to very
large parallel transport in the magnetic field line direction. These end losses can be
avoided by closing the magnetic field lines into circles as in a torus. However, since
∇×B = µ0jc ⇒ 2πRB = µ0Ic ⇒ B = µ0Ic/2πR, where jc and Ic are the current
density and current flowing in the toroidal field coils. A purely toroidal field varies
as B ∼ 1/R (with R being the major radial coordinate of the torus). This implies a
radial gradient in the magnetic field with increasing field strength towards the axis
of the torus. Magnetic field gradients and the curvature of the field lines lead to an
extra drift velocity of ions and electrons in opposite vertical directions (curvature and
∇B-drift). These drifts in turn lead to a separation of charges and to the build-up
of an electric field. The resulting electric field is transverse to the toroidal magnetic
field and causes a loss of the plasma due to a radial E×B drift. This outward drift
motion can be avoided by making the field lines wind up over a toroidal surface,
which is called a magnetic surface. This is produced by an additional poloidal field
Bp. The particles which follow the magnetic field lines drift alternatively inward and
outward depending on the position of the field line with respect to the midplane. It
leads to a cancellation of the vertical drifts on average. Therefore, a combination
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of toroidal and poloidal field can confine the plasma. The poloidal magnetic field
can be produced either by external coils such as in Stellarator or by driving plasma
current in toroidal direction, as in the tokamak.

Figure 1.6 shows a schematic of a tokamak configuration with its main
elements. The tokamak is the acronym for the Russian word "Toroidalnaya Kamera
Magnitnymi Katushkami", meaning toroidal chamber with magnetic coils. It is a
toroidal plasma confinement system in which toroidal field coils generate a strong
toroidal magnetic field (Bϕ). A poloidal field (Bθ) is produced by a plasma current
(Ip) flowing in the toroidal direction. In most tokamaks, the toroidal plasma current
is driven inductively by a transformer, where the central solenoid acts as the primary
winding while the plasma acts as the secondary winding of the transformer. This
inductive drive inherently imposes a pulsed mode operation: the current cannot be
maintained indefinitely. To achieve a steady-state operation, the plasma current
must be driven non-inductively. The self-generated bootstrap current and auxiliary
current drive system can provide non-inductive currents. The combined effect of
toroidal and poloidal magnetic fields results in helical field lines spanning the closed
nested toroidal surfaces. These nested surfaces of constant magnetic flux are called
magnetic surfaces or flux surfaces as described in figure 1.7. Such a toroidal geometry
under consideration along with the plasma pressure results in a hoop force trying to
expand the plasma torus radially outward. To balance this force in order to achieve
radial equilibrium, a vertical magnetic field is applied (Bv), which gives an inward
radial force through interaction with toroidal plasma current. Moreover, to control
the plasma shape as well as plasma position, tokamaks are equipped with additional
poloidal field (PF) coils.

The helical magnetic field in an axi-symmetric tokamak is usually expressed
as:

B = I(ψ)∇ϕ+∇ψ ×∇ϕ, (1.11)
where ψ is the poloidal magnetic flux normalised to 2π, ϕ is the toroidal angle and
I(ψ) = RBϕ is a flux function, i.e. a quantity constant on a flux surface. In equation
1.11, the first term on the right-hand side represents the toroidal magnetic field
component Bϕ, and the second term corresponds to the poloidal magnetic field Bθ.

In equilibrium, the plasma pressure ∇p and the Lorentz (J×B) forces balance
each other:

∇p = J×B, (1.12)
where p is the pressure and J is the current density. From the above equation 1.12

J ·∇p = 0, and B ·∇p = 0, (1.13)

which shows that the J and B are perpendicular to the pressure gradient∇p and must
lie on surfaces of constant pressure. Flux surfaces are commonly labelled with the
poloidal or toroidal magnetic flux. In the limit of large aspect ratio, ε = a/R << 1,
and of circular and concentric flux surfaces, using the cylindrical coordinates (r, θ, ϕ)
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as represented in the figure 1.7, the toroidal magnetic field can be simply written as:

Bϕ = B0R0

R0 + rcosθ
∼ B0(1− r

R0
cosθ), (1.14)

with B = Bϕeϕ +Bθeθ and r is the minor radius of flux surface, B0 is the reference
magnetic field on the magnetic axis and R0 is the major radius of the plasma.

Figure 1.7 – Schematic of a circular concentric magnetic flux surfaces of a
tokamak.

The helicity of magnetic field lines on a given flux surface is described by
the so called safety factor q(ψ), which gives the number of toroidal turns for each
poloidal turn [12] and is defined as:

q(ψ) = 1
2π

∫ 2π

0

B.∇ϕ
B.∇θ

dθ (1.15)

where θ is the poloidal angle. The safety factor profile is closely related to the current
profile which determines Bθ(ψ). For a large aspect-ratio tokamak of circular and
concentric flux surfaces, the safety factor can be expressed as:

q(r) = rBϕ

R0Bθ

(1.16)

For a rational value of the safety factor, q = m/n, with m and n being integers, the
field lines are closed, and they return to their initial position after m toroidal and n
poloidal rotations around the torus. These particular surfaces are called resonant or
rational magnetic surfaces and play an essential role in determining the stability of
the plasma. The radial derivative of the safety factor is described by the magnetic
shear ŝ(r) = (r/q)dq/dr. For a typical plasma parameters ŝ > 0, with q ∼ 1 in the
plasma core and increases to q ∼ 3− 5 at the last closed flux surface.
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Another important parameter that characterises the stability of magnetically
confined plasmas is the β factor, defined as the ratio of the total kinetic (plasma)
pressure to the magnetic pressure

β = < p >

B2
0/2µ0

, (1.17)

where < p >=< nT > is the volume average plasma pressure, n and T being
the plasma density and temperature, and B0 is the toroidal magnetic field at the
plasma centre. The typical values of plasma beta in a tokamak is only a few
percent β ∼ 1− 5%, though in spherical tokamaks it can exceed 30%. The maximum
achievable beta in plasma is limited due to various MHD instabilities and technological
constraints.

Figure 1.8 – Schematic view of poloidal cross-section of a tokamak with limiter
and divertor geometries.

Two main types of flux surfaces geometries are used to separate the confined
inner plasma region from the vacuum vessel wall of the tokamak: the limiter config-
uration and the divertor configuration as illustrated by figure 1.8. The separatrix
separates the inner confined region from the region of open field lines. The plasma
region outside the Last Closed Flux Surface (LCFS) and before the vessel wall
is known as the Scrape-Off-Layer (SOL). In the limiter plasma configuration, the
LCFS connects to the wall and therefore the plasma core is in direct exposure to
the first wall. This leads to particle fluxes on the first wall that can damage the
wall and generate impurities. These impurities can enter directly into the core and
affect the fusion performance by fuel dilution and radiative cooling. This issue can
be partially alleviated by the divertor configuration that allows the separation of
the confined plasma from the main wall. In this configuration, the magnetic field
structure is modified to form a null (or X-point) of the poloidal field in the plasma,
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that improves the screening of the confined plasma from the vessel wall. The central
region of fusion plasma reaches temperatures of several keV while the divertor plasma
has lower temperatures (1–100eV ). Thanks to the divertor configuration, the high
core impurity contamination was reduced significantly, which allowed the tokamak
operation to come back to metallic plasma-facing components. Existing fusion reactor
designs are based on the divertor concept. The divertors of many operating tokamaks
such as JET, ASDEX-Upgrade and WEST have replaced their carbon plasma-facing
components by tungsten (W). W is chosen due to its high melting temperature, low
erosion and low tritium retention.

As discussed earlier, a very high temperature is required for a fusion reaction
to occur. Due to the finite plasma resistivity (η), the plasma current already provides
Ohmic heating, POH ∝ ηJ2. However, the Ohmic heating is limited at a higher
temperature because the plasma resistivity scales as η ∝ T−3/2

e , with Te is the electron
temperature. Therefore, several other auxiliary heating systems such as neutral
beam injection (NBI) heating, electron cyclotron resonance heating (ECRH), ion
cyclotron resonance heating (ICRH) and lower hybrid heating (LH) are employed to
heat the plasma and achieve the desired fusion temperatures. NBI, LH, and ECRH
can also be used to inject additional current.

Figure 1.9 – Schematic diagram showing the formation of L and H modes plasma
pressure with edge transport barrier [13].

The use of these auxiliary heating systems has made it possible to reach new
plasma regimes. Above a certain threshold in the heating power, a transition to a
high confinement configuration is reached, called the H-mode [14]. An edge transport
barrier (ETB) is created due to a reduction in the turbulence level, decreasing the loss
of particles and energy from the core, and thus steepening the gradients of density
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and temperatures as seen in figure 1.9, called a pedestal [15]. The plasma pressure
and energy confinement time are much higher in H-mode than in L-mode (L and H
stand for low and high confinement regime, respectively). However, the formation
of H-modes also leads to magnetohydrodynamics (MHD) instabilities called Edge
Localised Modes (ELMs) [16]) that can release a significant amount of plasma energy
in short bursts.

1.4.2 Transport in plasma: constraint to tokamak performance
The achievement of fusion requires good confinement, which is mainly limited by
the cross-field transport of heat and particles from the system, as well as radiation.
When there is no instability present in the system, the transport is described by
neoclassical transport due to Coulomb collisions. However, experimentally the energy
transport is higher than predicted by neoclassical theory. The excess of transport
(also called anomalous) is due to turbulence caused by various instabilities present in
the plasma.

In the plasma core, the energy, density and momentum follow local transport
equations. The transport equation for particles and heat [17] are:

∂n

∂t
+∇.Γ = SΓ, (1.18)

3nkB
2

∂T

∂t
+∇.Q = SQ, (1.19)

where n is the particle density (m−3), Γ the particle flux (particles/m2s) and the
particle source is SΓ (m−3s−1), Q the heat flux (W m−2) and SQ is the heat source
(W m−3).

In equation 1.18, the particle flux is often decomposed as a sum of two
contributions, one proportional to the density gradients and one proportional to the
density itself:

Γ = −D∇n+ V n (1.20)
The diffusion and convection coefficients, D = Dneo +Dturb and V = Vneo + Vturb, are
composed of a neoclassical and turbulent parts. A brief overview of neoclassical and
turbulent transport is provided below.

Neoclassical transport
Classical transport describes the collisional transport in cylindrical geometry. This
description is not appropriate for describing particle trajectories in a toroidal geometry
where some particles are trapped on the outboard due to the non-uniform magnetic
field. The collisional transport in a toroidal geometry is known as neoclassical
transport [17]. The neoclassical theory describes how energy, particle and momentum
move within and across the flux surfaces due to Coulomb collisions and drifts between
plasma species in a toroidal magnetic configuration.

To model neoclassical transport, there are several codes available such as
NCLASS [18], NEO [19] with different level of complexity. NCLASS [18] is a multi-
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species fluid code with a simplified collision operator and does not account for the
effects of toroidal rotation. The Hirschman- Sigmar collision operator used in this
code is based on pitch angle scattering. NEO [19] is a first-principle calculation
based model, which solves the drift kinetic equation. More details about neoclassical
transport can be found in Helander’s book [20].

Turbulent transport
Turbulent transport results from small-scale fluctuations induced by various micro-
instabilities in a tokamak. Instabilities are primarily driven by different free energy
sources such as the gradient of density or temperature present in any confinement
device [21]. When the phase difference between density and potential perturbations is
finite, it leads to radial particle transport. The main plasma instabilities causing the
turbulence transport in tokamaks are briefly reviewed in chapter 2. Understanding
turbulence transport is considered as one of the most crucial issues in current devices
as well as future fusion reactors such as in ITER. The understanding of turbulent
transport in the central part of ITER plasmas close to the magnetic axis, ρ < 0.3
(where ρ is the normalised toroidal flux coordinate), is one of the main motivations
of this thesis.

1.5 The choice of tungsten as a plasma-facing compo-
nents
As discussed briefly in section 1.4, the first wall of magnetic confinement devices
were initially made of high-Z materials in the limiter configuration. However, the
significant radiation losses in the core induced by the impurity influx caused severe
restrictions to plasma operation, and low-Z materials such as Carbon (C) replaced
the metallic plasma-facing components. The use of these low-Z materials lead to an
improved plasma performance by reducing central radiative losses. However, the
use of low-Z materials has other serious issues such as large erosion rates due to low
sputtering thresholds (figure 1.10), which limits the lifetime of the first wall materials.
Carbon also has high tritium retention which is a problem for a tokamak operating
with D-T, since tritium is radioactive and the amount of tritium circulating in a
reactor is subject to strict regulations. The divertor configuration discussed earlier
limits the erosion rate by allowing the plasma to be cooled down before reaching the
target. Therefore, metallic materials became again a promising candidate for the
walls. W is presently used as plasma-facing components in various tokamak devices
such as JET (Joint European Torus) ITER-like wall [22], ASDEX Upgrade (AUG)
[23] and in the ITER-like divertor of WEST [24]. The future fusion devices such as
ITER will also use W as plasma-facing components for the divertor. In contrast,
Beryllium will be used for the first wall because the heat fluxes on these areas are
lower. W is considered as a promising material for ITER divertor because it has high
melting temperatures (∼ 3400◦C) hence a capacity to sustain large heat loads, high
sputtering threshold (see figure 1.10), low erosion rate and low tritium retention.
The price to pay for these properties is that the issue of radiation power losses in
the plasma core becomes crucial.
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Figure 1.10 – Sputtering yield of various materials as function of incident energy
of deuterium ions. Courtesy [25].

1.5.1 The W core accumulation issue: line radiation
Tungsten (W) is a heavy element with an atomic charge of Z = 74 and mass
A = 183.84. W atoms are not fully ionised even at ITER fusion relevant temperatures.
Partially ionised W radiates mainly through line emission and recombination, which
depends on the electron and W density and is characterised by a cooling factor that
is a function of the W charge state and electron temperature. The calculation of the
cooling factor is based on the atomic data and the contribution of various radiative
and collisional processes [26].

When the concentration of W exceeds a certain limit in the core of the plasma,
radiative power losses cool down the plasma and the central plasma temperature
drops, which limits the plasma operation and strongly reduces fusion performance.
Figure 1.11 shows the impact of the W impurity concentration on the ignition
conditions neTτE [26]. A black line shows the ideal burn condition with no fuel
dilution and radiation due to impurities. The operation domain significantly reduces
when the W concentration increases. It has been found that W develops very peaked
core density profiles in some conditions in JET [27, 28] and ASDEX-Upgrade [29].
Luckily, it has been demonstrated that W accumulation in the central region can be
controlled by large gas injection which decreases the temperature in the SOL and
lowers W sputtering at the divertor and other methods such as core auxiliary heating
with ICRH or ECRH [30]. In ITER, the accumulation of W has to be avoided to
keep concentrations in the plasma core less than nW ∼ 10−5ne and sustain high Q
plasmas [30, 31]. The prediction and understanding of tungsten transport in the
core of ITER plasmas is crucial and is the motivation of this thesis.
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Figure 1.11 – Ignition curves as function of temperature for different
concentrations of W for the case that τHe = 5τE along with the curve for no He and
no W . Figure from reference [26].

1.5.2 Tungsten impurity transport
This section introduces the main characteristic of W transport. The transport of W
impurity can be described by the continuity equation, Eq. 1.18. The particle flux
in this equation can be computed by using fluid, drift-kinetic or gyrokinetic models
describing neoclassical and turbulent transport.

Taking the volume integral of the continuity equation 1.18, the radial transport
of impurity is described as:

∂

∂t

∫
nWdV + V ′ 〈Γ.∇ρ〉 =

∫
SWdV, (1.21)

where V ′ = ∂V
∂ρ
, 〈.〉 is the flux surface average defined as 〈A〉 = 1

V ′

∫
AdS dr

|∇r| (with
dS the surface element) and V is the plasma volume enclosed by the flux surface at
radial location ρ. The total impurity flux in equation 1.21 at a position ρ is the sum
of neoclassical and turbulent contributions:

ΓρW = 〈Γ.∇ρ〉 = Γneo
W + Γturb

W , (1.22)

From equation 1.20, these fluxes can be decomposed into diffusive and con-
vective part:

ΓρW = −(Dneo +Dturb)∇nW + (Vneo + Vtur)nW , (1.23)
with D the diffusion coefficient and V the pinch (convective) velocity. When W is in
the Pfirsch-Schlüter regime and main ions are in the banana regime, one has

Vneo = ZDneo

[(
− R

Lni
+ 0.5 R

LT i

)
Pmodel
A − 0.33Pmodel
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R

LT i

]
, (1.24)
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where two geometrical coefficients Pmodel
A and Pmodel

A are defined as
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−
〈
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nW

〉−1
 ,

and other symbols have their usual meaning as defined in reference [32]. In the limit
of no poloidal asymmetry, PA = 1 and PB = 0. A large diffusion tends to flatten the
profile, while the pinch velocity tends to peak (if directed inward V < 0) or flatten
the W profiles (if directed outward V > 0).

Several theoretical and experimental studies have been carried out to charac-
terise the diffusive and convective parts of the impurity flux whether it is neoclassical
or turbulent

The magnitude of neoclassical and turbulent W impurity transport is illus-
trated for a JET-ILW plasma in figure 1.12 taken from reference [32]. Here, the red
curve shows the turbulent and blue the neoclassical contributions simulated using
the GKW and NEO codes for a JET-ILW hybrid pulse. The full and open symbols
show the curves respectively with and without poloidal asymmetry effects.

For the diffusive part, neoclassical transport dominates in the central region,
whereas turbulent transport dominates in the outer half. The neoclassical transport
dominates the convective part of the W transport. In addition, neoclassical convection
changes sign in the inner core and at the edge (negative), which leads to inward
convection of W. Therefore, to predict W transport, both turbulent and neoclassical
transport need to be modelled.

Figure 1.12 – Neoclassical (NEO) and turbulent (GKW) diffusion (left) and
convective (right) contribution to W transport at 10.42 s for JET-ILW discharge
83351 [32].
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1.6 Thesis Motivation
As discussed earlier, the understanding of impurity transport is crucial for the control
of high-Z accumulation such as W in the inner core of present as well as future
devices such as ITER. Present studies indicate that the transport of W in the central
part of ITER is expected to be determined by neoclassical and turbulent processes,
which strongly depend on the gradients of main ion density and temperature, as well
as on rotation profiles (as discussed above in section 1.5.2). Therefore, the prediction
of the transport processes that determine the density and temperature gradients of
the main ions in the central core region of ITER plasmas is of crucial importance
to determine the core behaviour of W in this region. Understanding of turbulent
transport in the central part, ρ < 0.3, is crucial to this respect because this is the
region where neoclassical transport becomes dominant and could lead to central W
accumulation. Predicting core transport in the region ρ < 0.3 is also very important
for the fusion reaction rate. It has, however, not been explored extensively so far,
and previous studies mostly focused on the edge and core regions, ρ > 0.3.

In the very central region close to the magnetic axis, ρ < 0.3, gradients of
density and temperature gets smaller and the level of turbulence may be reduced.
In this region, some key questions are, is the plasma linearly unstable? If yes, is
turbulent diffusion sufficient to offset the neoclassical pinch of W, up to which radius
and how sensitive this is to the background gradients? An auxiliary question is
whether the quasilinear (QL) approximation is valid in the inner core and up to
which degree standard reduced quasilinear models such as QuaLiKiz (QuasiLinear
gyroKinetic) [33] or TGLF (trapped gyro-Landau-fluid) [34] can be used in the
central zone.

This thesis aims to answer these questions and to advance our understandings
of the dominant transport mechanism in the very central region close to the magnetic
axis by first validating the available transport models that are applied to ITER with
measurements in existing tokamak plasmas and then apply these models to evaluate
turbulent transport in ITER. The existing experimental JET high-β MHD-free hybrid
H-mode discharge #75225 has been selected for the first objective to investigate the
characteristics of core micro-instabilities and to test the quasilinear approximation
in the inner core. These results are compared with the radial region, ρ ∼ 0.3, where
much of work has already been done previously [35, 36]. The MHD effects are not
present in the selected hybrid (no sawteeth, q0 > 1) discharge, though they can also
be very important in this plasma region, particularly in normal (baseline) scenarios.
MHD activity (sawteeth, saturated kink modes deforming the magnetic flux surfaces,
or NTM) can also have a significant impact on the plasma behaviour in the central
region [37, 38, 39].

1.7 Thesis Outline
The rest of the thesis is organised as follow. In chapter 2, various plasma instabilities,
which are responsible for turbulent transport of energy and particles in a tokamak
are introduced. The two main plasma approaches to describe these instabilities,
the fluid and the kinetic ones are briefly described. An overview of the gyrokinetic
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code GKW used to perform numerical simulations is presented in chapter 3. Here,
the basic gyrokinetic equations solved by the code and normalisations of various
parameters given as an input in the code are introduced.

Chapter 4 presents the linear simulation results of the JET hybrid H-mode
plasma discharge 75225 inside ρ = 0.3. Dependencies of instabilities to various
plasma parameters are investigated in the inner core of this selected discharge.

The non-linear simulation results are given in chapter 5. Here, a test of
quasilinear approximation in the inner core region at ρ = 0.15 is presented. Various
standard quasilinear models are tested against the non-linear results.

Finally, the conclusions and future perspectives of this thesis work are discussed
in chapter 6.
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2
Tokamak plasma instabilities

This chapter briefly describes the main plasma instabilities that can give rise to
anomalous transport in a magnetically confined plasma. It focuses on the two
main classes of instabilities: interchange and drift-waves, which include most of the
instabilities found in tokamaks.

2.1 Overview of tokamak micro-turbulence
2.1.1 Particle motion and drift velocities in magnetised plasma

Cyclotron motion and guiding centre
The equation of motion of a charged particle "s" moving in an electric E and magnetic
B field is:

ms
dvs

dt
= es(E + vs ×B). (2.1)

where ms and es are respectively the mass and the charge of the particle "s", and vs
is its velocity.

For a homogeneous magnetic field directed in the z-direction and with zero
electric field, the equation of motion becomes

dvs

dt
= esB

ms

(vs × b), (2.2)

with b = B/B.

The projection of equation 2.2 on (x,y,z) coordinates leads to:

dvx
dt

= ωc,svy,
dvy
dt

= −ωc,svx,
dvz
dt

= 0. (2.3)
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The solution of the above equations describes a circular orbital motion around
the magnetic field lines with angular frequency ωc. This motion is called Larmor
motion. The angular frequency ωc,s = esB/ms is called cyclotron (angular) frequency.
The typical cyclotron frequency for a Deuterium in a magnetic field of B = 5T is
about 7.5 MHz.

Solving further above equations 2.3 by simple substitutions and separation
of variable and using vx = dx/dt and vy = dy/dt, the solution in x and y directions
becomes:

x = −ρs cos(ωc,st), y = ρs sin(ωc,st) (2.4)
where ρs = msvs

esB
is called the Larmor radius, and the center of gyration of the particle

(Larmor motion) is called the guiding-center. For a Deuterium with B = 5T and
v⊥ = 7× 105m/s, the Larmor radius is around 2.5 mm.

Drift of guiding centre
The dynamics of charged particles in a non-uniform magnetic field lead to drifts of
the guiding centre. Details about particle trajectories and these drifts can be found
in any standard plasma textbook such as [2, 12, 40], so it will not be discussed here.
We simply remind the evolution of the guiding center given by:

dvG

dt
= e(E + vG ×B)− µ∇B. (2.5)

with vG the drift velocity of guiding centre.

Solving equation 2.5 in the parallel and transverse directions gives the drift
velocities of the guiding center:

� The E×B drift velocity due to the presence of an electric field

vE×B = E×B
B2 (2.6)

� The ∇B drift due to gradients of the magnetic field

v∇B = µ

e

b×∇B
B

(2.7)

� The curvature drift due to the bending of magnetic field lines, which causes a
centrifugal acceleration on individual particles as they follow the field lines

vc =
mv2
||

eB
b× (b.∇)b (2.8)

� The polarisation drift which is due to a time-varying electric field

vp = m

eB2
dE⊥
dt

(2.9)

These drifts govern the evolution of charged particles in an inhomogeneous
electric and magnetic field.

In magnetised plasmas, the magnetic field generated by the gyro-motion of
each charged particle is in the opposite direction to the external applied magnetic
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field; therefore, the plasma is diamagnetic in nature. For each species, a collective
fluid velocity results due to the presence of pressure gradients. It is called the
diamagnetic velocity and defined as

vdia = B×∇p
ZenB2 . (2.10)

The fluid motion in equilibrium for single plasma species plus stationary fields
can be written as

vfluid = vdia + vE. (2.11)

2.1.2 Drift wave and interchange instability
Drift waves become unstable in tokamaks due to the various guiding centre drifts
discussed above. These waves propagate perpendicular to temperature and density
gradients in the plasma. Only some fundamental properties of drift waves are
introduced here; for a complete discussion see the reference [21].

Drift waves are the result of collective plasma oscillations that arise in magne-
tised plasmas when considering the dynamics of electron and ion motion separately.
These independent dynamics are coupled through the electrostatic force, conspiring
to ensure that plasma is always quasi-neutral. The frequencies of drift-waves are
much smaller than the ion gyro-frequency. These modes are unstable at wavelengths
of the order of the ion gyroradius. Finite gyroradius effects tend to stabilise the
shorter wavelength.

The simplest picture of drift wave is obtained by assuming the ion fluid limit
with an adiabatic electron response to the electrostatic potential fluctuations. Let’s
consider a homogeneous magnetic field in the Z-direction B = BeZ , a wave vector
of perturbation k = key and a radial density gradient with length scale Ln such that
∇n0/n0 = (−1/Ln)ex. The electron and ion temperature are assumed to be equal
and uniform Te ≈ Ti. The diamagnetic ion velocity is given by vdia,i = (Te/eBLn)ey.
The continuity equation for ions is

∂ni
∂t

+∇.(nivfluid) = 0, (2.12)

with vfluid = vdia + vE and ∇.(nivdia) = 0. Assuming a small density perturbation
ni = n0 + δni with |δni| << n0, where n0 is the equilibrium density and δni is a time
dependent perturbed density written in the form

δni(x, t) = ni0exp(i[k.x− ω̄t]), (2.13)

where ω̄ is the complex frequency ω̄ = ω + iγ. The E × B drift induced by the
perturbed electrostatic potential δφ is written as

δvE = b×∇δφ
B

= −ikδφ
B

ex. (2.14)
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Linearizing the continuity equation (δni << n0) gives

∂δni
∂t

= δvE.∇n0. (2.15)

where ∇.vE = 0 has been used.

Substituting Eq. 2.13 and 2.14, in Eq. 2.15 yields

− iω̄δni = −ikδφ
B

n0

Ln
. (2.16)

The parallel electron fluid force balance equation in the collisionless limit is

mene
dv||,e
dt

= −∇||pe + ene∇||δφ. (2.17)

Here the dominant terms are the electric field E|| = −∇||δφ and the pressure gradient
∇||pe = Te∇||ne. The thermal velocity of electrons is much higher than the ions
and it can be assumed in the first approximation that the electrons respond to the
potential fluctuations instantaneously. Neglecting the temperature fluctuations, the
parallel force balance can be written as

∇||pe = ene∇||δφ ⇒ Te∇ne = ene∇δφ, (2.18)

which upon integration gives a linear Boltzmann relation for the electron response

ne = n0exp(eδφ/Te)⇒ δne = n0[exp(eδφ/Te)− 1], (2.19)

where the condition ne = n0 when φ = 0 was used. The adiabatic electron response
follows as

δne
n0

= eδφ

Te
. (2.20)

Finally, imposing the quasineutratlity condition δni = δne and from equation
(2.13), the frequency of the drift wave is

ω̄ = kTe
eBLn

= ω∗. (2.21)

This drift wave has a phase velocity vph = vdia = ω∗/k, which is equal to the
diamagnetic velocity.

When the electron response is adiabatic (eq. 2.20), the electrostatic potential
and the electron density fluctuations are in phase and perturbations propagate
in phase. A simple description of this mechanism is presented in figure 2.1. An
initial perturbation in density is associated with an initial perturbation in potential
(adiabatic electron response). This generates a vertical electric field and causes a
radial E×B drift of ions and electrons. The radial drift causes a denser plasma to
move into the region of lower density and rarer plasma to higher density region. The
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perturbation thus propagates upwards, in the electron magnetic direction. However, if
there is a certain phase difference between the potential and density fluctuations, the
electron response to potential perturbations can be written as δne/n = (1−iδ)eδφ/Te.
The non-zero phase shift iδ causes the density to follow the potential maxima with a
delay. When the phase shift is unfavourable, the radial component of the E×B drift
results in a feedback loop which will bring higher density plasma into already denser
plasma leading to an exponential growth eγt of the initial perturbations driven by
the free energy present in the density gradient. For a favourable phase shift, the
initial perturbations will decay. Such a phase shift can occur in tokamak plasmas
due to the non-adiabatic electron response and wave-particle kinetic resonances.

A coupling between density and temperature perturbations due to the mag-
netic drifts leads to another class of instabilities even if the potential and density
perturbations are in phase. These instabilities are the pressure-driven interchange
modes present in the core of tokamak plasmas. This kind of plasma instability is
also called Rayleigh-Taylor instability, whose origin is analogous to hydrodynamics
where a low-density fluid supports a dense fluid against gravity. These interchange
instabilities tend to dominate the dissipative instabilities in the tokamak core, due
to the low collisionality at hot temperatures. The origin of interchange instability
in a tokamak is a combination of the inhomogeneity of the magnetic field (analogy
with the gravity) and on departure from the thermodynamical equilibrium through
the presence of large pressure gradients (analogy with the temperature gradient).
An interchange mode is unstable only when the magnetic field inhomogeneity is
unfavourable, i.e. ∇B, is aligned with the pressure gradient ∇p which is satisfied on
the low-field side of the torus. The interchange modes are stable on the high-field
side. The stability condition can be written as ∇p.∇B > 0.

Figure 2.1 – Simplified picture of drift waves in a slab geometry with kx << ky. (
Courtesy: [41])

2.1.3 Scale separation of instabilities
The main instabilities found in the core of tokamak plasmas, which are assumed to
be responsible for the anomalous particles and energy transport, are now introduced.
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The drift-wave and the interchange mechanism can describe most of these instabilities.
The characteristics scale length of different tokamak instabilities in the order of
increasing wave vector are given as trapped ion modes (TIM), ion temperature
gradient (ITG), trapped electron modes (TEM) and electron temperature gradient
(ETG) as illustrated in figure 2.2.

� ITG: ITG is an electrostatic instability destabilised due to finite ion temperature
gradients in the system. ITG modes include two branches namely (1) slab
branch [42, 43], when there is a resonance between the wave and parallel motion,
and (2) toroidal branch [44, 45], when there is a resonance between the wave
and the perpendicular magnetic drift. The characteristic wavelength of these
modes is larger or comparable to the ion Larmor radius, such that kθρi ≤ 1.0.

� TEM: an electrostatic mode driven by the resonance between the wave and
the toroidal precession of trapped electrons. They can be excited by finite
electron temperature gradients (∇Te) and electron density gradients (∇ne).
Their characteristic wavelength limit is approximately kθδb,e ≤ 1.0 [46, 47, 48].
Here δb,e is the typical banana orbit width of the trapped electrons and can be
calculated from the conservation of the toroidal kinetic momentum and is given
as δb,s ≈ 2msRvϕ/(esRBθ), with vϕ the toroidal velocity. Using the definition
of the safety factor from equation 1.16 and the Larmor radius ρs = msv⊥

esBϕ
from

equation 2.3, we get δb,s ≈ 2q√
r/R

ρs. The banana width is larger than the
Larmor radius of the considered species.

� ETG: electrostatic electron modes similar to ion ones. These are again excited
due to (∇Te), however they have typical wavelengths of the order of electron
scale rather than ions scale, i.e., kθρe ≤ 1.0 [49, 50, 51].

� KBM: Kinetic Ballooning Mode is an electromagnetic interchange instability
driven by the kinetic resonance between the wave and magnetic drift. The
pressure gradient destabilises these modes in high-β plasmas [52, 53].

Figure 2.2 – A typical characteristics length scale of the linear growth rates for
the ITG, TEM and ETG tokamak plasma instabilities. (Courtesy: [54]).
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As seen in figure 2.2 several branches may coexist. In this thesis, the focus is
on two dominant instabilities that are known to be crucial for determining transport
in typical tokamak conditions: the ion temperature gradient (ITG) driven mode, and
the kinetic ballooning modes (KBM). The ITG modes are the most widely known
unstable modes found in typical tokamak conditions at low plasma β (figure 2.3),
and their linear drive mechanisms are given in appendix A. However, the plasma
core is characterised by a high plasma pressure hence higher β, which is favourable
for the excitation of electromagnetic modes such as the kinetic ballooning modes
(figure 2.3) which is discussed here. It should be noted that KBM is also destabilised
in the pedestal and spherical tokamaks.
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Figure 2.3 – A typical dependence of linear growth rates γ (a) and real frequency
ωr (b) on the plasma beta for a standard tokamak parameters: kθρi = 0.4, ε = 0.16,
ŝ = 1.0, q = 2.0, R/LTD = 9.0, R/LnD = 3.0, R/LTe = 0.0, R/Lne = 3.0, no
collisions and no toroidal rotation.

2.1.3.1 Kinetic ballonning modes (KBMs)
The ballooning mode [55] is an electromagnetic instability driven primarily by the
interaction of the plasma pressure gradient with local regions of unfavorable magnetic
curvature making the plasma bulge out in these regions. The kinetic ballooning
mode is considered as one of the most important instabilities present in the high
confinement mode (H-mode) plasma discharges, which limits the maximum plasma
pressure that can be sustained in a magnetic fusion device. Since it leads to a bending
of the field lines, magnetic tension is stabilising and a minimum pressure gradient
is required before the instability develops. Ballooning modes are high toroidal
mode number perturbations in toroidal systems characterised by short-wavelength
perpendicular to the magnetic field and long wavelengths parallel to field lines. The
ballooning mode driving force is approximately given by the ballooning parameter,
α = −2µ0(Rq2/B2)p′(r) = βq2(R/Lp), with R, q, B, β, p′(r) and R/Lp represent the
major radius, safety factor, toroidal magnetic field, plasma beta, pressure gradient
and its radial scale length, respectively. From this relation, it appears that the
ballooning mode threshold in the pressure gradient can become very small when the
q-value or the plasma β are high. The critical value of α can be calculated from
ideal magnetohydrodynamics equations which are based on the assumptions that the
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parallel electric field perturbations E|| vanish. However, when kinetic effects such as
magnetic drift, finite Larmor radius, wave-particle resonances, collisional effects and
trapped particles are included, E|| may become finite. In the presence of these kinetic
effects, ballooning modes are known as Kinetic Ballooning Mode (KBM) [52, 53, 56].
KBM mode plays an important role in the stability and confinement of fusion plasmas
and can cause cross-field transport of plasma. These modes are localised on the
outboard side of the torus and rotate in the ion diamagnetic direction.

It should be noted that in the literature KBMs are also referred to as shear-
Alfvenic ion temperature gradient modes (AITG) [57, 58] excited due to wave-
particle interactions with thermal ions. Though, later considered as unstable branch
connecting KBM [52, 53] and the Beta-induced Alfven Eigenmode (BAE) [59,
60], both belong to the shear Alfven branch. However, the general fish-bone-like
dispersion relation (GFLDR-E) reveals that the most unstable AITG mode can
be destabilized when the BAE and KBM branches are strongly coupled [59], this
occurs when the condition Ω∗pi ≡ (ω∗pi/ωti) ∼

√
(7/4 + τ)q is satisfied, where ω∗pi =

(Ti/eB)kθ(∇ lnni)(1+ηi) core plasma ion diamagnetic frequency, ηi = ∇ lnTi/∇ lnni,
ωti is the thermal ion transit frequency defined as ωti =

√
2Ti/mi/qR0 (Ti is the ion

temperature in units of energy and mi the ion mass) and τ = Te/Ti [59]. Therefore
KBM is unstable when the diamagnetic effects are dominant Ω∗pi >>

√
(7/4 + τ)q

and BAE when ion compression effects are dominant Ω∗pi <<
√

(7/4 + τ)q. These
modes are destabilised by the thermal ion temperature gradient when the plasma β is
above a certain threshold. The source of KBM instability is in the interchange drive
term due to the combination of unfavorable magnetic curvature and pressure gradient.
The threshold in β comes from the fact that at higher β the Alfven speed VA = ωAqR,
with ωA the Alfvén frequency and VA =

√
B2/µ0ρm the Alfvén velocity where ρm

is the mass density, decreases and the stabilising magnetic tension is reduced. The
β threshold of KBM is generally smaller than the ideal MHD limit, βcrit < βMHD

crit
[53, 61]. It has been shown that at higher β values, βcrit > βMHD

crit , KBM can be
driven unstable [62]. Here βcrit is the critical β limit for which Kinetic Ballooning
Modes (KBM) are unstable and βMHD

crit is the ideal MHD β limit.

The normalized parallel structure of the perturbed electrostatic potential
(φ) and vector potential (A‖) for ITG and KBM unstable modes and for standard
tokamak parameters: kθρi = 0.4, ε = 0.16, ŝ = 1.0, q = 2.0, R/LTD = 9.0,
R/LnD = 3.0, R/LTe = 0.0, R/Lne = 3.0, no collisions and no toroidal rotation
nor toroidal rotation gradient are given in figure 2.4 as a function of the parallel
coordinate s. The perturbed fields δφ and δA‖ are normalised as follows: φ = αL

eδφ
ρ∗Ti

and A‖ = αL
δA‖

ρ2
∗BrefR0

, with ρ∗ = ρi/R0 and αL an additional normalising factor used
in linear simulations to have Re[φ] = 1 and Im[φ] = 0 at the s position where |φ| is
maximum. One poloidal turn corresponds to ∆s = 1.
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Figure 2.4 – Parallel mode structure of electrostatic potential φ and vector
potential A|| for ITG mode (a) and (b), and KBM modes (c) and (d) as a function
of parallel coordinate s for standard tokamak parameters given in figure 2.3.

As illustrated in figure 2.3, when the β value increases, ion temperature
gradient (ITG) modes are stabilised and above a threshold in beta KBMs become
dominant. The frequency of KBMs is much higher than their ITG counterpart
(Fig. 2.3 (b)). Both KBM and ITG modes are characterised by an even parity of
electrostatic potential perturbation φ and odd parity of parallel vector potential
perturbation A|| along the magnetic field lines [63] as illustrated in figure 2.4 for a
standard tokamak case.

2.2 Models for tokamak micro-turbulence
In the last section, basic mechanisms of various instabilities, which can give rise to
anomalous transport of heat and particle in the tokamak core are presented. To
formulate a transport model able to predict the turbulence level in plasmas, the
dynamics of waves and particles need to be solved self-consistently. The generation of
electromagnetic fields by charge and current particle densities is described by Maxwell
equations. The dynamics of the plasma response to the fluctuations of electromagnetic
potentials φ and A|| can be described by a fluid or a kinetic description. Three
approaches in the order of decreasing complexity can be distinguished as:

� Particle description: A direct approach where trajectory of each j single
particle is governed by the equation of dynamics mjdvj/dt = qj(Ej + vj ×Bj).
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These equations are coupled through the field equations (Maxwell). The
treatment of this kind of problem which is the origin of the Klimontovich and
Liouville equation requires tracking the trajectories of ∼ 1023 particles, which
appears far from being solvable for practical purposes and unnecessary.

� Kinetic description: A more reasonable way of describing the dynamics of
this large number of charged particles consists in adopting a statistical approach
where the time evolution of particles is described by a single distribution
function (for each plasma species). The evolution of the distribution function
is obtained by solving the Boltzmann’s equation (or the Vlasov equation [64] if
collisions are not retained) given as:

∂fs
∂t

+ v.
∂fs
∂x

+ qs
ms

(E + v×B).∂fs
dv

= Cs(fs), (2.22)

where Cs(fs) is the collision operator, x and v are the position and the velocity
respectively of the particles. Depending upon the choice of collision operator,
the equation 2.22 is also referred to as the Fokker-Planck equation.

Here, the number of degree of freedom is 6: 3 in real space and 3 in velocity
space per plasma species, namely electrons, main ions and impurities. Therefore,
a full kinetic description of plasma is still numerically expensive. When the
evolution of the magnetic field is smooth in space and time with respect to
the fast cyclotron motion, the fast cyclotron timescale is removed by averaging
over the gyro-motion. The phase space is reduced from 6 dimensions to 5
dimensions. This approach is called the gyro-kinetic theory [65, 66, 67, 68].
More details about the gyro-kinetic theory and the gyro-kinetic code used in
this work is presented in chapter 3.

� Fluid description: The kinetic and in particular the gyrokinetic approx-
imation have been quite successful in explaining the various experimental
phenomenon in magnetic fusion plasmas and will be used extensively in this
work. However, this approach is still cumbersome from the analytical as well as
from the numerical point of view. This complexity has led to another major step
in the simplification process by defining a fluid approach. In this approach, only
the hierarchy of moments of the distribution function is considered, obtained by
taking the different velocity integrals of f on the velocity basis (1, v, v2, ..., vn).
This route is even more tractable from both the analytical and numerical point
of view than the gyro-kinetic approach since the reduction of dimensional
space is from 6D to 3D per species due to integration over velocity space dv3.
Nonetheless, the fluid approach suffers from two critical drawbacks. It can
hardly account for the interactions between waves and particles, as long as they
are resonant in the velocity space due to velocity space integration. The linear
Landau mechanism is the most relevant example of this issue. This is especially
true for the hot thermonuclear plasmas, where collisions are infrequent. For the
same reason, fluid equations have difficulties in differentiating between various
classes of particles, namely passing, trapped and supra-thermal particles and to
account for the finite Larmor radius effects. Furthermore, the infinite hierarchy
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of fluid equations obtained by higher-order moments on the kinetic equations
requires some closure assumption to truncate this. The closure of fluid problem
remains an open issue in nearly collisionless plasmas, characterised by the
larger mean free path and is still a subject of active research nowadays.

Despite these drawbacks, the fluid description remains of beneficial interest,
especially near the colder tokamak edge which is more collisional.

2.3 Summary
Various class of instabilities found in tokamaks and their properties are introduced
in this chapter with a focus on the ITG mode, unstable at low beta and the KBM
mode which dominates at high beta. KBMs are electromagnetic instabilities driven
by the pressure gradients that can drive a significant part of turbulent transport and
can limit the maximum achievable plasma pressure in a tokamak.
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3
Overview of the gyrokinetic code GKW

This chapter gives an overview of the gyro-kinetic code GKW used to perform
numerical simulations in the present thesis. The basic gyrokinetic equations solved
by the code and their ordering is presented. A description of the coordinate system
and the definition of various input parameters and their normalisation are given.
Additional details about the code can be found in the original paper [69] as well as
in the GKW manual [70]. All the material presented in this chapter is summarised
from ref. [69], and discussed here to introduce the input parameters used later in
chapter 4.

3.1 Gyrokinetic orderings
Gyro-Kinetic Workshop (GKW) [69] is a nonlinear gyro-kinetic flux tube code used
to study micro-instabilities and turbulent transport in tokamak plasmas. It solves
the gyro-kinetic (GK) Boltzmann equation coupled to Maxwell’s equations (Poisson’s
and Ampere’s equations) in the 5-dimensional space. It uses a combination of finite
difference and pseudo-spectral methods with explicit time integration to solve the
equations.

The gyrokinetic theory in magnetised plasma exploits the temporal scale
separation between the fast gyromotion and the slow drift frequency, ω ∼ ωd ∼ ω∗

(see equation 2.21) of the wave destabilized in the plasma:

ω

ωc
∼ ε << 1. (3.1)

where ωc = eB/m is the cyclotron frequency (equation 2.3).
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The typical length scale over which the solution varies in the direction per-
pendicular to the magnetic field is assumed to be of the order of the small parameter
ρ∗ = ρi/R (ρi = mivthi/(eB) being the ion Larmor radius and R the major radius of
the device, see figure 1.7). Along the magnetic field, the solution is assumed to have
a length scale of the order of the machine size due to the fast streaming motion of
particles, giving the following relations:

R∇|| ≈ 1, (3.2)

R∇⊥ ≈ 1/ρ∗. (3.3)

These basic orderings (ω/ωc and ρ∗) are the origin of the formulation of
gyrokinetic theory in ref. [65, 67, 68].

Finally, a δf approximation is employed in GKW, which assumes that the
fluctuation of the perturbed distribution function (f) is small in comparison to the
equilibrium distribution function F .

f

F
∼ ρ∗. (3.4)

The background quantities are also assumed to have slow spatial variations.
As a result, the turbulence can be considered as homogeneous in the perpendicular
plane. This approximation is known as the local approximation and has a particular
interest since it allows a Fourier decomposition to apply and the simulation domain
to be restricted to a flux-tube aligned with magnetic field lines. GKW uses this
local limit in which only a small region is simulated, and the background quantities
and their gradients are constant across this domain. Unless otherwise stated, the
local version of GKW has been used in all the simulations presented in this thesis;
however, a global GKW version is also available [69, 70].

3.2 Gyrokinetic equation solved in GKW
In GKW, the evolution of the perturbed gyrocenter distribution function f is solved in
the gyro-centre coordinates (X, µ, v|| ) along with the perturbed electrostatic potential
φ and perturbed vector potential A. Here X is the gyro-centre position, v|| the parallel
velocity along the magnetic field, and µ the magnetic moment µ = mv2

⊥/2B. The
equations are formulated in the co-moving frame by assuming rigid body rotation in
the toroidal direction and includes inertial effects (centrifugal and Coriolis forces).

The time evolution of the total gyro-centre distribution function ftot = F + f
in the gyro-centre coordinates is written as:

∂ftot
∂t

+ dX
dt
.
∂ftot
∂X

−
dv||
dt

∂ftot
∂v||

= 0. (3.5)
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The evolution equations for the gyro-centre position X and for the parallel
velocity are:

∂X
∂t

= v||b + vD + vχ, (3.6)

mv||
dv||
dt

= ∂X
∂t
.
[
ZeE− µ∇B −mΩ2R∇R

]
, (3.7)

where Ω is the toroidal rotation frequency of the moving frame in which equations
are formulated, and b is the unit vector in the parallel magnetic field direction. E is
the gyro-averaged perturbed electric field given as:

E = ∇〈φ〉gy −
∂
〈
A||
〉
gy

∂t
b−∇Φ, (3.8)

where Φ is the equilibrium (background) electrostatic potential and brackets 〈..〉gy
represent the gyro-average.

The velocities defined in equation 3.6 are as follows: v||b the parallel motion
along the unperturbed magnetic field, vD the drifts due to inhomogeneous magnetic
field (curvature (see equation 2.8), ∇B (equation 2.7), centrifugal and Coriolis drifts):

vD = 1
Ze

[
mv2
||

B
+ µ

]
B×∇B
B2 +

mv2
||

2ZeBβ
′b×∇ε+ 2mv||

ZeB
Ω⊥ + 1

ZeB
b×∇ξ. (3.9)

Where the centrifugal energy ξ is defined from the background electrostatic
potential and the centrifugal drift as:

ξ = ZeΦ− 1
2mΩ2(R2 −R2

0). (3.10)

Here ε = r/R0 is the normalized radial coordinate (flux label), Ω⊥ = Ω −
(Ω.b)b is the angular (toroidal) rotation vector perpendicular to the magnetic field,
and β′ = 2µ0

B2
∂p
∂ε
. In equation 3.9, the first term on the right-hand side corresponds to

the combination of ∇B and curvature drifts, the second term is the correction to the
curvature drift due to modification of the equilibrium associated with the pressure
gradient. The last two terms are the Coriolis drift [71] and the combination of the
background potential and the centrifugal drift [72, 41].

The drift vχ is a sum of the E×B drift ( vE = b×∇〈φ〉gy /B ) and of the
parallel motion along the perturbed field lines ( vδB = −b×∇v||

〈
A||
〉
gy
/B), i.e. :

vχ = b×∇χ
B

with χ = 〈φ〉gy − v||
〈
A||
〉
gy

+ µ

Ze

〈
B||
〉
gy
. (3.11)

The total distribution function ftot is split into a slowly varying (in time and
space) background part F and fast varying perturbed part f , ftot = F+f . Employing
the δf approximation and using equations 3.6 and 3.2, the general evolution equation
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for f solved in GKW from 3.5 is written as:

∂f

∂t
+ (v||b + vD + vχ).∇f − b

m
.(µ∇B +∇ξΩ) ∂f

∂v||
= S, (3.12)

where S is described by the background distribution function F :

S = −(vχ + vD).∇F − Ze

T
[v||b + vD].∇〈φ〉gyF, (3.13)

where R0 is the reference major radius of the flux surface at which the densities of
the background Maxwellian is defined.

The background Maxwellian distribution function (FM) is defined as:

F = FM = n0

π3/2v3
th
exp

[
−

(v|| − (RBt/B)ωφ)2 + 2µB/m
v2
th

− ξ/T
]
, (3.14)

with vth =
√

2T/m being the thermal velocity of the considered species, ωφ is the
plasma toroidal rotation frequency in the rotating frame. The plasma rotation ωφ by
definition zero in the rotating frame, but it has a radial gradient.

Finally, to form a closed set of equations, the gyrokinetic equations need to be
combined with the field equations. The fields φ, A|| and B|| are obtained by solving
the Poisson equation and the Ampere’s law. In GKW units the gyrokinetic Poisson
equation is written as:

∑
sp

ZspnR0,sp

[
2πB

∫
dv||dµJ0(k⊥ρsp)ĝsp + Zsp

TR,sp
[Γ(bsp)− 1]φ̂

]
= 0, (3.15)

where

b = 1
2mRTR(k⊥ρ∗Rref/ZB

2)2 =

in original units︷ ︸︸ ︷
1
2
k2
⊥m

2v2
th

e2B2 . (3.16)

On the left-hand side of the above equation, the sum is over the plasma species
and the integral over velocity space. Here a .̂ represents the Fourier representation
of a quantity.

The vector potential is calculated from the Ampere’s law as:(
k2
⊥ + β

∑
sp

Z2
spnR0,sp

mR,sp

Γ(bsp)
)

= β
∑
sp

ZspvR,spnR0,sp × 2πB
∫
dv||

∫
dµv||J0ĝsp.

(3.17)

Here g is a new distribution function defined as

g = f + Ze

T
v||〈A||〉gyFM (3.18)
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By solving for this new distribution function, the time derivative of the vector
potential appearing in the parallel acceleration and presenting a numerical difficulty
is avoided.

3.3 Normalisations in GKW
All quantities used in GKW are normalised using a reference quantity. The important
parameters used in this thesis and their respective normalisations are presented in
this section. First, the reference values are defined such as a reference mass mref ,
a reference density nref , a reference temperature Tref , a reference thermal velocity
vthref , a reference major radius Rref , a reference vacuum magnetic field Bref and a
reference gyroradius ρref . The reference magnetic field is defined as Bref = Bt(Rref )
on the considered flux surface when the Miller parametrisation is used.

The reference quantities are related to each other:

Tref = 1
2mrefv

2
thref , (3.19)

ρref = mrefvthref
eBref

. (3.20)

These reference values are used to define dimensionless quantities such as
mass mN , density nN , temperature TN , magnetic field BN , major radius RN , and
time tN as:

mN = m

mref
, nN =

nRref
nref

, (3.21)

TN = T

Tref
, BN = B

Bref
, (3.22)

RN = R

Rref
, tN = tvthref

Rref
. (3.23)

where the subscript N denotes a normalised quantity. The velocity space coordinates
are normalised using the thermal velocity of each species independently

v|| = v||Nvth, µ = mv2
th

Bref
µN . (3.24)

The normalised Larmor radius ρ∗ and toroidal rotation velocity (indicated by
u in the following chapters) are given as:

ρ∗ = ρref/Rref (3.25)

u = RrefΩ/vthref (3.26)
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with u > 0 for a plasma flowing in the direction of B. The normalised gradients for
density, temperature and toroidal rotation are defined in the following ways:

1
Ln,N

= Rref

Ln
= −Rref

n

∂n

∂r
, (3.27)

1
LT,N

= Rref

LT
= −Rref

T

∂T

∂r
, (3.28)

u′N =
R2

ref

vthref

∂ωφ
∂r

. (3.29)

It should be noted that these normalized gradients lengths are denoted by
R/Ln, R/LT and u′ in the thesis and they are normalized with Rref . The normalized
radial coordinate ε is also normalized with Rref :

ε = Rmax −Rmin

2Rref
, (3.30)

where Rmax and Rmin are the maximum and minimum major radius of each flux
surface, respectively.

The fields are normalised with the reference values

φ = ρ∗
Tref
e
φN , A|| = BrefRrefρ

2
∗A||N ,, χ = ρ∗

Tref
e
χN , Φ = Tref

e
ΦN . (3.31)

It should be noted that a factor of ρ∗ has been added in the above definitions
of the normalised perturbed fields such that these normalised quantities are of order
1. The mode growth rates (γ) and real frequencies (ωr) are normalized with vthref
and Rref :

γ = γNvthref/Rref , ωr = ωrNvthref/Rref . (3.32)

Finally, the heat (Qs), particle (Γs) and momentum (Πs) fluxes in GKW are
normalized as:

ΓN,s = ΓsRref

nR0,sρ
2
∗vthref

(3.33)

QN,s = QsRref

nR0,sTsρ
2
∗vthref

(3.34)

ΠN,s = Πs

msnR0,svth,sρ
2
∗vthref

(3.35)

These fluxes are the radial contravariant components of the flux.

In the rest of the thesis, parameters are presented in their normalised form
and subscript N is dropped for simplicity. In the thesis, the deuterium ion mass is
chosen as reference mref , the equilibrium electron density on the flux surface as nref ,
the ion temperature as Tref , and reference major radius Rref will be used as R0 and
is defined as R0 = 1/2(Rmax +Rmin). Bref = Bt(R0).
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3.4 Geometry
Following the introduction of the basic equations solved in GKW and their normali-
sations, the geometry employed to solve these equations is described briefly in this
section. A field-aligned coordinates system which follows the magnetic field lines
is used to take advantage of the scale separation of the turbulent structures in the
parallel and perpendicular directions (k|| < k⊥).

The main results are summarised as:

The coordinate system (ε, ζ, s) is used in GKW. Where ε is the radial coordi-
nate, ζ the bi-normal coordinate and s is the parallel coordinate aligned with the
magnetic field. The domain [−1/2, 1/2] in s corresponds to one poloidal turn. The
main properties and sign conventions in this coordinates system are:

� B ·∇ε = 0 (flux surface definition)

� To make coordinates field aligned, Bζ = 0 and Bε = 0

� The mode frequency is positive for a perturbation flowing in the direction
opposite to ∇ζ, which corresponds to the ion ∇B drift direction if sj = 1 and
to the electron ∇B drift direction if sj = −1.

� ε is always increasing from the plasma center to the plasma edge.

� s is increasing upwards from the low field side midplane.

� The toroidal rotation is assumed positive for a plasma flowing the direction of
B

3.4.1 Miller parameterisation
The calculation of the various drifts and metric terms in the gyrokinetic equation
requires the magnetic field geometry to be specified. Different geometry models are
implemented in GKW such as a simplified ′s−α′ equilibrium [55], an improved circular
equilibrium [73], Miller geometry [74] and coupling to a MHD equilibrium solver
code CHEASE [75]. In the present thesis, the Miller flux surface parametrisation is
used.

The Miller parameters used to describe a magnetic flux surface in the (R,Z)
plane are: κ the elongation, δ the triangularity, ζ the squareness, Rmil and Zmil the
flux surface center and their radial derivatives sκ, sδ, sζ , R′mil and Z ′mil [74].

The flux surfaces are defined as:

R = Rmil + r cos (θ + arcsin δ sin θ), (3.36)
Z = Zmil + rκ sin (θ + ζ sin 2θ), (3.37)

and
sκ = r

κ

dκ

dr
, sδ = r√

1− δ2

dδ

dr
, sζ = r

dζ

dr
. (3.38)
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The radial derivative of the flux surface center major radius (Rmil) and
elevation (Zmil) are given as:

R′mil = Rmil

dr
, Z ′mil = dZmil

dr
. (3.39)

The impact of these Miller parameters on the flux surfaces can be seen in
figure 3.1.
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Figure 3.1 – Miller flux surfaces centred on R0 = Rmil = 1.0 and Z = 0 plane with
a minor radius of r = 0.5.

Additional parameters such as dp
dε

(the pressure gradient), q (safety factor),
ŝ (magnetic shear) and ε = r

Rmil
( inverse aspect ratio) are also required to get a

complete description of the equilibrium.
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The radial derivative of the plasma pressure entering the Miller parametrisation
is given by

β′ = (2µ0R0/B
2
ref )(dp/dr), (3.40)

and the magnetic shear is defined as

ŝ = (r/q)dq/dr. (3.41)

3.5 Spectral representation in GKW
A combination of finite difference techniques and pseudo-spectral methods is used
in GKW to solve the equations. The turbulence is assumed homogeneous in the
direction perpendicular to the magnetic field in the local limit, this allows periodic
boundary conditions to be employed, and a sum over discrete Fourier modes can
represent all perturbed quantities.

The Fourier decomposition in the perpendicular plane (ε ,ζ) is written as:

f(ε, ζ, s) =
∑
kζ ,kε

f̂(kε, kζ , s)exp[ikζζ/ρ∗ + ikεε/ρ∗]. (3.42)

where a factor of ρ∗ (normalised Larmor radius) has been added such that

T
(
ρ∗
∂f

∂xα

)
= ikαf̂ , (3.43)

and is consistent with the normalisation discussed earlier.

Here a .̂ represents the Fourier representation of a quantity and T indicate
the respective forward discrete Fourier transform operations.

Another advantage of the Fourier representation is that gyro-average becomes
an algebraic operation in Fourier space:〈

φ̂
〉
gy

= J0(k⊥ρ)φ̂ (3.44)

with J0 being the Bessel function.

The condition of toroidal periodicity implies

f(ε, ζ + 1, s) = f(ε, ζ, s) ⇒ kζ
2πρ∗ = N, (3.45)

with N an integer. Because ρ∗ is small, the above condition is satisfied for a minimal
change to kζ or ρ∗, which is equivalent to the condition that the toroidal mode number
is large enough. In the local limit, the final equations obtained are independent of
ρ∗, and it is considered that the above relation is satisfied. The poloidal periodicity
implies:

f(ε, ζ + q/2, 1/2) = f(ε, ζ − q/2,−1/2), (3.46)
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which translates to Fourier spaces as

∑
k

f̂(kε, kζ , 1/2)exp
[
ikζ
ρ∗

+ ikεε

ρ∗
+ iqkζ

2ρ∗

]
(3.47)

=
∑
k

f̂(kε, kζ ,−1/2)exp
[
ikζ
ρ∗

+ ikεε

ρ∗
− iqkζ

2ρ∗

]
. (3.48)

Expanding the safety factor around a reference value qR (the value at the
centre of the radial domain)

qkζ
ρ∗

= qRkζ
ρ∗

+ kζ
∂q

∂ε

ε

ρ∗
+ 1

2kζρ
∗∂

2q

∂ε2

(
ε

ρ∗

)2

, (3.49)

and neglecting the second derivative correction, this condition is satisfied when
qRkζ/2πρ∗ is an integer, and if

f̂
(
kε, kζ ,

1
2

)
= f̂

(
kε + kζ

∂q

∂ε
, kζ ,−

1
2

)
, (3.50)

which connects a mode to the appropriate higher kε mode at the boundary of the
s domain. Thus, increasing the length of the field line simulated is equivalent to
increasing the number of kε modes. This formulation is close to the ballooning
representation [76].

This boundary condition for the Fourier amplitudes implies that a convenient
option for the spacing of the kε modes in the discrete Fourier representation is

∆kε = kζ,min
∂q

∂ε

1
ik
, (3.51)

with ik some integer. The ik allows control over the radial resolution by changing
the spacing between the radial modes.

The normalised wave number kθρref is given as an input in the simulations
performed throughout this thesis, whereas kζ is effectively used in the code. The
link between the two wave numbers is given by:

(kθρref )2 = gζζk2
ζ , (3.52)

with gζζ is a contravariant metric tensor element evaluated at the low field side
midplane (s = 0) to determine kζ from the value of kθρi provided in input. The
two-poloidal wave numbers are related to the toroidal mode number n by:

n = kθρref

2πρ∗
√
gζζ |s=0

= kζ
2πρ∗ . (3.53)
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The complete perpendicular wave vector which will be used later in chapter 5
for the quasilinear approximation is given by

k2
⊥ = gεεk2

ε + 2gεζkεkζ + gζζk2
ζ . (3.54)

The flux surface average particle, heat and angular momentum fluxes are
given by the equations:

〈Γ.∇ε〉s =
〈∫

vE.∇εfd3v
〉
s

+
〈∫

vA|| .∇εfd
3v
〉
s

+
〈∫

vB|| .∇εfd
3v
〉
s
, (3.55)

〈Q.∇ε〉s =
〈∫ v2

2 vE.∇εfd3v

〉
s

+
〈∫ v2

2 vA|| .∇εfd
3v

〉
s

+
〈∫ v2

2 vB|| .∇εfd
3v

〉
s

,

(3.56)
〈Π.∇ε〉s =

〈∫
mv||vE.∇εfd3v

〉
s
+
〈∫

mv||vA|| .∇εfd
3v
〉
s
+
〈∫

mv||vB|| .∇εfd
3v
〉
s
.

(3.57)

These fluxes are the sums of the flux contributions due to the electrostatic
(E×B velocity vE), the magnetic flutter (vA||) and the magnetic compression (vB||)
parts. Here vB‖ is drift velocity due to perturbations of magnetic field in the parallel
direction, vB‖ = b×∇µ〈B‖〉gy/B0.

The total mode growth rate and real frequencies of the linear Fourier modes
are obtained as:

γ(t) = ln


√∫
|φ̂(t)|2 + |Â||(t)|2 + |B̂||(t)|2ds√∫

|φ̂(t−∆t)|2 + |Â||(t−∆t)|2 + |B̂||(t−∆t)|2ds

 /∆t (3.58)

ω(t) =
[
Arg

(∫
|φ̂(t)|2ds

)
− Arg

(∫
|φ̂(t−∆t)|2ds

)]
/∆t (3.59)

where, in the frequency equation, the magnetic flutter and magnetic contributions
are dropped in the definition for simplicity. γ(t) is the growth rate defined for one
linear mode only.

For the normalisation of these fluxes, growth rates and frequencies, see section
3.3.
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4
Linear stability analysis of a JET hybrid

H-mode plasma

This chapter presents the linear stability analysis of the JET hybrid H-mode dis-
charge #75225. Linear gyrokinetic simulations are performed using the gyrokinetic
code GKW [69] in the local approximation limit. The dominant instability in the
central region ρ < 0.3 is identified and its parametric dependencies are investigated.
Comparisons with the radial region, ρ > 0.3, where previous work has already been
done [35, 36, 77] are also presented.

4.1 Input parameters of JET hybrid H-mode discharge
75225
An experimental JET hybrid H-mode discharge #75225 has been selected for the
purpose of investigating turbulent transport and validating available transport models
in the plasma central region. A hybrid or improved H-mode plasma is halfway between
a baseline H-mode plasma and an Advanced Tokamak plasma [78, 79, 80]. In these
plasmas, an enhanced normalized confinement time can be achieved by optimizing
the current density profile. The resulting safety factor profile in the central region is
flat but above unity, which prevents the destabilization of large MHD instabilities
[80]. In addition, the plasma current is driven by inductive and non-inductive drive
with a high fraction of bootstrap current that allows a longer pulse duration.

4.1.1 Experimental profiles
The selected JET pulse corresponds to the 2008-2009 JET experimental campaign
with Carbon plasma-facing components (CFC). The profiles for electron density
and temperature are obtained by measurements from High-Resolution Thomson
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Scattering (HRTS) while Charge Exchange Recombination Spectroscopy (CXRS)
is used to measure the carbon density, temperature and toroidal rotation. This
hybrid discharge of the Carbon wall era was analyzed for ρ > 0.33 in details in
[81, 82, 35, 36, 77] and has been selected for the following reasons: it has high-quality
core profile measurements for electron and of carbon (CXRS), no sawteeth (q on
axis > 1) and no other significant core MHD activity in the selected time interval,
t = 6.0− 6.5 s. Even though the ultimate goal of this thesis is to understand the W
transport, however, we have selected these specific well-diagnosed discharges of the
carbon wall era first. Because turbulent transport in the central region remains largely
unexplored so far, so it is important to understand the physical mechanism first. That
is why we are using carbon discharges first which have better diagnostic measurements
and well documented. In practice, the tolerable concentration of W in a tokamak
plasma is very low nW/ne ∼ 10−5 due to radiation losses. At such low concentration,
the impurity behaves as a trace and does not impact turbulent transport or linear
stability. Actually, even for carbon whose concentration is nC/ne = 0.01 at ρ = 0.15,
we have verified that removing the carbon impurity (red curve) has only a moderate
impact on the linear stability as seen in the figure 4.21.

Numerical simulations are performed using the δf (the perturbed distribution
function) gyro-kinetic (the kinetic Vlasov equation averaged over the fast gyro-
motion) code GKW [69] in the local approximation limit. The input parameters for
the simulation are calculated using plasma profiles obtained from Gaussian process
regression (GPR) of experimental measurements [83].

The experimental input plasma profiles with GPR fits for the electron density
ne, electron temperature Te (the data combines measurements from HRTS and
LIDAR which is an older Thomson scattering system in JET), ion temperature
Ti (assuming TD = TC), toroidal rotation frequency Ωtor and safety factor (q) are
illustrated in figure 4.1. Here, the blue points represent the experimental measured
data points with error bars and the red (solid) lines show the GPR fit. The shaded
area represents the error bars for the GPR fits, and all errors are depicted as ±2σ.
The magnetic equilibrium is computed with the EFIT (Equilibrium FITing) [84]
based on magnetic measurements and constrained with MSE measurements and the
total kinetic pressure, including fast ions (table 4.2). Simulations are performed for
three species (deuterium, electron, and Carbon), including parallel magnetic vector
potential (δA‖) and parallel magnetic field (δB‖) fluctuations, rotation (drive from
parallel velocity gradient and inertial effects) and collisions. In some cases, the fast
ion population from the Neutral Beam Injection (NBI) is added as a fourth species,
with a Maxwellian distribution function. The impact of approximating the fast ion
population as a Maxwellian was shown to be of the order of 10% on the growth
rate of ITG modes [85]. The magnetic equilibrium for the plasma shape is specified
using the Miller parametrization [74]. A linearised Fokker-Planck collision operator
is used to model collisions including the pitch-angle scattering, energy scattering and
collisional friction terms. The centrifugal and Coriolis drifts are taken into account
and all species collisions are retained in the simulations. The corresponding local
plasma input parameters normalized in GKW units are listed in table 4.1 and the
Miller parameterisation is given in table 4.2.
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Figure 4.1 – Plasma input profiles for the JET discharge #75225 at 6-6.5 s
obtained from GPR fits of experimental measurements as a function of the
normalized toroidal flux ρ for (a) electron density, (b) electron temperature, (c) ion
temperature, (d) toroidal rotation frequency, (e) safety factor q and (f) fast ion
pressure profile obtained from PENCIL. In figure (b), the measurements are from
two diagnostics HRTS and LIDAR and three offset points are from ECE
measurements.

In table 4.1, ν is the reference normalized collisionality from which inter-species
collisionalities are computed: ν = nie

4 ln Λe/i
4πε20m2

ev
3
the

R0
vthref

, with ln Λe/i the Coulomb logarithm.
The actual electron to ion collisionality used in the code is enhanced to take into
account the impact of impurities not included as a kinetic species (the Zeff value
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obtained with the C impurity alone is lower than the actual Zeff value measured from
Bremsstrahlung emission). The electron plasma β is defined as βe = 2µ0neTe/B

2
ref .

In the simulations, the ion mass (mi) is taken as the reference mass, the electron
density (ne) as the reference density and the ion temperature (Ti) as the reference
temperature, therefore the beta value given as input in GKW is 2µ0neTi/B

2
ref , which

differs from the electron β by a factor Ti/Te. The other normalized parameters and
their definitions are given in chapter 3.

Table 4.1 – Normalized input parameters used in GKW simulations for the JET
75225 discharge selected in the time interval 6.0-6.5 s.

ρ R
LTi

R
LTe

R
LTf

Te
Ti

Tf
Ti

R
LnC

R
Lne

R
Lnf

nC
ne

nf
ne

βe[%] u u′ Zeff ν

0.15 4.23 1.99 1.80 0.69 5.6 -0.70 1.5 0.80 0.01 0.12 3.19 0.32 0.59 1.7 0.015
0.20 5.57 2.70 -0.58 0.72 6.0 -1.13 1.9 -0.88 0.01 0.12 2.96 0.32 0.80 1.7 0.016
0.25 6.60 3.31 2.41 0.76 6.6 -1.45 2.3 1.84 0.01 0.13 2.69 0.32 0.99 1.7 0.017
0.33 7.70 4.09 9.64 0.84 6.0 -1.51 2.7 8.97 0.01 0.10 2.23 0.32 1.31 1.7 0.020
0.40 7.85 4.51 10.71 0.91 7.8 -0.87 2.9 10.24 0.02 0.07 1.85 0.31 1.57 1.7 0.022
0.50 6.30 5.15 4.44 1.04 4.6 2.70 3.1 3.41 0.02 0.06 1.39 0.29 1.88 1.7 0.027
0.60 5.90 5.50 9.61 1.05 4.6 4.41 3.3 7.96 0.02 0.06 1.03 0.24 0.24 1.7 0.035

4.1.2 Magnetic equilibrium reconstruction
The Miller parameterization is used for the magnetic equilibrium description, see
table 4.2. A separate magnetic equilibrium without the fast ion pressure has been
calculated with the CHEASE code [75] and the corresponding Miller parametrization
for this case is listed in table 4.3. As seen in figure 4.2, the main difference between the
two equilibria is a larger radial derivative of the total pressure, β′, and of the center
flux surfaces R′mil for ρ > 0.3 when the fast ion pressure is included in the magnetic
equilibrium, see figure 4.1 (f). The fast ion characteristics from NBI is modelled
using the PENCIL code [86] which solves a simplified version of the Fokker-Planck
equation and includes ionization by charge exchange, ionization by plasma electrons
and ions. It should be noted that for the fast ion profile calculations, Monte-Carlo
NEMO-SPOT [87] simulation within CRONOS [88] is also available for the selected
JET discharge. Since the focus of the present analysis is not on the impact of fast
ions, we chose to use the default "chain2" analysis performed with PENCIL [86].

4.1.3 Grid convergence
Grid convergence tests have been carried out to determine the required grid as
illustrated in figure 4.3. In this figure, the linear growth rate is plotted for the most
unstable mode at kθρi = 0.35 for ρ = 0.15 as a function of the number of grid points
for the magnetic moment Nµ (a), the parallel velocity Nv‖ (b) and the number of
points in the parallel direction per poloidal turns Ns (c). The reference values for
the scans were: Nµ = 16, Nv‖ = 64, Ns = 32. After linear grid convergence tests,
the numerical grid parameters chosen are presented in table 4.4. The number of
poloidal turns is varied from 5 to 50 depending on the value of the magnetic shear
and kθρi (more extended mode structure at low magnetic shear and low kθρi). The



4. Linear stability analysis of a JET hybrid H-mode plasma 75

Table 4.2 – Miller parameters for the magnetic equilibrium including the fast ion
pressure.

ρ ε q ŝ β′ κ δ ζ sκ sδ sζ R′mil Z ′mil

0.15 0.05 1.10 0.05 -0.37 1.35 0.02 0.001 -0.004 0.01 0.003 -0.08 -0.005
0.20 0.07 1.10 0.02 -0.48 1.35 0.02 0.001 -0.007 0.02 -0.00 -0.10 -0.008
0.25 0.09 1.11 0.05 -0.57 1.35 0.03 0.001 -0.01 0.03 0.001 -0.12 -0.007
0.33 0.11 1.14 0.21 -0.66 1.34 0.04 0.001 -0.01 0.04 -0.002 -0.16 -0.017
0.40 0.14 1.22 0.49 -0.64 1.34 0.05 0.001 -0.002 0.05 0.001 -0.19 -0.022
0.50 0.17 1.42 0.98 -0.50 1.35 0.06 0.00 0.03 0.09 -0.004 -0.23 -0.026
0.60 0.21 1.74 1.42 -0.37 1.36 0.08 -0.001 0.09 0.14 -0.01 -0.28 -0.063

Table 4.3 – Miller parameters for the magnetic equilibrium without including the
fast ion pressure.

ρ ε q ŝ β′ κ δ ζ sκ sδ sζ R′mil Z ′mil

0.15 0.05 1.08 0.05 -0.36 1.31 0.02 0.0024 -0.008 0.02 0.005 -0.08 -0.006
0.20 0.07 1.08 0.02 -0.42 1.30 0.02 0.0003 -0.005 0.02 -0.003 -0.10 -0.006
0.25 0.09 1.09 0.05 -0.45 1.30 0.03 0.0010 -0.008 0.02 0.002 -0.11 -0.007
0.33 0.12 1.12 0.20 -0.42 1.30 0.04 0.0007 -0.00 0.03 -0.002 -0.13 -0.014
0.40 0.14 1.20 0.47 -0.36 1.30 0.04 0.0004 0.015 0.04 -0.002 -0.14 -0.018
0.50 0.18 1.39 0.95 -0.26 1.31 0.06 -0.0003 0.060 0.08 -0.008 -0.17 -0.023
0.60 0.21 1.70 1.40 -0.20 1.33 0.07 -0.0022 0.127 0.13 -0.021 -0.20 -0.053
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Figure 4.2 – The radial derivatives of the total pressure β′ (a) and center flux
surfaces R′mil (b) as a function of radial location ρ. The blue curve represents the
case when fast ion pressure is included in the magnetic equilibrium and red line is
for the case when the fast ion pressure is neglected in the magnetic equilibrium.

linear stability analysis is carried out from radial location ρ = 0.15 to ρ = 0.6, where
ρ is the normalised toroidal flux coordinate.

At ρ = 0.15, the nominal value of the magnetic shear is 0.01. At such a low
magnetic shear, the distance between resonant flux surfaces δ = 1

nq′
, with q′ = ∂q/∂r

and n the toroidal mode number, becomes comparable to the minor plasma radius
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Figure 4.3 – The linear growth rate for the most unstable mode at kθρi = 0.35 for
ρ = 0.15 as a function of the number of grid points for the magnetic moment Nµ (a),
the parallel velocity Nv‖ (b) and the number of points in the parallel direction per
poloidal turns Ns (c).

Table 4.4 – Numerical grid parameters used for simulations of JET discharge
75225.

Nµ Nv‖ Ns

16 64 32

and the validity of the ballooning representation may be questioned (although the
relevant criterion is the radial mode extent rather than the distance between resonant
flux surfaces). To be on the safe side, the value of the magnetic shear at this location
has therefore been increased to 0.05, which is well within the uncertainty on this
quantity. The validity of the ballooning approximation is checked a posteriori in
section 4.3 and the impact of the magnetic shear value on the mode growth rate is
explored in figure 4.13 and 4.14.
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4.2 Linear unstable modes across the minor radius and
impact of fast ions
The objective of this section is to determine which kind of instabilities dominates in
the inner core of the selected discharge and compare the results with other radial
locations. To do so, linear gyrokinetic simulations have been performed across the
plasma minor radius using the input parameters given in tables 4.1, 4.2, 4.3 and the
results are presented in figure 4.4. Here, the linear growth rate and real frequencies
spectra are shown at three radial locations ρ = 0.15, ρ = 0.33 and ρ = 0.60, as a
function of kθρi, where kθ is the binormal wave vector and ρi = mivthref/(eBref) is
the reference ion Larmor radius. In this figure, the impact of the fast ion population
is investigated by performing three sets of simulations: 1) with fast ions as a kinetic
species and with the fast ion pressure in the magnetic equilibrium (red curve), 2)
without fast ions as a kinetic species and without the fast ion pressure in the magnetic
equilibrium (green line), 3) without fast ions as a kinetic species but with fast ion
pressure in the magnetic equilibrium (blue line). In this thesis’s framework, including
the kinetic fast ions means that this particle population has been included as a new
species in the evolution of the gyrokinetic equation.

At ρ = 0.15, all the linearly unstable modes rotate in the ion diamagnetic drift
direction (ωr > 0) and have a real frequency much larger than their linear growth
rate. These unstable modes are identified as Kinetic Ballooning Modes (KBM); this
point will be clarified later in the chapter (section 4.3). At the lowest kθρi, stable
Micro-Tearing Modes (MTM) are also observed, characterized by their negative
frequency and the even parity of the vector potential fluctuations. These are stable
linearly but will matter for the quasi-linear analysis of section 5.2. Including fast ions
as a kinetic species decreases the KBMs mode growth rate by about 20%, whereas
the fast ion pressure in the magnetic equilibrium has almost no impact on the mode
growth rate, simply because it has nearly no impact on the Miller parameters at this
location as seen in figure 4.2.

At the radial location, ρ = 0.6, the most unstable modes are Ion Temperature
Gradient (ITG) modes. Including the fast ions as a kinetic species is found to reduce
the mode growth rate, consistently with the previous gyrokinetic analysis performed
using the gyrokinetic code GENE [36, 77]. When the fast ion pressure is included
in the magnetic equilibrium reconstruction, the ITG mode growth rate increases,
which is typical at high β, as observed earlier in [89], where increasing β′ in the local
Grad-Shafranov equilibrium (i.e. increasing β′ keeping the other Miller parameters
fixed) first leads to a destabilization of the ITG modes.

At the intermediate position, ρ = 0.33, the situation is more complex. Without
fast ions as a kinetic species and fast ions pressure in the magnetic equilibrium,
the most unstable mode is an ITG at high kθρi and a KBM mode at low kθρi, as
indicated by the jump in the mode frequency. Including the fast ion pressure in the
magnetic equilibrium significantly stabilizes the KBM modes and has no impact on
the ITG modes. When fast ions are included as a kinetic species, the KBM and
ITG modes are stabilized, consistently with the picture at ρ = 0.15 and ρ = 0.6,
except at low kθρi where a mode with a higher frequency is excited. This mode
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Figure 4.4 – Linear growth rate (left) and real frequency (right) spectra as a
function of kθρi, at different radial locations: (a) and (b) at ρ = 0.15, (c) and (d) at
ρ = 0.33, (e) and (f) at ρ = 0.60. The green curve represents the case without
kinetic fast ions and without fast ion pressure in the magnetic equilibrium. The blue
line correspond to the case without kinetic fast ions but the magnetic equilibrium
includes the fast ion pressure. The red curve indicates the case with kinetic fast ions
and fast ion pressure in the magnetic equilibrium, with the nominal fast ion pressure
for the kinetic species (full line) or reduced by 30% (dashed line).

is driven by fast ions and was identified as a hybrid BAE (Beta induced Alfvén
Eigenmode)/KBM mode in [36, 77]. The growth rate of this mode significantly
decreases when the kinetic fast ion pressure gradient is lowered by 30% (red dashed
line in figure 4.4 (c) and (d)) as noted in [36, 77]. Note that the inputs used in the
present gyrokinetic simulations are slightly different from those used in [36, 77]. For
the main species, this is mostly due to the fact that here fits have been done using
the recently developed GPR tools [83]. For the fast ion population, the difference is
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larger since the present profiles are from the standard PENCIL [86] analysis of JET
whereas the ones used in [36, 77] were obtained from higher fidelity Monte Carlo
NEMO-SPOT [87] simulations. The dominant instabilities and qualitative behaviour
concerning the impact of fast ions are nevertheless similar.

The linear stability analysis is then extended to additional radial locations, and
the maximum linear growth rate and corresponding frequency of the most unstable
modes are shown as a function of the radial position in figure 4.5. In the inner core
region (ρ < 0.4), the dominant mode is found to be a KBM (full symbol). At the
mid and outer radius (ρ ≥ 0.4) it changes to an ITG mode (open symbol). Including
fast ions as a kinetic species has a stabilizing impact on the mode growth rate (the
difference between blue and red curve) at all radial locations except at ρ = 0.33,
where it destabilizes a BAE/KBM mode (full star symbol) as discussed earlier.
Taking into account the fast ions pressure in the magnetic equilibrium stabilizes
KBMs and slightly destabilizes ITGs, consistent with the examples discussed in
figure 4.4. The fast ion stabilization of ITG modes has already been seen earlier in
an ITG dominated JET plasmas [90, 36] and ASDEX Upgrade [91].

0.1 0.2 0.3 0.4 0.5 0.6

 

0

0.1

0.2

0.3

0.4

0.5

0.6

m
a
x

 [
v

th
/R

]

With Kinetic FI, FI mag. equil pressure

 No Kinetic FI, FI mag. equil pressure

No Kinetic FI , No FI mag. equil pressure

ITG

KBM

BAE/KBM

(a)

0.1 0.2 0.3 0.4 0.5 0.6

 

0

0.5

1

1.5

2

2.5

r=
m

a
x

 [
v

th
/R

]

(b)

Figure 4.5 – Growth rate and frequency of the most unstable modes as a function
of radial location ρ. Full symbols are used for KBM modes and open symbols for
ITG modes. The (red) full star symbol at ρ = 0.33 corresponds to a hybrid
BAE/KBM mode destabilised due to kinetic fast ions. Same color code as in figure
4.4.

The detailed investigation of the impact of kinetic fast ion on KBMs is itself
an area of research and is not a focus of this work. However, it will be interesting
to explore it in the future. This thesis primary goal is to study the dynamics of
microinstabilities leading to turbulent transport in the inner core ρ < 0.3, which
is a rather uncharted territory so far; therefore, fast ions will now be neglected for
simplicity.

To identify the KBM threshold a linear β scan is performed from ρ = 0.15
to ρ = 0.6. Figure 4.6, shows the variation of linear growth rate and frequency as
βe is varied at three radial locations ρ = 0.15, ρ = 0.33 and ρ = 0.60. Here, the βe
scans are performed for the wave-vector corresponding to the most unstable mode at
each β value, as in figure 4.5. These wavevectors are kθρi = 0.35, 0.35 and 0.5 for
ρ = 0.15, 0.33 and 0.6.
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Figure 4.6 – Linear growth rate (left) and real frequency (right) spectra as a
function of βe, at different radial locations: (a) and (b) at ρ = 0.15, (c) and (d) at
ρ = 0.33, (e) and (f) at ρ = 0.60. The vertical dotted arrow shows the experimental
βe value at the reference location. Same colour coding as in figure 4.4

At ρ = 0.15, no mode is unstable at low βe. At higher βe values, KBMs
are destabilized and their growth rate increases with β. At ρ = 0.33, for low βe
values, the dominant instability is an ITG mode. The growth rate of this mode
decreases with increasing βe until a KBM takes over with a sharp jump in frequency.
The threshold in βe decreases when fast ion pressure is neglected in the magnetic
equilibrium (the green curve). This decrease in threshold is due to the decrease in
the total pressure gradient (β′) at this location (seen in figure 4.2). At radial location
ρ = 0.6, the ITG growth rate decreases with βe until a tearing parity mode with
negative frequency is destabilized. At higher values of βe KBMs take over.

As discussed above, the KBM modes become linearly unstable only when a
certain threshold in βe is exceeded. This threshold is called βcrit

e and is obtained
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by extrapolating the KBM growth rate by a quadratic fit and finding the value
at which the KBM fit function becomes zero. The βcrit

e values at various radial
locations are plotted in figure 4.7 (a). The βcrit

e threshold is less than 1% in the
inner core and increases when moving further outwards. The increase in the βe
threshold is closely linked to the increase of the magnetic shear across the minor
radius (Fig. 4.7 (b) ) which is reminiscent of the dependence of the MHD ballooning
limit βcrit

MHD ∼ 0.6ŝ/[q2
0(2R/Ln + R/LT i + R/LTe)] (shown by the dotted red line

in Fig. 4.7 (a)) expected to approximately reproduce the dependencies of βcrit
e for

KBMs [92]. Here βcrit
e is found higher than βcrit

MHD, but depending on the conditions,
the KBMs can also be destabilized at βe values significantly below βcrit

MHD [93, 53, 94].

0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

 %

e

crit

crit

MHD

e

exp

(a)

0.1 0.2 0.3 0.4 0.5 0.6
0

0.5

1

1.5

(b)

Figure 4.7 – βe (a) and magnetic shear ŝ values (b) as a function of the radial
location ρ. In figure (a), the blue curve corresponds to the critical beta βcrit

e

threshold of KBM, the red (dotted) curve represents the MHD βcrit
MHD limit and the

green curve experimental beta βexp
e values.

The impact of the ITG/KBM transition on the cross-phase between fluc-
tuating quantities is now explored. The linear normalized electron (QeN), ion
heat (QiN) fluxes, and particle fluxes (ΓeN) for ρ = 0.33 (from figure 4.6 (c))
are plotted as a function of βe in figure 4.8. The fluxes are normalized to the
mode amplitude as: QsN = Qs/A2

L, where the mode amplitude is defined as:
AL =

√∫ [
|φ|2 + |A‖|2 + |B‖|2

]
ds
/∫

ds . Here, the normalized linear fluxes of
heat and particle are decomposed into electrostatic (due to E×B drift (blue curve))
and electromagnetic (due to magnetic flutter (red curve) and compression (green
curve)) fluxes, respectively (Eq. 3.56). The normalized E×B fluxes are dominant in
both ITG and KBM regimes. The normalized magnetic flutter fluxes are negligible
even for the electron channel in the KBM regime with some inward convection at
high β in the ITG range. The normalized ion heat flux in the KBM regime is ∼ 70%
lowers than in the ITG turbulence even though KBM have larger linear growth rates
(Fig. 4.6 (c)). The normalized electron heat and particle fluxes also show similar
behaviour than the ion heat fluxes. The phase shifts between fluctuating fields are
therefore less favorable to transport for KBMs than ITGs, as seen earlier in reference
[95].
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Figure 4.8 – Normalised linear ion and electron heat fluxes (a) and (b), and
electron particle flux (c) as function of βe for kθρi = 0.35 at ρ = 0.33. The blue
curves corresponds to fluxes due to E×B contribution, red due to magnetic flutter
(A‖) and green due to magnetic compression (B‖). The vertical dotted line
represents the transition from ITG to KBM range and vertical dotted arrow shows
the experimental βe value.

Linear simulations were also performed up to electron scales for ρ = 0.15 and
ρ = 0.33. Interestingly, Electron Temperature Gradient modes (ETG) that can be
destabilized at high wavenumbers are found to be stable at both radii and there is no
evidence of ETG mode destabilization at these locations. This observed behaviour
could be understood by looking at a proxy for the linear threshold of ETG modes as
given in reference [96] and defined as:

(R/LTe)crit = max

(
(1 + Zeff

Te
Ti

)(1.33 + 1.91 ŝ
q

)(1− 1.5ε), 0.8RLn

)
, (4.1)

where ε is a correction factor 0 ≤ ε ≤ 0.3 due to finite aspect ratio. The (R/LTe)crit
values at radial locations ρ = 0.15 and ρ = 0.33 is ∼ 3.1 and ∼ 4.0 respectively,
which is higher or close to the nominal values of R/LTe at these locations.

4.3 Linear stability analysis at ρ = 0.15
In the following section, the focus is on the radial location ρ = 0.15. The identifi-
cation of the most unstable mode as a KBM will be supported, and its parametric
dependencies further documented. Unless otherwise stated, all linear simulations will
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be performed without fast ions as a kinetic species and with the fast ion pressure
included in the equilibrium.
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Figure 4.9 – Parallel mode structure of φ (a), A‖ (b) and B‖ (c), as a function of
the parallel coordinate s for the most unstable mode kθρi = 0.35 at ρ = 0.15. The
blue curve corresponds the real part and the red line indicates the imaginary part.

The eigenmode structure of the perturbed electrostatic potential (φ), vector
potential (A‖) and magnetic compression (B‖) for the most unstable mode (kθρi = 0.35
) is given in figure 4.9 as a function of the parallel coordinates s at ρ = 0.15.
The perturbed fields δφ, δA‖ and δB‖ are normalised as follows: φ = αL

eδφ
ρ∗Ti

,
A‖ = αL

δA‖
ρ2
∗BrefR0

and B‖ = αL
δB‖
ρ∗Bref

with ρ∗ = ρi/R0 and αL an additional normalising
factor used in linear simulations to have Re[φ] = 1 and Im[φ] = 0 at the s position
where |φ| is maximum (for the definition of perturbed fields φ and A‖, see section
2.1.3.1). One poloidal turn corresponds to ∆s = 1. The eigenfunctions have
ballooning parity as seen earlier in the section 2.1.3 in chapter 2. The electrostatic
perturbation amplitude is higher than the magnetic perturbation amplitude. Note
that as a result of the up-down asymmetry of the magnetic equilibrium and the
finite values of the background toroidal flow u and parallel flow shear u′ which break
the parallel symmetry, the parity of the eigenfunction is only approximate. It is
important to note that the mode structures are extremely elongated along the field
lines especially for low wavenumbers and therefore a very high radial resolution was
needed (up to 50 poloidal turns at low kθρi) to resolve the modes properly. The
corresponding radial mode width in real space is obtained from a Fourier transform
along the parallel coordinate and the 2D poloidal cut of the real part of φr is shown
in figure 4.10 using the local ρ∗ = 0.0033 value. The KBM tends to be less ballooned
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than ITG with a ratio of the amplitude at the LFS (Low Field-Side) and HFS (High
Field-Side) of 40% compared to that for ITG at ρ = 0.33 of 60% difference. The
radial mode width is about 5 cm and therefore much smaller than the minor radius
a ∼ 1m or LT i = 0.74m at this location. This validates a posteriori the use of the
local approximation at this low magnetic shear values.

Figure 4.10 – 2D poloidal cut of real part of electrostatic potential (φr) on the R
and Z plane for the most unstable mode kθρi = 0.35 at ρ = 0.15.

In order to further investigate the drive mechanism of these KBM modes,
the main ion pressure gradient has been scanned around the experimental value by
keeping the main ion density gradient constant (R/LnD = const) and varying the
main ion temperature gradient (R/LT i) in one case, or by varying the main ion density
gradient and keeping the main ion temperature gradient constant (R/LT i = const)
in another. As shown in figure 4.11, varying R/LT i at fixed R/Ln (blue curve) or
R/Ln at fixed R/LT i (red curve) has almost the same impact on the mode growth
rate, which suggests that the mode is driven by the ion pressure gradient.

The mode growth rate is weakly dependent on the normalized electron tem-
perature gradient R/LTe, as shown in figure 4.12.

4.3.1 Impact of magnetic shear and plasma beta
The impact of magnetic shear and the plasma beta is investigated in this section. In
figure 4.13, the mode growth rates and frequencies for the magnetic shear ŝ scans are
plotted, where the nominal value of ŝ is represented by a vertical dotted line. The
growth rate decreases when the absolute value of the magnetic shear increases until
complete stabilization. The frequency is weakly affected. The low absolute value of
the magnetic shear appears to be critical for the existence of KBM modes in the inner
core of these hybrid plasmas. To illustrate the impact of the magnetic shear on the
parallel mode structure, the real component of the perturbed electrostatic potential
φr is shown in figure 4.14 as a function of the parallel coordinate s for various values
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Figure 4.11 – Growth rate as a function of the main ion pressure gradient for the
most unstable mode kθρi = 0.35. Blue (open circle) curve for the case when the
main ion density gradient (R/LnD) is constant and the main ion temperature
gradient (R/LT i) is varied, (red square) represents the case when the main ion
temperature gradient is constant and the main ion density gradient is varied. The
vertical (dotted) line indicates the experimental pressure gradient.
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Figure 4.12 – Growth rate as a function of the normalized electron temperature
gradient for the most unstable mode kθρi = 0.35 at ρ = 0.15.

of the magnetic shear with the nominal value of βe. The mode extension along the
field line gets reduced as the magnetic shear is increased.

A plasma beta βe scan is then performed for three magnetic shear values, and
the respective growth rates and mode frequencies are shown in figure 4.15. When
electromagnetic effects are absent (βe = 0), γ = 0, hence there is no electrostatic
instability present. When the beta is increased, there is no instability until a threshold
in beta is reached. Above the βe threshold, the mode growth rate increases with the
β, and after a sharp jump at the threshold, the mode frequency slowly decreases.
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Figure 4.13 – Linear growth rate (a), and mode frequencies (b) as a function of
magnetic shear ŝ for the most unstable mode kθρi = 0.35 at ρ = 0.15.
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Figure 4.14 – Parallel mode structure of φ as a function of parallel coordinate s
for three different values of magnetic shear ŝ for the most unstable mode kθρi = 0.35
at ρ = 0.15.

The threshold in β increases with the magnetic shear consistently with figure 4.7.
Thus, the low magnetic shear in the core of these hybrid plasmas results in a low β
threshold.

4.3.2 The role of the pressure gradient β′

An important parameter responsible for the stabilisation of core micro-instabilities
is the pressure gradient, β′ ∼ dp/dr, correction to the curvature drift (see Eq. 3.9).
Its impact has been examined by varying β′ and keeping fixed the kinetic species
gradients and the other magnetic equilibrium parameters. This is equivalent to an α
scan for an s − α equilibrium, where α = −R0q

2β′. As seen from the comparison
of Table 4.1 and 4.3, a β′ scan differs from the self-consistent calculation of the
magnetic equilibrium since in that case, the Shafranov shift is also modified. As
shown in Fig. 4.16, increasing |β′| has a strong stabilizing impact on the mode as
expected due to the interchange nature of the KBM.
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Figure 4.15 – βe scans for various values of ŝ, for the most unstable mode
kθρi = 0.35. The left panel (a) shows the linear growth rates and the right panel (b)
shows the corresponding frequencies for the most unstable mode. The blue curve is
for experimental value of ŝ and vertical (dotted) line represents the corresponding
nominal value of βe (3.2%).
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Figure 4.16 – Growth rate as a function of |β′|, for the most unstable mode at
ρ = 0.15 and kθρi = 0.35. The vertical dotted line indicates the nominal value of |β′|.

4.3.3 Impact of Te/Ti ratio and safety factor q
Now, the impacts of the Te/Ti ratio and safety factor q on the mode growth rate
are examined. A scan of the Te/Ti ratio is plotted in figure 4.17, showing that an
increase of Te/Ti leads to a moderate increase of the mode growth rate.

The growth rate and frequencies for the q-profile scans are illustrated in figure
4.18. The mode growth rate is found to be maximum around the experimental
values q ∼ 1 (shown with vertical line), as also pointed out in [35]. However, KBM
remains the dominant instability within the range of q variations considered here
with decreased growth rate as q increases above its experimental value. For low q
values growth rate of KBM increases as q increases as expected since βcrit decreases
as q increases.
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Figure 4.17 – Growth rate as a function of Te/Ti, for kθρi = 0.35. The vertical
dotted line indicates the nominal value of Te/Ti.
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Figure 4.18 – Growth rates (a), and frequencies as function of q-profile, for
kθρi = 0.35. The vertical dotted line indicates the nominal value of q.

4.3.4 Additional parameter scans
Scan of toroidal rotation (u) and its gradients (u′)
In this section, the impact of toroidal rotation and its gradient on the KBM growth
rates are discussed.

Two scans in u are performed one where the toroidal rotation gradient is set
to zero u′ = 0 (red curve) and for the other the nominal value u′ = 0.59 is kept (blue
curve), as plotted in the figure 4.19. The toroidal rotation has a moderate impact
(< 10%) on the KBM mode growth rate.

A scan over the toroidal rotation gradients u′ has been performed for a fixed
value of u and is shown in figure 4.20. The toroidal rotation gradient u′ has a
significant effect on the stability of KBM mode growth rate for the nominal value of
u and surprisingly has no impact on the growth rate (red curve) when u is set to
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Figure 4.19 – Growth rates as function of the toroidal rotation velocity u for fixed
values of the toroidal rotation gradient u′, for kθρi = 0.35. The blue curve shows the
case with the nominal value of u′ = 0.59 and the red curve corresponds to u′ = 0.
The vertical dotted line indicates the nominal value of u.

zero. This may be due to the existence of cross-terms proportional to u and u′ that
affect the linear stability, as discussed in [97] for the ITG.
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Figure 4.20 – Growth rates as function of the toroidal rotation gradient u′ for
fixed value of toroidal rotation velocity u, for kθρi = 0.35. The blue curve shows the
case with the nominal value of u = 0.32 and the red curve corresponds to u = 0.
The vertical dotted line indicates the nominal value of u′.

Impact of collisions and impurity
The presence of impurities in the plasma can strongly lower the fusion reaction rate
and lead to difficulties in achieving high-performance plasmas. The light impurities
such as Carbon (C) are fully ionized in the plasma at fusion temperatures. In contrast,
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the heavy elements such as W mainly increase radiation losses of the plasma. The
deleterious effect of the various elements depends on the charge of the impurity
species.

The impact of Carbon impurity on the growth rate is studied by performing
kθρi scans, as illustrated in figure 4.21. In this figure, the red curve shows the case
when C impurity is neglected in the simulations and collisions are included. The
green line corresponds to the case when both collisions and impurities are excluded
in the simulation. These results are compared with a standard case with nominal
parameters, including collisions and impurities in the simulations (the blue curve).
The effects of collisions and impurities have negligible effects on mode growth rates
and frequencies.
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Figure 4.21 – Growth rate (a) and frequency (b) as function of kθρi. The blue
curve represents the standard case, the red curve corresponds to the case where
collisions are retained and Carbon impurity is neglected in the simulations and the
green curve where both C impurity and collision are neglected in the simulations.

4.3.5 Identification of unstable mode as KBM
To summarise, the most unstable mode at ρ = 0.15 propagates in the ion magnetic
drift direction with a real frequency much larger than the growth rate. The mode
is driven by the ion pressure gradient and has an even (respectively odd) parity of
the eigenfunction in φ (respectively A‖) with an extended mode structure at low
magnetic shear. Above a critical value βcrit

e , the mode is destabilized and its growth
rate increases with βe. In addition, the mode is stabilised at high magnetic shear and
high |β′| ∼ α, as observed in [61] for KBMs. The stabilizing effect of |β′| is expected
for ballooning modes as it reduces the curvature drift. All these features lead to the
identification of this mode as a KBM, consistently with [35]. Note that due to the
low magnetic shear value, the MHD ballooning limit is relatively low βcrit

MHD = 0.26%
(value at nominal parameters) and the threshold for the KBM is higher than the
MHD ballooning limit, βcrit

e > βcrit
MHD, as observed at low R/LTi in [92].

The presence of this unstable mode has already been detected in global gyro-
kinetic simulations [35, 58], however, by retaining the global profile variations a
significant reduction of the mode growth rate was found previously.
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As discussed in section 2.1.3.1 KBMs are also referred to as shear-Alfvenic
ion temperature gradient modes (AITG) [57, 58] driven by the finite ∇Ti excited
due to wave-particle interactions with thermal ions.

This section can be concluded by remarking that the destabilization of KBMs
at high β, low magnetic shear and higher Te/Ti ratio suggests that these results are
directly relevant for the prediction of inner core transport in ITER scenarios.
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Figure 4.22 – Normalised linear ion and electron heat flux (a) and (b), and
electron particle flux (c) as function of βe for kθρi = 0.35 at ρ = 0.15. The blue
curves corresponds to fluxes due to E×B contribution, red due to magnetic flutter
(A‖) and green due to magnetic compression (B‖).

4.4 Linear heat and particle fluxes at ρ = 0.15
Following the identification of the dominant unstable modes in the inner core of JET
hybrid discharge 75225, we now look at the heat and particle fluxes driven linearly
by KBM modes. The normalized linear heat and particle fluxes (as defined in section
4.2) at radial location ρ = 0.15 for the βe scans are presented in figure 4.22. As in
figure 4.8 where the normalized linear fluxes were plotted versus βe at ρ = 0.33, the
contribution due to the magnetic flutter and compression part to the particle and ion
heat fluxes is negligible as compared to the E×B part, so the total linear fluxes are
essentially due to electrostatic contribution. Unlike the cases at ρ = 0.33, figure 4.8,
for the electron heat flux, the contribution due to E×B part and A‖ part are both
important. The magnetic flutter fluxes for the electron heat flux has a negative sign
and tends towards zero when βe increases. Heat and particle fluxes due to E×B
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contribution for all channels (electron and ion) increase with an increase in βe. This
increase in fluxes is due to linear destabilisation of KBMs at higher βe as seen in
figure 4.15.

Figure 4.23, illustrates the normalized linear heat and particle fluxes for the
magnetic shear scans. Similar to the βe scans, the magnetic flutter electron heat flux
is non-negligible and inward for the magnetic shear scans. The heat and particle
fluxes for both ion and electron channel decrease with an increase in absolute values
of magnetic shear |ŝ| due to stabilization of KBMs at high |ŝ| as seen in figure 4.13.
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Figure 4.23 – Normalised linear ion and electron heat flux (a) and (b), and
electron particle flux (c) as function of ŝ for kθρi = 0.35 at ρ = 0.15. Same colour
coding as in figure 4.22.

4.5 Summary
The main results of the chapter are briefly summarised here

1. Linearly it is found that in spite of lower gradients close to the magnetic axis, the
plasma is linearly unstable in the central part ρ = 0.15.

2. The pressure-driven instability arising in this region has been identified as a
Kinetic Ballooning Mode (KBM). It has an extended poloidal mode structure due to
the low magnetic shear. The low magnetic shear and high plasma beta are the main
parameters responsible for the destabilization of KBM in this region. The KBM is
found to be the most unstable mode in the inner core plasma region up to ρ = 0.33,
whereas at mid and outer radius, ρ > 0.4, ITG is the dominant instability. The βe
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threshold, βcrit
e , of KBMs increases across the minor radius mostly due to an increase

in magnetic shear that is not fully compensated by the increase in q2 when moving
outwards while the experimental βe decreases when moving outward.

3. Various parametric dependencies of KBM are studied. The unstable mode has a
peaked growth rate at experimental values of q ∼ 1 and a higher Te/Ti ratio tends to
destabilize the modes. The toroidal rotation has a small impact on the KBM mode
growth rate. However, an increase of the toroidal rotation gradient tends to increase
the mode growth rate only, provided u 6= 0. Carbon impurities and collisions have a
negligible impact on the mode growth rate.

4. The linear heat and particle fluxes are mostly carried by the E×B convection
with a small inward contribution from magnetic flutter for the electron heat flux.

In the next chapter, non-linear GKW simulations will be performed and the
non-linear fluxes compared to quasi-linear predictions.
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5
Nonlinear gyrokinetic simulations and test

of the quasi-linear approximation

In the previous chapter, the linear stability of the central region of the JET hybrid
H-mode 75225 discharge at 6-6.5 s has been studied showing that KBMs are linearly
unstable in this region. The linear simulations provide insight about KBM stability
and its dependence on various physical parameters. However, understanding the
nonlinear saturation of KBM turbulence and the resulting transport is required.
Moreover, to validate the present available reduced quasi-linear turbulent transport
models, their predictions need to be compared to simulated nonlinear heat and
particle fluxes.

In this chapter, gyrokinetic simulations are performed in order to compute
the level of turbulent transport driven by KBM modes for the selected JET 75225
discharge at t = 6.0− 6.5 s and at ρ = 0.15 in the nonlinear regime. The parametric
dependence scans for plasma beta and magnetic shear confirm the destabilisation of
KBMs with higher β and stabilisation with higher magnetic shear.

The quasi-linear approximation is also tested in the inner core of the selected
discharge. Computed quasi-linear fluxes due to KBM turbulence have been compared
with nonlinear simulations.

5.1 Non-linear simulations at ρ = 0.15
The simulations are performed with Nmod = 16 binormal modes and Nx = 509 radial
modes with a perpendicular box size of [Lradial, Lbi−normal] = [126, 83] in units of
ion Larmor radii. The poloidal wave vectors range from kθρi = 0.1 to 1.5 and the
radial wave vectors extend up to krρi = ±12.3. The high value of Nx was required to
capture the elongated mode structures at low magnetic shear. A rather small time

95
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step of ∆t = 1.5× 10−4 (R0/vthi) was required to guarantee numerical stability in
these high beta simulations. The other simulation parameters, briefly summarized in
Table 5.1, are the same as described earlier in chapter 4: ion, electron and carbon
as kinetic species, no kinetic fast ions, magnetic equilibrium with fast ion pressure,
inter-species collisions with Zeff = 1.74, no E×B shearing (γE = 0), with parallel
velocity gradient drive and inertial effects (Coriolis and centrifugal forces). Even
though the kinetic fast ions have a stronger effect linearly on the KBM instability,
these are not included in nonlinear simulations for simplicity.

Table 5.1 – Normalized input parameters used in GKW simulations for the
nonlinear gyro-kinetic simulations at ρ = 0.15. For the detailed list see table 4.1.

ρ R
LTi

R
LTe

Te
Ti

R
Lne

nC
ne

βe[%] ŝ q Zeff ν u u′ γE

0.15 4.23 1.99 0.69 1.51 0.01 3.19 0.05 1.1 1.74 0.015 0.32 0.59 0

The time trace of the normalised nonlinear electron and ion heat fluxes for the
experimental input values of magnetic shear and plasma beta is presented in figure 5.1.
The heat, particle and momentum fluxes are normalized as: QN,s = Qrs

nsTsρ2
∗vthi

,
ΓN,s = Γrs

nsρ2
∗vthi

, ΠN,s = Πrs
msnsvthsρ

2
∗vthi

, where ρ∗ = ρi/R0 is the normalized Larmor
radius. The fluxes are decomposed into E ×B (blue), magnetic flutter (red) and
magnetic compression (green) contributions. Horizontal dotted lines illustrate the
corresponding time averages with the same colour coding as in the left figure. As seen
here, the ion heat flux is dominated by the E×B contribution, with almost negligible
contributions from the magnetic flutter and magnetic compression, consistently with
the linear fluxes ratio, see Fig. 5.7. For the electron heat flux, the E×B contribution
is still dominant, but the magnetic flutter also contributes significantly. Here, the
most striking observation is that the magnetic flutter contribution in the nonlinear
phase has an opposite sign (outward convection) and is much larger than that in the
linear phase. This point will be further investigated in the section dedicated to the
quasi-linear modelling. This suggests that the impact of magnetic flutter component
has a crucial impact on the total electron heat transport and cannot be neglected in
interpretive transport simulations in the inner core.

The zonal flows (ZFs) are a well-known saturation mechanism for ITG turbu-
lence [98]. To investigate the saturation mechanism in KBM turbulence, the time
trace of electrostatic potential |φ| for the zonal modes (all kθ = 0 modes) for different
radial modes are plotted in figure 5.2 (a). Here, the blue curve represents the lowest
kr modes (kminr ), the red curve for the second-lowest radial mode and the green for the
third-lowest mode. In figure 5.2 (b), the amplitudes of the zonal flows are plotted as
function of radial modes kr. The zonal flows are found to have a significant amplitude
and the temporal correlation of their evolution with respect to the heat fluxes suggest
that they may play a role in the saturation of KBM turbulence. Nonetheless, the
presence of other saturation mechanisms cannot be excluded at this stage. To know
the impact of zonal flows on KBM turbulence saturation precisely, the interplay
between the energy transfer between the zonal modes and drift waves also needs to be
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Figure 5.1 – Time trace of nonlinear ion (a) and electron (b) normalised heat
fluxes for the JET 75225 discharge at ρ = 0.15 for the reference case. The blue
curve represents the E×B contribution to the fluxes, the red curve the magnetic
flutter contribution (A‖) and the green curve the magnetic contribution (B‖).

known. This detailed study is out of the scope of the present thesis. Therefore, more
work is still required to get a clear picture of the dominant saturation mechanism of
KBM turbulence in the central region of these hybrid discharges.
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Figure 5.2 – Time trace of flux-surface averaged zonal modes (kθ = 0 modes) for
the three lowest radial modes (a) and the amplitudes of zonal modes as function of
radial (kr) modes (b) for the JET 75225 discharge at ρ = 0.15 for the reference case.

The electrostatic potential |φ|2 and vector potential |A‖|2 spectra for the
reference case at ρ = 0.15 are shown in figure 5.3. The spectra is plotted as a
function of poloidal wave vector kθρi by summing over krρi (a) and (b) and radial
wave vector by summing over kθρi modes (c) and (d). The amplitude of |φ|2 is much
larger than that of |A2

‖|. The slope of |φ|2 spectra obtained from these nonlinear
simulations are fitted with kθ and kr exponent, it is found that the k−3

θ spectrum
when kθρi > kθρ

max
i and k2

θ when kθρi < kθρ
max
i (shown by the magenta and red

color in figure 5.3 (a)), where kθρmaxi is the wave vector at which this maximum is
reached, reproduces the nonlinear spectra accurately. For radial wave vector, the
exponent k−3.3

r represents the best fit for the nonlinear spectra (shown by the green
curve in figure 5.3 (c)).
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Figure 5.3 – |φ|2 and |A‖|2 spectra as a function of poloidal wave vector kθρi (a)
and (b) and radial wave vector krρi (c) and (d) for the reference case at ρ = 0.15.
The blue curve represents the nonlinear simulations results, the red and magenta
curves are the k2

θ and k−3
θ fit, and the green curve is k−3.3

r fit.

The time-averaged heat, particle and momentum fluxes in physical units
are then shown as a function of βe in figure 5.4. The local value of ρ∗ = 0.0033
was used for converting the normalised fluxes to SI units at ρ = 0.15. The time
interval for the temporal average was from 120 and 300R0/vthi for all cases. Here,
the total fluxes due to sum of all contributions are indicated by a black line and
the E ×B, magnetic flutter and magnetic compression contributions by coloured
dotted lines blue, red and green respectively. All fluxes are observed to increase
with increasing plasma beta. For the ion heat transport channel, the fluxes are
dominated by the E×B contribution. For the electron heat transport, the magnetic
flutter contribution increases with the plasma beta and becomes comparable to the
E × B contribution at βe = 3.8%. The higher heat and particle fluxes with βe in
figure 5.4 are qualitatively consistent with the linear destabilization of the KBMs at
higher beta seen in figure 4.15. The ion momentum flux shows a similar trend as the
particle flux. To calculate the momentum diffusivity, the effective Prandtl number
Pr = ΠiN

QiN

R/LTi
u′

is shown as a function of βe in figure 5.4 (f). Prandtl number varies
slightly (∼ 3%) with increasing beta.

In figure 5.5, the fluxes dependence on the magnetic shear ŝ is illustrated in
a two-point scan. The nonlinear heat and particle fluxes for both the ion and the
electron channel and ion momentum fluxes are reduced with increasing magnetic
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Figure 5.4 – Nonlinear ion heat fluxes (a), electron heat fluxes (b), electron
particle fluxes (c), ion momentum fluxes (d) and effective Prandtl number (Pr) (e)
as a function of βe, at ρ = 0.15. The solid black line represents the total fluxes.
Other colour coding is same as in figure 5.1.

shear, which is also in qualitative agreement with the KBMs stabilisation observed
at higher ŝ in the linear simulations of figure 4.13.

The quantitative comparison of the nonlinear fluxes with the experimental
values would require to include the impact of fast ions, which have been seen to
be slightly stabilising linearly in chapter 4 and known to non-linearly stabilise ITG
turbulence [36, 99, 77]. The impact of profile shearing effects, which by assumption is
not included in the local approximation, has been shown to decrease the linear growth
rate of KBM modes in hybrid H-modes [35] and should also be assessed. Finally, a
scan in the main KBM drive, R/LTi and/or R/Ln, would also be required as in any
comparison of gradient-driven simulation predictions with the experiments. Such a
study is beyond the scope of the present thesis, but it is nevertheless interesting to
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Figure 5.5 – Nonlinear ion heat fluxes (a), electron heat fluxes (b) and electron
particle fluxes (c) as a function of magnetic shear ŝ, at ρ = 0.15. Same colour coding
as in fig. 5.1.

give the value of the experimental fluxes for reference. The particle and heat fluxes
at ρ = 0.15, computed from power balance analysis with CRONOS in [36, 77], are
Qe = 16 kW/m2, Qi = 47 kW/m2 and Γ = 3.6 × 1018m−2s−1. The neoclassical ion
heat flux, Qneo

i = 13kW/m2, accounts for about a third of the experimental ion heat
flux. The computed turbulent fluxes are, however, almost two orders of magnitude
larger than the experimental ones, which strongly invites to extend the study and
perform a scan in the KBM drives (R/Ln and R/LTi). The quasi-linear model is
used to test the sensitivity of these fluxes to the KBM drives in section 5.3.

5.2 Test of the quasilinear approximation in the inner
core
In the last section, nonlinear gyrokinetic simulations of KBM turbulence were
presented. The cost of these simulations is too high for extensive parameter scans
and use in integrating modelling. As an example the runs for the reference case
with βe = 3.2% shown in figure 5.1 alone required around 1.2 million CPU hours
of simulation time to reach up to t[R0/vthi] = 600. Therefore, reduced models are
developed for the prediction of heat, particle and momentum fluxes to alleviate
the expensive numerical cost of nonlinear simulations [100, 101, 102, 48]. Standard
quasi-linear models work reasonably well in the core region, 0.3 ≤ ρ ≤ 0.7, though,
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their validity still needs to be tested in the inner core ρ < 0.3. The purpose of the
present section is to test the validity of standard quasi-linear models based on the
nonlinear simulations of section 5.1 featuring KBM turbulence in the inner core of
the JET 75225 discharge at t = 6.0− 6.5s and ρ = 0.15.

5.2.1 Quasi-linear approximation
The quasilinear approximation assumes that the phase difference between fluctuating
fields (e.g. n and φ for the E × B particle flux) is similar in the linear and the
non-linear regimes. This is usually observed for ITG and TEM turbulence and
was more recently shown to also be valid for KBM turbulence [95]. When this
approximation holds, the quasi-linear fluxes can be computed as [48, 33]:

QQL
s,E×B =

∑
kr,kθ

QN
s,E×BA2

QL, (5.1)

QQL
s,A‖

=
∑
kr,kθ

QN
s,A‖
A2

QL, (5.2)

where the first term on the right-hand side is the flux surface average linear flux
normalised to the mode amplitude, QN

s = Qs/A2
L, and the second term is an

approximation of the nonlinear saturation amplitude: AQL ∼ ANL. This saturated
potential is usually constructed based on nonlinear simulations and experimental
observations [33, 100].

In linear runs, the mode amplitude is defined as:

AL(kr, kθ, t) =
√∫ [

|φ|2 + |A‖|2 + |B‖|2
]
ds
/∫

ds (5.3)

where s is the parallel coordinate and the integral is performed over the full flux-tube
domain, i.e. it includes several poloidal turns. In non-linear runs, an extra temporal
average is added and the integral in the parallel direction is performed for one
poloidal turn only:

ANL(kr, kθ, t) =
√

1
∆t

∫ ∫ [
|φ|2 + |A‖|2 + |B‖|2

]
dsdt (5.4)

with ∆t the length of the interval used for the temporal average.

In most quasi-linear models, the linear fluxes are computed at krρi = 0 only,
which is what is done here. We verified in Fig. 5.6 that the KBM growth rate and
the linear fluxes vary very little with the radial wave vector.

5.2.1.1 Mixing length model
A common choice for the quasilinear model is to define the saturated mode amplitude
based on a mixing length estimate [48]:

W1 = C1 max
[
γ

〈k2
⊥〉
, 0
]
, (5.5)



102 5.2. Test of the quasilinear approximation in the inner core

-3 -2 -1 0 1 2 3

k
r i

0.1

0.12

0.14

0.16

0.18

0.2

0.22

 [
v

th
/r

] k
i
=0.3

k
i
=0.4

k
i
=0.5
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different values of kθρi. The blue curve corresponds to kθρi = 0.3, the red curve for
kθρi = 0.4 and the green represents kθρi = 0.5.

and assume A2
QL = W1 to compute the quasi-linear fluxes using Eq. (5.1). Here,

〈k2
⊥〉 is an effective perpendicular wave vector which takes into account the extended

structure of electrostatic potential along the field line and is defined as:

〈
k2
⊥

〉
=
∫
k⊥(s)2|φ|2 ds∫
|φ|2 ds , (5.6)

where the integral is performed along the whole flux tube.

In GKW coordinates, k⊥ can be written as:

k2
⊥ = k2

rg
rr + 2kθkrgrθ + k2

θg
θθ, (5.7)

where g is the contravariant metric tensor.

The main drawback of this model is that linearly stable modes will never
contribute to the quasi-linear fluxes. As it will be seen in the present case, this
prevents from capturing the magnetic flutter fluxes at low kθρi.

5.2.1.2 QuaLiKiz model

Another widely used quasilinear model is the one integrated into QuaLiKiz [33, 103].
In this model, the saturated mode amplitude is approximated by:

Wn = CnSk max
[
γ

〈k2
⊥〉

]
1

kθρmaxi

, (5.8)
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with spectral form factor Sk given as

Sk =
(

kθρi
kθρmaxi

)xn
for kθρi < kθρ

max
i , (5.9)

Sk =
(

kθρi
kθρmaxi

)−3

for kθρi > kθρ
max
i , (5.10)

where the maximum of γ/ 〈k2
⊥〉 is taken over the kθρi spectrum and kθρmaxi is the

wave vector at which this maximum is reached. Here, we will test two different
spectral shapes: W2 and W3 with x2 = 1 and x3 = 2, respectively, to highlight the
sensitivity of the magnetic flutter fluxes to the spectral rule used at low kθρi. W2 is
the current choice in QuaLiKiz. W3 has the values closest to the nonlinear exponent
as seen in the nonlinear spectra (figure 5.3). Note that the QuaLiKiz model includes
other-dimensional terms that are absorbed in the Cn factor since they do not vary in
the present study. The QuaLiKiz model also offers the possibility to account for the
contributions of several eigenmodes per wave vector. In the present work, only the
contribution from the most unstable modes has been considered.

5.2.2 Linear heat and particle fluxes
In chapter 4, figure 4.22 and 4.23, we have focused on the linear heat and particle
fluxes for the most unstable mode kθρi = 0.35 only. Here we are investigating fluxes
for the whole kθρi range. The linear heat and particle fluxes normalised to the mode
amplitude are presented in figure 5.7 as a function of kθρi for the nominal parameters
at ρ = 0.15. The flux contribution due to magnetic flutter and compression part
for particle and heat (electrons, ions) is negligible compared to the E × B part,
except at low kθρi modes. At kθρi = 0.1, the electron heat flux from magnetic flutter
contributions is about 9.4 (this point cannot be seen in the figure 5.7 (b)) and largely
exceeds the E × B contribution. The large (normalised) electron heat flux from
magnetic flutter is observed in the spectral region where micro-tearing modes are
identified in figure 4.4. These micro-tearing modes are linearly stable (γ < 0) but are
nevertheless the modes with the largest growth rate at low kθρi values. The particle
flux generated by KBMs in hybrid plasmas are positive (outward) directed with the
maximum located at the kθρi = 0.40 for the E×B part. The higher heat fluxes as
compared to electrons indicates the main channel of transport for KBMs is the ion
heat flux.

5.2.3 Comparison of nonlinear and quasi-linear spectra
The non-linear kθρi spectra of φ and A‖ are compared to the various quasi-linear
weights introduced above for different plasma beta and magnetic shear in figures 5.8
and 5.9. Here, figure 5.8 (a) is for βe = 2.4%, (b) for βe = 3.2%, (c) corresponds to
βe = 3.8% at nominal magnetic shear (ŝ = 0.05) and (d) is for higher magnetic shear
ŝ = 0.1 at nominal beta (βe = 3.2%). The values of A2

A‖,NL
are much lower than that

of A2
φ,NL, but the φ and A‖ non-linear spectra have a very similar shape. At higher

beta, the peak of non-linear spectra are shifted towards low kθρi values, as previously
observed in [104]. Note that the non-linear spectra are much less peaked than those
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Figure 5.7 – Linear ion (a), electron heat fluxes (b), and particle fluxes (c)
normalised with the mode amplitude as a function of kθρi, at ρ = 0.15. The blue (∗)
curve corresponds to flux contribution due to E×B, the red (×) for magnetic
flutter and green (+) for magnetic compression part.

observed in [95] for the Cyclone Base Case at R/LTe = 0 and are more typical of
those observed for ITG turbulence. Here, the quasi-linear spectra are normalised to
the peak of the nonlinear spectrum to focus on how accurately they reproduce the
shape of the nonlinear spectra. As anticipated, the standard mixing length model
does not capture the finite amplitude of the fields for kθρi < 0.3 since all linear
modes are stable in this region. The QuaLiKiz-like model performs much better to
this respect, especially the W3 variant. All models fail to capture the variation of
the spectral width and peak location with β.

5.2.4 Comparison of quasi-linear fluxes with non-linear simulations

To finally test the quasi-linear predictions based on the various saturation rules
discussed here, the resulting quasi-linear heat, particle and momentum fluxes obtained
with the three quasi-linear models W1, W2 and W3 are now compared with the
nonlinear fluxes, using the same kθρi grid as in the nonlinear simulations to compute
the normalised linear fluxes. A scalar multiplication factor of C1 = 12.4, C2 = 4.24
and C3 = 4.32 is used to match the computed quasilinear ion heat flux with the
non-linear simulations at βe = 3.2%.
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Figure 5.8 – Normalized quasilinear spectra and GKW non-linear saturated
electric potential for different plasma beta βe = 2.4% (a), βe = 3.2% (b), βe = 3.8%
(c) with nominal magnetic shear (ŝ = 0.05), and for higher magnetic shear ŝ = 0.1 at
nominal plasma beta (βe = 3.2%)(d) as function of kθρi, at ρ = 0.15. The
quasi-linear spectra are normalized to the maximum of the nonlinear ones. The red
curve (square) corresponds to nonlinear, the blue (+) to the quasi-linear model W1,
the green (×) for W2 and the magenta (∗) for W3.

5.2.4.1 Comparison of E×B fluxes
The corresponding E×B heat, particle and momentum fluxes are plotted in figure
5.10 for the beta scan. As illustrated in figure 5.10 (a), all quasi-linear models yield
comparable results for the E × B part of the electron and ion heat fluxes. The
general trend of increasing E × B heat flux with β is captured, but the steeper
increase at high β is underestimated by 20 to 25% by all models. The same situation
is observed for the E × B particle and momentum fluxes, i.e. the increase of the
flux with β is well captured at low β but underestimated by some 25% at βe = 3.8%.
Quantitatively, the quasilinear particle flux amplitude is underestimated at βe = 3.8%
by ∼ 25% for weight W1 and by ∼ 31% for weights W2 and W3. For the momentum
flux, the W3 model performs significantly better than the others.

The comparison is then extended to the magnetic shear scan in figure 5.11.
The quasi-linear heat, particle and momentum E×B fluxes decrease with a higher
absolute value of magnetic shear, in qualitative agreement with the nonlinear results
due to stabilisation of KBM at higher magnetic shear values. Quantitatively, the
mixing length model W1 performs the worst and underestimates the nonlinear ion
heat flux by ∼ 42% and the electron heat flux by ∼ 53% at higher magnetic shear
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Figure 5.9 – Normalized quasilinear spectra and GKW non-linear saturated vector
potential for different plasma beta βe = 2.4% (a), βe = 3.2% (b), βe = 3.8% (c) with
nominal magnetic shear, and for higher magnetic shear ŝ = 0.1 at nominal plasma
beta (d) as function of kθρi, at ρ = 0.15. The quasi-linear spectra are normalized to
the maximum of the nonlinear ones. The red curve (square) corresponds to
nonlinear, the blue (+) to the quasi-linear model W1, the green (×) for W2 and the
magenta (∗) for W3.
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Figure 5.10 – E×B ion and electron heat fluxes (a) and particle and ion
momentum flux (b) as a function of βe, at ρ = 0.15. The solid lines are for the
non-linear results and the dashed lines for the quasilinear models. The plus signs +
corresponds to the QL model W1, the crosses × are for W2 and the star ∗ are for
W3.
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ŝ = 0.1. The best results are obtained with the W3 model which underestimates the
ion heat flux by ∼ 14% whereas it is in good agreement for the electron heat flux at
higher magnetic shear. The same trend is obtained for the particle and momentum
flux, with W3 performing significantly better than the other models.
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Figure 5.11 – E×B ion and electron heat fluxes (a) and particle and ion
momentum flux (b) as a function of the magnetic shear ŝ, at ρ = 0.15. The solid
lines are for the non-linear results and the dashed lines for the quasilinear models.
The plus signs + corresponds to the QL model W1, the crosses × are for W2 and
the star ∗ are for W3.

5.2.4.2 Comparison of magnetic flutter fluxes
As seen in figure 5.4 and 5.5, the only non-negligible magnetic flutter contribution
is to the electron heat flux. Therefore, now we will focus on this channel for the
comparison with the quasi-linear models. To start with, we examine the parity of
the modes as a function of kθρi. The magnetic flutter fluxes obtained with the W1,
W2 and W3 models for the electron are then compared to the non-linear fluxes in
Fig. 5.13.

The parity factor is defined as [63]:

PA‖ = |
∫
Re[A‖] ds|∫
|Re[A‖]| ds

(5.11)

The parity factor is zero (A‖ is odd) for pure ballooning parity (KBM) and
may be as high as one (A‖ is even) for tearing parity modes (MTM). Figure 5.12
illustrates the parity factor for the A‖ and φ fluctuations for the nominal parameters
at ρ = 0.15. At the lowest kθρi, there is a marked increase in the parity factor for
A‖ and decrease for φ, suggesting a nonlinear excitation of the stable MTM at this
location.

As illustrated in figure 5.13, for the electron heat flux, the mixing length
model W1 strongly underestimates the magnetic flutter contribution, as anticipated,
since it cannot capture the contribution from the linearly stable micro-tearing modes
at kθρi = 0.1. In contrast, theW2 andW3 models strongly overestimate the magnetic
flutter heat flux. The factor of 3 difference between the electron heat flux predictions
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Figure 5.12 – Parity factor for the A‖ fluctuations and Φ fluctuations as a
function of kθρi in non-linear simulations, at ρ = 0.15.

of theW2 andW3 models highlights the extreme sensitivity to the modeled amplitude
at the lower end of the kθρi spectrum.
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Figure 5.13 – Magnetic flutter electron heat flux as a function of βe, at ρ = 0.15.
The solid lines are the non-linear results and the dashed lines are for the quasilinear
models. The plus signs + corresponds to QL weight W1, the crosses × are for W2
and the star ∗ are for W3.

To better understand the discrepancy for the electron magnetic flutter part,
the ratio of the A‖ fluctuations amplitude to the total fluctuation amplitude is shown
in figure 5.14 as a function of kθρi for linear and non-linear simulations.

For kθρi > 0.2, this ratio is observed to be comparable in linear and non-linear
simulations (∼ 40% difference at kθρi = 0.9), but at kθρi = 0.1 the linear ratio is
more than 10 times larger than the non-linear one. Linearly, the ratio A2

A‖
/A2 at low

kθρi is governed by the most unstable mode, i.e. micro-tearing modes (MTM) in the
present case. Since these modes are linearly stable, the evolution of their amplitude
tends to be dominated by the non-linear interactions in the non-linear regime, which
results in a much smaller value of A2

A‖
/A2 at kθρi = 0.1.
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Figure 5.14 – Ratio of the A‖ fluctuations amplitude, A2
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amplitude A2 as a function of kθρi in linear and non-linear simulations, at ρ = 0.15.

In an attempt to capture this effect in the QuaLiKiz-like quasi-linear model,
an extra normalisation of the magnetic flutter fluxes has been introduced. First, it is
assumed that:

AA‖,NL
ANL

∼
AA‖,L(kθρmaxi )
AL(kθρmaxi ) (5.12)

and then, the following quantity is introduced:

Aratio
‖ = AL(kθρi)

AA‖,L(kθρi)
AA‖,L(kθρmaxi )
AL(kθρmaxi ) , (5.13)

that is used to renormalise the amplitude of A‖ in the magnetic flutter fluxes based
on the assumption in Eq. (5.12):

QQL
s,A‖

=
∑
kθ

QN
s,A‖
A2

QLA
ratio
‖ (5.14)

This model will be referred as W∗2 and W∗3 and is compared to the non-linear
results for beta in Fig. 5.15 (a).

The renormalisation of A‖ in the linear magnetic flutter fluxes makes the
prediction of the QuaLiKiz-like model for the electron magnetic flutter contribution
much closer to the values of the fluxes obtained in the nonlinear simulations, in
particular for W∗3 . The extreme sensitivity to the assumption used for the low
kθρi part of the spectrum is again visible when by comparing W∗2 and W∗3 : more
than a factor of three difference on the magnetic flutter electron heat flux can be
obtained with a modest change in the quasi-linear spectrum. The extra normalisation
of magnetic flutter part has no impact on the quasi-linear ion heat, particle and
momentum parts since the only non-negligible magnetic flutter contribution is to
the electron heat flux.
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Figure 5.15 – Magnetic flutter ion and electron heat fluxes as a function of βe (a)
and magnetic shear (b) at ρ = 0.15. The solid lines are the non-linear results and
the dashed lines are for the quasi-linear models. The plus signs + corresponds to the
model W1, the crosses × are for W∗2 and the star ∗ are for W∗3 .

The quasilinear electron fluxes for magnetic shear scans due to magnetic flutter
contributions with this new normalisation are plotted in figure 5.15 (b). The magnetic
flutter contribution to the electron heat flux for W∗2 is overestimated at ŝ = 0.05
and underestimated at ŝ = 0.1. For the QL rule W∗3 , QL fluxes are overestimated
by ∼ 50% at lower magnetic shear and underestimated at higher magnetic shear by
more than ∼ 90%.

Sub-dominant MTMs and their contribution to magnetic flutter transport
is an area of research on its own [105, 63, 106] and it is clear that more work is
required to predict the magnetic flutter fluxes in a quasi-linear model accurately. It
is nevertheless encouraging to see that once the saturated level of A‖ is captured,
standard quasi-linear models predictions are of the right order of magnitude compared
to nonlinear results.

5.3 Sensitivity of the quasilinear ion heat fluxes to in-
put gradients
In this section, the sensitivity of the nonlinear ion heat fluxes to the main KBM
drives (R/LT i and RLn) is investigated using the reduced quasi-linear models. The
most accurate QL model W3 (described in section 5.2) is used to test if variations in
input parameter can lead to a significant reduction of predicted turbulent fluxes down
to the experimental levels or not. Linear simulations are performed with reduced
gradients and corresponding plots are shown in figure 5.16. Here in figure 5.16 (a),
the blue curve corresponds to the case with no kinetic fast ions in the simulation,
and the red curve is with kinetic fast ions for the nominal value of R/Lne. The
red curve in figure 5.16 (b) represents the case with kinetic fast ions and reduced
R/LT i = 3.2. Including kinetic fast ions and reducing R/LT i by 20% with nominal
R/Lne decreases the quasi-linear ion heat fluxes by a factor of 10. Further reducing
R/Lne by 20% yields quasi-linear ion heat fluxes values close to the experimental
power balance heat fluxes values. This shows that the quasi-linear heat fluxes are
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extremely sensitive to the main KBM drives and that a reduction of these drive
within the experimental uncertainties is sufficient to match the power balance fluxes.
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Figure 5.16 – Quasilinear ion heat heat fluxes for the QL model W3 as a function
of R/LT i for the nominal value of R/Lne (a) and R/Lne with kinetic fast ions and
R/LT i = 3.2 (b) at ρ = 0.15. The blue curve is for the case without kinetic fast ions
and nominal value of R/Lne = 1.5 and the red curve is for the case with kinetic fast
ions.

5.4 Summary
To summarise this chapter, the quasi-linear ion and electron heat fluxes, particle and
momentum fluxes estimation for three different QL models are found in reasonable
agreement with nonlinear fluxes amplitude for the E×B contribution with some
departure at higher beta and high magnetic shear, especially for the basic mixing
length model (W1).

For the magnetic flutter contribution to the electron heat flux, which represents
about half of the total electron heat flux, capturing the contribution of linearly stable
micro-tearing modes excited in the nonlinear regime is essential. This proves to be a
difficult exercise, extremely sensitive to the exact value of the saturated A‖ values
at low kθρi. The QuaLiKiz-like mixing length model (W∗3 ) yields the best results,
even though further improvements would be desirable to capture both the βe and ŝ
impacts. Reducing the KBM drives R/LT i and R/Lne by about 20% and including
kinetic fast-ion strongly reduces the quasi-linear in heat flux to the point where it
matches with the experimental value.
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6
Conclusions and future perspective

Accumulation of tungsten (W) in the plasma central region is a key issue which
can limit the performances of the present as well as future fusion devices such as
ITER. Tungsten accumulation in the central part of ITER (ρ<0.3) is expected to
be determined by neoclassical and turbulent processes. Understanding turbulent
transport in this region is crucial to predict the turbulent W fluxes and the background
plasma profiles which determine W neoclassical transport. Predicting core transport
in the region ρ<0.3 is also very important for the fusion reaction rate. In this thesis,
the available reduced transport models that can be applied to ITER are tested based
on existing plasma discharges of the JET tokamak.

To better characterise turbulent transport and to test the quasi-linear ap-
proximation in the central region close to the magnetic axis, a linear gyro-kinetic
investigation has first been carried out for JET high−β MHD-free hybrid H-mode
discharge 75225 in the time interval t = 6.0− 6.5s at ρ = 0.15 as well as on other
radial locations using the gyrokinetic code GKW in the local approximation. The
role of MHD activity that was not present in these selected hybrid discharges can
be crucial in the central region, especially in baseline scenarios with q < 1 and
sawteeth. In spite of lower gradients close to the magnetic axis, the plasma is found
linearly unstable. The pressure-driven instability arising in this region has been
identified as a Kinetic Ballooning Mode (KBM) with an extended mode structure
along the magnetic field line in ballooning space due to the low magnetic shear. The
low magnetic shear and high plasma beta values are responsible for the onset and
destabilisation of KBM in this region. It is found that the low magnetic shear of
these hybrid plasmas can lead to a shift of the KBM threshold towards low βe values.
It is also found that the KBM instability dominates up to ρ = 0.33. At mid and outer
radius, ρ > 0.4, ITG becomes the dominant instability. This is due to the fact that
the critical beta for the destabilisation of KBMs increases across the minor radius
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from ρ = 0.15 to ρ = 0.6, mostly due to the increased magnetic shear. Furthermore,
the impact of kinetic fast ions is always stabilising at all radial locations except at
ρ = 0.33 where a fast ion driven mode is excited. Including the fast ion pressure in
the magnetic equilibrium leads to stabilisation of KBM modes and destabilisation
for ITG modes. The higher Te/Ti ratio leads to an increase of the KBM growth rate.
In comparison to the impact of magnetic shear, β or β′, the impact of the electron
to ion temperature ratio Te/Ti and safety factor q is smaller but tend to favour the
destabilisation of KBM modes in electron heated plasmas with a q profile just above
unity. A scan of toroidal rotation (u) and toroidal rotation gradient (u′) indicates
that the toroidal rotation has a moderate impact (< 10%) on the KBM mode growth
rate but increasing the toroidal rotation gradient significantly destabilises the KBM.
The collisions and impurities have negligible effects on the KBM growth rate and
frequency.

Non-linearly, the excitation of KBMs drives heat and particle fluxes increasing
with higher beta and lower magnetic shear consistently with linear results. Non-
linearly, the E×B contribution to the ion heat flux is found to be dominant. For
the electron heat flux, the most striking observation is that the magnetic flutter
contribution to the nonlinear heat flux is much larger and with an opposite sign
to what is observed in linear simulations. This contribution possibly arises from
stable micro-tearing modes at kθρi<0.2 that are excited non-linearly. The nonlinear
excitation of MTM modes at low kθρi is supported by the parity factor of magnetic
fluctuations. Accounting for these micro-tearing modes is necessary to predict
the mechanisms for energy and particle turbulent transport in the inner core of
high-performance plasmas. The nonlinear heat flux values for electron and ion for
nominal parameters at ρ = 0.15 are found to be much larger than the experimental
power balance values. Additional simulations including kinetic fast ions, background
E×B shearing and scans in the main KBM drives (R/LT i and R/Ln) within the
experimental uncertainties are now required to test whether the nonlinear fluxes
values can be compatible with the experimental ones.

The validity of standard quasi-linear (QL) models has also been tested for the
selected JET discharge. At ρ = 0.15, it is found that the quasi-linear fluxes estimates
are in good agreement with nonlinear fluxes for the E×B contributions with some
departure at high beta. However, these models fail to capture the magnetic flutter
contribution to the electron heat flux due to the non-linearly excited micro-tearing
modes. An extension of the model used in QuaLiKiz is shown to improve the
description of the magnetic flutter contribution, even though further work would be
required to obtain a robust model. The QL model was used to test the sensitivity of
these fluxes to the KBM drives. A decrease of R/LT i and R/Ln by about 20% was
sufficient to match the experimental fluxes, demonstrating the strong sensitivity of
the QL fluxes to the input gradients.

A sizeable level of turbulent transport in the inner core is favourable to avoid
W accumulation. Tungsten turbulent diffusion can mitigate the neoclassical inward
pinch of W in the inner core and help in preventing W accumulation. This mechanism
could be particularly relevant for ITER where the level of neoclassical transport to
overcome is low. To test this mechanism, the gyrokinetic analysis has been extended
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to the ITER conventional H-mode scenario in DT with 15 MA plasma current and
Q=10. Reference profiles for this case were obtained from ASTRA simulations using
a scaling based transport model for the core and with EPED1+SOLPS pedestal
for the H-mode Hy2, 98 = 1 [107]. It is found that KBM is also unstable for this
predicted ITER H-mode case. Future work will extend this evaluation to other ITER
low Q scenarios, such as the Q = 5 steady-state one, and will compare turbulent
heat and particle fluxes with neoclassical fluxes to predict W accumulation in the
inner core of ITER.
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A
Simplified dispersion relation for ITG

instability

A simplified analytical dispersion relation for ITG instabilities and their physical
picture is described in this appendix. Two kinetic and fluid models are used to build
the linear dispersion relation to describe the toroidal and slab ITG.

A.1 The δf gyrokinetic equation in the slab-like ap-
proximation

A.1.1 Reference gyro-kinetic equation
The starting point is the gyrokinetic equation in the local approximation 3.12,
described in chapter 3. In this equation, we neglect the vector potential fluctuations
to make the model electrostatic and further neglect the Coriolis, centrifugal term,
parallel rotation gradient, and β′ correction to the curvature drift.

After these assumptions the gyrokinetic equation is

∂f

∂t
+ (v‖b + vD + vE).∇f − b

m
.(µ∇B) ∂f

∂v‖
= S, (A.1)

where S is given as

S = −(vE + vD).
[
∇n0

n0
+
(
v2
‖

v2
th

+ µB

T
− 3

2

)
∇T
T

]
Fm −

Ze

T
[v‖b + vD].∇〈φ〉gyFM .

(A.2)
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FM is the Maxwellian distribution function (equation 3.14) reduces to:

F = FM = n0

π3/2v3
th

exp

[
−
v2
‖

v2
th

]
, (A.3)

and vD, vE are the drifts due to inhomogeneous magnetic fields, and E×B drifts

vD = 1
Ze

[
mv2
‖

B
+ µ

]
B×∇B
B2 , (A.4)

vχ = vE = b×∇〈φ〉gy
B

. (A.5)

A.1.2 Coordinate system and magnetic geometry
The model is derived using the orthogonal coordinate system (x; y; z) which is related
to the toroidal coordinate system (R;Z;ϕ) (see figure A.1) by:

x = R, y = Z, z = R0ϕ,

with R0 a reference major radius, taken to be the major radius at the low field side
mid-plane of the flux surface of interest.

Figure A.1 – Schematic of a poloidal cross section of a tokamak representing
coordinates and notations.

The magnetic field is assumed to be purely toroidal and all quantities are
evaluated at the low field side mid-plane (one-point model):

B = RB∇ϕ = Bez with B = R0B0

R
(A.6)

∇ϕ = 1
R

eϕ ⇒ eϕ = ∇ϕ
|∇ϕ|

= R∇ϕ → Unit vector in the toroidal direction
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∇B = −R0B0

R2 ex, (A.7)

∇B|R=R0 = −B0

R0
ex. (A.8)

With this, the drift velocity from equation A.4

vD = − 1
Ze

[
mv2
‖

B
+ µ

]
1
R0

ey. (A.9)

A.1.3 Perturbed quantities and gyro-average
The simulation domain is assumed to be homogeneous in the x, y, and z direction in
the local limit and assuming solutions of the form.

f = f1e
i[k.x−ωt]

φ = φ1e
i[k.x−ωt]

where ω = ωr + iγ is the complex frequency.

∇f = f1e
−iωt

[
(ikxx)e(ikxx) + (ikyy)e(ikyy) + (ikzz)e(ikzz)

]
,

∇f = fik. (A.10)
where k = (kxex + kyey + kzez)

Similarly
∇φ = φik. (A.11)

The gyro-average of φ is defined as

〈φ〉gy(X) =
∫ 2π

0

dζ

2π (X + ρ) (A.12)

where X is the gyro-center position and ρ is the Larmor radius, see section 2.1.1
(which depends on the gyro-angle ζ).

The gyro-averaging operator in guiding-center phase space is simply an integral
over the gyro-phase ζ

〈...〉gy = 1
2π

∫ 2π

0
... dζ (A.13)

~ρ = ρa; with ρ - larmor radius vector and a = x cosϕ+y sinϕ - unit vector

x = X + ρ(x cosϕ+ y sinϕ) (A.14)
〈φ(x)〉〈X〉 = 〈φ(X + ρ)〉〈X〉 (A.15)

〈φ(x)〉〈X〉 = 1
2π

∫ 2π

0
φ1e

ik.(X+ρ)dζdϕ
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〈Φ〉gy = J0(k⊥ρ)Φ (A.16)

Noting that the Bessel function of the first kind J0 can be written as

J0(z) =
∫ π

0
eiz cos θdθ (A.17)

When k⊥ρ = 0, the value of J0(k⊥ρ) = 1 and when k⊥ρ =∞ , J0(k⊥ρ) = 0.

The expression for vE can be written as

vE = b×∇〈φ〉gy
B

vE = i
kxey − kyex

B
〈φ〉gy (A.18)

A.1.4 Linearized one-point gyro-kinetic equation
On rewriting the reference gyrokinetic equation A.1 in a simplified form after putting
the values of all the terms, we get the equation:

−iωf + v‖kzfi−
(

mv2
‖

ZeBR0
+ mv2

⊥
2ZeBR0

)
ifky −

kx − ky
B

φf = ky
B

∇n0

n0
φiFm

+ky
B
φi

(
v2
‖

v2
th

+ µB

T
− 3

2

)
∇T
T
Fm −

Ze

T

[
v‖kz −

(
mv2
‖ +mv2

⊥/2
) ky
ZeBR0

]
φiFM

(A.19)

Dividing whole equations by −i and neglecting terms quadratic in the perturbed
quantities

ωf − v‖kzf +
[
mv2
‖ +mv2

⊥/2
] fky
ZeBR0

=
[
−∇n0

n0
−
(
v2
‖

v2
th

+ mv2
⊥

2T −
3
2

)
∇T
T

]
ky
B
Fmφ

+Ze
T

[
v‖kz −

(
mv2
‖ +mv2

⊥/2
) ky
ZeBR0

]
φFM

(A.20)

This linearized equation is then written in a more compact form using the
following definitions:

ωD = vthD ky = − mv2
th

ZeBR0
ky ωE = −v

x
E

R0

Te
eφ

= Teky
eBR0

(A.21)

R/Ln = −R0

n

∂n

∂x
, R/LT = −R0

T

∂T

∂x
(A.22)

ED =
v2
||

v2
th

+ 1
2
v2
⊥
v2
th

, ET = v2

v2
th

− 3
2 (A.23)
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Also, it is seen that ωD = −2ωE and v2 = v2
‖ + v2

⊥

Here, vth is the thermal velocity, ωD is the characteristic frequency of the
curvature and ∇B drift at the thermal velocity over a wavelength of the perturbed
quantities, and ωE is the characteristic frequency of the radial E×B drift over the
reference length R0 for an electrostatic potential perturbation of wave vector ky and
amplitude Te/e (neglecting the gyro-average).

So, the final reduced gyro-kinetic equation in slab like approximation is written
as:

ωf +
[
−v‖kz − EDωD

]
f =

[
R

Ln
+ ET

R

LT

]
ωEe

Te
Fmφ+ Ze

T

[
v‖kz + EDωD

]
φFM .

(A.24)

A.1.5 Quasi-neutrality and adiabatic electron approximation

The quasi-neutrality equation, states that the sum of the gyro-center density and of
the polarization density is zero:

∑
sp

Zsp

∫
J0(k⊥ρ)fspdv + Z2

spnsp[Γ(b)− 1] eφ
Tsp

= 0 (A.25)

This is the normalized version with the inertial term neglected. The sum is
over the plasma species and the integral over velocity space. Also

Γ(b) = I0(b)e−b =
∫ ∞

0
J2

0 (
√

2bx)e−xdx (A.26)

where I0 is the modified Bessel function of the first kind.

Assuming two species only, main ions and electrons and neglecting the gyro-
average for the electrons (i.e. assume ρe = 0), J0(0) = 1

Zi

∫
J0(k⊥ρi)fidv + Z2

i ni[Γ(b)− 1]eφ
Ti
−
∫
fedv + ne[1− 1]eφ

Te
= 0 (A.27)

Zi

∫
J0(k⊥ρi)fidv + Z2

i ni[Γ(b)− 1]eφ
Ti
− δne = 0 (A.28)

Using the adiabatic electron approximation δne
ne

= eφ
Te

to further simplify the
quasi-neutrality equation

Zi

∫
J0(k⊥ρi)fidv + Z2

i ni[Γ(b)− 1]eφ
Ti
− neeφ

Te
= 0 (A.29)
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A.1.6 Final set of equations
Simplifying the model even further by assuming an ion charge of unity Z = 1, equal
electron and ion temperature Te = Ti, and neglecting the gyro-average for ions.∫

fidv = neeφ

T
(A.30)

ñ = ne0φ̂ = n0φ̂

where n̂ = ñ/n0 and φ̂ = eφ/T

The final quasi-neutrality equation is:

n̂ = φ̂ (A.31)

The final linearized gyrokinetic equation is:

ωf+
[
−v‖kz − EDωD

]
f =

[
R

Ln
+ ET

R

LT

]
ωEe

Te
Fmφ+Ze

T

[
v‖kz + EDωD

]
φFM (A.32)

In the section A.2, we will take moments of this equation to derive a fluid
dispersion relation for the ITG and compare it to the kinetic solution in section A.3.

A.2 Fluid Model
A.2.1 Moments of distribution function

The first three moments of the perturbed distribution functions are

ñ =
∫
fdv, (A.33)

ñṽ‖ =
∫
fv‖dv, (A.34)

δp =
∫
f

1
2mv

2
‖dv. (A.35)

Here the integral is performed over the velocity space. The perturbed temper-
ature δT is defined from the linearization of the perturbed pressure.

The perturbed distribution function is defined as:

f = FM

[
ñ

n0
+ 2 ũ‖

vth

v‖
vth

+ T̃

T

(
v2

v2
th

− 3
2

)]
. (A.36)

The Maxwellian distribution function is:

F = FM = n0

π3/2v3
th

exp

(
−
v2
‖ + v2

⊥

v2
th

)
. (A.37)
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I. Zeroth Moment (continuity equation)

We first integrate the linearized equation with respect to velocity space∫
ωfdv +

∫ [
−v‖kz − EDωD

]
fdv =

∫ [
R

Ln
+ ET

R

LT

]
ωEe

Te
Fmφdv

+
∫ Ze

T

[
v‖kz + EDωD

]
φFMdv.

(A.38)

Noting the various moments:

{G}f =
∫
fGdv

we have

{v||}f = n0ũ‖; {EDωD}f = ωD
[
ñ+ n0

T̃
T

]
; {1}F = n0;

{v||}F = 0; {ET}F = 0; {EDωD}F = ωDn0.

With these values the equation A.38 becomes

ωñ+
[
−n0ũ‖kz − ωD

(
ñ+ n0

T̃

T

)]
=
[
R

Ln

ωEe

Te
+ Ze

T
ωD

]
φn0 (A.39)

Normalizing the above equation with the values

n̂ = ñ
n0
, φ̂ = eφ

Te
, ω̂ = ω R

vth
, ω̂E = ωE

R
vth

, ω̂D = ωE
R
vth

T̂ = T̃
T
, û‖ = ũ‖

vth
, k̂z = kzR

The final equation for the continuity equation is

ω̂n̂− k̂zû‖ − ω̂D(n̂+ T̂ ) = [ω̂ER/Ln + ω̂D] φ̂ (A.40)

II. First Moment (parallel velocity moment)

Multiplying by v‖ and integrate over the velocity space.

ω
∫
v‖fdv +

∫ [
−v‖kz − EDωD

]
fv‖dv =

∫
v‖

[
R

Ln
+ ET

R

LT

]
ωEe

Te
Fmφdv

+
∫
v‖
[
v‖kz + EDωD

] eφ
T
FMdv

(A.41)

Here dv = dv‖dv⊥

{v||}f = n0ũ‖; {v2
||}f = v2

thn0
2 (n̂+ T̂ ); {v||ED}f = 2n0ũ‖; {v||}F = 0

{v||ET}F = 0; {v2
||}F = n0v2

th

2 ; {v||ED}F = 0
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The parallel velocity moment equation is

ω̂û‖ −
k̂z
2 (n̂+ T̂ )− 2û‖ω̂D = k̂zφ̂

2 (A.42)

III. Second Moment (Energy balance equation)

ω
∫
v2fdv−

∫
v2v‖kzfdv−

∫
EDωDv2fdv =

∫
v2
[
R

Ln
+ ET

R

LT

]
ωEe

Te
Fmφdv

+
∫
v2
[
v‖kz + EDωD

] eφ
T
FMdv

(A.43)

{v2}f = 3
2n0v

2
th(n̂+T̂ ); {v2v||}f = 5

2 ũ‖n0v
2
th; {EDv2}f = 5

2v
2
thn0(n̂+2̂T )

{v2}F = 3
2v

2
thn0; {ETv2}F = 3

2v
2
thn0; {v2v||}F = 0; {v2ED}F = 5

2v
2
thn0

Putting all these values in the equation A.43:

ω
3
2v

2
thn0(n̂+ T̂ )− kz

5
2 ũ‖v

2
thn0 − ωD

5
2v

2
thn0(n̂+ 2̂T ) =

[
R

Ln

3
2v

2
thn0 + R

LT

3
2v

2
thn0

]
eφ

Te
ωE

+5
2v

2
thn0ωD

eφ

Te
(A.44)

Normalizing equation, we get the final pressure balance equation

ω̂(n̂+ T̂ )− 5
3 k̂zû−

5
3 ω̂D(n̂+ 2̂T ) =

[(
R

Ln
+ R

LT

)
ω̂E + 5

3 ω̂D
]
φ̂ (A.45)

Subtracting the continuity equation from this equation

ω̂n̂+ ω̂T̂ − ω̂n̂− 5
3 k̂zû‖ + k̂zû‖ −

5
3 ω̂D(n̂+ 2̂T ) + ω̂D(n̂+ T̂ ) =

[(
R

Ln
+ R

LT

)
ω̂E + 5

3 ω̂D
]
φ̂

− [ωER/Ln + ωD] φ̂
(A.46)

ω̂T̂ − 2
3 k̂zû‖ −

2
3 ω̂Dn̂−

7
3 ω̂DT̂ =

[
R

LT
ω̂E + 2

3 ω̂D
]
φ̂ (A.47)

on normalizing with respect to ω̂D = −2 and using ωD = −2ωE; we get ωE = 1

ω̂T̂ − 2
3 k̂zû‖ + 4

3 n̂+ 14
3 T̂ =

[
R

LT
− 4

3

]
φ̂ (A.48)

This equation is a normalized version of the energy balance equation when
taking the value of ω̂D = −2.
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A.2.2 Toroidal ITG and SLAB ITG
Writing a full set of equations together with the quasi-neutrality equation again



ω̂n̂− k̂zû‖ − ω̂D(n̂+ T̂ ) = [ω̂ER/Ln + ω̂D] φ̂
ω̂û‖ − k̂z

2 (n̂+ T̂ )− 2û‖ω̂D = k̂zφ̂
2

ω̂T̂ − 2
3 k̂zû‖ −

2
3 ω̂Dn̂−

7
3 ω̂DT̂ =

[
R
LT
ω̂E + 2

3 ω̂D
]
φ̂,

n̂ = φ̂

A.2.2.1 Toroidal ITG
Physical Picture of Toroidal ITG

Considering the simplest case by keeping temperature and temperature gradi-
ent R/LT and neglecting all the other terms.

ω̂n̂− ω̂DT̂ = 0
ω̂T̂ − R

LT
ω̂Eφ̂ = 0

n̂ = φ̂

On solving above equation, we can find the growth rate of unstable mode as:

ω̂ = ±
√
ω̂Dω̂E

√
R/LT ⇒ ωr + ιγ = ±

√
ω̂Dω̂E

√
R/LT (A.49)

γ =
√
|ω̂Dω̂E|

√
R/LT (A.50)

We can see clearly from this equation that the growth rate is directly propor-
tional to the normalized logarithmic temperature gradient. Therefore, the growth
rate increases with an increase in the temperature gradient.

Figure A.2 – Physical picture of toroidal ITG.
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As illustrated in figure A.2, starting from a small temperature perturbation,
the temperature dependence of the ∇B drift will generate a density perturbation (by
compression) as can be seen from the first equation. Because density perturbation is
directly proportional to electrostatic potential as from the third equation, pertur-
bation of electrostatic potential will follow the same direction as density. From the
second equation we can see that this electrostatic potential perturbation will act on
the background distribution function and because of E×B drift this hotter plasma
will move towards hotter plasma and cold plasma will move towards cold plasma
side which will enhance the perturbation on the low field side.

Whereas on high field-side, the hotter plasma will move towards the colder
side and colder plasma will move towards the hotter side that will suppress the
perturbation.

Steps to derive Toroidal ITG
Neglect the parallel motion (strong inertia) û = 0 and put k̂z = 0 = k̂‖.

Writing continuity and energy balance equations together with quasi-neutrality
equation


ω̂n̂− ω̂D(n̂+ T̂ ) = [ω̂ER/Ln + ω̂D] φ̂
ω̂T̂ − 2

3 ω̂Dn̂−
7
3 ω̂DT̂ =

[
R
LT
ω̂E + 2

3 ω̂D
]
φ̂

n̂ = φ̂

Replacing n̂ by φ̂

ω̂φ̂− ω̂D(φ̂+ T̂ ) = [ω̂ER/Ln + ω̂D] φ̂ (A.51)

ω̂T̂ − 2
3 ω̂Dφ̂−

7
3 ω̂DT̂ =

[
R

LT
ω̂E + 2

3 ω̂D
]
φ̂ (A.52)

Finding the value of T̂ from equation A.51

T̂= 1
ω̂D

[
ω̂φ̂− 2ω̂Dφ̂−

R

Ln
ω̂Eφ̂

]
= 0 (A.53)

and substituting this value in the equation A.52 and solving for φ̂ we get the final
equation as :

ω̂2 − ω̂
(13

3 ω̂D + ω̂E
R

LN

)
+ ω̂Dω̂E

(
7
3
R

Ln
− R

LT
+ 10

3
ω̂D
ω̂E

)
= 0 (A.54)

This is another simplified dispersion relation for toroidal ITG. The solution
of this equation will give the growth rate. From this equation we can see clearly on
keeping all the terms, we would have found that Eigenvalues are not just imaginary
(as in the previous model), but complex numbers in which the imaginary part (growth
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rate) is positive provided that the normalized logarithmic temperature gradient R/LT
exceeds a particular value (threshold).

The solution to the above equation is

ω̂ = 1
2


(13

3 ω̂D + ω̂E
R

LN

)
±

√√√√(13
3 ω̂D + ω̂E

R

LN

)2
− 4ω̂Dω̂E

(
7
3
R

Ln
− R

LT
+ 10

3
ω̂D
ω̂E

)
︸ ︷︷ ︸

∆


where ω̂ = ω̂r + iγ

ω̂r + iγ = 1
2

[(13
3 ω̂D + ω̂E

R

LN

)
±
√

∆
]

(A.55)

When ∆ < 0, γ = ±
√
|∆|

γ = ±1
2

√√√√(13
3 ω̂D + ω̂E

R

LN

)2
− 4ω̂Dω̂E

(
7
3
R

Ln
− R

LT
+ 10

3
ω̂D
ω̂E

)
(A.56)

From this dispersion relation we can see the variation of growth rate γ as a
function of R/Ln and R/LT for a fixed value of ω̂D and ω̂E.

For kyρ = 0.4, ω̂D = −kyρ, ω̂E = kyρ/2 the variation of growth rate γ as a
function of R/Ln and R/LT is given in figure A.3 and a 2D contour plot is represented
in figure A.4.
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Figure A.3 – Growth rate (γ) as a function of density gradient scale length
(R/LN) for a fixed value of (R/LT ) (a) and temperature gradient scale length
(R/LT ) for a fixed value of (R/LN) (b) for toroidal ITG using fluid model.

From figure A.3, we can see that the density gradient is stabilizing the toroidal
ITG, whereas temperature gradient is enhancing the linear growth rate, which causes
instability in the plasma. Also, for a particular value of density gradient, there will
be a minimum threshold value of temperature gradient for perturbation to grow
below which it is stable.
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Figure A.4 – Growth rate (γ) as a function of density gradient scale length (R/LN )
and temperature gradient scale length (R/LT ) for toroidal ITG using fluid model.

A.2.2.2 Slab ITG

Assume ω̂D = 0 

ω̂n̂− k̂zû‖ = ω̂ER/Lnφ̂

ω̂û‖ − k̂z
2 (n̂+ T̂ ) = k̂zφ̂

2
ω̂T̂ − 2

3 k̂zû‖ = R
LT
ω̂Eφ̂

n̂ = φ̂

Finding the value of û‖ from first equation and T̂ from 2nd equation and simplifying
we get the dispersion relation for slab ITG as

ω̂

2ω̂2φ

k̂2
z

− 2ω̂ω̂ER/Lnφ̂
k̂2
z

− 2φ̂
− 2

3 k̂z

 ω̂φ̂− ω̂ER/Lnφ̂
k̂z

 = R

LT
ω̂Eφ̂ (A.57)

ω̂3 − ω̂2ω̂ER/Ln −
4
3 ω̂k̂

2
z + ω̂E k̂

2
z

(1
3R/Ln −

1
2R/LT

)
= 0 (A.58)

This is the final dispersion relation for Slab ITG with adiabatic electrons and
electrostatic case. This is a cubic polynomial, and analytical solution of this equation
is nontrivial. However, it can be solved numerically.

Contour plots of growth rate (γ) as function of normalized logarithmic tem-
perature gradient (R/LT ) and density gradient (R/Ln) for q = 1.1, kZ = 1/q and
different values of kyρ (ωE = ky/2) is given in figure A.5. As we can see from figure
on increasing kyρ, i.e., increasing ωE(kyρ = ωE/2), growth rate threshold decreases.



A. Simplified dispersion relation for ITG instability 129

0 5 10 15

R/L
T

0

1

2

3

4

5
R

/L
n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) kyρ = 0.3

0 5 10 15

R/L
T

0

1

2

3

4

5

R
/L

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) kyρ = 0.7

Figure A.5 – Growth rate (γ) as a function of density gradient scale length
(R/Ln) and temperature gradient scale length (R/LT ) for kyρ = 0.3 (a) and
kyρ = 0.7 (b), for slab ITG using fluid model and for a fixed value of q=1.1.

For kyρ = 0.3 and for different values of q(kZ = 1/q), contour plots of growth
rate (γ) as function of normalized logarithmic temperature gradient (R/LT ) and
density gradient (R/Ln) is given in figure A.6. As seen, the threshold of growth
rate decreases with increasing q value. Also, for higher values of q density gradient
stabilizing the slab ITG, however, temperature gradient enhancing the growth rate.

0 5 10 15

R/L
T

0

1

2

3

4

5

R
/L

n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) q = 1.1

0 5 10 15

R/L
T

0

1

2

3

4

5

R
/L

n

0

0.05

0.1

0.15

0.2

0.25

(b) q = 5.5

Figure A.6 – Growth rate (γ) as a function of density gradient scale length
(R/Ln) and temperature gradient scale length (R/LT ) for q = 1.1 (a) and q = 5.5
(b), for slab ITG using fluid model and for a fixed value of kyρ = 0.3.

Growth rate as a function of normalized logarithmic density gradient (R/Ln)
for various values of R/LT and growth rate as function of temperature gradient
(R/LT ) for various values of R/Ln for ky = 0.3 and q = 1.1 is given in figure A.7 (a)
and (b).
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Figure A.7 – Growth rate (γ) as a function of density gradient scale length
(R/LN) for a fixed value of (R/LT ) (a) and temperature gradient scale length
(R/LT ) for a fixed value of (R/LN) (b) for slab ITG using the fluid model for
kyρ = 0.3 and q = 1.1.

As can be seen from the figure, above a threshold, the density gradient
stabilized the slab ITG; however, temperature gradient increases the growth rate
that will destabilize the mode.

A.3 Kinetic model
Combining the final linearized quasi-neutrality equation and the linearized gyrokinetic
equation of section A.1.6 to write a dispersion relation

n̂ = φ̂ (A.59)

ωf +
[
−v‖kz − EDωD

]
f =

[
R

Ln
+ ET

R

LT

]
ωEe

Te
Fmφ+

[
v‖kz + EDωD

] eφ
T
FM (A.60)

The distribution function in an un-normalized form is given as

f =

[
(R/Ln + ETR/LT )ωE + [v‖kz + EDωD

]
eφ
T
FM

ω − v‖kz − EDωD
(A.61)

Normalizing the equation with the quantities using the relation vth for veloci-
ties, R0 for lengths and vth/R0 for frequencies.

v̂ = ṽ‖
vth

; k̂z = kzR; ω̂D = ωDR0/vth; ω̂E = ωER0/vth

The ω̂D and ω̂E can also be written as function of the reference larmor radius
ρ0 defined as: ρ0 = mvth

eB
:

ω̂D = −ρiky; ω̂E = 1
2ρiky
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The normalized background distribution function is defined as F̂M = FMv
3
th/n0,

and the perturbed distribution function is : f̂=fv
3
th/n0.

F̂M = 1
Π3/2 e

−(v̂2
‖+V̂

2
⊥) (A.62)

f =

[
(R/Ln + ETR/LT ) ω̂E + [v̂‖k̂z + EDω̂D]

]
φ̂FM

ω̂ − v̂‖k̂z − EDω̂D
(A.63)

n̂ = ñ

n0
= 1
n0

∫
fdv (A.64)

n̂ = φ̂

n0

∫ (R/Ln + ETR/LT )ω̂E + v̂‖k̂z + EDω̂D
ω̂ − v̂‖k̂z − EDω̂D

FMdv (A.65)

where dv is defined as dv = dv̂‖dv̂ydv̂xv
3
th, v = v‖b + v⊥(cosαêx + sinαêy)

1 =
∫ (R/Ln + ETR/LT )ω̂E + v̂‖k̂z + EDω̂D

ω̂ − v̂‖k̂z − EDω̂D
F̂M2πdv‖v⊥dv⊥ (A.66)

where ω = ωr + iγ, ET = v̂2
‖ + v̂2

⊥ − 3/2, ED = v̂2 + 1/2v̂2
⊥

1 =
∫ (R/Ln + ETR/LT )ω̂E + v̂‖k̂z + EDω̂D

ω̂ − v̂‖k̂z − EDω̂D
F̂M︸ ︷︷ ︸

f̂

dv̂ (A.67)

ω = ωr(ii) + iγ(jj)

| ∫ f̂dv̂ − 1| = 0 (A.68)
where

f̂ = F̂M
(R/Ln + ETR/LT )ω̂E + v̂‖k̂z + EDω̂D

ω̂ − v̂‖k̂z − EDω̂D
(A.69)

There is no analytical solution exist for this equation (at least without ap-
proximation). So, to find the solution of above equation (eq: A.67), it need to be
solved numerically. On plotting (∫ f̂dv̂ − 1) as function of γ and ωr, zeros of the
contour represents the solution.

Linear growth rate γ as a function of temperature gradient scale length (R/LT )
for the fixed value of density gradient scale length R/Ln = 1 and R/Ln = 3, with
kyρ = 0.3, kz = 0, ωD = −kyρ, ωD = kyρ/2 is shown in figure A.8. The figure shows
that there is minimum threshold value of R/LT for growth rate to start and after
that it increases as value of the R/LT increases.
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Figure A.8 – Growth rate (γ̂) as function of R/LT for a fixed value of R/Ln = 1 (
blue curve) and R/Ln = 3 (red curve) for the kinetic model. Other parameters are
kyρ = 0.3, kz = 0, ωD = −kyρ, ωD = kyρ/2.

A comparison of growth rate (γ̂) as function of R/LT for a fixed value of
R/Ln = 3 for the kinetic model and fluid model is shown in figure A.9.
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Figure A.9 – Comparison of growth rate (γ̂) as function of R/LT for a fixed value
of R/Ln = 3, kyρ = 0.3, kz = 0, ωD = −kyρ, and ωD = kyρ/2 for fluid model (blue
curve) and kinetic model(red curve).

It can be seen from figure A.9 that in the region far away from the threshold
value of temperature gradient scale length, both fluid model and kinetic models are
in good agreement to predict growth rate. However, close to threshold value fluid
models predicts zero growth rate, whereas the kinetic model indicates a finite growth
rate in the system. Therefore, the fluid model fails to give a growth rate at close to
a threshold value; hence, we need a kinetic model to explain it.
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