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Résumé

La compréhension et la prévision du comportement des particules chargées dans
les plasmas magnétisés, ainsi que l’auto-organisation de ces systèmes complexes,
revêtent une importance capitale tant pour la recherche fondamentale que pour les
applications technologiques. Lorsque des particules chargées se déplacent à travers
des champs magnétiques, elles génèrent des courants qui, à leur tour, exercent un
couple j×B sur le plasma, conduisant à l’émergence d’écoulements à grande échelle.
Ces écoulements ont un impact significatif sur le transport perpendiculaire et con-
duisent le système vers un état statistique moyen par le développement de structures,
d’instabilités et de turbulences à grande échelle. L’étude des plasmas fortement mag-
nétisés a fait l’objet d’une attention considérable au cours des dernières décennies,
principalement en raison de son importance pour la fusion par confinement magné-
tique. Les plasmas faiblement magnétisés ont été relativement peu étudiés malgré leur
prévalence dans la nature et la technologie. Appréhender la formation de structures à
grande échelle dans ces plasmas représente une étape cruciale vers le développement
de capacités prédictives pour les dispositifs E×B dédiés à l’étude des phénomènes
fondamentaux de la physique des plasmas. En outre, il existe un intérêt croissant pour
l’exploration de l’impact des collisions dans les plasmas faiblement ionisés dans le
contexte astrophysique, où les collisions affectent naturellement les courants et la
rotation.

Le dispositif expérimental standard pour l’étude des plasmas faiblement magnétisés
consiste en une colonne de plasma cylindrique immergée dans un champ magnétique
axial. MISTRAL est un dispositif de ce type basé au laboratoire PIIM pour étudier
le plasma dans une configuration de champ croisé (E⊥B). La formation de struc-
tures rotatives cohérentes dans MISTRAL est supposée être due au dèveloppement
d’instabilités en présence d’un écoulement E×B. Plusieurs mécanismes potentiels, y
compris les ondes de dérive, l’instabilité de Rayleigh-Taylor/Centrifuge, l’instabilité
de Kelvin-Helmholtz et l’instabilité de traînée neutre, ont été identifiés comme con-
tribuant potentiellement à la formation de structures tournantes dans MISTRAL.
Cependant, l’identification des instabilités responsables de leur émergence et des
déclencheurs spécifiques impliqués reste difficile à obtenir. Cette thèse s’efforce de
répondre à ces questions.

Une étude expérimentale du plasma MISTRAL a été réalisée pour établir les bases
de la modélisation théorique. Un modèle à deux fluides a été développé pour étudier
la stabilité linéaire des colonnes de plasma en rotation. Des travaux antérieurs ont
démontré que les colonnes de plasma rotatives sont sensibles à l’instabilité cen-
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trifuges. Cependant, la plupart des modèles existants reposent sur l’approximation
basse fréquence (LFA), qui est valable lorsque la fréquence d’instabilité et la fréquence
d’écoulement d’équilibre sont considérablement plus petites que la fréquence cy-
clotronique. Cette hypothèse est remise en question dans de nombreux dispositifs
à plasma de laboratoire, y compris les colonnes à plasma faiblement magnétisées
comme MISTRAL. Pour remédier à cette limitation, une relation de dispersion globale
radiale décrivant l’instabilité centrifuge sans la LFA a été dérivée. Le domaine de
validité de l’approximation à basse fréquence a été discuté. En outre, l’influence de la
limite radiale sur la stabilité linéaire a été examinée. On a constaté que l’écoulement
d’équilibre et la limite radiale influencent fortement le taux de croissance et la fréquence
des modes existants. Une comparaison a été faite entre les résultats obtenus en util-
isant la relation de dispersion avec l’approximation radiale locale et ceux obtenus
en utilisant la relation de dispersion radiale globale. Cette comparaison a révélé la
non-applicabilité de la solution locale aux systèmes de plasma de type MISTRAL.

En raison de la fraction élevée de neutres dans le système de plasma actuel, le
modèle a été étendu pour inclure les effets dus aux collisions ion-neutre dans la limite
ϵ << 1 avec ϵ = ν̄i nω̄0/C . Dans cette première étape, la relation de dispersion est
obtenue dans la limite ϵ→ 0 qui est applicable pour la gamme de fréquences trouvée
dans MISTRAL. Une comparaison est ensuite faite entre les solutions obtenues dans
le cas sans collision et dans le cas avec collisions pour mettre en évidence l’effet de la
collisionnalité sur le taux de croissance et la fréquence des modes.

Mots-clés: plasma, instabilités, E×B configuration, structures tournantes, modéli-
sation des fluides, stabilité linéaire.
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Abstract

Understanding and predicting the behavior of charged particles in magnetized plas-
mas, as well as the self-organization of these intricate systems, holds paramount im-
portance in both fundamental research and technological applications. When charged
particles move across magnetic fields, they generate currents that, in turn, exert a j×B
torque on the plasma, leading to the emergence of large-scale flows. These plasma
flows significantly impact perpendicular transport and drive the system towards a
statistical mean state through the development of large-scale structures, instabilities,
and turbulence. The study of strongly magnetized plasmas has received considerable
attention over the past decades, primarily due to its relevance in magnetic confine-
ment fusion. Weakly magnetized plasmas have been relatively less studied despite
their prevalence in nature and technology. Understanding the formation of large-scale
structures in such plasmas represents a crucial step towards developing predictive
design capabilities for E×B devices dedicated to investigating fundamental plasma
physics phenomena. Furthermore, there is a growing interest in exploring the impact
of collisions in weakly ionized plasmas within the astrophysical context, where colli-
sions naturally affect currents and rotation.

The standard experimental arrangement for examining weakly magnetized plasmas
consists of a cylindrical plasma column immersed in an axial magnetic field. MISTRAL
is such a device based at PIIM laboratory to study plasma in cross-field configuration
(E⊥B). The formation of coherent rotating structures formed in MISTRAL is supposed
to be due to an interplay between various instabilities and the E×B flow. Several
potential mechanisms, including drift waves, Rayleigh-Taylor/Centrifugal instability,
Kelvin-Helmholtz instability, and neutral drag instability, have been identified as po-
tential contributors to the formation of rotating structures in MISTRAL. However, a
definitive understanding of which instabilities are accountable for their emergence
and the specific triggers involved remains elusive. This thesis endeavors to address
these questions.

An experimental investigation of MISTRAL plasmas has been performed in a typical
configuration with the rotating spoke. In parallel, theoretical work has been performed
based on the experimental data. A two-fluid model has been developed to discuss the
linear stability of rotating plasma columns. Prior works have demonstrated that rotat-
ing plasma columns are susceptible to centrifugal flute modes. However, the existing
models rely on the low-frequency approximation (LFA), which holds true when the
instability frequency and equilibrium flow frequency are considerably smaller than
the ion-cyclotron frequency. This assumption is challenged in numerous laboratory
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plasma devices, including weakly magnetized plasma columns like MISTRAL. To ad-
dress this limitation, a radially global dispersion relation describing the centrifugal
instability without the LFA has been derived. The validity range of the low-frequency
approximation has been discussed. Additionally, the influence of the radial boundary
on linear stability has been examined. The equilibrium flow and radial boundary have
been found to strongly influence the growth rate and frequency of the existing modes.
A comparison has been made between the results obtained using the dispersion re-
lation with the radially local approximation and those obtained using the radially
global dispersion relation. This comparison revealed the non-applicability of the local
solution to MISTRAL-like plasma systems.

Due to the high fraction of neutrals in the present plasma system, the model was
further extended to include the effects due to ion-neutral collisions in the limit ϵ<< 1
with ϵ= ν̄i nω0/C . In this first step, the dispersion relation is obtained in the limit ϵ→ 0
which is applicable for the frequency range found in MISTRAL. A comparison is then
made between the solutions obtained from the collisionless case and the one with
collisions to highlights the effect of collisionality on the growth rate and frequency of
the modes.

Keywords: plasma, instabilities, E×B configuration, rotating structures, fluid mod-
eling, linear stability.
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Résumé (Version étendue)

La compréhension et la prévision du comportement des particules chargées dans
les plasmas magnétisés, ainsi que l’auto-organisation de ces systèmes complexes,
occupent une importance capitale tant pour la recherche fondamentale que pour
les applications. Lorsque des particules chargées se déplacent à travers un champs
magnétique, elles génèrent des courants qui, à leur tour, exercent un couple j×B sur le
plasma, conduisant à l’émergence d’écoulements à grande échelle. Ces écoulements
ont un impact significatif sur le transport perpendiculaire et conduisent le système
vers un état statistique moyen par le développement de structures, d’instabilités et de
turbulences à grande échelle. L’étude des plasmas fortement magnétisés a fait l’objet
d’une attention considérable au cours des dernières décennies, principalement en
raison de leur importance pour la fusion par confinement magnétique. Les plasmas
faiblement magnétisés ont été beaucoup moins étudiés malgré leur importance en ce
qui concerne les applications technologiques. Appréhender la formation de structures
à grande échelle dans ces plasmas représente une étape cruciale vers la possibilité
de concevoir des dispositifs E×B dédiés à l’étude des phénomènes fondamentaux
en physique des plasmas. En outre, il existe un intérêt croissant pour l’exploration
de l’impact des collisions dans les plasmas faiblement ionisés dans le contexte astro-
physique, où elles affectent naturellement les courants et la rotation.

Les structures cohérentes en rotation, qui sont supposées se former suite à la man-
ifestation d’instabilités, ont été observées dans les propulseurs à effet Hall où elles
peuvent limite leurs performances. Elles correspondent à une augmentation locale
de la densité du plasma. Des structures cohérentes résultant de l’auto-organisation
du plasma sont également observées dans les plasmas des tokamaks. Il est important
de mieux comprendre les mécanismes conduisant à la formation de ces structures
et leur relation avec les instabilités et le transport du plasma. Cette thèse s’efforce de
répondre à ces questions.

Dans ce qui suit, un bref résumé du manuscrit est donné. Il présente les concepts
clés de la thèse et tous les résultats notables obtenus.

Le premier chapitre de la thèse donne une description générale des plasmas, suivie
d’une présentation de plusieurs expériences sur les plasmas et de leurs applications.
Dans la majorité des expériences à plasma examinés, un champ magnétique externe
est appliqué pour confiner le plasma, ce qui l’isole des parois et réduit les pertes
d’énergie, de sorte que le plasma peut être chauffé pour atteindre une température
élevée, par exemple celle requise pour la réaction thermonucléaire dans les applica-
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tions de fusion. Dans les systèmes de plasma à basse température, le champ mag-
nétique peut être utilisé pour confiner les électrons, ce qui permet de maintenir la
température électronique nécessaire à l’ionisation du gaz neutre. Cela tend à générer
des gradients importants, par exemple une pression plus importante au cœur du
plasma qu’à sa périphérie. Ces gradients entraînent des instabilités dans le plasma.
Des structures en rotation cohérentes peuvent résulter de divers mécanismes et in-
stabilités dans les plasmas. Le processus par lequel les instabilités peuvent donner
naissance à des structures cohérentes implique probablement une série d’interactions
non linéaires et une auto-organisation au sein du plasma.

Le dispositif expérimental standard pour l’étude des plasmas faiblement magnétisés
consiste en une colonne de plasma cylindrique immergée dans un champ magnétique
axial. MISTRAL est un dispositif de ce type basé au laboratoire PIIM. L’expérience a été
conçue pour étudier une colonne de plasma dans une configuration de champs croisés
(E⊥B). Plusieurs mécanismes potentiels, y compris les ondes de dérive, l’instabilité
de Rayleigh-Taylor/Centrifuge, l’instabilité de Kelvin-Helmholtz et l’instabilité de en-
trainement neutre, ont été identifiés comme contribuant potentiellement à la forma-
tion des structures en rotation observées dans MISTRAL. Cependant, l’identification
des instabilités responsables de leur émergence reste difficile à obtenir.

Plusieurs modèles (voir Chapitre 4) ont été proposés pour étudier l’apparition
d’instabilités susceptibles de se transformer en structures en rotation cohérentes
auto-organisées. Cependant, la physique qui sous-tend le développement de ces
structures n’est pas encore comprise. Le travail effectué dans le cadre de ce doctorat
vise à faire progresser notre compréhension de la formation de ces modes de rotation
cohérents et du transport radial associé grâce à une modélisation appropriée. Les
ondes de dérive, les ondes de Rayleigh-Taylor et les ondes de Kelvin-Helmhlotz se sont
avérées responsables du transport radial dans les dispositifs à plasma linéaire [Bro+06],
[Gra+04] et [BGB05]. La grande majorité des modèles développés pour décrire ces in-
stabilités reposent sur l’approximation basse fréquence (LFA). L’approximation basse
fréquence se réfère ici à l’approximation telle que ω−mω0 <<ωci où ω est la partie
réelle de la fréquence perturbée, ω0 est la fréquence du écoulement d’équilibre, m est
le nombre de mode azimutal et ωci est la fréquence cyclotron ionique. Cependant,
dans les plasmas faiblement magnétisés comme MISTRAL, RAID et VKP, la fréquence
des ondes peut être comparable ou supérieure à ωci . Cette approximation à basse
fréquence (LFA) impose des limites à l’étude de la dynamique réelle du plasma et à
la compréhension des instabilités qui peuvent se produire dans le système. En tant
qu’étape initiale cruciale vers la compréhension des modes rotatifs cohérents, il est
essentiel de développer un modèle qui peut être appliqué sur une large gamme de
valeurs de fréquence. Le développement d’un modèle sans cette approximation est
donc l’élément clé de ce travail.

Le Chapitre 2 donne une description générale de l’expérience MISTRAL. Cette tous
les diagnostics intrusifs et non intrusifs disponibles sur MISTRAL sont présentés. Les
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travaux expérimentaux de ce chapitre constituent la base de la modélisation théorique.
Quelques conditions expérimentales de référence sont données afin que les lecteurs
puissent se faire une idée générale de la façon dont les propriétés du plasma changent
dans MISTRAL en fonction de la configuration utilisée. Les profils radiaux moyennés
dans le temps de la densité électronique et du potentiel plasma à différentes valeurs de
pression et de champ magnétique sont fournis en fonction de la configuration utilisée.
On a constaté que le champ électrique agissait radialement vers l’intérieur pour la
configuration utilisée. Les profils de densité électronique et de potentiel plasma sont
paramétrés à l’aide des relations:

ne (r ) = ne0 exp

(
−r 2

r 2
0

)
; φ0 = p1r 2 +p2 (0.1)

où ne0, p1 et p2 sont des constantes. Ici, r est la coordonnée radiale et r0 est la largeur
de la gaussienne utilisée pour paramétrer le profil de densité ; r0 caractérise la diminu-
tion radial de la densité du plasma. Ces profils d’équilibre sont compatibles avec
l’hypothèse de rotation d’un corps rigide utilisée pour l’équilibre (voir le Chapitre
4). Ces paramétrisations fournissent une représentation mathématique permettant
le calcul des quantités nécessaires à la modélisation théorique et à l’analyse du plasma.

En outre, le Chapitre 2 étudie l’influence de la pression et du champ magnétique
sur la fréquence du mode. On constate que la fréquence du mode diminue avec
l’augmentation de la pression, alors qu’elle augmente avec l’intensité du champ
magnétique. Deux configurations supplémentaires sont étudiées pour mesurer les
fluctuations de densité et de potentiel. Ces résultats peuvent être comparés aux pré-
dictions théoriques du chapitre 5 pour l’identification des instabilités. En outre, les
modes m = 1, 2 et 3 peuvent être observés expérimentalement, grâce aux measures de
sondes et de caméra rapide.

Une description générale des différents types de modélisation du plasma est ensuite
présentée au Chapitre 3. Différents types d’instabilités apparaissant dans les plasmas
avec des configurations de champs croisés sont fournis en fonction de leur vecteur
d’onde parallèle (k∥) : instabilité de type flûte et instabilité d’onde de dérive (voir Fig.
3.2). Ici, k∥ = k.B/B représente la composante du vecteur d’onde parallèle à la direc-
tion du champ magnétique. Dans le cas des modes flûte, le mouvement dominant se
produit perpendiculairement aux lignes de champ magnétique. Par conséquent, k∥
est souvent petit ou négligeable par rapport au nombre d’ondes perpendiculaires (k⊥).
Les ondes de dérive, en revanche, sont associées à un nombre d’ondes parallèles non
nul, c’est-à-dire k∥ > 0. Un mécanisme général des instabilités couramment observées
dans les expériences de plasma en laboratoire est également présenté pour donner
une idée de la façon dont ces instabilités se développent.

Une vue d’ensemble des modèles existants pour étudier la stabilité linéaire des plas-
mas en configuration E×B est présentée. Il est souligné que la plupart des modèles
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formulés jusqu’à présent pour étudier les plasmas E×B sont basés sur l’approximation
basse fréquence (LFA) comme expliqué précédemment. En outre, les effets du rayon
de Larmor fini (FLRE) et les collisions de particules chargées avec des neutres sont
importants pour la modélisation des instabilités du plasma dans ces dispositifs de
laboratoire, comme le montre le Chapitre 4.

Afin de construire un modèle approprié pour la description des plasmas MISTRAL,
il est nécessaire de connaître les conditions de plasma typiques rencontrées dans
l’expérience. Le Chapitre 4 présente les paramètres nécessaires à la modélisation du
plasma MISTRAL. Les différentes échelles de temps et de longueur impliquées dans la
dynamique du plasma (Table 1) constituent la base d’une modélisation appropriée et
permettent de formuler des hypothèses pour le modèle de fluide.

Debye length λD 1.3 mm - 0.13 mm
Ion thermal speed vthi 692 ms−1

Electron thermal speed vthe 593 kms−1 - 1027 kms−1

Ion Larmor radius ρi 18 mm
Electron Larmor radius ρe 0.2 mm - 0.4 mm
Ion plasma frequency ωpi 0.53 MHz - 5.3 MHz

Electron plasma frequency ωpe 0.46 GHz - 7.9 GHz
Ion-neutral collision frequency νi n 0.18 kHz - 17.9 kHz

Electron neutral collision frequency νen 24 kHz - 2.4 MHz
Electron-ion Coulomb collision frequency νC

ei 760 Hz - 76 kHz
Electron-electron Coulomb collision frequency νC

ee 760 Hz - 76 kHz
Ion-Ion Coulomb collision frequency νC

i i 125 Hz - 10.6 kHz
Plasma column length L 1 m

Cylinder radius R 10 cm
Ionization rate - < 1%

Table 1.: Échelles de longueur et de temps typiques dans le plasma MISTRAL. Pour calculer la gamme
de λD , n varie de 1014 −1016 m−3 comme indiqué dans le tableau 4.1 et Te ≈ 3 eV est utilisé.

Les informations données dans le tableau 1 montrent que le plasma étudié est
quasi-neutre. Les électrons peuvent être considérés comme fortement magnétisés
tandis que les ions sont faiblement magnétisés. Les hypothèses sont utilisées pour
modéliser les plasmas de MISTRAL.

Un formalisme à deux fluides est ensuite utilisé pour étudier la stabilité des colonnes
de plasma en rotation faiblement magnétisées. Nous considérons un plasma cylin-
drique limité radialement et immergé dans un champ magnétique homogène tel
que B = B êz . Sur la base des caractéristiques expérimentales de MISTRAL et des
conditions de plasma discutées ci-dessus, nous faisons les hypothèses suivantes:

• L’approximation électrostatique est utilisée de telle sorte que ∂B
∂t = 0.
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• Le champ magnétique est uniforme le long de la direction axiale, c’est-à-dire
B = Bêz .

• Les fluctuations le long de la direction axiale sont négligées, c’est-à-dire que
k∥ = 0.

• Profil parabolique pour le potentiel du plasma, cette hypothèse n’est pas valable
à haute pression.

• La température des ions Ti est supposée être radialement uniforme. La tempéra-
ture des électrons varie radialement suivant une distribution gaussienne telle
que Te = Te0 exp

(−r 2/r 2
0

)
.

• Pour conserver un modèle traitable analytiquement, la viscosité gyroscopique
est négligée: ∇·πi = 0, ∇·πe = 0.

• L’inertie des électrons est négligée en raison de la faible masse des électrons par
rapport aux ions, me /mi ≪ 1.

• Les collisions neutres dominent les collisions de Coulomb pour les régimes
rencontrés dans MISTRAL [Ann+11], [Pie16] où νei ,νeiC ,νen/ωce ≪ 1.

• Quasineutralité, ni = ne .

• Rotation d’équilibre du corps rigide.

Sur la base de ces hypothèses, l’équation de continuité pour la j ième espèces est,

∂n j

∂t
+∇· (n j v j ) = 0 (0.2)

L’équation de la quantité de mouvement pour les ions et les électrons est:

ni mi

[
∂vi

∂t
+ (vi ·∇)vi

]
= eni

(−∇φ+vi ×B
)−Ti∇ni −mi niνi nvi (0.3)

0 =−ene (−∇φ+ve ×B)−∇(ne Te ) (0.4)

Le système est fermé en supposant Te et Ti constants dans le temps. Le système
d’équations donné est ensuite linéarisé. Pour la linéarisation, la densité du plasma,
l’écoulement et le potentiel électrique sont écrits comme la somme d’une partie
d’équilibre indépendante du temps désignée par l’indice 0 et d’une partie fluctuante
désignée par l’exposant ∼ comme, n = n0 + ñ, v = v0 + ṽ et φ = φ0 + φ̃ où la partie
fluctuante a la forme suivante :

ñ = n1(r ) exp[i (mθ−ωt )]

ṽ = v1(r ) exp[i (mθ−ωt )]

φ̃=φ1(r ) exp[i (mθ−ωt )]

(0.5)
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Ici, n0 est la densité d’équilibre des ions ou des électrons, φ0 est le potentiel élec-
trique d’équilibre et v0 est l’écoulement d’équilibre. Pour la partie fluctuante, n1 et
φ1 donnent l’amplitude de perturbation de la densité et du potentiel respectivement,
v1(r ) = vr1 êr + vθ1 êθ avec vr 1 et vθ1, la composante radiale et azimutale de la vitesse
perturbée, m est le nombre de modes azimutaux et ω=ωr + iγ où ωr est la fréquence
du mode et γ le taux de croissance.

La densité d’équilibre (n0) et le potentiel du plasma (φ0) sont supposés avoir des
profils gaussiens et paraboliques, respectivement. Ceci est compatible avec les profils
typiques mesurés dans MISTRAL comme donné par l’équation 0.1.

L’écoulement d’équilibre pour les ions et les électrons est ensuite étudié en utilisant
la partie d’ordre zéro de l’équation de quantité de mouvement linéarisée des ions (Eq.
0.3) et des électrons (Eq. 0.4) respectivement. Nous obtenons pour les ions:

4

(
ω̄0 + 1

2

)4

− (
1− ν̄2

i n +4(ω̄E0 + ω̄∗0)
)(
ω̄0 + 1

2

)2

− ν̄2
i n

4
= 0 (0.6)

qui est une équation bi quadratic en ω̄0 dont les solutions sont données par:

ω̄0 =±1

2

√
1

2

[
b +

√
b2 +4ν̄2

i n

]
− 1

2
(0.7)

où b = 1+4(ω̄∗0 + ω̄E0)− ν̄2
i n .

Ici, ωE0 est la fréquence de dérive E ×B :

ωE0 = B×∇φ0

r B 2
· êθ =

φ′
0

r B
(0.8)

et ω∗0 est la fréquence de dérive diamagnétique de l’ion:

ω∗0 = Ti

en0B

B×∇n0

r B
· êθ =

Ti

er B

n′
0

n0
(0.9)

= − Ti

er B

1

Ln
(0.10)

où 1/Ln = −n′
0/n0 = 2r /r 2

0 est le gradient de densité logarithmique. Il convient de
noter que ωE0 et ω∗0 sont indépendants de r en raison du choix de n0 et φ0 donné par
l’équation (0.1).

L’écoulement d’électrons à l’équilibre est:

v̄eθ0 = r̄ ω̄0e with ω̄0e = ω̄E0 + ω̄∗e (0.11)

où ω̄0e est la fréquence du écoulement d’équilibre des électrons et ω̄∗e est la fréquence
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de dérive diamagnétique des électrons ω∗e normalisée à la fréquence du cyclotron
ionique, avec:

ω∗e = − 1

en0B

B×∇(n0Te0)

r B
· êθ (0.12)

La plage de la fréquence d’écoulement d’équilibre est déterminée en utilisant les
valeurs deωE0,ω∗0 et νi n . Pour estimer la gamme de la fréquence de dérive E×B (ωE0)
et la fréquence de dérive diamagnétique des ions (ω∗0), on utilise les paramètres p1 et
r0 obtenus par la paramétrisation des profils de densité et de potentiel correspondant
aux cas de référence A et B dans le Chapitre 2. Ils sont ensuite utilisés dans les
équations suivantes pour trouver la gamme de fréquences désirée:

ωE0 = 2p1

B
; ω∗0 =− 2Ti

eBr 2
0

(0.13)

La gamme de νi n qui est pertinente pour la colonne de plasma MISTRAL a déjà été
donnée dans la section 4.1.2 du Chapitre 2. La gamme des diverses fréquences est
ensuite calculée pour différentes valeurs de champ magnétique et de pression, comme
le montre la figure 1.

Figure 1.: Variation de la fréquence du cyclotron ionique (ωci ), de la fréquence de dérive E×B (ωE0),
de la fréquence de dérive diamagnétique ionique (ω∗0), de la fréquence de l’écoulement
d’équilibre (ω0), de la fréquence de l’instabilité en rotation (νspoke ), de la fréquence de
collision ion-neutre (νi n), de la fréquence de dérive diamagnétique des électrons (ω∗e ) et de
la fréquence de l’écoulement d’équilibre des électrons (ω0e ) pour diverses (a). intensités de
champ magnétique et (b). valeurs de pression. Voir Fig. 4.10 et Fig. 4.11 pour plus de détails.

La figure 1 montre clairement que l’approximation basse fréquence selon laquelle
ω0 << ωci et νspoke << ωci n’est pas valable pour le système de plasma considéré.
Par conséquent, il est impératif de considérer les termes d’ordres supérieurs qui ont
été négligés dans les modèles précédents pour comprendre pleinement la stabilité
linéaire des colonnes de plasma faiblement magnétisées, ce qui est expliqué en détail
dans le Chapitre 5 de la thèse.
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Pour dériver la relation de dispersion qui donne des informations sur le taux de
croissance et la fréquence des modes existants, nous avons d’abord linéarisé les équa-
tions de quantité de mouvement pour les ions et les électrons et les avons couplées
avec leurs équations de continuité respectives pour établir une relation entre la den-
sité normalisée perturbée (n̄1) et le potentiel normalisé perturbé (φ̄1). En couplant
ensuite l’hypothèse de quasi-neutralité et la relation Φ1 = n̄1 +τφ̄1, on obtient une
équation différentielle linéaire pour le cas sans collision,

Φ′′
1 +

[
1

r̄
− 1

L̄n

]
Φ′

1 −
m2

r̄ 2
Φ1 + 1

r̄ L̄n
NΦ1 = 0 (0.14)

où

N = m

[
C

ω̄ph
−

C 2 − ω̄2
ph

ω̄ph −mω̄2
0

]
(0.15)

La solution de l’équation différentielle est obtenue en utilisant la fonction de Kummer
qui satisfait une équation différentielle linéaire spécifique du second ordre appelée
équation de Whittaker. La détermination de la valeur de N à l’aide de la fonction
de Kummer permet de résoudre la relation de dispersion cubique. Cette relation de
dispersion permet de comprendre le comportement global du système considéré.

L’hypothèse LFA étant l’élément clé de nombreux travaux existants, le domaine de
validité de la LFA en fonction de ω0/ωci est mis en évidence dans la figure 2 où la
solution sans la LFA (Eq. (0.15)) est comparée à la solution avec la LFA (Eq. 5.39).

(a) . m = 2 (b) . m = 20

(c) . m = 2 (d) . m = 20

Figure 2.: Taux de croissance normalisé γ/ωci et fréquence décalée Doppler normalisée (ωr −mω0)/ωci

en fonction de la fréquence d’équilibre normalisée (ω0/ωci ) pour (a,c). m = 2 et (b,d). m = 20
pour Z = 10.78. Pour plus de détails, voir Fig. 5.8 au Chapitre ??.
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En outre, les dépendances paramétriques du taux de croissance normalisé et de la
fréquence Doppler normalisée sont étudiées. Le taux de croissance et la fréquence
des différents modes sont fortement influencés aux petites valeurs de r 2

b /r 2
0 en fonc-

tion de la direction de la fréquence d’écoulement d’équilibre. Dans la limite où la

paroi conductrice est éloignée du plasma,

(
r 2

b

r 2
0
>> 1

)
, le taux de croissance du mode le

plus instable est γ̄= |ω̄0|
p

m −1 avec la fréquence Doppler correspondante comme
ω̄r −mω̄0 =−ω̄0 qui est indépendante du nombre de mode azimutal m. Dans cette
limite, le mode m = 1 est stable. Lorsque le rayon du cylindre conducteur est réduit, le
taux de croissance des modes augmente d’abord, y compris celui du mode m = 1 qui
devient instable avant que la stabilisation complète de tous les modes ne soit obtenue.
On constate que le taux de croissance augmente avec le nombre de modes azimutaux.
Ceci est, au moins, dû à la négligence des effets FLR qui sont pris en compte en inclu-
ant le tenseur de gyroviscosité dans l’équation de la quantité de mouvement de l’ion.
L’inclusion des effets FLR stabiliserait tous les modes dont la longueur d’onde est
inférieure au rayon de Larmor de l’ion. Pour les paramètres considérés ici, les modes
avec des nombres de modes azimutaux m > 5 devraient être stabilisés en raison des
effets FLR.

En ce qui concerne la structure des modes, les modes à faible nombre m sont plus
étalés radialement que ceux à nombre m élevé. Pour un numéro de mode fixe, plus le
rayon du cylindre augmente, plus le mode est poussé vers le bord du cylindre. Pour
un rayon du cylindre fixe, la différence de phase entre les fluctuations de densité
normalisées et les fluctuations de potentiel peut prendre n’importe quelle valeur en
fonction de la valeur du nombre de modes, de la fréquence d’écoulement d’équilibre,
de la fréquence d’écoulement E×B, du paramètre r̄0 et de la limite radiale r̄b . La
différence de phase était plus proche de 90◦ dans les régions où la fréquence per-
turbée normalisée (ω̄r ) s’approche de mω̄E0. En outre, la valeur critique de ω̄E0, à
laquelle le déphasage passe de négatif à positif, augmente à mesure que r̄0 diminue.
Les prévisions théoriques de l’amplitude des fluctuations du potentiel normalisé par
rapport à la densité et de la différence de phase ont également été comparées aux
résultats expérimentaux. Certaines divergences ont été constatées dans la compara-
ison, car le modèle ne tient pas compte de la collisionnalité, qui est élevée dans le
plasma MISTRAL et peut éventuellement affecter ces résultats. En outre, les mesures
expérimentales correspondent à l’état non linéaire alors que le modèle est linéaire.

La comparaison des solutions locales et globales de la relation de dispersion a révélé
que les effets globaux jouent un rôle critique dans toutes les gammes de paramètres.
La relation de dispersion locale, qui simplifie l’analyse en négligeant les effets de
conditions aux limites et les variations spatiales, prédit un taux de croissance maximal
près de l’axe du plasma ou de la frontière extérieure. Ces effets de frontière et ces
variations spatiales introduisent une physique supplémentaire qui ne peut pas être
capturée de manière adéquate par le modèle local.

24



Contents

Compte tenu de la fréquence relativement élevée des collisions ion-neutre dans
le système plasmatique actuel, il devient crucial de tenir compte de l’influence de la
collisionnalité sur le comportement de l’instabilité. Au Chapitre 6, une relation de dis-
persion globale est dérivée dans la limite de ϵ→ 0, où ϵ= ν̄i nω̄0/C . Cette étape nous
permet d’examiner l’impact de la collisionnalité sur le comportement de l’instabilité.
Pour faciliter cette analyse, nous comparons le taux de croissance et la fréquence
perturbée obtenus à l’aide de diverses relations de dispersion globales, en incorporant
dans tous les cas les effets de la force de Lorentz et du gradient de pression. Les
comparaisons portent sur des cas avec effets inertiels, effets inertiels combinés à des
collisions et, enfin, collisions uniquement. Ces comparaisons nous permettent de
mieux comprendre comment les différents termes de l’équation du moment cinétique
de l’ion contribuent à la modification du comportement de l’instabilité et à la domi-
nance relative d’un effet par rapport à un autre.

Enfin, les conclusions sont présentées au chapitre 7 pour résumer les principaux
résultats de ce travail. Malgré cela, il reste encore de nombreuses questions ouvertes
qui sont présentées à la fin de la thèse.
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1. Introduction

What is plasma? This question is addressed in many textbooks but there are still
numerous questions related to plasmas that remain unresolved. This thesis represents
a modest attempt to address one of those questions. Before getting into the specifics
of the issue, a general description of plasmas will be given. This can aid a beginning
reader in grasping the fundamentals. The general description of the plasma will be
followed by the practical applications and finally the thesis’s major objective.

From the scientific point of view, matter is often classified in terms of four states:
solid, liquid, gas, and plasma. It is the strength of the bonds holding the constituent
particles together that draws a line of distinction among solids, liquids, and gases. In
solids, binding forces are relatively strong, weak in liquids, and almost absent in gases.
Whether a given system is found in one of these states depends on the random kinetic
energy of its atoms and molecules, i.e. on its temperature. When a sufficient amount
of energy is provided such that the thermal kinetic energy of the particles exceeds
the molecular binding energy, molecular gas will gradually dissociate into atomic gas
due to collisions among the particles. With sufficiently high temperatures, collisions
among the atoms increase and an increasing fraction of atoms possess enough kinetic
energy to overcome the binding energy of the outermost orbital electrons, and an ion-
ized gas or “PLASMA" results. However, this transition is not a phase transition, rather
it occurs gradually with increasing temperature, typically of the order of 10,000 K.
Plasma maintains its electrical neutrality down to very small scales. This is made
possible by the potent electric forces created by the localized charge imbalance.

W. Crookes [Cro79] in 1987 first coined the term “fourth state of matter" to describe
the ionized medium created in the gas discharge often used to describe the plasma
state [KT73]. The word plasma comes from the Greek word which means ‘something
molded’. About 99% of the universe is found to be in the plasma state. As one leaves
the Earth’s atmosphere, one encounters the plasma comprising the Van Allen radiation
belts, the solar winds, nebulae, and stars (Fig. 1.1). In everyday life, encounters with
plasma are limited to a few instances, like, the flash of a lightning bolt, lightning
of a fluorescent tube, Aurora borealis, etc. We live in the 1% of the universe where
plasma does not occur naturally. Although in gas, there is always some small degree of
ionization present, it cannot be called as plasma. Basically, plasma is a quasineutral
gas of charged and neutral particles which exhibits collective behavior [Che16]. The
term quasi-neutral refers to a condition in which plasma is considered neutral enough
(at a macroscopic scale) such that ne ≈ ni approximately holds but not neutral enough
that all electromagnetic forces vanish. Here ne refers to the electron density and ni
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refers to the ion density.

Figure 1.1.: Image of (a).Sun’s Corona [Courtesy: Nasa’s website]. (b). Van Allen radiation belt around
earth [Courtesy: Nasa’s website]. (c). Aurora borealis and (d). Lightning during a
thunderstorm.

Plasma is characterized by three fundamental parameters [Bel06]:

• the particle density n (measured in particles per cubic meter),

• the temperature T of each species (usually measured in eV, where 1 eV=11,605 K),

• the steady-state magnetic field B (measured in Tesla) and electric field E (mea-
sured in V/m).

These three fundamental parameters can be used to determine a wide range of ad-
ditional parameters, including Debye length, Larmor radius, plasma frequency, cy-
clotron frequency, and thermal velocity (see Chapter 4).

Figure 1.2.: Interrelation between Maxwell’s equations and the Lorentz equation. Source[Bel06]

The electromagnetic fields present within the plasma system have a significant
influence on the dynamics of charged particles. These fields can be self-generated re-
sulting from the motion of charged particles or can be applied from external sources as
well, such as electric and magnetic fields. These electromagnetic fields accelerate the
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1. Introduction

charged particles which result in the change of their trajectories. Fig. 1.2 presents how
the particle trajectories are interconnected with the electromagnetic fields through
Lorentz and Maxwell’s equations. There are plenty of references available if one wants
to learn more about those quantities and how to get their literal expression including
[Che16], [LL05], and [Den93].

1.1. Plasma devices and their applications

Numerous plasma devices are available with different characteristics and can be cate-
gorized depending on their applications and plasma properties. For instance, plasma
regimes can be classified as high or low-temperature plasmas, magnetized or non-
magnetized plasmas, fully or partially-ionized plasmas, low or high (atmospheric)
pressure plasmas, and so on.

As an example, plasma surface treatment methods allow for the creation of products
with considerably greater hardness, enhanced corrosion resistance, biocompatibility,
and altered optical and electrical properties [VG21]. A significant plasma application
is the creation of integrated circuits (ICs), which accounts for about 1/3 of the pro-
cesses in semiconductor production. Then there are plasma sterilizers, which use
low-temperature plasma to sterilize medical tools and equipment, ensuring the de-
struction of pathogens such as bacteria and viruses [AYT19]. Plasma torches [Zai+23]
are used in metalworking applications, such as welding, brazing, and soldering. They
produce an intense and concentrated heat source that can melt and join metals.
Plasma mass separators [Gue+19] use plasma physics principles to separate ions
based on their mass differences. The basic technique involves generating a plasma,
ionizing the gas containing the constituents to be separated, accelerating the ions
using electric and/or magnetic fields, and then separating the constituents based on
their mass-to-charge ratio.

In the context of space applications, the Hall thruster [Ada+08] is one of the applica-
tions of plasma physics where a propellant gas is ionized to form a plasma. The plasma
is then accelerated and controlled by electromagnetic fields, creating a high-velocity
plasma jet that provides thrust for spacecraft propulsion.

On a larger scale, the tokamak is a device that has proven to be capable of reach-
ing high densities (≈ 1020 m−3) and temperatures (≈10 keV) for a sufficiently long
time (≈ 1s) to produce large amounts of fusion reactions [WC04]. A tokamak is a
device that uses magnetic fields to constrict a plasma into a donut-shaped structure
known as a torus (see Fig. 1.3), to reach the conditions required for fusion. A powerful
“toroidal" field is produced by one set of magnetic coils and is directed circumferen-
tially around the torus (in blue). A second magnetic field is produced indirectly by a
central solenoid, by inducing a current in the toroidal direction. This current carried
by the plasma generates a magnetic field along the “poloidal" direction, which is the
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1.2. Instabilities, turbulence, and transport in magnetized plasmas

short path around the torus (in green). The two field components produce a twisted
magnetic field that ensures good plasma confinement (in black). An outer poloidal
field created by a third set of field coils is used for the vertical stability and shaping of
the plasma volume (in grey).

Figure 1.3.: Schematic of the Tokamak configuration. [Image Courtesy: Eurofusion]

1.2. Instabilities, turbulence, and transport in
magnetized plasmas

In most of the devices and configurations discussed above, an external magnetic field
is applied for plasma confinement, thus insulating it from the walls and reducing en-
ergy losses so that the plasma can be heated to achieve high temperature, e.g. such as
that required for thermonuclear reaction for fusion applications. In low-temperature
plasma systems, the magnetic field can be utilized to confine electrons, thereby sus-
taining the necessary electron temperature for the ionization of neutral gas. This tends
to generate large gradients, e.g. a larger pressure in the core of the plasma than at
the edge. These gradients drive plasma instabilities. For example, above a threshold
in pressure gradient, instabilities grow and start to interact leading to turbulence.
The associated turbulent transport will limit/decrease the gradients and the plasma
reaches a dynamic equilibrium.

Rotating coherent structures which are assumed to be formed as a result of the
manifestation of instabilities, have been observed in Hall thrusters [Sek+15] where
they are called “spokes” and limit the performance of the device. The word “spoke” in
the context of low-temperature E×B plasmas, is generally used to refer to the region
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1. Introduction

of a local enhancement of the plasma density. Coherent structures resulting from
plasma self-organization are also observed in tokamak plasmas [Dif+15]. There is a
need for a better understanding of the mechanisms leading to the formation of these
structures and their relationship with plasma instabilities and transport.

The next section offers a brief description of one class of devices designed to inves-
tigate the fundamental mechanisms of plasmas in a controlled setting and a relatively
simpler geometry than large-scale toroidal devices.

1.3. Magnetized linear devices to study plasma
dynamics

Coherent rotating structures can arise from various instabilities (see Chapter 4) and
mechanisms in plasmas. The process by which instabilities can give rise to coherent
structures possibly involves a series of nonlinear interactions and self-organization
within the plasma system. Understanding the formation of these large-scale struc-
tures in weakly magnetized plasmas (here weakly magnetized is understood as a
plasma radius of typically 3 to 30 ion Larmor radii (ρi )) is of particular interest for
both fundamental research and technological applications (magnetrons [Abo12], Pen-
ning discharges [Tyu+23], negative ion sources, space propulsion devices [ERF12],
[Sek+15]).

A canonical configuration for the study of weakly magnetized plasmas is a cylindri-
cal plasma column immersed in an axial magnetic field (see Fig. 1.4). Linear devices
have an advantage over tokamaks because they can give a better grasp of the funda-
mental characteristics and behavior of plasmas. In comparison to tokamaks, which
are significantly more difficult and expensive to build and run, linear devices are
simpler and more adaptable in terms of their design and operation. This simplicity
facilitates diagnostics and measurements of plasma parameters. It also simplifies the
understanding and modeling of plasma behavior as the magnetic field is applied along
the axial direction, therefore, the curvature drifts [Che16] arising due to the curved
magnetic field can be neglected. Moreover, the plasma discharge can be run for a
long time in these devices without the problem of damaging the diagnostics and the
device.

With the aid of recent advancements in theory and technology, numerous linear de-
vices have been examining the physics of coherent rotating structures during the past
few years [Man+11],[Fre+03],[AYT07],[Mat+03]. Out of the numerous linear devices
that are available worldwide to study E×B plasmas, the dimensions, control parame-
ters, and source configuration of three devices MISTRAL [A E10], RAID [Fur+17], and
VKP [Pli+14] are given in Table 1.1.

The plasma is generated in these three devices with two methods namely Thermionic
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1.3. Magnetized linear devices to study plasma dynamics

Figure 1.4.: Cylindrical geometry with the cylindrical coordinate system. êr denotes the unit vector in
radial direction, êθ denotes the unit vector in azimuthal direction and êz denotes the unit
vector in axial direction.

discharge (in MISTRAL) and Helicon wave source (in VKP and RAID). Thermionic
discharge is a kind of DC discharge in which the electrons are emitted from a heated
cathode via thermionic emission [LL05]. After being accelerated towards an anode,
the electrons create a discharge and form a plasma column in a cylindrical chamber
filled with a gas. The ionization of gas particles due to emitted electrons results in
plasma formation.

The helicon wave source is a type of radio frequency (RF) plasma source [LL05]. It
utilizes a helical antenna or coil to generate a helicon wave, a form of electromagnetic
wave that propagates through a cylindrical chamber filled with low-pressure gas. A
plasma column is formed along the axis of the cylinder by the helicon wave coupling
with the electrons in the gas.

Device Source Length(m) Radius(cm) P(mbar) Te (eV) Ti (eV) B(mT) ne (m−3)

MISTRAL TD 1 10 10−3 −10−5 1-6 ∼0.1 10-36 1014 −1016

VKP HW 0.8 10 10−2 −10−4 3-5 0.1-1.2 3.5-160 ∼ 1018

RAID HW 1.5 20 10−2 −10−4 1-10 ∼0.1 5-80 1016 −1019

Table 1.1.: Charactersitics of different linear devices available. Here TD refers to thermionic discharge
and HW refers to the helicon wave source used to generate plasma in the given devices.
Length represents the axial length and Radius refers to the radius of the linear plasma
column. P and B denote the pressure and magnetic field respectively under which the given
devices can be operated. Te , Ti and ne denotes the range of electron temperature, ion
temperature, and electron density respectively achievable in the given devices.

The devices listed in Table 1.1 differ in experimental configuration and the range
of plasma parameters. The existence of large-scale structures has been indicated
in these devices [A E10], [Fub+21], [Pli+15] where the azimuthal spoke frequency
and azimuthal ion flow frequency can be typically comparable to the ion-cyclotron
frequency ωci .
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1.4. Thesis motivation and Outline

To investigate the occurrence of the instabilities which possibly develop into self-
organized coherent rotating structures, several models (see Chapter 4) have been
proposed. The entire physics behind the development of these structures, however,
is still not entirely understood. The work done in this Ph.D. aims to advance our
understanding regarding the formation of these coherent rotating modes and the
associated radial transport with appropriate modeling. Drift waves, Rayleigh-Taylor
waves, and Kelvin-Helmhlotz waves have been found to be responsible for radial
transport in linear plasma devices [Bro+06], [Gra+04] and [BGB05]. The large ma-
jority of the models developed to describe these instabilities rely on low-frequency
approximation (LFA). Here LFA refers to the approximation such that ω−mω0 <<ωci

where ω is the real part of perturbed frequency, ω0 is the equilibrium flow frequency,
m is the azimuthal mode number and ωci is the ion-cyclotron frequency. However,
in weakly magnetized plasmas produced in devices like MISTRAL, RAID, and VKP,
the wave frequency can be comparable to or greater than ωci . This low-frequency
approximation (LFA) imposes limitations on the study of actual plasma dynamics and
the understanding of instabilities that may occur within the system. As a crucial initial
step towards comprehending coherent rotating modes, it is essential to develop a
model that can be applied across a wide range of frequency values. This is the purpose
of the thesis which is organized as follows.

Chapter 2 starts with the description of the MISTRAL experiment. The characteriza-
tion of the plasma column with the rotating spoke is done using the Langmuir probe
diagnostic. The obtained characteristics provide a comprehensive range of MISTRAL
plasma parameters. The effect of magnetic field and pressure on the spoke frequency
is documented. The collected data serve as an essential input for the development
and refinement of the theoretical fluid model, which aims to provide an explanation
of the observed phenomena.

In Chapter 3, a discussion of various instabilities responsible for turbulent transport
and the development of coherent rotating structures in linear plasma columns is
provided. An overview of different models to study plasma dynamics in cross-field
configuration (E⊥B) is also presented, offering a deeper understanding of the theoret-
ical frameworks employed in the field.

Chapter 4 focuses on determining the range of essential plasma characteristics,
including Larmor radii, cyclotron frequencies, and collision frequencies in MISTRAL
plasma. These parameters play a crucial role in understanding the plasma behavior
and formulating an accurate model. Various assumptions made during the develop-
ment of the two-fluid model are validated. Then the two-fluid model based on these
assumptions is developed for the plasma system under investigation. The equilibrium
flow for ions and electrons is discussed.
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1.4. Thesis motivation and Outline

In Chapter 5, the global dispersion relation without ion-neutral collision frequency
is derived. Additionally, the dispersion relation in the local limit and in the limit of
LFA is presented. Then the linear stability of the MISTRAL plasma column using
the derived dispersion relation is discussed. The effect of LFA is highlighted and the
emphasis on the removal of LFA is made. The solution of the local dispersion relation
is compared to the global solution of the dispersion relation without LFA. The para-
metric dependencies of growth rate and perturbation frequency are also discussed.

Chapter 6 deals with dispersion relation including ion-neutral collisions in the
limit ϵ→ 0 with ϵ= ν̄i nω̄0/C . The impact of ion-neutral collisions on the growth rate
and frequency of the existing modes is then analyzed. In addition, we compare the
growth rate and perturbed frequency obtained using various global dispersion rela-
tions, incorporating the effects of Lorentz force and pressure gradient in all cases. The
comparisons cover cases with inertial effects, inertial effects combined with collisions
and, finally, collisions only. These comparisons enable us to better understand how
the different terms of the ion momentum equation contribute to the modification of
instability behavior and the relative dominance of one effect over another.

Finally, Chapter 7 highlights the key findings from the thesis and provides an outlook
on possible future developments.
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2. Observation of rotating spokes
in the MISTRAL plasma column

A general description of the linear plasma column experiment MISTRAL along with
the various diagnostics accessible is given. Characterization of the plasma column
is done by measuring the radial profiles of various plasma parameters at different
pressure and magnetic field values. Additionally, the effect of pressure and magnetic
field variation on the spoke frequency and parity is documented.

2.1. Description of the MISTRAL device

MISTRAL is an experimental device based at PIIM laboratory to study instabilities
and the associated transport in E×B plasmas. It can be placed in the category of
magnetized linear plasma devices. In these devices, plasma is confined in a cylindrical
chamber surrounded by magnetic coils that create a magnetic field parallel to the
axis of the chamber. The magnetic field serves to confine the plasma by influencing
the motion of the charged particles within the plasma. The schematic of MISTRAL is
shown in Fig. 2.1. It is divided in two parts mainly: a source chamber and the study
chamber (cylindrical plasma column) (Fig. 2.1).

2.1.0.1. The source chamber

The source chamber consists of 32 tungsten filaments powered by a current of ap-
proximately 4 A each, emitting primary electrons by thermionic emission. After being
emitted, the electrons are attracted by the anode, a honeycomb-shaped structure
placed inside the source chamber and electrically isolated from the chamber’s wall.
The chamber’s wall is at the ground. Hundreds of permanent ferrite magnets having
a magnetic field in the range of 80-100 mT are fixed on this anode. Each magnet
has an opposite polarity as compared to its nearest neighbor. This creates a local
magnetic cusp configuration and prevents the emitted electrons from reaching the
anode before creating a plasma in the source chamber or before being injected into
the study chamber.

To have a homogenous plasma inside the linear column, two compensating coils
around the source chamber prevent the electrons from following the magnetic field
lines after entering the linear plasma column. These coils create a magnetic subfield
in the direction opposite to the magnetic field along the linear plasma column. This
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2. Observation of rotating spokes in the MISTRAL plasma column

Figure 2.1.: Schematic of MISTRAL. The boundary conditions can be easily controlled or changed. The
cylinder is at the ground. The separating and collecting grids are connected and polarized
at a negative potential.

results in the formation of a “cusp" (see Fig. 2.2) in front of the filaments. In this way,
the trajectory of the electrons emitted from the filaments is deviated and they do not
enter directly into the linear cylindrical column.

Figure 2.2.: Magnetic field lines forming a cusp in a cross-section of the source chamber. Source[Reb10]

2.1.0.2. Limiter

The linear plasma column and the source are divided by a grounded metallic di-
aphragm called limiter. The size of the diaphragm sets the diameter of the plasma. In
the case of MISTRAL, the limiter opening has a diameter of 8 cm. The area beyond this
diameter in the study chamber is referred to as the shadow of the limiter. The limiter
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2.2. Available tools and diagnostics

induces a strong radial gradient in the plasma density which is one of the factors
leading to the formation of instabilities in MISTRAL plasma.

2.1.0.3. Cylindrical vessel and linear plasma column

Primary electrons ionize the gas particles by collisions resulting in the formation of a
plasma in the linear cylindrical column. An outer cylindrical vessel with a diameter of
40 cm surrounds the cylindrical chamber in which plasma is generated. The generated
plasma can be seen from the glass window at the end of the linear column. The
cylindrical chamber has a length of 1.2 m and is 20 cm in diameter. The main coils, as
shown in Fig. 2.1, surround the cylindrical vessel and generate an axial magnetic field
within the range of 10 - 36 mT. Depending on the requirements of the experiment,
the linear cylindrical column can either be polarized, floating, or connected to the
ground.

2.1.0.4. Boundary conditions

Two polarizable grids are placed at both ends of the plasma column setting the axial
boundary conditions. The separating grid which separates the source chamber and
the study chamber (cylindrical column) is usually polarized negatively to prevent
low-energy electrons from entering the column. At the end of the plasma column is a
second polarizable grid known as the collecting grid. Controlling the axial boundary
conditions, which are determined by the biasing of these grids, allows one to alter the
state of the plasma. In Fig. 2.1, the grids are connected and polarized at a negative
potential which is one of the configurations used for the experiments given in section
2.5. Nonetheless, the grids can also be grounded or left floating, biased separately or
together, depending on the requirements of the experiment.

The values of fixed or manually regulated experimental parameters on Mistral are
summarized in the table 2.1.

In MISTRAL, the plasma self-organizes to generate a radial electric field. This elec-
tric field, combined with the axial magnetic field results in a cross-field configuration
(E⊥B), also, commonly found in tokamaks, Hall effect thrusters, and ion sources.
MISTRAL stands out as a human-scale device that can be operated by a single person.
It is designed with multiple optical apertures and access points for intrusive diagnos-
tics. Notably, MISTRAL offers the advantage of steady-state operation for extended
durations.

2.2. Available tools and diagnostics
A number of diagnostics are available on MISTRAL including Langmuir probes, Laser-
Induced Fluorescence (LIF), Sonification of the plasma, Intensified camera, and to-
mography. These diagnostics are documented in [Dav17], [Jae10], and [Reb10]. In
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2. Observation of rotating spokes in the MISTRAL plasma column

Parameter Unit Value
Cylinder Length (L) m 1.2
Core plasma radius cm 4
Cylinder radius (R) cm 10
Magnetic field (B) mT 10-36

Pressure (P) mbar 10−3 −10−5

Filament current A 120-140
Discharge voltage V 50

Anode voltage V 20
Separating grid polarisation V -40 - 40/ floating
Collecting grid polarisation V -40 - 40/ floating

Cylinder polarisation V -40 - 40/ floating

Table 2.1.: Mistral experimental parameters

the scope of this thesis, only the Langmuir probe has been used as a diagnostic to
characterize the linear plasma column. A brief overview of how these diagnostics are
helpful in characterizing the MISTRAL plasma is given in the following section.

2.2.1. Langmuir probes

Langmuir probes also called electrostatic probes, are one of the most common di-
agnostics available to characterize the plasma. It works on the simple principle of
introducing an electrode in the plasma, biased at the potential VB with respect to the
ground as shown in Fig. 2.3(a). On varying the potential VB , the current I is recorded
and one can obtain the I (VB ) characteristics as shown in Fig. 2.4. From the result-
ing I (VB ) characteristics, a number of plasma parameters like plasma potential (Vp ),
floating potential (V f ), electron density (ne ), and electron temperature (Te ) can be
determined.

The ion Saturation Current, or I i
sat , is located at the most negative biasing, where

all of the electrons have been repelled. The potential at which the electron and ion
currents are equal such that the net current is zero is called floating potential V f . In
the transition region between V f and Vp , the electrons are repelled by the potential
VB −Vp . All the flux of the electrons is gathered as VB reaches Vp . In the electron satu-
ration region, the electron current Ie increases slowly because of sheath expansion
[LL05].

The obtained I (VB ) characteristic can be divided into three parts: the ion saturation
region, the transition region, and the electron saturation region (see Fig. 2.3 (b)).
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2.2. Available tools and diagnostics

Figure 2.3.: (a). The electrical circuit of a Langmuir probe [LL05] and (b). Ideal characteristics obtained
by using a Langmuir probe

Figure 2.4.: I (VB ) characteristics of a Langmuir probe for an experimental case of MISTRAL. The red
curve denotes the first derivative of I w.r.t. VB .

2.2.1.1. Ion saturation region

When the probe potential is negative enough to repel all the electrons, only ionic
current is collected. The ionic current collected is, I i

sat =−ens vs As where ns is the ion
density and vs is the velocity at the sheath edge, As is the surface of the sheath limit.
It enables a satisfactory assessment of the ionic density under ideal experimental
conditions.

However, the density at the sheath edge is not exactly equivalent to the bulk plasma
density because of the presence of the pre-sheath region (Fig. 2.5 ). In this case, the
ionic velocity must meet the Bohm sheath criterion due to the physics of the sheath
in front of the probe [LL05]. The current collected at the bias far below the floating
potential (VB <<V f ) is then the ion saturation current,

|I i
sat | = eαni uB As (2.1)

whereα is ns/ni ; it represents the density at the sheath edge (ns) relative to the density
of the bulk plasma (ni ) and uB =p

Te /mi is the Bohm speed. This implies that the
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2. Observation of rotating spokes in the MISTRAL plasma column

ion saturation current serves as a measure of the plasma density when the electron
temperature and, hence, uB , are known.

Figure 2.5.: Qualitative behavior of sheath and pre-sheath in contact with a wall. Source [LL05]

2.2.1.2. Floating potential (V f )

By increasing the probe potential from the ionic saturation region, fewer and fewer
electrons are repelled by the probe from the plasma. When the (small) portion of
electrons captured is just sufficient to cancel the ionic current such that Ie + Ii = 0,
then the probing potential corresponding to this current is known as the floating
potential V f . It refers to the potential at which an isolated object places itself in order
to maintain the equality of the collected ionic and electronic currents.

2.2.1.3. Plasma potential (Vp)

There are two distinct ways by which plasma potential can be measured [Che03]. In
the transition and electron saturation areas, draw straight lines through the I (VB )
curve, designating the crossing point as Vp (see Fig. 2.3(b)) However, it does not work
well if the electron saturation region is curved as shown in Fig. 2.4. Then, one can
take another approach. The measure of the maximum of I ′(VB ) (Here ’ refers to the
derivative w.r.t. to VB ) corresponds to the plasma potential Vp [Che03] as shown in
Fig. 2.4, where I ′(VB ) has a clear maximum.

2.2.1.4. Transition and electron saturation region

Between V f and Vp , only the electrons of sufficient energy are able to cross the po-
tential drop between the plasma and the probe to reach the collecting surface, which
results in an electronic current varying exponentially with the probe potential given
by [Che03]:

Ie = I e
sat exp

(
e(VB −Vp )

Te

)
(2.2)
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where

I e
sat =

e Ane v̄

4
= e Ane

√
Te

2πme
(2.3)

is the electron saturation current at Vp and A is the collecting surface area of the probe
tip. The electron current increases exponentially when VB approaches Vp . This expo-
nential development is related to the electron temperature through the Maxwellian
distribution of electron velocities. Therefore, Te can be evaluated from the slope of
ln(Ie )−VB curve which can be obtained using Eq. 2.2. Ie to be used in the Eq. 2.2 can
be calculated by subtracting ionic current from the total current.

As the plasma is created by the injection of primary electrons in the linear column
of MISTRAL, the presence of these primary electrons can interfere with the Langmuir
probe characteristics originally measured for the secondary electrons [Jae10]. In con-
crete terms, the primary electrons manifest themselves in the form of an additional
characteristic. One of the factors leading to the slope appearing in the ion saturation
region of the I (VB ) characteristics shown in Fig. 2.4 is the effect of primary electrons.
The other factor is the gradual transition in the ion distribution within the presheath
[Che03]. Therefore, to accurately determine plasma density using the ion saturation
current, one can measure the ion density by polarizing the probe at a potential less
than the energy of the primary electrons. Another way is to estimate the electron
density using the electron saturation current as given by Eq. 2.3.

Although the basic working principle of the Langmuir probe is rather straightfor-
ward, the theory that governs how probes function can be very intricate. A detailed
explanation of these theories is available in [Che03]. In fact, the presence of the probe
in the plasma disturbs it, modifying the parameters to be measured. In addition,
sheath phenomena appear naturally in the vicinity of the probes which modify their
effective surface, especially when a significant current is collected or when a magnetic
field is present [Hut02].

In the context of this work, a motorized Impedans Langmuir probe is used to mea-
sure the plasma characteristics, and the details of the measurements are given in
Section 2.5.

2.2.2. Sonification of the plasma

The measured Langmuir probe signals can be seen on the oscilloscope’s display. How-
ever, walking around the room to manage other diagnostics when doing an experiment
is often necessary. Rotating modes can be investigated on Mistral, as will be discussed
in section 2.3. Sonification enables the aforementioned probe signal rotating at a fre-
quency of a few kHz to be transmitted from speakers [Esc12]. The frequency or sound
variations make it simple to spot any shifts from a normal frequency mode to erratic
or irregular behavior. The plasma can then be freely observed while concentrating
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2. Observation of rotating spokes in the MISTRAL plasma column

on other things from anywhere in the room. Using this diagnostic to keep track of
the stationary rotating modes during the measurements specified in the section 2.5
proved to be incredibly helpful.

2.2.3. Fast camera diagnostic

MISTRAL has an axial monochrome camera located at the end of the column that
can capture up to 900,000 img/s. This fast camera allows us to observe the flute
modes. Pictures from the column’s end and the side aperture can be obtained, either
directly or through averaging over numerous synchronized acquisitions, as shown
in [Ann+11]. The use of the camera is based on the fact that the ionization rate in
MISTRAL being very low, the emitted light is mainly due to the de-excitation of the
neutrals. In addition, the number of energized neutrals in a radiative state, i.e. being
able to de-excite by emission of a photon, is proportional to electron density, ne . The
brightness of a pixel of the camera is thus proportional to ne (ignoring the fluctuations
in electron temperature Te )[A E10].

Figure 2.6.: Axial view of the spoke rotating around the central plasma column which has been masked
with a 10 cm disk. Source[A E10]

The sensor dynamics preclude simultaneous imaging of the core and edge plasma
when imaging the plasma from the end of the column (to have an average radial
distribution of the emissivity). The edge appears black when the core plasma is
measured. On the other hand, in order to observe the edge, the core plasma must be
covered. The camera can be used in particular to determine the direction of rotation
of the instability and the mode parity m. An example of how the image taken with
the help of fast camera diagnostics after processing appears is shown in Fig. 2.6. The
mode is rotating in the anticlockwise direction with the mode parity m = 1.
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2.2. Available tools and diagnostics

2.2.4. Laser Induced Fluorescence
Laser Induced Fluorescence (LIF) is a local and non-intrusive diagnostic that was
installed and used extensively during the Ph.D. of C. Rebont [Reb10]. This technique
allows the measurement of many plasma properties with a high degree of spatial and
temporal resolution. It is a plasma diagnostic technique in which a laser is tuned to
a transition from a sufficiently populated level of an atom, ion, or molecule, usually
a ground or metastable level. The subsequent fluorescence, when the atom, ion, or
molecule undergoes a transition to a lower level which may be directly or indirectly
connected to the excited level is observed (see Fig. 2.7). LIF can be used to identify the
presence of species, their densities, and their velocity distribution functions [EKG20].

Figure 2.7.: Schematic of LIF. A laser excites a low-lying metastable state in the discharge gas. The
atom in the intermediate excited state then de-excites, releasing a photon, which gives the
laser-induced fluorescence (LIF) signal.

The velocity map of a plasma section, determined for azimuthal mode number
m = 2 by LIF (see figure 2.8), shows a complex structure [Reb+11], [Cla+18] with ions
moving radially between the arms and azimuthally at the position of the plasma
arms. The dotted axis in the middle locates the presence of the maximum density
of the spiral arms. The angle formed between the electric field and the velocity is
approximately π/2. A more detailed explanation can be found in [Reb+11].
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2. Observation of rotating spokes in the MISTRAL plasma column

Figure 2.8.: Spatial reconstruction of velocities and electric field. The solid line vectors represent the
velocities and the electric field is represented by the dashed arrows. Source[Reb10]

2.2.5. Tomography

Tomography also comes in the category of non-intrusive diagnostics that was installed
and used to investigate the occurrence of global rotating modes in the linear plasma
column of MISTRAL during the Ph.D. of P. David [Dav17]. Tomography is based on
the principle of solving an inverse problem. The line-integrated plasma emissivity is
measured along different viewing directions or lines of sight using a photodiode. The
local plasma emissivity can then be determined by applying a numerical algorithm
for the tomographic inversion of the line-integrated measurements [Dav+17].

Figure 2.9.: Evolution of the emissivity variation δE for a m = 2 rotating mode. Each image is separated
by 45 µs and the period of the mode of about 195 µs. Values are normalized to the average
emissivity at the center. Source[Dav17]

A result from [Dav17] is shown in Fig. 2.9 where the tomographic inversion of plasma
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2.3. Coherent rotating modes in MISTRAL

emissivity (δE ) normalized to average emissivity (< E >t ) is presented for mode m = 2.
The measured emissivity is proportional to the primary and thermal electron densities
as given in [Dav+17].

2.2.6. Spectro-tomography

The spectro-tomography technique is the combination of the well-known spec-
troscopy technique and the widely used tomography analysis method. Spectro-
tomography combines the advantage of these two approaches to simultaneously
offer spatial and spectral resolution. The coupling of spectroscopy and tomography
techniques gives access to the local plasma light emission at different wavelengths
(visible and near IR) in the plasma. This method provides 2D maps of light intensities
at different wavelengths, giving access to the plasma electronic density and tempera-
ture. The tomography setup installed on MISTRAL [Pie16] was updated to perform
visible spectro-tomography [Gon+20]. 2D maps of the electronic density and plasma
temperature were measured and found to be in good agreement with the Langmuir
probe results.

2.3. Coherent rotating modes in MISTRAL

Coherent rotating modes have drawn attention for more than half a century, although
their exact nature is still unknown. Coherent rotating modes are self-organizing struc-
tures that exhibit long-wavelength and plasma oscillations having frequency of the
order of 10–100 kHz [KHK18]. These are often observed in a cross-field configuration,
where the electric field and magnetic field are perpendicular to each other (E⊥B).
These rotating structures propagate either along (+) or opposite (-) of the E×B drift
direction depending on the plasma properties and the geometry of the electromag-
netic fields [IC08].

In the past few decades, coherent rotating structures have been frequently observed
in various linear devices [Man+11], [Tan+12], [Gra+04], [Pow+18], [Cor+15]. In each
instance, the observable structures have been interpreted differently. For example,
some coherent low-frequency rotation modes are explained as flute modes [Bro+06],
as blobs in [Man+11], or as a spoke [Pow+18]. A brief comparison of the instabilities
leading to the formation of these rotating modes and the associated theories with the
respective parameters and hypotheses is provided in Chapter 4.

Coherent rotating spokes have been observed in MISTRAL plasma with the experi-
mental evidence given in [SPR09], [Mat+03], and [Pie+04]. The current collected by
two probes placed at the same distance from the wall and facing each other (see Fig.
2.10 (b)) can determine the frequency and parity of the spokes. Both probes detect
a current oscillation at the same frequency when there is a rotating mode, and the
parity of the mode is determined by the phase difference between the two signals. If
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2. Observation of rotating spokes in the MISTRAL plasma column

Figure 2.10.: (a). Mode m = 1 in MISTRAL (b). Schematic to check mode parity in MISTRAL using
Langmuir probes

the signals are in phase, the mode is said to have even parity; if they are out of phase,
the mode is said to have odd parity. The fast camera analysis that has been done in the
previous works [A E10], [Vid21] also supports the existence of m = 1,2 and 3 modes in
Mistral (see Fig. 2.6, 2.13), where m is the azimuthal mode number. Fig. 2.10(a) shows
the signals measured on the oscilloscope when the probes are placed as shown in Fig.
2.10(b) in the plasma column at the same distance from the center and it corresponds
to m = 1 mode.

2.4. Different configurations explored in MISTRAL
with rotating spoke

By controlling the axial boundary conditions, the biasing of the cylinder, pressure, and
magnetic field, MISTRAL can be used in a variety of configurations. A coherent rotat-
ing mode is not necessarily obtained with a random set of experimental parameters.
Therefore, to achieve a state with a regular frequency spoke, it is necessary to adjust
various experimental parameters. This section lists a few different configurations
using two different gases Ar and Xe so that readers can get a general idea of how the
plasma state changes in MISTRAL based on the configuration utilized [Vid21].
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2.4. Different configurations explored in MISTRAL with rotating spoke

Schematic Reference cases

In this case, the separating grid, the
collecting grid, and the cylinders are
connected and then polarized at -34 V
as shown in the corresponding image.
The other fixed parameters are listed
below,

1. Configuration I:
• Gas used: Argon
• B=160 G, P=1.1×10−4 mbar.
• Vanode = 20 V, Ianode = 5.1 A
• Vdi s= 50 V, Idi s= 6.7 A
• V f i l = 16.8 V, I f i l = 130 A

In this case, the separating grid, the
collecting grid, and the cylinders are
connected and then polarized at -10 V.
The other fixed parameters are listed
below,

1. Configuration II:
• Gas used: Xenon
• B=160 G, P=5×10−5 mbar.
• Vanode = 20 V, Ianode = 3.8 A
• Vdi s= 50 V, Idi s= 6.9 A
• V f i l = 16 V, I f i l = 120 A

For this case, the separating grid is kept
floating and the collecting grid is con-
nected to the cylinders and then po-
larized at 16.8 V as shown in the cor-
responding image. The other fixed pa-
rameters are listed below,

1. Configuration III::
• Gas used: Argon
• B=160 G, P=1.22×10−3 mbar.
• Vanode = 20 V, Ianode = 10.8 A
• Vdi s= 50 V, Idi s= 7.64 A
• V f i l = 16.6 V, I f i l = 110 A

Table 2.2.: Schematic for the experimental configuration with the required parameters. Probe 1 and
Probe 2 detect the mode parity and frequency. Probe 3 is a motorized probe to perform
measurements at various radial positions. Vanode and Ianode corresponds to the anode
voltage and current respectively. Vdi s and Idi s refers to the discharge voltage and current
respectively. V f i l and I f i l is the filament voltage and current respectively. All these compo-
nents have already been explained in Section 2.1.
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2. Observation of rotating spokes in the MISTRAL plasma column

Figs. 2.11 (a), 2.12 (a) and 2.13 (a) present the processed camera images taken for
Configurations I, II and III respectively. The mode parity was observed to be m = 1
with a spoke frequency of 3.3 kHz for Configuration I, m = 2 with a spoke frequency
of 0.79 kHz for Configuration II and m = 3 with a spoke frequency of 0.55 kHz for
Configuration III. The central bright plasma was covered with a disk in order to observe
the plasma arms in the shadow of the limiter. This work was performed with Théo
Vidril as a part of his master’s thesis and the experimental protocol for performing the
measurements can be found in [Vid21]. The corresponding normalized fluctuations
for electron density are also displayed in the polar coordinates (Fig. 2.11 (b)) by using
the data measured by employing the Langmuir probe which makes the fluctuations
more visible. For more details refer to [Vid21].

Figure 2.11.: (a). Fast camera image acquisition synchronized to the rotating spoke with a dedicated
polarised probe and (b). normalized fluctuations of electron density for Configuration I.
Here < . >θ denotes the azimuthal mean and maxθ denotes the maximum corresponding
to the variable θ.

Figure 2.12.: (a). Fast camera image acquisition synchronized to the rotating spoke with a dedicated
polarised probe and (b). normalized fluctuations of electron density for Configuration II.
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Figure 2.13.: (a). Fast camera image acquisition synchronized to the rotating spoke with a dedicated
polarised probe and (b). normalized fluctuations of electron density for Configuration III.

The modes m = 1,3 appear to have a spiral shape whereas this is not the case for
mode m = 2 obtained for the Configuration II.

In addition to the experimental investigation, theoretical modeling is required to
investigate the physics behind the existence of coherent rotational modes in MIS-
TRAL. Knowing the range of different plasma parameters can be useful in figuring out
what assumptions are necessary to develop and validate the theoretical model. The
next section details the measurement of these variables required for the theoretical
modeling discussed in Chapter 4 and Chapter 5. The time-averaged radial profiles of
electron density and electron temperature at various pressure values and magnetic
field strengths provide a range of the necessary values.

2.5. Reference experimental conditions

In the present investigation, a specific configuration is employed for a particular ref-
erence case. Unless otherwise stated, Ar gas is used for generating the plasma.

The description of the employed configurations along with the variable and fixed
parameters used to determine the range of plasma characteristics is given in table 2.3,
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2. Observation of rotating spokes in the MISTRAL plasma column

Schematic Reference cases

For this case, the separating and
collecting grids are connected and
polarized at -30 V, and both the half
cylinders were kept at the ground as
shown in the corresponding image.
The other parameters were fixed as
given below:

• Vanode = 20 V, Ianode = 3.9 A
• Vdi s= 50 V, Idi s= 4.54 A
• V f i l = 16.4 V, I f i l = 122.2 A

Two reference cases are discussed
based on this configuration:

1. Reference case A:
• B→varied, P≈ 10−4 mbar.

2. Reference case B:
• B=160 G, P→varied.

Table 2.3.: Schematic for the experimental configuration with the required parameters relevant to the
measurements given in section 2.5.

2.6. Time averaged profiles

Time-averaged radial profiles of electron density ne and plasma potential Vp corre-
sponding to the experimental configurations shown in table 2.3 are depicted in this
section. The time-averaged plasma characteristics are measured using a motorized
Impedans Langmuir probe system. To determine the exact center position of the
plasma column, the calibration was performed with the help of a laser. An error of
±3 mm can still be accounted for the probe placement over the range of 10 cm.

2.6.1. Radial profiles for reference case A: magnetic field scan

To observe the impact of the change in the magnetic field on plasma parameters,
radial variation in electron density and plasma potential at different magnetic field
intensities was observed. This factor could potentially affect the measured plasma
characteristics. Fig. 2.14 and Fig. 2.15 shows the radial variation of electron density ne

and plasma potential Vp at various magnetic field intensities.

The electron density and plasma potential both were found to decrease with the
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Figure 2.14.: Radial variation of electron density ne for increasing magnetic field. The dashed black line
represents the location of the limiter. The dots represent the experimental measurements
and the solid lines represent the theoretical fits.

Figure 2.15.: Radial variation of plasma potential Vp for increasing magnetic field. The dashed black
line represents the location of the limiter. The dots represent the experimental
measurements and the solid lines represent the theoretical fits.

increase in the magnetic field intensity. However, one would expect an increase in
electron density near the axis of the plasma column with the increase in magnetic field
strength. It will be shown in Section 2.8.2 that with the increase in magnetic field inten-
sity, the plasma oscillations became relatively unstable which may lead to an outward
radial transport. It is important to note that while conducting these measurements,
only the current in the coils surrounding the linear cylindrical column was changed.
The current in the compensating coils that govern the trajectory of primary electrons
in the source chamber remains unchanged. Additionally, the pressure of the plasma
column noticeably changed when the magnetic field was being varied. These factors
could potentially contribute to the unexpected behavior of electron density as the
magnetic field strength of the plasma column increases. However, a complete expla-
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2. Observation of rotating spokes in the MISTRAL plasma column

nation is currently unavailable and further investigation is required to understand this.

As the plasma potential is increasing radially, the electric field is centripetal or is
acting radially inwards. Due to this centripetal electric field, ions will experience a
force directed towards the center of the column. This confinement force acts to keep
the ions within the central region of the plasma column. Electrons being negatively
charged, will experience a force away from the center of the column due to the inward
electric field. This force will tend to push the electrons towards the outer region of the
plasma column.

2.6.2. Radial profiles for reference case B: pressure scan
Electron density and plasma potential profiles were measured at various pressure
values. The magnetic field was fixed at B = 160 G. Fig. 2.16 and Fig. 2.17 illustrate the
radial variation of electron density ne and plasma potential Vp at different pressure
values.

Figure 2.16.: Radial variation of electron density ne for increasing pressure. The dashed black line
represents the location of the limiter. The dots represent the experimental measurements
and the solid lines represent the theoretical fits.

Contrary to what was observed with the change in magnetic field, the electron
density and plasma potential were found to increase with the increase in pressure. As
in the magnetic field scan, the electric field is radially inward. All the potential profiles
observed so far are parabolic within the measured uncertainties. However, this is not
systematic. At higher pressure, deviations from a parabolic profile are observed (see
Fig. 2.18). The plasma potential profiles exhibit non-monotonic behavior closer to the
location of the limiter where the electric field is directed outwards.

Corresponding to these configurations, the electron temperature and floating po-
tential profiles are shown in Appendix A. In the following chapters, we will see that
only these two parameters (electron density and plasma potential) are necessary to
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2.6. Time averaged profiles

Figure 2.17.: Radial variation of plasma potential Vp for increasing pressure. The dashed black line
represents the location of the limiter. The dots represent the experimental measurements
and the solid lines represent the theoretical fits.

Figure 2.18.: Radial variation of electron density (ne ) (left) and plasma potential Vp (right) for increasing
pressure. The dashed black line represents the location of the limiter.

investigate the dynamics of the plasma generated in the linear cylindrical column.
One of the factors leading to the observed radial density gradient can be attributed
to the presence of a limiter at the input of the plasma column. Furthermore, the
controlling factors for the plasma potential are likely related to the biasing of separat-
ing and collecting grids which aid in maintaining axial symmetry, and the biasing of
linear cylindrical column, which governs the radial boundaries of the plasma. A more
comprehensive investigation is required to delve deeper into these factors and their
influence on plasma characteristics.

2.6.3. Radial profiles for Configuration I
Fig. 2.19 shows the radial profiles of ne and Vp corresponding to Configuration I in
Table 2.2. The electron density is following a Gaussian distribution with a peak around
r=3 cm. The radially increasing plasma potential indicates a centripetal electric field
as obtained in ref. cases A and B. One thing to note here is that in this case, the cylinder
is polarized at the same voltage as that of the grids. This results in bringing the plasma
potential closer to the polarization of the cylinder at the edge of the plasma column.
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2. Observation of rotating spokes in the MISTRAL plasma column

Figure 2.19.: Radial variation of electron density (ne ) (left) and plasma potential Vp (right) for ref. case
C. The dots represent the experimental measurements and the solid lines represent the
theoretical fits.

In the ref. cases A and B where the cylinder was at the ground, the plasma potential
also approaches the same polarization at the edge of the column.

2.6.4. Radial profiles for Configuration III

Time-averaged radial profiles of ne and Vp for Configuration III are provided in this
section [Vid21]. The experimental configuration for this case is given in table 2.2.

Figure 2.20.: Radial variation of electron density (ne ) (left) and plasma potential Vp (right) for ref. case
D.

The electron density is following a Gaussian distribution as before. The electron
density obtained in this configuration is greater by a factor of 10 than that obtained in
ref. cases A and B due to the positive polarization of the collecting grid. The plasma
potential is following a parabolic profile and is decreasing from the center towards the
edge of the plasma column. This trend of the variation in plasma potential makes the
electric field act radially outwards or centrifugal. This implies that the ions within the
central region of the plasma column will experience a force resulting in outward radial
transport. Since the electrons are negatively charged, they will be directed towards the
center of the plasma column, opposing the outward radial electric field.
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2.7. Parameterization of electron density and
plasma potential profiles

In the aforementioned cases (showing the variation of plasma characteristics with
pressure and magnetic field), the electron density follows a Gaussian distribution and
the plasma potential follows a parabolic profile. These curves can be parameterized
using the Gaussian distribution for electron density and parabolic distribution for
plasma potential given as,

ne (r ) = ne0 exp

(
−r 2

r 2
0

)
; φ0 = p1r 2 +p2 (2.4)

where ne0, p1 and p2 are constants. Here r is the radial coordinate and r0 is the width
of the Gaussian used to parametrize the density profile; r0 characterizes how fast the
plasma density decays to zero when moving radially outward. Such parameterizations
provide a convenient mathematical representation, enabling the calculation of various
quantities necessary for plasma modeling and analysis.

2.7.1. Magnetic field scans

Figure 2.21.: Variation of parameter r0 for increasing magnetic field strength.

Figure 2.22.: Variation of parameters p1 (left) and p2 (right) for increasing magnetic field strength.
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The curve fits for the electron density (ne ) and plasma potential (Vp ) shown in Sec-
tion 2.6.1 are performed using Eq. 2.4 for various magnetic field intensities. Fig. 2.21
and 2.22 shows the variation of the parameters r0, p1 and p2 with magnetic field
obtained by fitting the experimental data. It can be seen that r0 varies slowly until B =
240 G and as B > 240 G, it starts increasing. The increase in r0 with the increase in B
simply indicates that the Gaussian profile is broadening and the density is decaying
to zero more slowly at higher B values in comparison to smaller B values as we move
away from the center.

The parameter p1 is increasing whereas p2 is decreasing with the increase in mag-
netic field strength. p1 represents the steepness of the potential profile and is positive
for the inward electric field. The parameter p2 determines the value of the potential
on the axis.

2.7.2. Pressure scans
On a similar basis as done for various magnetic field strengths, the experimental data
for ne and Vp obtained for various pressure values at different radial positions (Figs.
(2.16,2.17) is parameterized using Eq. 2.4 and is shown in Figs. 2.23 and 2.24. The
plasma potential profiles obtained at P < 2.6×10−4 mbar are not completely parabolic
which makes it challenging to fit the plasma potential profile with the parabolic fit.
However, the parameters calculated from the approximative fit can be used to have an
estimate of p1 and p2.

Figure 2.23.: Variation of parameter r0 for increasing pressure.

The parameter r0 is increasing abruptly until P = 2.6×10−4 mbar. From
P = 2.6×10−4 mbar onwards, the increase in r0 gets slower and the increase in r0

with the increase in pressure follows a parabolic behavior. The parameter p1 is ex-
ponentially decreasing with the increase in pressure whereas the parameter p2 is
exponentially increasing with the increase in pressure.

In conclusion, the variations in r0 are moderate (20%) and the width of the density
profile is mostly determined by the limiter diameter.
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Figure 2.24.: Variation of parameters p1 (left) and p2 (right) for increasing pressure.

2.7.3. Parametrization results for Configurations I and III

Even though for Configurations I and III, the scans in pressure and magnetic field
were not performed, still the parameters can be computed from the parameterization
of the radial profiles for the respective cases shown in Fig. 2.19 and Fig.2.20.

For Configuration I, the parameters are r0 = 6.4 cm, p1 = 160.2, and p2 =−32.02.
Regarding Configuration III, the parameters are r0 = 6.2 cm, p1 =−76.8, and p2 = 16.9.
The negative value of p1 and the positive value of p2 for configuration III is due to the
difference in the shape of the plasma potential profile.

2.8. Parametric study of mode frequency

2.8.1. Pressure induced variations on mode frequency

Fig. 2.25 represents the variation of mode frequency with pressure for the ref. case B.
The plasma oscillations and frequency are measured at a position of r ≈ 5 cm from
the center of the plasma column using the set-up of two Langmuir probes as shown in
Fig. 2.10.

The mode frequency was found to decrease with the increase in pressure. At lower
pressure, the mode exhibited a regular frequency, and the amplitude of the oscillation
remained relatively stable over time. The mode exhibited clearly a parity of m = 1
until P= 5.5×10−4 mbar. However, as the pressure increases, the oscillation of the
plasma displayed a more erratic pattern, with the amplitude of the oscillation varying
significantly over time and no clear indication of mode parity. An example of these
two plasma behaviors is given in Fig. 2.26.

Fig. 2.27 displays the Fast Fourier transform (FFT) spectra of the plasma oscillations
shown in Fig. 2.26. In Fig. 2.27 (a), the dominant frequency component is present
at 4 kHz accompanied by visible harmonics at 8 kHz and 12 kHz. At higher pressure,
i.e. in Fig. 2.27 (b), two components are observed at low frequency: one at 2 kHz and
another at 3 kHz. The 3 kHz component is smaller but nevertheless sizeable, resulting
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Figure 2.25.: Variation of mode frequency with Pressure

Figure 2.26.: (a). Plasma oscillations for m = 1 at P = 2.6×10−4 mbar and (b). at P = 7.8×10−4 mbar

Figure 2.27.: FFT spectrum for plasma oscillations given in Fig. 2.26 at (a). P = 2.6×10−4 mbar and (b).
at P = 7.8×10−4 mbar

in the more chaotic behavior observed in the time trace in Fig. 2.26 (b).

2.8.2. Impact of magnetic field on mode frequency

Fig. 2.28 represents the variation of mode frequency with the increase in the magnetic
field for ref. case A. The mode frequency was found to increase linearly with the
increase in magnetic field intensity. At low magnetic field values i.e. from B=160 G
to 240 G, the plasma oscillations were relatively stable over time. The mode parity
m = 1 was therefore determined with the use of Langmuir probes placed at the same
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Figure 2.28.: Variation of mode frequency with magnetic field

distance from the center but at the opposite ends as shown in Fig. 2.10 (b). At B>240 G,
the plasma oscillations exhibited abrupt temporal variations, rendering the prediction
of mode parity using the probes unfeasible. Nevertheless, a dominant frequency
persisted at high magnetic field intensities, indicating a consistent trend of the mode
frequency with the change in the magnetic field.

2.9. Fluctuation measurements

To study the characteristics of instabilities or turbulent transport, it is necessary to
measure the fluctuations of certain plasma quantities, such as those of the density
ñ or of the potential φ̃. The normalized fluctuations in density and potential can be
written as,

ñ

n0
= ne max−< ne >

< ne >
,

eṼp

kB Te0
= e

(
Vpmax−<Vp >)

kB < Te0 >
(2.5)

The time-averaged electron density < ne > measured by using a Langmuir probe is
subtracted from the maximum electron density of the recorded time series data. It
is then normalized using the time-averaged electron density < ne >. The same has
been done for potential fluctuations. The only difference being the normalization of
the potential fluctuations with the average electron temperature (< Te0 >= 3 eV). This
way, a radial map for electron density and plasma potential fluctuations is obtained.

2.9.1. Configuration I

The radial variation of the fluctuating quantities ñ/n0 and eṼp /kB Te0 for Configura-

tion I is shown in Fig. 2.29. We will define two quantities here
∣∣∣ eṼp

kB Te0

∣∣∣
max

and

∣∣∣∣ eṼp
kB Te0

∣∣∣∣∣∣∣ ñ
n0

∣∣∣
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2. Observation of rotating spokes in the MISTRAL plasma column

Figure 2.29.: Radial variation of ñ/n0 and eṼp /kB Te0 for Configuration I. The black dashed line repre-
sents the location of the limiter.

which for the present case are given as,

∣∣∣∣∣ eṼp

kB Te0

∣∣∣∣∣
max

≈ 0.9,

∣∣∣ eṼp

kB Te0

∣∣∣∣∣∣ ñ
n0

∣∣∣ ≈ [0.3,1] (2.6)

The normalized quantities determine an important criterion for instability identifica-
tion as given by [Jas72]. This will be explained later in Chapter 3.

2.9.2. Configuration III

Fig. 2.30 represents the radial variation of fluctuating quantities ñ/n0 and eṼp /kB Te0

for Configuration III.

Figure 2.30.: Radial variation of ñ/n0 and eṼp /kB Te0 for Configuration III. The black dashed line repre-
sents the location of the limiter.
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2.10. Summary

The normalized fluctuations in density exhibit a close correlation with the fluctua-
tions in potential. Notably, the magnitude of these fluctuations is significantly smaller
at the center of the plasma column compared to the edge.

In this case, ∣∣∣∣∣ eṼp

kB Te0

∣∣∣∣∣
max

≈ 0.28,

∣∣∣ eṼp

kB Te0

∣∣∣∣∣∣ ñ
n0

∣∣∣ ≈ [0.8,2] (2.7)

2.10. Summary
This chapter mainly deals with the experimental work done in the framework of the
thesis keeping in mind the theoretical work. It begins by providing a general overview
of the linear plasma column experiment MISTRAL, along with a brief description of
the available diagnostics. Three different configurations showing the existence of
modes m = 1, 2 and 3 in the MISTRAL plasma column are presented. Subsequently,
the chapter presents time-averaged radial profiles obtained at different magnetic
field intensities and pressure values, enabling the characterization of various plasma
parameters (ne ,Vp ,V f and Te ). The electron density decreased with the increase in
magnetic field whereas it increased with the increase in the pressure. The electric
field was found to act radially inwards for the employed configuration. Furthermore,
the chapter investigates the influence of pressure and magnetic field on the mode
frequency. It is found that the mode frequency decreases with increasing pressure,
whereas it increases with the increase in magnetic field intensity. Two additional
configurations were further explored for the measurement of density and potential
fluctuations. This can be compared to the theoretical predictions in Chapter 5 for
instability identification.
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3. Modeling of instabilities in
magnetized plasma

This chapter provides information on the different types of plasma modeling. A
brief discussion of the instabilities that occur in rotating plasma systems is given.
Furthermore, it provides an overview of previous theoretical frameworks used to
characterize the stability plasmas in cross-field configuration.

3.1. Plasma modeling

The study of plasma behavior and the fundamental processes that govern it relies on a
combination of theoretical modeling and experimental research. These complemen-
tary approaches are employed to gain a comprehensive understanding of plasmas
and their intricate dynamics. Plasma modeling can be used as a tool to identify and
characterize the instabilities and understand the formation of coherent rotating struc-
tures which is the goal of our thesis.

In contrast to a neutral gas, plasma is made up of various species of charged and
neutral particles (neutrals, electrons, and ions) that interact with one another via
electromagnetic fields in addition to collisions. The charged particles also react to
external electromagnetic fields that are applied to the plasma by electrodes or mag-
nets. Plasma modeling is the process of using mathematical equations and computer
simulations to describe the behavior of the plasma. The modeling of plasmas can be
challenging because of the complex interactions between charged particles. Several
types of plasma models exist, utilizing various physical approximations and formulae.
The two primary model types are either based on the kinetic theory or the fluid theory.
Magnetohydrodynamics, (MHD), which is a specific fluid model, can also be used to
model plasma systems.

3.1.1. Kinetic theory

In the kinetic description of the plasma [Den93], the particles of each species j (where
j stands for electrons, ions, and neutrals) are represented by the distribution function
f j (x,v, t) in the phase space (x,v) where the independent variables x, v and t are
position, velocity and time respectively. To describe the evolution of the distribution
function f j (x,v, t), the fundamental equation that is generally used in the kinetic
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theory is the Boltzmann equation given by,

∂ f j

∂t
+v ·∇r f j +

q j

m j

(
E+v j ×B

) ·∇v f j =
(
∂ f j

∂t

)
c

(3.1)

where ∇r = x̂∂/∂x + ŷ∂/∂y + ẑ∂/∂z, ∇v = x̂∂/∂vx + ŷ∂/∂vy + ẑ∂/∂vz , q j is the charge
and m j is the mass of the species j , E is the electric field and B is the magnetic field

vector. The term
(
∂ f
∂t

)
c

is the collision term and thus includes the effect of collisions.

However, if this term is neglected, the plasma can be considered collisionless and the
Eq. 3.1 becomes the collisionless Boltzmann equation [Den93].

If the system is collisional with a collision frequency ν, then the process of thermal-
ization tends to move the system towards a Maxwellian velocity distribution for which
the distribution function f is given by,

f j (x,v, t ) = n j

(
m j

2πkB T j

)3/2

exp
(
−v2/v2

th j

)
(3.2)

where vth j =
√

2T j /m j is the thermal velocity characterizing the distribution and
T j defines the temperature of the species (in eV) which can be determined from the
width of the distribution.

Eq. 3.1 describing the evolution of f j is coupled with Maxwell’s equations for electric
and magnetic fields to form a closed system of equations describing our plasma. These
are,

∇·E = ρ

ϵ0
, ∇×E =−∂B

∂t
, ∇·B = 0, ∇×B =µ0J+ 1

c2

∂E

∂t
(3.3)

with ϵ0 and µ0 as the permittivity and permeability of the free space respectively. The
charge density ρ and the current density J can be evaluated using the distribution
function f j ,

ρ =∑
j

q j

∫ +∞

−∞
f j (x,v, t )d 3v, J =∑

j
q j

∫ +∞

−∞
v f j (x,v, t )d 3v (3.4)

The kinetic description of plasma accounts for the microscopic processes in the
plasma and therefore can give a comprehensive description of plasma behavior. How-
ever, the high accuracy comes at the cost of high complexity and high computational
needs.

3.1.2. Multi-fluid theory

A simplified treatment that describes the evolution of macroscopic plasma quantities
is available in terms of fluid equations [Che16]. By averaging over the velocity coordi-
nates of the distribution function f j , one can derive equations that only depend on
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3.1. Plasma modeling

the spatial coordinates and the time. These equations describe the evolution of the
averaged quantities, e.g., density n j and velocity v j obtained by taking the velocity
moments of the distribution function,

n j (x, t ) =
∫ +∞

−∞
f j (x,v, t )d 3v (3.5)

v j (x, t ) = 1

n j

∫ +∞

−∞
v f j (x,v, t )d 3v (3.6)

3.1.2.1. Continuity equation:

The continuity equation which denotes particle conservation can be obtained by
integrating Eq. 3.1 over the velocity space for each species j and is given as,

∂n j

∂t
+∇· (n j v j ) = S −L (3.7)

where j = i ,e stands for either ions or electrons, n j is the number density and v j is
the velocity of the species j . S and L are the source and loss terms that originate from
the integration of the collision term in Eq. 3.1 [LL05]. If collisions are neglected, the
right-hand side of Eq. 3.7 is zero.

For MISTRAL plasma [Jae10], the RHS of Eq. 3.7 represents the rate per unit volume
at which particles of a considered species are produced or lost as a result of collisions
and can be written as,

Si on = nepνi on (3.8)

where nep is the number density of primary electrons and νi on is the ionization fre-
quency. In case of MISTRAL, the ionization of neutral gas by a beam of primary
electrons results in the creation of secondary electrons and ions. The loss term L
which represents the frequency of collision for the recombination process is negligible
as compared to ionization frequency for weakly ionized plasmas and thus can be
neglected.

Note that Eq. 3.7 is not sufficient to give information about the evolution of density
n j as it involves another quantity v j . One needs an equation for v j which can be used
in the continuity equation.

3.1.2.2. Momentum equation:

Multiplying Eq. 3.1 with m j v j and then integrating over the velocity space, we have,

n j m j

[
∂v j

∂t
+ (v j ·∇)v j

]
= qn j

(
E+v j ×B

)−∇·P+R (3.9)
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3. Modeling of instabilities in magnetized plasma

This equation describes the momentum flow with m j as the mass of the species j . The
detailed derivation to obtain the momentum equation is given in [Che16]. The first
term on the left-hand side denotes mass density times the acceleration and the second
term is called the “inertial" term which represents acceleration for a continuous fluid
flow. The first term on the right-hand side is simply the Lorentz force. The term ∇·P
represents the divergence of the pressure tensor, sometimes called as stress tensor
with the components, Pαβ = mnvαvβ, where α, β denote the components direction
and the bar represents the velocity averaged over the distribution function. If the
distribution function is assumed to be an isotropic Maxwellian, then P reduces to the
form,

P =
p 0 0

0 p 0
0 0 p

 (3.10)

Thus, ∇·P can be simply written as ∇p.

The off-diagonal terms are typically linked to the viscosity of the fluid. When par-
ticles collide in a fluid, they transfer momentum to nearby fluid elements, leading
to a resistance to shear flow and the equalization of fluid velocities. This process,
known as viscosity, is influenced by the mean free path, with longer mean free paths
resulting in larger viscosities. In plasma, a similar effect occurs even in the absence of
collisions. The Larmor gyration of particles, especially ions, causes them to explore
different regions of the plasma, thereby equalizing fluid velocities in those regions.
This collisionless process, driven by the Larmor radius rather than the mean free path,
can be seen as a type of viscosity in plasmas. This collisionless viscosity, known as
finite-Larmor-radius (FLR) effect, complements the role of collisional viscosity.

The FLR effect is particularly important in the momentum equation of plasma fluid
models because it introduces a new term, known as the gyroviscous stress tensor
written as ∇.π resulting in ∇.P =∇p +∇.π. FLR effects arise when the gyroradius of
a charged particle becomes comparable to or smaller than the perpendicular wave
number k⊥ of the instability. Fig. 3.1 explains this.

During the gyromotion, particles encounter varying local conditions in the plasma,
including fluctuations in plasma parameters such as density and temperature. As
particles gyrate, they sample these fluctuations at different points in their trajectory.
The distance traveled by a particle during a single gyromotion, known as the Larmor
radius, sets the scale for this sampling process. When the gyroradius of a particle is
small compared to the perpendicular wavenumber (k⊥ρi << 1), the particle expe-
riences a constant density throughout a single gyro-period and FLR effects can be
neglected (Fig. 3.1 (a)). When the gyroradius is comparable to k⊥, the particle en-
counters multiple perturbations per gyro-period, which can influence its growth rate
as it averages over these fluctuations (Fig. 3.1 (b)). In the case where the gyroradius is
large compared to the perpendicular wavenumber (Fig. 3.1 (c)), the particle observes
a rapidly changing density resulting in a significant decrease in the growth rate of the
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3.1. Plasma modeling

Figure 3.1.: Variation of FLR effect at different perpendicular wavenumber. The red and blue blobs
represent the regions of overdensities and under densities respectively. The black arrow
represents the direction of the particle’s gyromotion. Extracted from [Par20].

instability.

The last term on the R.H.S of Eq. 3.9 represents the rate of momentum transfer per
unit volume through collisions within the species and can be written as,

R =−∑
k

m j n jν j k
(
v j −vk

)
(3.11)

where the summation is performed over all the species, ν j k is the collision frequency
of the species j with the species k and v j −vk is the relative velocity of the species k
w.r.t species j .

The more common form of Eq. 3.9 is therefore,

n j m j

[
∂v j

∂t
+ (v j ·∇)v j

]
= qn j

(
E+v j ×B

)−∇p −∇·π−∑
k

m j n jν j k
(
v j −vk

)
(3.12)

All fluid models require an assumption for closure. For instance, one can use the
thermodynamic equation of state p = n j T j , assuming constant temperature in space
and time:

∇p = T j∇n j (3.13)

This holds true for fast time variations i.e.
∂T j

∂t = 0 such as in waves, when the fluid does
not exchange energy with its surroundings; hence an energy conservation equation is
not required. For slow time variations, where temperatures are allowed to equilibrate,
an energy conservation equation is also required to determine p and T . A more de-
tailed explanation of the plasma modeling using two-fluid theory is available in the
standard textbooks [Che16], [LL05], [KT73].
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3. Modeling of instabilities in magnetized plasma

3.1.3. Magnetohydrodynamics (MHD)

MHD provides a dynamical description of an electrically conducting fluid in the
presence of magnetic fields at a macroscopic level. Instead of using two separate
variables for ions and electrons as done in the multi-fluid description, the plasma is
described as a simply charged fluid of total mass density ρ =∑

σmσnσ, the center of
mass velocity U =∑

σmσnσuσ/ρ and current density J =∑
σnσqσuσ which results in

the following continuity and momentum equations,

∂ρ

∂t
+∇· (ρU) = 0 (3.14)

ρ

(
∂U

∂t
+ (U ·∇)U

)
=−∇p + J×B (3.15)

where p is the pressure. When coupled with the Maxwell equations, these equations
result in a set of equations for the evolution of the electric field (Ohm’s law equation)
and the magnetic field (induction equation). The detailed description of MHD model-
ing can be found in [Bel06].

3.1.4. Kinetic vs. fluid modeling

For analytical and numerical treatment, solving the full kinetic Boltzmann equation
(Eq. 3.1) is challenging. Additionally, the evolution of the distribution function in
six-dimensional phase space could be too intricate for some issues. Fluid model-
ing is often useful for macroscopic global simulations of plasma as its reduced form
and lower dimensionality allow faster simulations. Another advantage is that certain
physical effects can be easily added or removed because of the “flexibility" of fluid
equations. Keeping these advantages in mind, the physical phenomenon observed in
the plasmas of interest has been explored using two-fluid modeling within the scope
of this thesis.

The plasma modeling discussed above is employed as a tool to study instabilities in
the given plasma system. The next section details the problem of instabilities in the
plasma along with different types of instabilities already observed in the linear plasma
columns.

3.2. Why study instabilities?

The first and foremost problem in tokamaks, as well as laboratory plasma devices, is
the confinement of plasma. The presence of gradients perpendicular to the magnetic
field represents a source of free energy in the plasma which can lead to the excitation of
instabilities. These free energy sources cause the amplification of minor perturbations
or fluctuations. In the linear phase, these perturbations grow exponentially in time.
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As the linear instabilities grow in amplitude, they can eventually reach a point where
nonlinear effects become significant. Nonlinear effects arise due to the interactions
between different modes or waves, resulting in the transfer of energy between different
scales and the nonlinear evolution of the plasma system. These interactions can lead
to a redistribution of energy and the onset of plasma turbulence. Plasma turbulence
refers to the state of a plasma where fluctuations occur across a broad range of scales
and exhibit complex, irregular behavior. The broad consensus is that turbulence,
appearance of coherent structures, and anomalous transport are caused by these
instabilities. Controlling these instabilities could therefore be of great importance for
enhancing the efficiency of magnetic fusion devices, laboratory plasma experiments,
and for industrial applications as well.

In the scrape-off layer (SOL) of tokamaks, instabilities similar to those observed in
linear devices have been identified to trigger radial transport by the creation of blobs,
which are large, elongated plasma structures along magnetic field lines [MRD08],
[Sug+10]. It is advantageous to use linear devices to study these instabilities because
of their simple geometry than tokamaks.

3.3. Classification of instabilities

On a broader scale, instabilities appearing in plasmas with cross-field configurations
can be classified depending on their parallel wave vector (k||): flute instability and drift
wave instability (see Fig. 3.2). Here k|| = k.B/B represents the component of the wave
vector parallel to the magnetic field direction. In the case of flute waves, the dominant
motion occurs perpendicular to the magnetic field lines. Therefore, k|| is often small
or negligible compared to the perpendicular wave number (k⊥). Drift waves, on the
other hand, are associated with non-zero parallel wavenumber i.e. k|| > 0.

Another criterion to identify flute and drift waves is based on the phase difference
(φp ) between density (ñ) and electric potential perturbation (φ̃). The growth of insta-
bility depends critically on the phase shift between the two perturbations, as will be
shown in Table 3.1. The initial perturbation does not grow in the case of a pure drift
wave as φp = 0 or π which consequently makes the E×B particle flux zero [Jas72]. In
contrast, when φp =π/2, which is a flute wave characteristic, the growth is maximum
as the E×B fluxes act to amplify the initial perturbation.

Instabilities can further be divided into four main categories on the basis of free en-
ergy available to drive them [Che16]. A discussion of the various kinds of instabilities
which have been observed in general is outside the scope of this work. However, a few
of them relevant to the existing work will be discussed.

Drift waves, centrifugal instability, Kelvin - Helmholtz instability, and neutral drag
instability have been observed in a number of laboratory plasma experiments [Bro+06],
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3. Modeling of instabilities in magnetized plasma

Figure 3.2.: (a). Flute mode with k∥ = 0 (Source [Che16])(b). Screw mode with k∥ > 0 (Source [Che16]).

[Jas72], [MEW86], [Ili+73], [Leh71], [WP73]. Centrifugal instability, Kelvin - Helmholtz
instability and neutral drag instability are associated with zero parallel wavenumber
(k∥), classifying as flute wave instabilities. The following section briefly discusses the
general mechanism of these instabilities to give an intuition of how these instabilities
develop.

3.3.1. Drift waves

The drift wave develops from a density gradient and the parallel motion of the elec-
trons. The coupling between the density perturbation ñ and the potential perturbation
φ̃ gives rise to drift wave instability. It is called ‘universal instability’ by Chen because
its main ingredients exist in most magnetically confined plasmas.

3.3.1.1. General characteristics

First considering the case of adiabatic electrons, i.e. neglecting the impact of collisions
on the motion of electrons, the density of electrons is given by Boltzmann relation
[LL05],

n = n0 exp

(
eφ̃

kB Te

)
(3.16)

where n0 is the equilibrium density and φ̃ is the perturbed potential. Writing n = n0+ñ
where n0 is the equilibrium component and ñ denotes the fluctuating component of
number density and assuming that eφ̃<< kB Te , one gets:

ñ = n −n0 = n0

(
exp

(
eφ̃

kB Te

)
−1

)
(3.17)

ñ ≈ n0
eφ̃

kB Te
(3.18)

A perturbation in density is therefore directly associated with a perturbation in po-
tential and an electric field is created between the density perturbation and the sur-
rounding plasma. When a zone of higher density appears in a plasma, the ions and
electrons move in such a way as to counter this excess of particles. Both species
diffuse outside the high-density zone. But since ions have a lot more inertia than
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electrons, the disturbance will be positively charged. In the presence of a magnetic
field perpendicular to this electric field, an E×B force will act on the density pertur-
bation and induces the rotation of the plasma. The situation is described in Fig. 3.3 (a).

Figure 3.3.: Drift wave mechanism (a). When density and potential fluctuations are in phase (b). When
density and potential fluctuations are out of phase. Source [Hor99]

When finite dissipation of the parallel electron momentum is included, the electrons
can lose momentum to the background plasma as they move parallel to the magnetic
field. The potential perturbations are phase shifted relative to the density fluctuations
with

ñ ≈ n0
eφ̃

kB Te
(1+ iδ) (3.19)

where δ ̸= 0. This phase shift introduces a net convection of density by E×B flow
associated to the initial perturbation which tends to amplify it. The situation is shown
in Fig. 3.3 (b). A more detailed explanation of drift wave instability and its mechanism
can be found in [Hor99], [GM09].

3.3.2. Centrifugal/Rayleigh-Taylor instability
As the name suggests, this instability arises due to the interaction between the cen-
trifugal force, which acts to move objects (plasma) away from the axis of rotation,
and other forces or gradients in the system. Centrifugal instability is analogous to
Rayleigh-Taylor (RT) instability [Sha84] developed in fluids.

Fig. 3.4 illustrates the physical mechanism of RT instability. Imagine that the plasma
vacuum surface is perturbed. The ions are electrons initially drift along the x-direction

due to gravitational force and equilibrium magnetic field with a velocity, vg j = m j g×B
q j B 2

where j = i ,e stands for ions and electrons respectively. Since this velocity is directly
proportional to mass to charge ratio (m j /q j ), ions and electrons will drift apart caus-
ing a charge imbalance. This will result in the formation of the perturbed electric
field E1 and the ions and electrons will drift in the y-direction due to the force of the
electric field and equilibrium magnetic field with a velocity, vE = E1×B0

B 2 . The E1×B
will be directed in such a way as to drive the areas of high density upwards and the
areas of lower density downwards which amplifies the initial disturbance. This will
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Figure 3.4.: Physical mechanism of Rayleigh-Taylor instability in cartesian coordinates. Extracted from
[KT73].

create a phase difference between density and potential perturbation. It can be noted
that the movement of electrons along the magnetic field lines does not intervene
in the explanation of the mechanism of the Rayleigh-Taylor instability. Indeed, this
instability has a zero wave number along the field lines and therefore comes under
the category of “flute" modes.

In RT instability as explained above, plasma from high-density regions and low-
density regions tend to interchange their position, therefore, it is also called inter-
change instability. Another common term is centrifugal instability, which emphasizes
on the difference in the rotational speed between two fluids.

3.3.3. Kelvin-Helmholtz instability
The Kelvin-Helmholtz (KH) instability is another type of flute instability that develops
from a sheared E×B flow [DAn65], [KJC69]. When there is a large velocity shear
between two layers of matter, the faster layer will drive a minor disturbance at the
interface between the layers, which will then expand in spiral wraps. The instability
develops because the kinetic energy of the system is higher when the two layers of
fluid remain separated than when they mix and move forward at a common speed.
Examples of the K-H instability in nature include wind-induced water waves, water
flow in the river in different directions and cloud vortices formed by strong airflow.

Figure 3.5.: The Kelvin-Helmholtz Instability growing on a shear boundary. Source [JWD14]

The mechanism of K-H instability at the interface between two fluids with velocity
shear is shown in Fig. 3.5. According to the Bernoulli principle, when a boundary
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is perturbed into a flowing fluid, it generates a constriction that increases velocity
and decreases pressure, while when the boundary is expanded, the flow is reduced
and the pressure is increased. As a result, when the boundary between two flowing
fluids gets perturbed, there is a pressure gradient in the direction opposite to that
of the boundary deformation, which creates a pressure force in the same direction.
As a result, the boundary deformation will increase and eventually cause the K-H
instability [JWD14].

3.3.4. Neutral drag instability

This type of instability was first identified by Simon[Sim63] and Hoh[Hoh63a] in cross
field plasmas. They showed that a charge separation occurs in the azimuthal direction
as a result of the plasma rotating due to a radial electric field and the associated drag
force from ion-neutral collisions. The resulting electric field can drive the plasma
outwards and amplifies the perturbation. The discussed mechanism is presented in
the Fig. 3.6.

Figure 3.6.: Mechanism of neutral drag instability.Source[Hoh63a]

3.4. Overview of existing models to study
instabilities in cross-field plasmas

When studying instabilities in plasma physics, we are interested in the conditions
under which a wave will grow in amplitude. The dispersion relation (see section 4.2.2)
allows us to determine the conditions under which a particular wave mode will grow,
and the growth rate of the instability. By analyzing the dispersion relation, we can
determine whether a plasma is stable or unstable and how it will evolve over time
in the initial phase of the instability. Additionally, dispersion relations can provide
insight into the physical mechanisms responsible for the instabilities in a plasma. By
understanding the dispersion relation, we can identify the driving forces behind the
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instability and develop strategies for controlling or mitigating the instability.

Before delving into the intricacies of the dispersion relation, it is worth noting which
models already exist for studying instabilities in E×B plasma systems and why the
existing models do not provide adequate information for the instability description of
weakly magnetized plasma devices like MISTRAL.

In the past decades, many models have been proposed to study instabilities in E×B
plasmas. The centrifugal instability and its stabilization by finite Larmor radius effects
were first explained by Rosenbluth et al. [RKR62]. They explained the stability of
a rotating cylindrical plasma column in the frame of kinetic theory, valid for low β

plasma for kρi < 1 and ω/ωci ≈ (kρi )2 where ω is the plasma perturbation frequency,
ωci is the ion cyclotron frequency, k is the wave vector of the perturbation and ρi is the
ion Larmor radius. Terms of the order of (kρi )2 have been retained and higher-order
terms have been neglected. Rotating plasma columns were shown to be prone to
centrifugal instability that stems from the difference between the azimuthal velocity
of ions and electrons caused by inertia.

Roberts et al. [RT62] and Lehnert [Leh62] explained the centrifugal instability in
rotating plasmas using the fluid magnetohydrodynamic (MHD) equations in the slab
geometry. [RT62] neglected the Coriolis force whereas [Leh62] neglected all the pres-
sure gradients. The results were based on a strong assumption that the equilibrium
flow frequency (ω0) is negligible in comparison to the ion-cyclotron frequency i.e.
ω0 ≪ωci .

Chen [Che66] verified the results of [RKR62] using a two-fluid model, under the low-
frequency assumption (LFA) i.e. ωph ≪ωci whereωph is the Doppler shifted frequency
given by ωph =ω−mω0. Here m is the azimuthal mode number. In this treatment,
both the mode frequency and equilibrium flow frequency are ordered small, with
ωph/ωci = O(ρ2), ρ << 1 is the magnetization parameter defined as ρ = ρi /l where
l is the scale length of macroscopic gradients. Chen studied the influence of finite
Larmor radius and magnetic shear on linear stability. He also extended the model to
the regime of fast rotation by assuming ωph/ωci =O(ρ).

As an extension of the above-referenced work, Rognlien [Rog73] gave analytical
and numerical solutions of low-frequency electrostatic waves (ω<<ωci ) in a radially
bounded plasma column for lower azimuthal mode numbers (m = 1,2) for uniform as
well as non-uniform rotation.

Recently, Gueroult et al. [GRF17] have studied the centrifugal instability for an
E×B plasma column in the regime of fast rotation (|ω0 −ω0e |/ωci ≈O(1) where ω0e is
the equilibrium flow frequency of electrons) with no constraint on the perturbation
frequency ω. The analysis was performed in the radially local limit and focused on the
case of a radially outward electric field, Er > 0.
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A few attempts were also made to study the influence of ion-neutral collisions on
uniformly as well as non-uniformly rotating plasma systems. A local, single-fluid
theory that incorporates the effects of Coriolis and centrifugal force, finite Larmor ra-
dius effects, and ion-neutral collisions was derived by Wheeler and Pyle [WP73] using
the slab geometry. However they excluded the terms that cause the destabilization
by ion-neutral collisions, therefore simply reporting a stabilizing collisional effect.
D’Ippolito and Krall [DK74] extended the work done by [WP73] by providing a theory
that includes both centrifugal and neutral drag instability modified by Coriolis and
finite Larmor radius effects. They use the rectangular slab geometry and the local
approximation as well.

Chu et al. [Chu+69] derived the same differential equation to explore the linear sta-
bility of uniformly rotating plasmas as derived by [Che66] using the two-fluid model.
They also include the effect of ion collisional viscosity and finite parallel wavenumber
which introduces the additional phenomenon of stabilization of drift waves by ion
collisional viscosity. Perkins and Jassby [PJ71] extended the work done by [Chu+69] by
including the non-uniformity of electric field and hence including the effect of shear
on the linear stability of rotating plasmas.

Jassby [Jas72] extended the work done in [PJ71] by offering a thorough examination
of the applicability of the low-frequency fluid equations and a careful comparison with
the measured characteristics of instabilities caused by shear in the rotation frequency.
He also provided a detailed criterion to compare several properties of the three types
of low-frequency instabilities and is shown in Table 3.1.

Property Kelvin-Helmholtz Centrifugal Resistive drift

k|| for maximum growth 0 0 ≈ L−1

|eṼp /kB Te |/|ñ/n| >> 1 ≥ 1 ≤ 1

local radial phase shift 90◦−180◦ 45◦−90◦ < 45◦

|eṼp /kB Te |max >> 1 1 1

Table 3.1.: Comparison of low-frequency instability properties. Source[Jas72].

Lastly, Sosenko et al. [SP00] use the two-fluid model to study analytically the linear
and nonlinear properties of collective oscillations in a cylindrical magnetized labo-
ratory plasma. They also employed the LFA while deriving the differential equation
to have a solution for the global drift modes. They came to the conclusion that the
fundamental local and global dispersion relations for the low-frequency drift waves
are not generally valid in the reported observations as the unstable modes occur at
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3. Modeling of instabilities in magnetized plasma

frequencies in the range of the ion-cyclotron frequency and its harmonics.

As explained above, most of the models formulated so far to study E×B plasmas are
based on the LFA (ωph <<ωci ) and therefore not suitable for weakly magnetized linear
plasma devices such as MISTRAL [Jae10], RAID [Fur+17], and VKP [Pli+14] where the
frequency values, ω, and ω0, are typically comparable to the ion cyclotron frequency
ωci . Therefore, it is possible that if the LFA is eliminated, the criterion provided by
[Jas72] in Table 3.1 might not satisfy the instability description.

In MISTRAL, one requires a description that is applicable without any frequency
limitations as the equilibrium frequency and mode frequency can vary from a small
to a large fraction of the cyclotron frequency. Furthermore, the finite Larmor radius
effects (FLRE) and the collisions of charged particles with neutrals are important for
the modelization of plasma instabilities in these laboratory devices as will be shown
in Section 4.1.2 and 4.1.3.

3.5. Exploring potential instabilities in MISTRAL
plasma column

The axial wave number on MISTRAL has been measured to be at least significantly
less than 2π/L, where L is the length of the plasma column, suggesting flute modes
[Jae10], therefore omitting the possibility of the existence of drift waves. In most of
the cases discussed in Chapter 2 the plasma potential profile is parabolic (rigid body
rotation) indicating uniform E×B rotation. In these cases, the absence of sheared E×B
rotation rules out the possibility of K-H instability as well.

Considering the aforementioned flute instabilities, the focus narrows down to the
centrifugal and neutral drag instability or a combination of both as the prime candi-
dates. To initiate the investigation, the characteristics of the centrifugal instability will
be examined first, followed by an exploration of the neutral drag instability.

3.6. Summary
Different types of modeling techniques employed to study plasma behavior are dis-
cussed. Various class of instabilities that can exist in weakly magnetized plasma
columns is given. Based on the discussion, centrifugal and neutral drag instabilities
are found to be the potential candidates to develop in MISTRAL plasmas.
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4. Fluid modeling of MISTRAL

In this Chapter, the range of plasma parameters essential for analyzing plasma dy-
namics is established in line using the plasma characteristics obtained with standard
experimental conditions in Chapter 2. Then the fluid modeling for the instability
description is discussed solving the equilibrium flow for ions and electrons for the
given plasma system.

4.1. Range of plasma parameters in MISTRAL
plasma column

To build a model appropriate for the description of MISTRAL plasmas, knowledge
of the typical plasma conditions encountered in the device is required. In MISTRAL,
the plasma density of the column varies from 1014 to a few 1016 m−3 and the electron
temperature varies from 2 - 6 eV, depending on the configuration of the experiment.

Number density (n) 1014 −1016 m−3

Electron temperature (Te ) 2-6 eV
Ion temperature (Ti ) 0.2 eV

Table 4.1.: Range of number density, electron temperature, and ion temperature in MISTRAL plasma
column

The ion temperature is typically measured slightly above the room temperature by
LIF measurements [Reb10]. In the following, we will use Ti =0.2 eV and derive typical
time and length scale characteristics of MISTRAL plasma.

4.1.1. Plasma beta

In order to comprehend plasma dynamics, plasma beta is an essential physical quan-
tity. It explains how magnetic processes as opposed to thermodynamic ones, dominate
plasma motion. It is given by the ratio of plasma pressure p = nT j and the magnetic
pressure B 2/2µ0,

β= nT j

B 2/2µ0
(4.1)
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4.1. Range of plasma parameters in MISTRAL plasma column

where µ0 = 1.257×10−6 mK g s−2 A−2 is the permeability of free space. Using
n ≈ 3×1015 m−3, Te ≈ 3 eV at B=160 G,

β≈ 1.4×10−6 (4.2)

As β is low, the plasma pressure is not strong enough to significantly affect the mag-
netic field structure. As a result, the magnetic field remains relatively unperturbed,
and plasma dynamics are mainly determined by electric fields and the motion of
charged particles. Under these conditions, the electrostatic model provides a reason-
able approximation for studying the behavior of the plasma.

4.1.2. Collisions

As the plasma of interest in this thesis is weakly ionized [SPR09] i.e. the fraction of
charged particles is small as compared to neutral particles. The electron-neutral and
ion-neutral collisions are, therefore, important in this case. The collisions between
electrons and ions with neutrals can be divided into two categories: elastic and inelas-
tic collisions. In an elastic collision, the total kinetic energy of the colliding particles
remain conserved. If the total kinetic energy is not conserved during the process, the
collision is considered inelastic.

In an elastic collision between an electron or ion with a neutral gas particle, the
charged particle transfers some of its momentum to the neutral keeping the total
kinetic energy conserved. This results in a deviation in the trajectory of the charged
particle due to its impact with the neutral.

In an inelastic collision, the total kinetic energy is not conserved. When a charged
particle collides with a neutral particle, it can transfer energy to excite or ionize the
neutral. This can lead to a cascade of ionization, resulting in the creation of more
charged particles.

The type of collision that occurs depends on various factors, such as temperature,
density, charge, and mass of the particles involved. In weakly ionized plasmas, where
the number of charged particles is relatively low, collisions between charged and
neutral particles are more likely to be elastic, but inelastic collisions can also occur,
leading to further ionization and excitation of neutral particles.

4.1.2.1. Collision frequency

The cross-section σ is a fundamental quantity that characterizes the probability of
collision between the particles. It is the measure of the effective area of interaction
between two particles. This can be well understood with the help of the Fig. 4.1,

If an incident particle ‘a’ with a velocity va is moving towards the field of target
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4. Fluid modeling of MISTRAL

Figure 4.1.: Interaction of an incident particle ‘a’ with the population of target particles ‘b’ within the
area σab

particle ‘b’ with the number density nb , then the collision between two particles is
possible only if ‘a’ undergoes an interaction with ‘b’ within the surface σab . From
σab , another parameter, the mean free path λ can be defined which gives the average
distance traveled by the particle between two successive collisions and is given by,

λ= 1

nbσab
(4.3)

As the velocity of the incident particle is va , the mean time between the interactions
is,

τi nt = λ

va
(4.4)

The inverse of this interaction time is the collision frequency,

νab = nbσab va (4.5)

One thing to note here is that the above formula defines the collision frequency at the
particle level. The expression for macroscopic collision frequency can be obtained by
taking an average of the above expression,

νab = nb <σab va >v= nbK (4.6)

where K =<σab va >v is the reaction rate constant in m3s−1 with < . >v as the velocity
average of the bracketed quantity over f which is often assumed to be a Maxwellian
distribution with the temperature T in eV.

4.1.2.2. Orders of magnitude

To calculate the electron-neutral and ion-neutral collision frequencies required there-
after, information about the number density of neutrals and rate constant is required.
Using the LIF diagnostic, the velocity distribution function for neutrals was measured
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4.1. Range of plasma parameters in MISTRAL plasma column

Figure 4.2.: Rate constant for elastic momentum transfer cross-section for e−/Ar collision [LL05] as a
function of electron temperature Te (left). The rate constant for elastic momentum transfer
cross-section for Ar+/Ar collision as a function of ion temperature Ti (right).

in the previous works on MISTRAL and it was observed that the neutrals remain at an
ambient temperature. Therefore, considering the neutrals at an ambient temperature
Tn = 300 K corresponding to the pressure range of Pn = 10−5 mbar - 10−3 mbar =
10−3 Pa - 10−1 Pa , the number density of neutrals nn can vary from,

nn = Pn

kB Tn
≈ 2.4×1017 m−3 −2.4×1019 m−3 (4.7)

The rate constant Ki n for Ar+/Ar collisions is evaluated by integrating over the velocity
distribution functions of ions,

Ki n(Ti ) =
(

m

2πkB Ti

)3/2 ∫ ∞

0
σ(Ti ) v exp

(
− mv2

2kB Ti

)
4πv2d v (4.8)

whereσ(Ti ) is the elastic momentum transfer cross-section for Ar+/Ar collision given
in [Phe94] as,

σ(Ti ) = 1.15×10−18(T −0.1
i )(1+0.015/Ti )0.6 (4.9)

with Ti as the ion temperature in eV. For electrons, direct reference has been taken
from the data about the rate constant for e−/Ar elastic collision given in [LL05].

Using this information, the rate constant for Ar+/Ar elastic collision (Ki n) cor-
responding to Ti ≈ 0.1 eV and for e−/Ar elastic collisions (Ken), corresponding to
Te ≈ 3 eV is ,

Ki n ≈ 1.5×10−15 m3s−1, Ken ≈ 10−13 m3s−1 (4.10)

which on using together with Eq. 4.7 in Eq. 4.6 gives a range of ion-neutral and
electron-neutral collision frequencies for a given pressure range as,

νi n = 0.36 kHz−36.2 kHz, νen = 24 kHz−2.4 MHz (4.11)
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4. Fluid modeling of MISTRAL

Coulomb collisions
Coulomb collisions refer to the long-range scattering events between charged particles
due to the mutual exchange of the Coulomb force. The average Coulomb collision
frequency between charged particles can be calculated by the formulae given by
[GR95] which gives electron-ion and electron-electron collision frequencies as,

νC
ee ≃ νC

ei ≃
21/2ne4lnΛ

12π3/2ϵ2
0m1/2

e T 3/2
e

(4.12)

where the Coulomb logarithm lnΛ is given by,

lnΛ= l n

(
λD

b

)
(4.13)

with λD =
√
ϵ0kB Te

ne2
, the Debye length (4.14)

and b = e2

4πϵ0me vth e
, the impact parameter (4.15)

Using n ≈ 1014 m−3 −1016 m−3, Te ≈ 3 eV and other required parameters, the range
of electron-ion coulomb collision frequency is,

νC
ee ≃ νC

ei ≃ 760 Hz−76 kHz (4.16)

The ion-ion Coulomb collision frequency (νC
i i ) is,

νC
i i ≃

nZ 4e4lnΛ

12π3/2ϵ2
0m1/2

i T 3/2
i

(4.17)

For Ar+ ions, taking n ≈ 1014 −1016 m−3, Ti ≈ 0.2 eV, Z = 1, νC
i i evaluates to,

νC
i i ≃ 125 Hz−10.6 kHz (4.18)

4.1.3. Magnetization
As the plasma column is subjected to an external magnetic field, the trajectories of
the charged particles can be significantly altered as they rotate around the magnetic
field lines direction executing circular Larmor radius or gyroradius which is given by,

ρ j =
vth j

ωc j
(4.19)

where ω j is the cyclotron frequency also known as gyrofrequency,

ωc j = |q|B
m j

(4.20)
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4.1. Range of plasma parameters in MISTRAL plasma column

The resulting helical orbits are more tightly wound as the field intensity rises, thereby
binding particles to magnetic field lines. For a species j to be magnetized in the
plasma system, the Larmor radius ρ j should be smaller than the characteristic length
l of the system which gives the condition of magnetization as,

δ= ρ j

l
<< 1 (4.21)

where δ is the magnetization parameter. Here the characteristic length l refers to
the length perpendicular to the magnetic field direction i.e. the radius of the plasma
column.

Another parameter that determines the magnetization condition is the collision
frequency. The trajectory of a charged particle can be changed by a collision with an-
other particle before completing a gyro-orbit which can lead to a change in direction
of motion. An ion, for example, travels in a different direction after colliding with a
neutral atom as shown in Fig. 4.3.

Another condition for magnetization is thus,

ν j k << ωc j

2π
(4.22)

Therefore, for electrons and ions to be magnetized in a given plasma system, both
the spatial and temporal conditions should be satisfied. Plasmas exhibiting these two
forms of magnetization are referred to as Larmor magnetized (ρ j /l << 1) and colli-
sionally magnetized (2πν j k /ωc j << 1), respectively. If (2πν j k /ωc j ≈ 1), the plasma
can be considered partially magnetized.

Figure 4.3.: Diffusion of gyrating parti-
cles by collisions with neutral
atoms. Source[Che16]

The Larmor magnetization level inside the
MISTRAL plasma column where the mag-
netic field B ranges from 100 G - 340 G
has been computed for electrons and ions
for Ar plasma as shown in Fig. 4.4 and
for He, Kr, and Xe ions in Fig. 4.5. As
ρe << l where l = 10 cm is the char-
acteristic length scale of the perpendicular
dynamics, the electrons can be considered
strongly magnetized for the given range of
magnetic field. The magnetization condi-
tion is fulfilled for ions only at high magnetic
field.

As the number density of neutrals is high in the
present plasma system, the trajectory of electrons and ions can be changed by colli-
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4. Fluid modeling of MISTRAL

Figure 4.4.: Variation of normalized Larmor radius of electron (ρe /l ) with the magnetic field B and
electron temperature (Te ) (left) and Variation of normalized Larmor radius of ion (ρi /l )
with the magnetic field B and ion temperature (Ti ) (right) for Ar. The dashed region in
curves indicates the region relevant to MISTRAL.

Figure 4.5.: Variation of normalized Larmor radius of ion (ρi /l ) with the magnetic field B and ion
temperature (Ti ) for He (left), Kr (middle), and Xe (right).

sion with the neutral particles which can lead to demagnetization of the given charged
species (see Fig. 4.3). The condition on the collision frequencies has also been checked
for collisions between electrons and ions with neutrals for Ar as shown in Fig. 4.6 and
for He, Kr, and Xe in Fig. 4.7 for a given range of pressure range and magnetic field.

Figure 4.6.: Variation of electron-neutral collision frequency normalized to electron cyclotron frequency
(νen/ωce ) (left) and Variation of ion-neutral collision frequency normalized to ion cyclotron
frequency (νi n/ωci ) (right) for Ar for a given range of pressure and magnetic field. The
dashed lines on the right figure indicate low collisionality (νi n/ωci < 1) and high collision-
ality regimes (νi n/ωci > 1).

The collision frequency of electrons with neutrals is of the order of MHz in compar-
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4.1. Range of plasma parameters in MISTRAL plasma column

Figure 4.7.: Variation of ion-neutral collision frequency normalized to ion cyclotron frequency (νi n/ωci )
for He (left), Kr (middle), and Xe (right) for a given range of pressure and magnetic field.

ison to electron cyclotron frequency which is of the order of GHz and thus νen ≪ωce .
The temporal condition is only partially satisfied for collisions between ions and neu-
trals for Ar and He at low pressure and not at all satisfied in the case of Kr and Xe.

Note: It should be noted that there exists a pressure range for which plasma potential
shows a monotonic behavior at a fixed magnetic field strength (see Fig. 2.18) as shown
for reference case B in Chapter 2. After analyzing Fig. 4.6 (right), it seems that the non-
monotonicity in the plasma potential occurs when the ion-neutral collision frequency
surpasses the ion-cyclotron frequency or in other words when νi n/ωci > 1. For the
pressure range at a fixed magnetic field for which νi n/ωci < 1, the plasma potential
follows a parabolic profile (see Fig. 2.17). The two regions have been highlighted in
Fig. 4.6 (right) with two dashed lines. A more detailed investigation should be done in
this regard.

4.1.4. Quasi-neutrality

A quasi-neutral plasma model assumes the electron density to be equal to the ion
density at every point in space and time [Che16]. A plasma can be considered as a
quasi-neutral medium if the Debye length λD is much smaller than the typical length
scales of the phenomenon to be studied and the inverse of the frequencies involved
are much smaller than the plasma frequency ωpi ,e . The Debye length and plasma
frequency are given by [Che16],

λD =
√
ϵ0Te

ne2
, ωp j =

vth j

λD
with vth j =

√
T j

m j
(4.23)

where ϵ0 = 8.854× 10−12 F m−1 is the permittivity of free space, e is the electronic
charge, vth j is thermal speed and m j is the mass of the species. Substituting the
required values in Eq. (4.23) from Table 4.1, we obtain the range of various lengths
and time scales of the plasma system under consideration.

Here λD << R and the frequencies involved are much smaller than the correspond-
ing plasma frequencies (ωpi ,e ) as shown in table 4.2. Therefore, one can ensure
quasi-neutrality to be valid for MISTRAL plasmas and hence quasi-neutral plasma
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Debye length λD 1.3 mm - 0.13 mm
Ion thermal speed vthi 692 ms−1

Electron thermal speed vthe 593 kms−1 - 1027 kms−1

Ion Larmor radius ρi 18 mm
Electron Larmor radius ρe 0.2 mm - 0.4 mm
Ion plasma frequency ωpi 0.53 MHz - 5.3 MHz

Electron plasma frequency ωpe 0.46 GHz - 7.9 GHz
Ion-neutral collision frequency νi n 0.36 kHz - 36 kHz

Electron neutral collision frequency νen 24 kHz - 2.4 MHz
Electron-ion Coulomb collision frequency νC

ei 760 Hz - 76 kHz
Electron-electron Coulomb collision frequency νC

ee 760 Hz - 76 kHz
Ion-Ion Coulomb collision frequency νC

i i 125 Hz - 10.6 kHz
Plasma column length L 1 m

Cylinder radius R 10 cm
Ionization rate - >> 1%

Table 4.2.: Typical length and time scales in MISTRAL plasma. To calculate the required range of λD , n
is varied from n ≈ 1014 −1016 m−3 as given in table 4.1 and Te ≈3 eV is used.

models can be considered as a good approximation to be used within the scope of this
work.

The plasma conditions validated above will form the basis of the fluid model re-
quired for the description of MISTRAL plasma and will be the topic of the next section.

4.2. Fluid modeling for instability description

We use a two-fluid formalism to study the stability of weakly magnetized rotating
plasma columns. We consider a cylindrical plasma bounded radially and immersed
in a homogeneous magnetic field such that B = B êz . Based on the experimental
characteristics of MISTRAL and the plasma conditions discussed above, we make the
following assumptions,

4.2.1. Assumptions and Model equations

• Electrostatic approximation is used such that ∂B
∂t = 0.

• The magnetic field is uniform along the axial direction i.e. B = Bêz .

• The fluctuations along the axial direction are neglected i.e. k|| = 0.

• Parabolic profile for plasma potential, this assumption is not valid at high pres-
sure.
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• Ion temperature Ti is assumed to be radially uniform. The electron temperature
varies radially following a Gaussian distribution such that Te = Te0 exp

(−r 2/r 2
0

)
.

• To keep an analytically tractable model, Gyro-viscosity is neglected,
∇·πi = 0, ∇·πe = 0.

• Electron inertia is neglected as a consequence of the small mass of electrons as
compared to ions, me /mi ≪ 1.

• Like particle collisions won’t alter the total momentum of the individual fluid
within the framework of the two-fluid model. As a result, the outcome depends
on how big the coulomb and neutral collisions are in comparison. Neutral colli-
sions dominate Coulomb collisions for the regimes met in MISTRAL [Ann+11],
[Pie16] where νC

ei ,νen/ωce ≪ 1.

• Quasineutraliy, ni = ne .

• Rigid body equilibrium rotation.

Based on the given assumptions, the continuity equation for j th species is,

∂n j

∂t
+∇· (n j v j ) = 0 (4.24)

The momentum equation for ions and electrons is,

ni mi

[
∂vi

∂t
+ (vi ·∇)vi

]
= eni

(−∇φ+vi ×B
)−Ti∇ni −mi niνi nvi (4.25)

0 =−ene (−∇φ+ve ×B)−∇(ne Te ) (4.26)

The system is closed by assuming Te and Ti constant in time. The fluctuations in
Te have been observed with Langmuir probe measurements on MISTRAL but are
neglected here. It should be noted that the gyroviscosity tensor term for ions (∇·πi )
is omitted in the given system of equations. This choice is made to first establish the
basis of a model relaxing the LFA in a comparatively simpler context. The impact of
this assumption, not supported by experimental characterization will be discussed in
Appendix D.

The next step after having the desired set of equations is to solve them to obtain the
dispersion relation. The problem of instability can be better understood by dividing it
into two parts: the problem of equilibrium and the problem of stability. An equilibrium
is a situation when all the forces are in balance and a time-independent solution is
possible. For the stability problem, one can linearize the equations of motion for small
deviations from an equilibrium state. The next sections offer more details about this.
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4.2.2. Linearization

For instability description, we employ the normal mode analysis method [KT73].
This method implies that if the equilibrium under consideration is perturbed, the
linearized plasma equations for the time evolution of the perturbation can be solved,
subjected to appropriate boundary conditions, assuming a time dependence.

In the procedure of linearization [Che16], the dependent variables are separated
into two parts: an “equilibrium" part indicated by a subscript 0 and a “perturbed" part
indicated by the superscript ∼.

n = n0 + ñ (4.27)

v = v0 + ṽ (4.28)

φ = φ0 + φ̃ (4.29)

The equilibrium part contains the information about the stationary state of plasma or
in other words, it is the state of the plasma without any oscillations such that,

∂n0

∂t
= ∂v0

∂t
= ∂φ0

∂t
= 0 (4.30)

The perturbed part contains information about the fluctuating quantities. Choosing a
Fourier representation for the azimuthal direction, they are given by,

ñ = n1(r ) exp [i (mθ−ωt )] (4.31)

ṽ = v1(r ) exp [i (mθ−ωt )] (4.32)

φ̃ = φ1(r ) exp [i (mθ−ωt )] (4.33)

(4.34)

where n1(r ), v1(r ) and φ1(r ) give the perturbation amplitude of density (n), veloc-
ity and potential (φ) in the radial direction, m is the azimuthal mode number, and
v1(r ) = vr1 êr + vθ1 êθ. The azimuthal mode number m is an integer and it corresponds
to the azimuthal wavevector kθ = m/r = 2πr /λ. When representing a wave in the
plasma column, m corresponds to the number of minima and maxima on the circum-
ference of the plasma column.

The linear stability is investigated by assuming that the amplitude of the oscillations
is small as compared to the equilibrium quantities (ñ << n0, |ṽ| << |v0| and φ̃<<φ0).
The equations are then divided into two parts. The zeroth order part gives the equilib-
rium. The first order part gives the linear stability. The solutions are the fluctuations
which are the eigenfunctions of the system, having frequenciesω as eigenvalues. After
reformulating and simplifying the equations, we arrive at an equation giving ω. This
equation is called the dispersion relation, which links the pulsation ω and the wave
number k of the oscillations. The last step consists in separating the real part and
the imaginary part of ω. Here, ω=ωr + iγ where ωr is the real part of the perturbed
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frequency and γ is the imaginary part giving growth rate. If γ= 0, the plasma is stable
and all the perturbation variables oscillate harmonically. If γ> 0, the system is unsta-
ble and these normal modes will grow in time.

The study of the linear regime gives information about the onset of instability and
the parametric dependencies of the growth rate and mode frequency. If unstable
modes are present, they grow exponentially and after some time, the assumption,
ñ << n0 is violated. Perturbations become comparable to the equilibrium and start to
interact with each other: this is the non-linear regime. The study of non-linear regime
is out of the scope of this thesis.

4.2.3. Equilibrium flow

To study the ion and electron equilibrium flow, the equilibrium velocity v j 0 is written
as,

vj0 = v j r0 êr + v jθ0 êθ (4.35)

where v j r0 is the radial component and v jθ0 is the azimuthal component of velocity.
The equilibrium flow is derived assuming rigid body rotation such that v jθ0 = rω j 0

with ω′
j 0 =ω′′

j 0 = 0 where ′ represents ∂/∂r and ′′ represents ∂2/∂r 2.

The equilibrium density (n0) and plasma potential (φ0) are assumed to have Gaus-
sian and parabolic profiles, respectively. This is compatible with typical profiles
measured in MISTRAL (see Section 2.6.2, 2.6.1 ),

n0(r ) = n00 exp

(
−r 2

r 2
0

)
; φ0 = p1r 2 +p2 (4.36)

where n00, p1 and p2 are constants. Reminding that, here r is the radial coordinate
and r0 is the width of the Gaussian used to parametrize the density profile These
equilibrium profiles are consistent with the rigid body rotation assumption used for
the equilibrium.

4.2.3.1. Ion equilibrium flow

The ion inertial term vi0 ·∇vi0 entering Eq. (4.25) becomes,

(vi 0 ·∇)vi 0 =
(

vi r0

∂vi r0

∂r
− rω2

0

)
êr +2ω0vi r0 êθ (4.37)

Substituting Eqs. (4.35) and (4.37) in the ion momentum equation, assuming ∂vi 0/∂t = 0,
taking the cross product with B and then projecting along êr , one gets,

vi r0 =
−νi nrω0

ωci +2ω0
(4.38)
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Variable Notation Definition
Normalized frequencies ω̄,ω̄0 ω/ωci ,ω0/ωci

Normalized lengths r̄ ,1/L̄n r /ρi ,ρi /Ln

Normalized perturbed density n̄1 n1/n0

Normalized perturbed potential φ̄1 eφ1/Te0r e f

Normalized velocities v̄i ,e vi ,e /vthi

Temperature ratio τ Te0r e f /Ti

Table 4.3.: Normalized parameters and their definitions. Here Te0r e f is the reference value of the
electron temperature, taken to be the electron temperature on the axis.

The equation above is normalized by dividing vi r0 with vthi =
p

Ti /mi ; r with
ρi = mvthi /eB ; νi n ,ω0 withωci = eB/mi and the normalized quantities are noted with
an overbar, see Table 4.3,

v̄i r0 =
−ν̄i n r̄ ω̄0

1+2ω̄0
(4.39)

which is the equilibrium flow of ions in the radial direction. The only mechanism
which can impart a radial component to the equilibrium velocity is collisions.

Using Eq. (4.38) in Eq. (4.25) and projecting along êθ, the equation for azimuthal
flow frequency ω0 = viθ0 /r is given by:(

νi nω0

2ω0 +ωci

)2

−ω2
0 =−ωciωE0 +ωciω0 −ωciω∗0 +

(
ν2

i nω0

2ω0 +ωci

)
(4.40)

Here ωE0 is the E ×B drift frequency,

ωE0 = B×∇φ0

r B 2
· êθ =

φ′
0

r B
(4.41)

and ω∗0 is the ion diamagnetic drift frequency,

ω∗0 = Ti

en0B

B×∇n0

r B
· êθ =

Ti

er B

n′
0

n0
(4.42)

= − Ti

er B

1

Ln
(4.43)

where 1/Ln =−n′
0/n0 = 2r /r 2

0 is the logarithmic density gradient. It should be noted
that ωE0 and ω∗0 are independent of r due to the choice of n0 and φ0 given by Eq.
(4.36).

The rotation direction for positive E×B and diamagnetic frequency is illustrated in
Fig. 4.8. Azimuthal flows are counted positive in the direction of increasing θ.
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4.2. Fluid modeling for instability description

Figure 4.8.: Cylindrical coordinate system and direction of rotation for ion cyclotron frequency ωci ,
positive E×B frequency (ωE0 > 0) and positive diamagnetic frequency (ω∗0 > 0).

Rearranging the terms and then normalizing, Eq. (4.40) is,

4

(
ω̄0 + 1

2

)4

− (
1− ν̄2

i n +4(ω̄E0 + ω̄∗0)
)(
ω̄0 + 1

2

)2

− ν̄2
i n

4
= 0 (4.44)

which is a fourth order polynomial in ω̄0 whose solutions are given by,

ω̄0 =±1

2

√
1

2

[
b +

√
b2 +4ν̄2

i n

]
− 1

2
(4.45)

where b = 1+4(ω̄∗0 + ω̄E0)− ν̄2
i n . Eq. (4.44) has four roots. Only two roots will be

considered since the other two are imaginary and the equilibrium flow is undefined.
Eq. (4.45) gives the remaining two roots. The branch for which ω̄0 increases with
increasing ω̄E0 + ω̄∗0 is the slow rotation mode and the one that decreases with in-
creasing ω̄E0 + ω̄∗0 is the fast rotation mode [Rax+15].

The normalized equilibrium flow ω̄0 is shown in Fig. 4.9 as a function of the sum of
the normalized E×B and diamagnetic flows, ω̄E0 + ω̄∗0, for different values of ν̄i n .

For zero collisionality i.e. ν̄i n = 0, Eq. (4.44) reduces to,

ω̄2
0 + ω̄0 − (ω̄E0 + ω̄∗0) = 0 (4.46)

and the equilibrium flow ω̄0 is given by [Che66], [Jas72], [GRF17],

ω̄0 = −1±p
1+4(ω̄E0 + ω̄∗0)

2
(4.47)

Eq. (4.47) shows that for the equilibrium to exist at ν̄i n = 0, the following condition
should be satisfied,

ω̄E0 + ω̄∗0 >−1

4
(4.48)
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4. Fluid modeling of MISTRAL

Figure 4.9.: Normalized equilibrium flow frequency (ω0/ωci ) as a function of normalized E×B drift
frequency (ωE0/ωci ) and ion diamagnetic drift frequency (ω∗0/ωci ) for different values of
normalized ion-neutral collision frequency (νi n/ωci = 0,0.2,0.4 and 0.8). The black dashed
line presents the stability limit for ν̄i n = 0. The red dashed line is the diagonal and represents
the case when ω̄0 = ω̄E0 + ω̄∗0.

For finite collisionality, ω̄E0 + ω̄∗0 >−1/4 is no longer required for the equilibrium to
exist. From Fig. 4.9, it is seen that collisions increase the angular frequency of the fast
rotation mode and decrease the angular frequency of the slow rotation mode. A more
detailed discussion of collisional and non-collisional equilibrium flow can be found
in [Rax+15].

If inertial effects are neglected, one obtains,

ω̄0 = ω̄E0 + ω̄∗0

1+ ν̄2
i n

(4.49)

If both inertial effects and ion-neutral collisions are ignored, the equilibrium flow is
simply, ω̄0 = ω̄E0+ω̄∗0. The red dashed line in Fig. 4.9 represents this case with ν̄i n = 0
and no inertial effects.

4.2.3.2. Electron equilibrium flow

Writing the equilibrium flow velocity for electrons ve0 as given by Eq. (4.35) and
then solving the Eq. (4.26) in the same way as for equilibrium flow of ions, the radial
component of the equilibrium flow velocity of electrons is,

v̄er 0 = 0 (4.50)

The absence of electron-neutral collisions (ν̄en ≈ 0) is the cause of the zero component
of the electron’s radial velocity. The azimuthal component for the equilibrium flow
velocity of electrons is,

v̄eθ0 = r̄ ω̄0e with ω̄0e = ω̄E0 + ω̄∗e (4.51)
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4.3. Frequency range in MISTRAL determined by parameterization of experimental
profiles

where ω̄0e is the electron equilibrium flow frequency and ω̄∗e is the electron diamag-
netic drift frequency ω∗e normalized to the ion cyclotron frequency, with

ω∗e = − 1

en0B

B×∇(n0Te0)

r B
· êθ (4.52)

As given by Eq. 4.44, in order to determine the equilibrium flow frequency (ω0), it is
necessary to know the values of ωE0, ω∗0 and νi n . The range of νi n that is relevant for
the MISTRAL plasma column has already been given in Section 4.1.2. The next section
determines the range of ωE0, ω∗0 and thus ω0 for the MISTRAL plasma column.

4.3. Frequency range in MISTRAL determined by
parameterization of experimental profiles

To estimate the range of E×B drift frequency (ωE0) and ion diamagnetic drift frequency
(ω∗0), the parameters p1 and r0 obtained by the parameterization of density and
potential profiles in Chapter 2 are used. They are then used in the following equations
to find the desired range of frequencies,

ωE0 = 2p1

B
; ω∗0 =− 2Ti

eBr 2
0

(4.53)

4.3.1. At different magnetic field intensities

Figure 4.10.: Variation of ion-cyclotron frequency (ωci ), E×B drift frequency (ωE0), ion diamagnetic
drift frequency (ω∗0), equilibrium flow frequency (ω0), spoke frequency (νspoke ), ion-
neutral collision frequency (νi n), electron diamagnetic drift frequency (ω∗e ) and electron
equilibrium flow frequency (ω0e ) for various magnetic field intensities.

Fig. 4.10 shows how various frequencies vary with the increase in magnetic field
strength for ref. case A (Sec. 2.6.1). As expected, the ion-cyclotron frequency (ωci )
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4. Fluid modeling of MISTRAL

is increasing linearly with the increase in magnetic field. The ion diamagnetic drift
frequency (ω∗0) is increasing and the E×B drift frequency (ωE0) is decreasing with
the increase in the magnetic field intensity. The equilibrium flow frequency (ω0)
closely follows the E×B drift frequency but with a lower value due to inertial effects
and ion-neutral friction. The spoke frequency (νspoke ), was determined for various
magnetic field intensities in Chapter 2. The electron diamagnetic drift frequency
(ω∗e ) stemming from the temperature and density gradients is substantial, and it
significantly contributes to the electron equilibrium flow frequency (ω0e ). Both ω∗e

and ω0e show a decrease with the increase in magnetic field strength.

4.3.2. At different pressure values

The variation of characteristic frequencies in the pressure scan performed for the
ref. case B (Sec. 2.6.2) is shown in Fig. 4.11. As the ion-cyclotron frequency (ωci ) is
independent of pressure for a given magnetic field, therefore, its value at B=160 G is,
ωci ≈ 6.1 kHz. The ion diamagnetic drift frequency (ω∗0) does not vary much over the
given pressure range. The E×B drift frequency (ωE0) and the ion equilibrium flow
frequency (ω0) decreases with the increase in pressure. As expected, the ion-neutral
collision frequency (νi n) increases linearly with the increase in pressure. The equilib-
rium flow frequencyω0 is comparable toωci especially at lower values of pressure. The
electron diamagnetic drift frequency (ω∗e ) and electron equilibrium flow frequency
(ω0e ) are decreasing with the increase in pressure.

Figure 4.11.: Variation of ion-cyclotron frequency (ωci ), E×B drift frequency (ωE0), ion diamagnetic
drift frequency (ω∗0), equilibrium flow frequency (ω0), spoke frequency (νspoke ), ion-
neutral collision frequency (νi n), electron diamagnetic drift frequency (ω∗e ) and electron
equilibrium flow frequency (ω0e ) for various values of Pressure at B=160 G.

Although in the configurations shown above, ω∗0 has a far smaller impact on the
equilibrium flow than ωE0, there can exist some configurations where diamagnetic
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4.4. LFA not applicable for MISTRAL like plasmas

drift can have a significant influence on the equilibrium flow frequency depending on
the width of the density profile.

4.4. LFA not applicable for MISTRAL like plasmas
Fig. 4.10 and Fig. 4.11 clearly indicate that the LFA according to which ω0 <<ωci and
νspoke <<ωci is not valid for the plasma system into consideration. Therefore, it is
imperative to consider higher-order terms that were neglected in previous models to
fully comprehend the linear stability of weakly magnetized plasma columns.

4.5. Summary
In this chapter, the basis of the fluid model has been laid based on the properties
of MISTRAL plasma. The range of various parameters relevant to MISTRAL plasma
is given. The ordering of different time scales and length scales involved in plasma
dynamics forms the basis of appropriate modeling and assumptions to be used in
the fluid model. It is shown that the plasma under investigation is quasineutral. The
electrons can be considered strongly magnetized whereas ions are weakly magne-
tized. The validity of various assumptions such as quasi-neutrality, high ion-neutral
collisionality, strongly magnetized electrons, weakly magnetized ions, and low plasma
beta support the application of the hypotheses used to model the plasmas of interest.

Then the equilibrium flow for ions and electrons has been derived. Unlike for elec-
trons, where the equilibrium flow only occurs in the azimuthal direction; for ions, it
occurs both in the radial and azimuthal directions due to the inclusion of finite colli-
sionality. Inertial effect in addition to E×B flow, diamagnetic flow, and ion-neutral
collisions modify the equilibrium flow for ions. The electron equilibrium flow is simply
the E×B flow and diamagnetic flow. The range of various frequencies which are im-
portant factors in determining the equilibrium flow and solution of dispersion relation
(see Chapter 5) are provided. It has also been confirmed that the LFA is questionable
for the MISTRAL plasma column and should be relaxed.

After discussing the equilibrium flow, the next step in the instability description is
to derive the dispersion relation which will be the subject of the next chapter.

105





5. Linear stability (collisionless
case)

The radially global dispersion relation without collisions is derived in this Chapter
[Agg+23]. It is then compared to the dispersion relations obtained in the local limit
and in the limit of LFA.

To proceed with the derivation of the dispersion relation, we first linearize the mo-
mentum equations, Eq. (4.25) and Eq. (4.26), to express the ion and electron flow
in the continuity equation. The system of equations is then closed by using the
quasi-neutrality approximation, and we are left with a linear differential equation.

5.1. Linear electron response

From the electron momentum equation, Eq. (4.26), the electron flow is written in the
customary form:

ve = b×∇φ
B

+ 1

ene

b×∇(ne Te )

B
(5.1)

When B is homogeneous and straight (linear plasma column), for any function A, we
have:

∇· (b×∇A) = 0 (5.2)

Therefore, on multiplying Eq. (5.1) with ne and taking the divergence on both sides,

∇· (ne ve ) =∇·
(
ne

b×∇φ
B

)
+ 1

eB
∇· (b×∇(ne Te )) (5.3)

Using the fact that ∇· (b×∇φ) = 0 and ∇· (b×∇(ne Te )) = 0, above equation further
reduces to,

∇· (ne ve ) = b×∇φ
B

·∇ne (5.4)

The linearized form of the above equation using the Fourier representation of fluctu-
ating quantities given by Eq. 4.34 is,

∇· (ne ve )|1 = i m

r B

[−φ1n′
0 +φ′

0n1
]

(5.5)

= −i m
φ1

r B
n′

0 + i mωE0n1 (5.6)
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5. Linear stability (collisionless case)

Combining Eq. (5.6) and the electron continuity equation Eq. (4.24), one obtains the
relationship between perturbed density (n1) and perturbed potential (φ1),

n1

n0
= m

r Ln

1

ω−mωE0

φ1

B
(5.7)

Normalizing length to ion Larmor radius (ρi ) and frequencies to the ion cyclotron
frequency (ωci ), the normalized form of the above equation is,

n̄1 = m

r̄ L̄n

1

ω̄−mω̄E0
τφ̄1 (5.8)

where τ= Te0r e f /Ti o with Te0r e f , the reference value of the electron temperature. It
should be noted that the radial variation of the electron temperature is retained here
but since the diamagnetic flux is divergence-free (Eqs. (5.1)-(5.4)), it does not enter
the continuity equation. The relation between the perturbed density of electrons and
perturbed potential given by Eq. (5.8) is therefore identical to that of [Che66], [Rog73]
and [GRF17] where the electron diamagnetic flow was neglected.

5.2. Linear ion response

The linearized ion-momentum equation without ion-neutral collision writes,

−iωvi 1 + (vi 0 ·∇)vi 1 + (vi 1 ·∇)vi 0 = e

mi

[−∇φ+vi 1 ×B
]− Ti

mi
∇n1

no
(5.9)

For a background rigid body rotation, vi 0 = rω0êθ, the inertial terms can be written as:

(vi 0 ·∇)vi 1 = i mω0vi 1 −ω0vi 1 ×b (5.10)

and

(vi 1 ·∇)vi 0 = vi r 1
∂vi 0

∂r
+ viθ1

r

∂vi 0

∂θ
=−ω0vi 1 ×b (5.11)

When included in the linearized ion momentum equation (Eq. (5.9)), it yields:

−i (ω−mω0)vi 1 =−ωci

B
∇φ+ (ωci +2ω0)vi 1 ×b− ωci Ti

eB
∇n1

no
(5.12)

The background flow enters in the Doppler shifted frequency, ω−mω0, on the left-
hand side and in the linearized Coriolis force, Fco = 2mi vi 1 ×ω0b, on the right-hand
side.
Upon normalization, we get,

−i (ω̄−mω̄0)v̄i 1 = (1+2ω̄0)v̄i 1 ×b−∇Φ1 (5.13)
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5.3. Dispersion relation

Writing, C = 1+2ω̄0, the factor by which the Laplace force is modified due to the inertial
force, ω̄ph = ω̄−mω̄0, the normalized Doppler shifted frequency and combining
the perturbed density and potential terms into Φ1 = n̄1 + τφ̄1, the linearized ion
momentum equation then writes:

−i ω̄ph v̄i 1 =−∇Φ1 +C v̄i 1 ×b (5.14)

Taking first the cross-product of Eq. (5.14) with b and using again Eq. (5.14) to replace
vi 1 ×b in that new equation, we get:

v̄i 1 = C

C 2 − ω̄2
ph

[
b×∇Φ1 + i

ω̄ph

C
∇Φ1

]
(5.15)

The first term in the bracket is the combination of the perturbed E×B and diamagnetic
flows. The second one is the polarisation flow. Inertial effects are included in the
factor C . The polarisation flow matters when the mode frequency ω is comparable
to ωci , which is precisely the regime of interest here. Note that the polarization flow
makes the plasma compressible (∇· v̄i 1 ̸= 0).

The final step needed before obtaining the dispersion relation is to compute the
linearized divergence of the ion particle flux:

∇· (ni v̄i )|1 = n0∇· v̄i 1 + v̄i 1 ·∇n0 + v̄i 0 ·∇n1 (5.16)

These terms are given by:

n0∇· v̄i 1 = n0
i ω̄ph

C 2 − ω̄2
ph

∇2Φ1 (5.17)

v̄i 1 ·∇n0 = C

C 2 − ω̄2
ph

[
− i m

r̄
Φ1n′

0 + i
ω̄ph

C
Φ′

1n′
0

]
(5.18)

v̄i 0 ·∇n1 = i mω̄0n1 (5.19)

where ∇2Φ1 =Φ′′
1 +Φ′

1/r −m2/r 2Φ1.

5.3. Dispersion relation

Combining quasi-neutrality, ne = ni , and the continuity equations yields:

∇· (ne v̄e )|1 = ∇· (ni v̄i )|1 (5.20)

which implies:

m

r̄

1

L̄n
τφ̄1 +mω̄E0n̄1 = C

C 2 − ω̄2
ph

[
m

r̄

1

L̄n
Φ1 −

ω̄ph

C

1

L̄n
Φ′

1 +
ω̄ph

C
∇2Φ1

]
+mω̄0n̄1 (5.21)
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5. Linear stability (collisionless case)

Now, using the electron continuity equation, Eq. (5.8), to express n̄1 as a function of
φ̄1 inΦ1 = n̄1 +τφ̄1, we get:

Φ1 = (1+α∗)τφ̄1 (5.22)

with

α∗ =− mω̄∗0

ω̄ph −m (ω̄E0 − ω̄0)
(5.23)

Note that when the ion pressure gradient is neglected in the ion momentum equation
(Ti = 0), we get α∗ = 0 andΦ1 = τφ̄1.

Using Eq. (5.22) to express τφ̄1 and n̄1 as a function ofΦ1 and reminding that from
the equation dictating the equilibrium flow, ω̄0 + ω̄2

0 = ω̄∗0 + ω̄E0, Eq. (5.21) can be
written as:

Φ′′
1 +

[
1

r̄
− 1

L̄n

]
Φ′

1 −
m2

r̄ 2
Φ1 + 1

r̄ L̄n
NΦ1 = 0 (5.24)

where

N = m

[
C

ω̄ph
−

C 2 − ω̄2
ph

ω̄ph −mω̄2
0

]
(5.25)

Eq. (5.24) and (5.25) provide an extension of the model derived in [Che66] for arbitrary
frequency values but in the limit of vanishing gyro-viscosity. The low-frequency
expansion involved in [Che66] consists in approximating C 2 − ω̄2

ph ∼C 2. In this limit,

N = m

[
C

ω̄ph
− C 2

ω̄ph −mω̄2
0

]
(5.26)

and one exactly recovers Eq. (25) in [Che66] for ∇ ·πi = 0. Note that N is radially
constant because of the assumption of rigid body rotation. The differential equation
(5.24) can be solved by the method used in [RKR62], [Che66] and [Rog73] by exploiting
the change of variables,

z = r 2/r 2
0 (5.27)

where r0 is the width of the Gaussian used to parametrize the density profile defined
by Eq. (2.4), and enters Eq. (5.24) through 1/Ln = 2r /r 2

0 , combined with

Φ1 = z− 1
2 e

z
2 W (z), (5.28)

to obtain the Whittaker’s equation [WW],

d 2W

d z2
+

{
−1

4
+ N +1

2z
+ 1−m2

4z2

}
W = 0 (5.29)

The non-singular solution of this equation is given by,

WN ,m(z) = z
m+1

2 e− z
2 F

(
m −N

2
,1+2m, z

)
(5.30)
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5.3. Dispersion relation

where F
(m−N

2 ,1+2m, z
)

is the confluent hyper-geometric function of the first kind
known as Kummer’s function. Imposing the boundary conditionΦ(Z ) = 0, with
Z = r 2

b /r 2
0 (where rb is the outer radial boundary of the cylindrical vessel), fully deter-

mines the possible values of N , which for different mode numbers m are evaluated
from the zeros of the Kummer function F

(m−N
2 ,1+2m, Z

)
. These zeros can be evalu-

ated numerically. Alternatively, the asymptotic values of N (Z →∞) are N = m +2n
where n = 0,1,2,3, .... is the radial mode number [RKR62], [Che66]. The radial mode
number n simply indicates which zero of F we are referring to; e.g. n = 0 implies the
first value of N at which the function F goes to zero, n = 1 implies the second value of
N at which the function F goes to zero and so on.

Figure 5.1.: Values of N corresponding to the first zero of Kummer’s function for different values of
Z = r 2

b /r 2
0 . The solid line denotes the values evaluated numerically and the dashed line

(−−) denotes the asymptotic values.

In Fig. 5.1, the numerical solutions for N , obtained using whitm function in the
Python library mpmath, are compared to the asymptotic solutions for n = 0. Conver-
gence is reached at Z > 6 for m = 1, but higher Z values are required at high m num-
bers. For practical applications like in MISTRAL where rb = 10 cm and r0 ≈ 3−6 cm
(Z ≈ 10.8−2.8), it is, therefore, preferable to use the numerical solution. In the follow-
ing discussion, we will only use the values of N evaluated numerically.

Note that for a given radial mode number n, the value of N and the eigenfunction
shape only depends on the azimuthal mode number m and the value of Z , which
represents the ratio of the cylinder radius to the plasma radius. The eigenfunctions
are therefore independent of the background flow ω̄0. Eigenfunctions obtained for
m = 1,2,5 and 10 for different Z values and n = 0, are shown in Fig. 5.2. For Z = 2.8,
the modes are more concentrated towards the center as compared to what we observe
for Z = 10.8. The solutions of Eq. (5.28) are purely real, therefore, there is no radial
variation of the phase of the eigenfunctions.

However, if the radial mode number n is changed, the eigenfunction changes shape
for a fixed azimuthal mode number m and the value of Z . This situation has been
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5. Linear stability (collisionless case)

Figure 5.2.: Eigenfunction Φ as a function of r̄ /r̄b for m = 1,2,5 and 10. The solid lines represent the
case when Z = 10.8 and the dashed lines represent the case when Z = 2.8. Only the first
radial harmonic n = 0 is shown.

shown in Fig. 5.3. The radial mode number n represents the number of radial nodes.

Figure 5.3.: Eigenfunction Φ as a function of r̄ /r̄b for n = 0,2,4 and 6 corresponding to m = 1 and
Z = 10.8.

Once N is known, rearranging Eq. (5.25) gives the cubic dispersion relation,

ω̄3
ph − N

m
ω̄2

ph + (
N ω̄2

0 −2C ω̄0
)
ω̄ph −mC ω̄2

0 = 0 (5.31)

from which the mode growth rate and frequency can be computed.
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5.4. Specific limits of the dispersion relation

5.4. Specific limits of the dispersion relation

5.4.1. For ω̄0 =−0.5 i.e. C=0

If ω̄0 =−0.5 then C = 0 i.e. the Coriolis force factor is zero, in Eq. 5.31 which reduces
to:

ω̄2
ph − N

m
ω̄ph +N ω̄2

0 = 0 (5.32)

The roots of the above equation are given by,

ω̄ph = N

2m
± 1

2

√
N 2

m2
−4N ω̄2

0 (5.33)

As ω̄0 =−0.5, the instability condition is given as:

N < m2 (5.34)

Figure 5.4.: Values of N corresponding to n = 0,1,2,3 for different values of Z = r̄ 2
b /r̄ 2

0

for (a). m = 1 and (b). m = 2.

The value of N for a given m depends on the radial mode number n and radial
boundary Z . It is shown in Fig. 5.4 by solving Eq. 5.29 numerically for various values
of Z . For m = 1, the condition given by Eq. 5.4 is not satisfied for the given range of
Z and n. For m = 2 and n = 0, the instability condition is satisfied when Z > 3 and
does not hold for other values of n. On a similar basis, the instability condition can be
checked for higher azimuthal mode numbers.

5.4.2. For ω̄0 = 0 i.e. C=1

If ω̄= 0 i.e. C = 1, then the dispersion relation given by Eq. 5.31 reduces to,

ω̄ph = N

m
(5.35)

This implies that for ω̄0 = 0, no instability exists and the existing modes propagate
with a frequency of N /m.
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5. Linear stability (collisionless case)

5.4.3. Solution at large values of Z

At large values of Z , N can be approximated as equivalent to m. However, the largeness
of Z depends on two quantities, the parameter r0 and the radial boundary rb . Even
though Z is large, another two parameters that determine if N can be approximated
equivalent to m are the radial mode number n and azimuthal mode number m. As
can be seen from Fig. 5.1, the value of Z at which N converges to the value of m for
the radial mode number n = 0 differs for different azimuthal mode numbers. Keeping
this point in mind and substituting N = m (given that n = 0), Eq. 5.31 becomes,

ω̄3
ph − ω̄2

ph + (
mω̄2

0 −2C ω̄0
)
ω̄ph −mC ω̄2

0 = 0 (5.36)

which on factorization reduces to,(
ω̄ph −C

)(
ω̄2

ph +2ω̄0ω̄ph +mω̄2
0

)
= 0 (5.37)

The equation given above yields the most unstable solution,

ω̄ph =−ω̄0 + i
(p

m −1
)
|ω̄0| (5.38)

This implies that for a fixed mode number m and at large radial boundaries for which
N = m, the growth rate only depends on |ω̄0|.

5.5. Low-frequency approximation (LFA) and Local
limit

5.5.1. Low-frequency approximation

If the LFA is applied i.e. if C 2 − ω̄2
ph ≈C 2, Eq. 5.31 becomes,

N

m
ω̄2

ph − (
N ω̄2

0 −2C ω̄0
)
ω̄ph +mC ω̄2

0 = 0 (5.39)

which is exactly equivalent to Eq. (30) in [Che66] if the terms with 1/r 2
0 entering

because of the gyro-viscosity tensor are dropped.

5.5.2. Local limit

The local limit assumes small perturbations around a local equilibrium, neglects
or approximates spatial variations, and focuses on the behavior within a restricted
region. To make the link with previous work, e.g. [Che66] and [GRF17], the local limit

114



5.6. Linear Stability analysis

is obtained by assumingΦ′
1 = 0,Φ′′

1 = 0 in Eq. (5.24),

ω̄3
ph − mr̄ 2

0

2r̄ 2
ω̄2

ph +
(
−2C ω̄0 +m2ω̄2

0

r̄ 2
0

2r̄ 2

)
ω̄ph −mC ω̄2

0 = 0 (5.40)

This is the same as the dispersion relation obtained by equating Eqs. 17(a) and 17(b)
in [GRF17]. Note that in [GRF17], the diamagnetic drift of ions was neglected. It is kept
here but only enters the equation by modifying the equilibrium azimuthal flow ω̄0.

5.5.3. Low-frequency approximation + Local limit

Using the LFA in Eq. (5.40), leads to the following dispersion relation,

ω̄2
ph +

(
4r̄ 2C ω̄0

mr̄ 2
0

−mω̄2
0

)
ω̄ph + 2r̄ 2C ω̄2

0

r̄ 2
0

= 0 (5.41)

5.6. Linear Stability analysis

5.6.1. Radial mode number n

We first examine the role of the radial mode number n on linear stability.

(a) . m = 1 (b) . m = 2

(c) . m = 10

Figure 5.5.: Radial mode number n corresponding to the largest growth rate γ̄ as a function of Z = r̄ 2
b /r̄ 2

0
and ω0/ωci . The color bar represents the radial mode number n.
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Fig. 5.5 represents the radial mode number n which yields the largest growth rate
evaluated using the global dispersion relation (Eq. 5.31) for a given mode number
m as a function of Z and ω0/ωci . For m = 1,2 and for the given range of ω0/ωci , the
radial mode number n = 0 has the largest growth rate for Z < 3. For Z > 3, higher
radial mode numbers are progressively dominating as ω̄0 and Z increases. For m = 10,
the lowest radial mode number n = 0 corresponds to the largest growth rate when
−0.3 ≤ ω0/ωci ≤ 0.3. For large values of |ω̄0|, the radial mode number n that gives
the largest growth rate also increases with |ω̄0| and Z . The situation is more clearly
depicted in Fig. 5.6.

Figure 5.6.: Normalized growth rate (left) and normalized perturbed frequency (right) as a function
of radial mode number n for different azimuthal mode numbers m. Here Z ≈ 10.8 and
ω̄0 = 0.8.

Fig. 5.6 shows how the normalized growth rate and perturbed frequency vary with
the increase in radial mode number for a fixed m. As m is increasing, the radial mode
number that corresponds to the largest growth rate is also increasing. It should be
noted that this increase in radial mode number for a given m is sensitive to the values
of ω̄0 and Z . Importantly, when the growth rate is evaluated using the global disper-
sion relation with LFA (Eq. 5.39), it is always the lowest radial mode number n = 0 that
excites the azimuthal mode with the largest growth rate. In the following discussion,
we will focus on the radial mode number n = 0. This lets us compare the growth rate
corresponding to the same radial mode number n for the dispersion relations with
and without LFA.

5.6.2. Effect of LFA
The most unstable mode obtained from the global dispersion relation without (Eq.
(5.31)) and with LFA (Eq. (5.39)) for mode number n = 0 and m = 1,2 and 10 are shown
in Fig. 5.7 as a function of ω0/ωci and Z .

The two models predict the growth rate to increase with |ω̄0|, with an asymmetry
with respect to ω̄0, originating from the inertial term in the effective magnetization
factor C . The difference between two models increases with increasing m number

116



5.6. Linear Stability analysis

Figure 5.7.: Normalized growth rate γ/ωci as a function of normalized equilibrium flow frequency
(ω0/ωci ) and Z = r̄ 2

b /r̄ 2
0 where r̄b is the radial boundary and r̄0 is the width of the Gaussian

normalized to Larmor radius ρi for the global dispersion relation given by Eq. (5.31) (Figs.
(a,b,c)) and Eq. (5.39) (Figs.(d,e,f)). The color bar represents the normalized growth rate
(γ̄= γ/ωci ).

and equilibrium flow frequency ω̄0. For m = 10, the region of higher growth rate, as
well as the stability region are radically different with and without LFA. Without the
LFA, the largest growth rate is obtained at low Z and large ω̄0, whereas this becomes a
stable region and the growth rate is maximum at large Z with the LFA. The difference
in the stability region stems from the neglect of the terms of the order of ω̄3

ph . For
frequencies satisfying ω−mω0 << ωci , the LFA is valid, and hence the dispersion
relation with LFA (Eq. (5.39)) yields correct results, but as we move towards regimes
with high-frequency values, the LF ordering fails. There is a common region that is
stable (γ̄= 0) for both the cases and that region corresponds to ω̄0 = 0.
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5. Linear stability (collisionless case)

The validity domain of the LFA as a function of ω0/ωci is emphasized in Fig. 5.8,
where the solution without the LFA (Eq. (5.31)) with the red curve, is compared to
the solution with the LFA valid when ωph/ωci =O(ρ2) (green curve, Eq. (5.39)) and to
another solution with the LFA but valid at higher frequency i.e. ωph/ωci =O(ρ) (blue
curve, Eq. (38) in [Che66] with ∇·πi = 0).

(a) . m = 2 (b) . m = 20

(c) . m = 2 (d) . m = 20

Figure 5.8.: Normalized growth rate γ/ωci and normalized Doppler shifted frequency (ωr −mω0)/ωci

as a function of normalized equilibrium flow frequency (ω0/ωci ) for (a,c). m = 2 and (b,d).
m = 20 for Z = 10.78.

All three dispersion relations, predict the same growth rate γ̄ and the real part of
Doppler shifted frequency ω̄r −mω̄0 when the values of ω̄0 are close to zero. As ω̄0

increases, the model predictions deviate, especially for higher mode numbers. This
accounts from the fact that terms involving higher order of ω̄ph = ω̄−mω̄0 i.e. the
Doppler shifted frequency have been neglected in evaluating the dispersion relations
in [Che66] and as the factor mω̄0 increases, the assumption is no longer valid.

5.6.3. Impact of radial boundary on growth rate
The position of the boundary also has a strong influence on the mode growth rate for
a given value of ω̄0. The growth rate and real part of the Doppler shifted frequency
at different radial boundary positions r̄b keeping r̄0 fixed, for various values of m
evaluated by the global dispersion relation (Eq. (5.31)) is shown in Fig. 5.9.

At fixed plasma size, r̄0, increasing the cylinder radius r̄b , for which Φ(Z ) = 0 is
imposed, first destabilizes all modes and then has limited to no impact on the growth
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(a) (b)

(c) (d)

Figure 5.9.: Normalized growth rate γ̄= γ/ωci and normalized Doppler shifted frequency
(ωr −mω0)/ωci as a function of Z = r̄ 2

b /r̄ 2
0 for various mode numbers m using dispersion

relation (Eq. (5.31)). Figs (a,c). for ω̄0 =−0.4 and Figs. (b,d). for ω̄0 = 0.4

rate once r̄b ∼ 3r̄0 (Z ∼ 9). Note that m = 1 has a different behavior and gets fully
stabilized when the bounding cylinder radius is increased.

For the real part of the normalized Doppler shifted frequency ω̄r −mω̄0, for all the
mode numbers, the frequency is maximum for small values of Z and then decreases
as Z increases except for m = 1 when ω̄0 =−0.4. The sign of ω̄0 plays a critical role in
determining the sign of Doppler shifted frequency (ω̄r −mω̄0).

Irrespective of the mode number, as Z approaches large values, the Doppler shifted
frequency (ω̄r −mω̄0) tends to converge towards −ω̄0 (Fig. 5.9 (c),(d)). This conver-
gence indicates that all the modes exhibit a common rotational frequency, possibly
allowing mode synchronization in the non-linear phase.

The growth rate saturates to the same level at large values of Z regardless of the
direction of the equilibrium flow frequency, as depicted in Fig. 5.10 except for m = 1.
When the equilibrium flow frequency is doubled, the saturated growth rate also gets
doubled compared to its previous value. The reason being, the scaling of growth
rate as

p
m −1|ω̄0| with |ω̄0| for fixed mode number m as given by Eq. 5.38. It is

119



5. Linear stability (collisionless case)

Figure 5.10.: Normalized growth rate γ̄= γ/ωci as a function of Z = r̄ 2
b /r̄ 2

0 for mode numbers m = 1,2
using dispersion relation (Eq. (5.31)). Fig (a). represents the case when ω̄0 = 0.4 (solid
line), ω̄0 = 0.8 (dashed line) and ω̄0 = 1.2 (dashdot line). Fig (b). represents the case when
ω̄0 = −0.4 (solid line), ω̄0 = −0.8 (dashed line) and ω̄0 = −1.2 (dashdot line). The mode
m = 1 is presented by red and mode m = 2 is presented by blue.

important to note that the solution plotted in Fig. 5.9 and Fig. 5.10 is evaluated using
Eq. 5.24. However, for large values of Z , the same can be recovered using Eq. 5.38
which specifies the saturation of growth rate and convergence of Doppler shifted
frequency at large values of Z.

5.6.4. Eigenfunction, relative fluctuation, and phase
difference

5.6.4.1. Eigenfunction

The expression of eigenfunctions for the normalized perturbed density n1/n0 and
perturbed potential eφ1/Te0r e f is obtained by using Eqs. (5.8) and (5.22),

n̄1 = m

r̄ L̄n(ω̄−mω̄E0)

Φ1

(1+α∗)
(5.42)

φ̄1 = Φ1

(1+α∗)τ
(5.43)

where α∗ is given by Eq. (5.23). Using these expressions, the eigenfunctions n̄1 for
m = 1 and 10 are shown in Fig. 5.11 for τ = 1. The perturbations in density and
potential are more spread out for m = 1 than for m = 10 or in other words, modes with
higher azimuthal mode numbers are more localized towards the boundary region, as
already discussed in Fig. 5.2.

5.6.4.2. Amplitude of potential fluctuations relative to density fluctuations

The ratio of potential to density fluctuation amplitudes i.e. |φ̄1/n̄1| is provided in
the table 3.1 as a criterion for instability identification. It should be noted that the
instability criteria given in table 3.1 is based on the analysis using LFA. Therefore, to
check if the criteria is valid even if the analysis is done using the dispersion relation
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(a) . m = 1 (b) . m = 10

Figure 5.11.: Normalized perturbed density n1/n0 for (a). m = 1 and (b). m = 10 as a function r̄ /r̄b using
Z = 10.8. The parameters used to obtain these eigenfunctions are ω̄E0 = 0.95, ω̄∗0 =−0.35,
ω̄0 = 0.42 and τ= 1.

without LFA, we divide Eq. (5.43) by Eq. (5.42),

φ̄1

n̄1
= (ω̄−mω̄E0)

r̄ L̄n

mτ
(5.44)

Figure 5.12.: The ratio of normalized fluctuations multiplied with τ (|τφ̄1/n̄1|) for m = 1 (left) and
for m = 3 (right) as a function of normalized E ×B flow frequency (ωE0/ωci ) and −2/r̄ 2

0
where r̄0 is the normalized plasma size. The color bar represents (|τφ̄1/n̄1|) and the
constant lines on the contour represent ω̄0. The dashed lines corresponds to the value of
−2/r̄ 2

0 and ωE0/ωci for which experimental measurements are presented in Chapter 2 for
Configurations I and III.

Fig. 5.12 shows τ times the potential fluctuations φ̄1 relative to density fluctua-
tions n̄1 as a function of ωE0/ωci and −2/r̄ 2

0 for m = 1 and m = 3. The parameter
τ = Te0r e f /Ti 0 varies depending on the experimental configuration, therefore the

quantity |τφ̄1/n̄1| has been shown in the Fig. 5.12 instead of |φ̄1/n̄1|.

The ratio |τφ̄1/n̄1| is closer to zero in the region where (ω̄−mω̄E0) approaches to
zero and therefore |τφ̄1/n̄1| as well. This is valid for low azimuthal mode numbers.
Additionally, the relative amplitude of the fluctuations increases as −2/r̄ 2

0 increases.
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5. Linear stability (collisionless case)

The analysis of Figure 5.12 reveals that establishing a fixed criterion for instability
identification based on the ratio |φ̄1/n̄1|, as previously proposed by [Jas72], is chal-
lenging. This ratio is influenced by various experiment-specific variables that can
differ from one experimental setup to another.

Comparison with the experiment

This quantity |φ̄1/n̄1| has also been determined from the experimental measure-
ments in Section 2.9 of Chapter 2 for Configurations I and III. Here φ̄1 and n̄1 cor-
responds to eṼp /kB Te0 and ñ/n0 respectively as given in Chapter 2. Te0 ≈ 3 eV and
Ti 0 ≈ 0.2 eV for both reference cases which evaluates τ≈ 15.

According to Eq. 5.44, |φ̄1/n̄1| is approximately 0.13 for m = 1 (Fig. 5.12 (a)),
ω̄E0 = 0.52 and −2/r̄ 2

0 = −0.16. These values of ω̄E0 and −2/r̄ 2
0 corresponds to the

Configuration I given in Chapter 2. For Configuration III (in Chapter 2), the rela-
tive amplitude of the fluctuations (|φ̄1/n̄1|) corresponding to m = 3 (Fig. 5.12 (b)),
ω̄0 = −0.23 and −2/r̄ 2

0 = −0.18 is approximately 0.24. There is a large discrepancy
between the experimental values of |φ̄1/n̄1| obtained for the Configuration I and III in
Chapter 2 and the theoretical values obtained here.

It has to be emphasized that the experimental measurements are conducted when
the plasma is in a non-linear saturated state, whereas the model presented here is
based on linear assumptions. As a result, there may be a discrepancy between the
theoretical results and the observations obtained from experiments. Furthermore, the
experiment was conducted under high-pressure conditions, where the influence of
collisions becomes prominent. In contrast, the model presented in this study does
not consider collisions.

5.6.4.3. Phase difference

Another essential information regarding the mode structure of the instability is the
phase difference between density and potential fluctuations. This is a quantity that
can be measured experimentally and which determines the level of particle flux driven
by the fluctuations n̄1v̄i 1 and n̄1v̄e1. To calculate the phase difference between φ̄1 and

n̄1, we write, φ̄1
n̄1

= Ae iφp , which gives the phase difference φp ,

φp = tan−1
(

γ̄

ω̄r −mω̄E0

)
(5.45)

Fig. 5.13 shows the phase difference between φ̄1 and n̄1 as a function ofωE0/ωci and
−2/r̄ 2

0 for m = 1 and m = 3. Note that r̄0 does not appear explicitly in Eq. (5.45) but
comes in the expression for Z = r̄ 2

b /r̄ 2
0 and ω̄0 which determines γ̄ and ω̄r . Therefore,

by varying r̄0, the combined effect of Z as well as ω̄0 on the phase difference can be
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Figure 5.13.: Phase difference between φ̄1 and n̄1 for (a). m = 1 and (b). m = 3 as a function of normal-
ized E ×B flow frequency (ωE0/ωci ) and −2/r̄ 2

0 where r̄0 is the normalized plasma size.
The color bar represents the phase difference in degrees and the constant lines on the
contour represent ω̄0. The dashed lines corresponds to the value of −2/r̄ 2

0 and ωE0/ωci for
which experimental measurements are performed in Chapter 2 for ref. cases C and D.

observed.

The phase shift is close to zero except in a narrow region where ω̄r −mω̄E0 is ap-
proaching zero. In this region, the phase shift becomes large, |φp | ∼ 90◦ and changes
sign. Furthermore, the critical value of ω̄E0 at which the phase shift changes from
negative to positive increases with decreasing r̄0.

5.6.5. Azimuthal mode number spectra
In Fig. 5.14, the normalized growth rate γ̄, Doppler shifted frequency (ω̄r −mω̄0),
and normalized real frequency ω̄r , computed numerically by solving the dispersion
relation (Eq. (5.31)) are shown as a function of m. The growth rate is increasing
with the mode number m irrespective of the sign of ω̄0. At high m numbers, finite
Larmor radius (FLR) effects are strongly stabilizing [Hoh63b] and should be taken
into account. In a fluid description, they enter in the gyroviscosity tensor, neglected
here, but shown to stabilize high m numbers in [Che66]. In other words, FLR effects
are important when kθρi ∼ 1 where kθ = m/r is the azimuthal wave number. This
corresponds to, m ∼ r /ρi , which implies that the FLR stabilization (γ→ 0) comes
into effect when m > r /ρi . This means that for MISTRAL plasma, at B=160 G and
Ti ≈ 0.2 eV, modes with azimuthal mode number m > 5 can possibly get stabilized
due to FLR effects. This threshold on m at which the FLR effects become important
increases with the increase in magnetic field strength.

Furthermore, the growth rate is zero for ω̄0 = 0 as discussed in Fig. 5.7. For m = 1, γ̄
is of the order of 10−2 for positive values of ω̄0 and for ω̄0 =−0.2, and zero for ω̄0 =−0.4
and 0. For similar values of ω̄0 but in opposite directions, there is a small difference
in the growth rate up to m = 5 and this difference in the growth rate escalates with
the increasing mode number m. Overall the growth rate increases with the increase
in ω̄0. The Doppler shifted frequency (ω̄r −mω̄0) has the sign opposite to that of ω̄0

for ω̄0 < 0. For ω̄0 > 0, the Doppler shifted frequency has the sign opposite to ω̄0 until
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Figure 5.14.: (a). Normalized growth rate γ̄= γ/ωci , (b). Normalized Doppler shifted frequency
(ωr −mω0)/ωci and (c). Normalized frequency ω̄r = ωr /ωci as a function of azimuthal
mode number m for various values of normalized equilibrium flow frequency ω̄0 =ω0/ωci

used in the global dispersion relation (Eq. (5.31)). Here Z ≈ 10.8.

m < 20. The real part of the frequency ω̄r in the laboratory frame has also been shown
in Fig. 5.14(c) to show the dominance of the factor mω̄0.

5.6.6. Comparison of local and global dispersion relation

In this section, the impact of the local approximation (Eqs. (5.40)-(5.41)) is discussed.
In Fig. 5.15, the mode growth rate obtained in the local approximation with and
without LFA is shown as a function of ω̄0 and r̄ 2/r̄ 2

0 for m = 1,2 and 10. Similarly to
the radially global results, the LFA assumption is shown to have a validity domain
restricted to low ω̄0 values and low m numbers. Relaxing the LFA opens up new insta-
bility regions, in particular at low m numbers where an unstable zone is obtained at
ω̄0 < 0. For ω̄0 = 0, no instability exists and stable anti-drift modes with a propagation
frequency ω̄r = mr̄ 2

0 /2r̄ 2 are predicted without the LFA [Fri64].

In contrast to the local dispersion relation which evaluates the growth rate at each
radial position, the global dispersion relation describes the growth rate of an eigen-
mode extending over the whole cylinder radius. To compare the local and global model
predictions, we show in Fig. (5.17), the maximum growth rate, γ̄max , obtained with the
local model over the interval 0 ≤ r̄ ≤ r̄b as a function of ω̄0 and Z = r̄ 2

b /r̄ 2
0 , see Fig. 5.16

for an example. In Fig. 5.16, the growth rate obtained from the global solution (Eq.
5.31) is compared to the growth rate obtained from the local solution (Eq. 5.40) in blue.

This quantity γ̄max is compared to the global model predictions in Fig. 5.17 (d,e,f).
All results are shown without the LFA. In Fig. 5.17 (a,b,c), we see that for ω̄0 > 0, the
value of γ̄max is largely independent of Z = r̄ 2

b /r̄ 2
0 . This is because the radial position

at which the maximum growth rate is obtained in the local model is close to zero, see
Fig. 5.15(a,b,c). The situation is different for ω̄0 < 0 and low m number where the local
growth rate increases with r̄ (see Fig. 5.15(a)). This is reflected by an increase of γ̄max

with r̄ 2
b /r̄ 2

0 .
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Figure 5.15.: Normalized growth rate γ/ωci as a function of normalized equilibrium flow frequency
(ω0/ωci ) and r̄ 2/r̄ 2

0 for the local dispersion relation given by Eq. (5.40) (Figs. (a,b,c)) and
Eq. (5.41) (Figs. (d,e,f)). The color bar represents the normalized growth rate (γ̄= γ/ωci ).

Figure 5.16.: Normalized growth rate γ̄ = γ/ωci as a function of the normalized radial position r̄ for
mode number m = 1 and ω̄0 = 0.6. The blue curve represents the case when γ̄ is evaluated
using local dispersion relation (Eq. 5.40) and the orange curve corresponds to the global
solution (Eq. 5.31).
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Figure 5.17.: Normalized maximum growth rate γmax /ωci as a function of normalized equilibrium flow
frequency (ω0/ωci ) and r̄ 2

b /r̄ 2
0 for the local dispersion relation given by Eq.(5.40) (Figs.

(a,b,c)). Normalized relative growth rate γr el /ωci as a function of normalized equilibrium
flow frequency (ω0/ωci ) and r̄ 2/r̄ 2

0 where γ̄r el = 2(γ̄max − γ̄g l obal )/(γ̄max + γ̄g l obal ) and
γ̄g l obal is evaluated using Eq. (5.31) (Figs. (d,e,f)). The constant lines on Figs. (d,e,f)
represents the difference between γ̄max and γ̄g l obal .

In both cases, γ̄max is obtained close to the radial boundaries, either r̄ = 0 or r̄ = r̄b ,
where global effects are non-negligible. This is why the relative difference between
the γ̄max and γ̄g l obal , shown in Fig. 5.17, is always significant, except perhaps when
the growth rate is closer to zero. The dark blue region in Fig. 5.17(d,e,f) where γ̄r el is
maximum corresponds to the region where γ̄max = 0 but γ̄g l obal remains finite, leading
to large value of γ̄max − γ̄g l obal . The white region in Fig. 5.17(d,e,f) corresponds to the
region where both γ̄max and γ̄g l obal corresponds to zero. From the comparison, it is
evident that the local dispersion relation cannot be used to study the global behavior
of weakly magnetized rotating plasma systems having frequencies comparable to the
ion-cyclotron frequency.
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5.7. Summary
In this Chapter, the linearized momentum equations for ions and electrons are cou-
pled with their respective continuity equations to establish a relationship between
the perturbed normalized density (n̄1) and the perturbed normalized potential (φ̄1).
Then coupling the assumption of quasi-neutrality and the relation Φ1 = n̄1 +τφ̄1, a
linear differential equation is obtained for the collisionless case. The resulting dif-
ferential equation corresponds to an eigenvalue problem. Its solution is obtained
using Kummer’s function, a special function that satisfies a specific second-order
linear differential equation called the Whittaker equation. Determining the value of
N using Kummer’s function becomes instrumental in solving the cubic dispersion
relation. This dispersion relation captures the global behavior of the system under
consideration.

The linear stability analysis is then performed using the derived dispersion rela-
tion for MISTRAL-like plasma parameters. The growth rate is found to be strongly
affected by the equilibrium azimuthal flow ω̄0 which mainly depends on the E×B flow
and diamagnetic flow. No instability is found for ω̄0 = 0. For fixed ω̄0 and density
gradient, the azimuthal mode number m and the radial boundary limit r̄b are the
dominant factors affecting the growth rate. At a fixed radial boundary, the phase
difference between normalized density fluctuations and potential fluctuations can
vary significantly based on several factors, including the mode number, equilibrium
flow frequency, E×B flow frequency, the parameter r̄0, and the radial boundary r̄b .
Comparison between theoretical predictions and experimental results for the ampli-
tude of normalized potential to density fluctuations revealed certain discrepancies.
These discrepancies can be attributed to two main factors: ion-neutral collisionality
and non-linear effects.

The comparison of the dispersion relation with and without low-frequency assump-
tion (LFA), revealed that as soon as the equilibrium flow frequency is a fraction of the
ion-cyclotron frequency, with the exact threshold depending on the parameters m
and Z , relaxing the LFA is mandatory. More precisely the LFA becomes inaccurate
when the Doppler shifted frequency, ω̄r −mω̄0, becomes comparable to ωci .

The local solution of the dispersion relation was compared to the global solution
showing that there is no parameter range where the local model is applicable. This is
because the local mode predicts a maximum growth rate either close to the plasma
axis or outer cylinder where boundary effects are essential. Rotating plasmas sub-
ject to centrifugal instability like MISTRAL, require a non-local treatment taking the
boundary into account.

As ion-neutral collisionality can be significantly high in the present plasma system,
the model is further developed to include ion-neutral collisions which will be the
subject of next chapter.
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analysis to the collisional case

In this chapter, we obtain the dispersion relation by considering ion-neutral collisions
with the approximation ϵ = ν̄i nω̄0

C << 1. As a first step, the dispersion relation is
then obtained using the approximation ϵ→ 0 but with finite ν̄i n . The growth rate and
perturbed frequency obtained from the dispersion relation with and without collisions
are then compared to emphasize the impact of collisionality.

6.1. Linear ion response with ion-neutral collisions
Including the ion-neutral collisions (νi n), the linearized ion-momentum equation
(Eq. (5.14)) modifies to,

−i (ω̄ph + i ν̄i n)v̄i 1 =C (v̄i 1 ×b)−∇Φ1 + r̄ ν̄i nω̄0

C

(
v̄′i 1 +

v̄i 1

r̄

)
(6.1)

Substituting ν̄i n = 0, one recovers the collisionless case as given by Eq. 5.14. The
terms highlighted in red represent new quantities introduced by including ion-neutral
collisionality. The term ν̄i n v̄i 1 arises from the frictional force term in the perturbed
ion momentum equation (Eq. 4.25). The incorporation of ion-neutral collisions in the
momentum equation of ions modifies the inertial force term, due to the radial com-
ponent of the equilibrium flow (in red on the RHS of Eq. 6.1). The detailed expression
for (v̄i ·∇) v̄i can be found in Appendix E.

Eq. 6.1 writes:
−i ω̄c v̄i 1 =C (v̄i 1 ×b)−∇Φ1 +ϵ

(
r̄ v̄′i 1 + v̄i 1

)
(6.2)

Noting ω̄c = ω̄ph + i ν̄i n and ϵ = ν̄i nω̄0/C . In MISTRAL plasmas, the parameter ϵ is
observed to be small, typically of the order of 10−2, see Figs. 4.10 and 4.11 shown
in Chapter 4. This is because when the neutral pressure is increased, the electric
potential profile flattens, resulting in the E×B frequency ωE0, and therefore ω0, much
smaller and compensating for the increase in νi n . The experimental observation of
ϵ << 1 motivates performing an expansion in this parameter to solve Eq. 6.2. We
expanded v̄i 1 in powers of ϵ,

v̄i 1 = v̄(0)
i 1 +ϵv̄(1)

i 1 +ϵ2v̄(2)
i 2 + ....... (6.3)

where v̄(0)
i 1 is the ion fluid velocity when ϵ= 0 but not necessarily ν̄i n = 0. Assuming
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ϵ<< 1, Eq. 6.3 reduces to v̄i 1 = v̄(0)
i 1 + ϵv̄i 1(1). Substituting this value of v̄i 1 in Eq. 6.2

and neglecting terms of the order of O(ϵ2) and higher, the zeroth order component,
v̄(0)

i 1 is,

v̄(0)
i 1 = C

C 2 − ω̄2
c

[
b×∇Φ1 + i ω̄c

C
∇Φ1

]
(6.4)

This is the same solution as obtained for the collisionless case (Eq. 5.15), but with ω̄ph

replaced by ω̄c = ω̄ph + i ν̄i n . The first order component v̄(1)
i 1 is,

−i ω̄c v̄(1)
i 1 =C

(
v̄(1)

i 1 ×b
)
+ r̄ v̄′(0)

i 1 + v̄(0)
i 1 (6.5)

Taking the cross product of the above equation with b from RHS and then substituting
the value of v̄(1)

i 1 ×b, the above equation becomes:(
C 2 − ω̄2

c

C

)
v̄(1)

i 1 =− i ω̄c

C

(
r̄ v̄(0)

i 1
′+ v̄(0)

i 1

)
−b×

(
r̄ v̄(0)

i 1
′+ v̄(0)

i 1

)
(6.6)

where,

v̄′(0)
i 1 = C

C 2 − ω̄2
c

[
b×∇Φ′

1 +
i m

r̄ 2
Φ1êr + i ω̄c

C

(
∇Φ′

1 −
i m

r̄ 2
Φ1êθ

)]
(6.7)

b× v̄(0)
i 1 = C

C 2 − ω̄2
c

[
−∇Φ1 + i ω̄c

C
b×∇Φ1

]
(6.8)

b× v̄′(0)
i 1 = C

C 2 − ω̄2
c

[
−∇Φ′

1 +
i m

r̄ 2
Φ1êθ+

i ω̄c

C

(
b×∇Φ′

1 +
i m

r̄ 2
Φ1êr

)]
(6.9)

Substituting these terms in Eq. 6.6 and solving it further, we obtain the expression for
v̄(1)

i 1 :

v̄(1)
i 1 =

(
1

C 2 − ω̄2
c

)2 [(
C 2 + ω̄2

c

)(
Φ′

1êr + r̄∇Φ′
1

)−2iC ω̄c b× (
Φ′

1êr + r̄∇Φ′
1

)]
(6.10)

The next step is to obtain the linearized divergence of the ion particle flux,

∇· (ni v̄i )|1 = n0∇· v̄i 1 + v̄i 1 ·∇n0 +n1∇· v̄0 + v̄0 ·∇n1 (6.11)

Compared to the collisionless case (Eq. 5.16), new contribution arises due to finite
radial equilibrium flow.

Expanding Eq. 6.11 in terms of v̄(0)
i 1 and v̄(1)

i 1 using Eq. 6.3, we get:

∇· (ni v̄i )|1 = n0∇· v̄(0)
i 1 + v̄(0)

i 1 ·∇n0 +ϵ
(
n0∇· v̄(1)

i 1 + v̄(1)
i 1 ·∇n0

)
+n1∇· v̄0 + v̄0 ·∇n1 (6.12)

The terms n0∇· v̄(0)
i 1 , v̄(0)

i 1 ·∇n0 are the same as given by Eq. 5.17 and Eq. 5.18 respec-
tively, the only difference being ω̄ph will be replaced by ω̄c . The new terms in red
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6.1. Linear ion response with ion-neutral collisions

are,

n0∇· v̄(1)
i 1 = n0

C 2 + ω̄2
c

(C 2 − ω̄2
c )2

(
r̄Φ′′′

1 +3Φ′′
1 −

m2

r̄
Φ′

1 +
1

r̄
Φ′

1

)
(6.13)

v̄(1)
i 1 ·∇n0 = n0

C 2 + ω̄2
c

(C 2 − ω̄2
c )2

(
−

¯rΦ′′
1

L̄n
− Φ

′
1

L̄n
+ 2mC ω̄c

C 2 + ω̄2
c

Φ′
1

L̄n

)
(6.14)

n1∇· v̄i 0 = −2ϵn1 (6.15)

v̄i 0 ·∇n1 = i mω̄0n1 − r̄ ϵn′
1 (6.16)

Here n′
1 can be written in terms ofΦ1 using Eq. 5.8 and Eq. 5.22,

n′
1 =− mω̄∗0

(ω̄ph −m(ω̄E0 − ω̄0))(1+α∗)

(
n′

0Φ1 +n0Φ
′
1

)
(6.17)

which when divided with n0 becomes,

n′
1

n0
= mω̄∗0

(ω̄ph −m(ω̄E0 − ω̄0))(1+α∗)

(
Φ1

L̄n
−Φ′

1

)
(6.18)

Here α∗ is given by Eq. 5.23 and 1/L̄n = −n′
0/n0 = 2r̄ /r̄ 2

0 is the normalized density
gradient and depends on the parameterization used for the density profile.

Substituting all the required terms in Eq. 6.12 and rearranging them, we get a
third-order linear differential equation,

ϵΦ′′′
1 +

[
CNC

r̄
+ϵ

(
3

r̄
− 1

L̄n

)]
Φ′′

1 +
[

CNC

r̄

(
1

r̄
− 1

L̄n

)
+ϵ

(
−m2

r̄ 2
+ 1

r̄

(
1

r̄
− 1

L̄n

)
+ 2mC ω̄c

r̄ L̄n(C 2 + ω̄2
c )

− m

r̄ L̄n
(
ω̄ph +mδω̄0

) (C 2 − ω̄2
c )2

C 2 + ω̄2
c

)]
Φ′

1

+
[

CNC

r̄

(
−m2

r̄ 2
− m

r̄ L̄n

(
C 2 − ω̄2

c

ω̄ph +mδω̄0

ω̄ph

ω̄c
− C

ω̄c

))
−ϵ m

r̄ L̄n(ω̄ph +mδω̄0)

(C 2 − ω̄2
c )2

C 2 + ω̄2
c

(
2

r̄
− 1

L̄n

)]
Φ1 = 0

(6.19)

where,

CNC = i ω̄c

(
C 2 − ω̄2

c

C 2 + ω̄2
c

)
, ω̄ph = ω̄−mω̄0, ω̄c = ω̄ph+i ν̄i n , δω̄0 = ω̄0−ω̄E0−ω̄∗0, and C = 1+2ω̄0

(6.20)

If ϵ= 0, the collisionless case given by Eq. 5.24 is recovered.

The third-order differential equation in r̄ , represented by Eq. 6.19 is cumbersome
to solve due to the problem of singularity at the initial boundary r = 0 (near the
axis of plasma column). In addition, if the analytic form of Φ1 is known, it can be
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6. Extension of the linear stability analysis to the collisional case

instrumental in solving the Eq. 6.19 as we did for the collisionless case. Despite efforts
within the scope of this thesis, a suitable change of variables or numerical method to
address this singularity problem was not identified, nor a suitable analytic form for
Φ1 was found. We, therefore, focus on the limit ϵ→ 0, but retaining finite ν̄i n in the
following.

6.2. Dispersion relation in the limit ϵ→ 0

As the parameter ϵ<< 1 for the frequency range found in MISTRAL, it would be inter-
esting to observe the effect of collisions on the growth rate and perturbed frequency
in the limit ϵ→ 0. In this limit, Eq. 6.19 reduces to,

Φ′′
1 +

(
1

r̄
− 1

L̄n

)
Φ′′

1 −
m2

r̄ 2
Φ1 + 1

r̄ L̄n
NΦ1 = 0 (6.21)

where
N

m
= C

ω̄c
− C 2 − ω̄2

c

ω̄ph +mδω̄0

ω̄ph

ω̄c
(6.22)

Eq. 6.21 has the same structure as obtained for the case without collisions (Eq. 5.24),
but the expression of N is different. We can use the same method as used for the
collisionless case to find the eigenvalue N . Once N is known, substituting
ω̄c = ω̄ph + i ν̄i n in Eq. 6.22 and rearranging it further, we obtain a cubic equation in
ω̄ph :

ω̄3
ph−

(
N

m
−2i ν̄i n

)
ω̄2

ph+
(
C −C 2 − N

m
(mδω̄0 + i ν̄i n)− ν̄2

i n

)
ω̄ph+(mC − i N ν̄i n)δω̄0 = 0

(6.23)
The dispersion relation given by Eq. 6.23 will be used for the following analysis.

6.3. Effect of collisionality and radial boundary on
the growth rate and frequency of modes

The effect of collisionality is observed on the growth rate and Doppler-shifted fre-
quency of different azimuthal mode numbers m using the dispersion relation given
by Eq. 6.23. It’s done for two values of Z = r̄ 2

b /r̄ 2
0 and the first radial mode number

(n = 0) keeping all the other parameters unchanged. For a fixed m and n, the change
in the value of Z changes the values of N and therefore influences the growth rate and
Doppler shifted frequency. Another important thing to note is that it’s not necessarily
the lowest radial mode number that yields the largest growth rate as shown previously
in Fig. 5.5 in Chapter 5. This can be seen from Fig. 6.1 where the growth rate for mode
m = 1 is shown for different radial mode numbers n and two different values of Z or
r̄b . For Z ≈ 2.8, it’s always n = 0, that yields the highest growth rate, however, this is
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modes

not the case when Z ≈ 11.

Figure 6.1.: Normalized growth rate γ/ωci of azimuthal mode number m = 1 as a function of nor-
malized ion-neutral collision frequency νi n/ωci for Z ≈ 2.8 (r̄b ≈ 5.5) (left) and Z ≈ 11
(r̄b ≈ 11)(right). The various curves in the figure correspond to different radial harmonics
n. The parameters used are r̄0 = 3.32, ω̄∗0 =−0.18 and ω̄E0 = 0.4.

Figure 6.2.: Normalized growth rate γ/ωci (at left) and normalized Doppler shifted frequency
((ωr −mω0)/ωci ) (at right) as a function of normalized ion-neutral collision frequency
νi n/ωci for different azimuthal mode numbers. The parameters used are r̄0 = 3.32, r̄b ≈ 5.5,
Z ≈ 2.8, ω̄∗0 =−0.18 and ω̄E0 = 0.4. These parameters correspond to the reference case B
when P=5.5×10−4 mbar, (see Appendix B).

The growth rate of the given modes exhibits a non-monotonic behavior with in-
creasing collisionality (Figs. 6.2 and 6.3) in both cases, except for m = 1 when Z ≈ 11.
This is not the case for the Doppler-shifted frequency. At a small value of Z , the
Doppler-shifted frequency of the given modes first increases and then decreases with
increasing collisionality. As Z is increased, this trend changes. At a large value of Z ,
the Doppler-shifted frequency of the given modes is increasing with the increase in
collisionality and then eventually approaches a constant value.

Interestingly, the impact of the boundary location on the mode growth rate differs
at low and high collisionality. At low collisionality, increasing Z (boundary further
away from the plasma) destabilizes the mode, whereas the opposite is observed at
larger collisionality. This is best seen in Fig. 6.4, where the growth rate for two values
of Z is shown as a function of ν̄i n . The value of collisionality where Z has no impact
is indicated by a dashed black line and is found to be close to ν̄i n = 1. This change
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6. Extension of the linear stability analysis to the collisional case

Figure 6.3.: Normalized growth rate γ/ωci (at left) and normalized Doppler shifted frequency
((ωr −mω0)/ωci ) (at right) as a function of normalized ion-neutral collision frequency
νi n/ωci for different azimuthal mode numbers. The parameters used are r̄0 = 3.32, r̄b ≈ 11,
Z ≈ 11, ω̄∗0 =−0.18 and ω̄E0 = 0.4.

in behavior closer to ν̄i n suggests a transition between two distinct behaviors of
instability. This hypothesis is explained in the next section.

Figure 6.4.: Normalized growth rate γ/ωci as a function of normalized ion-neutral collision frequency
νi n/ωci for m = 2 (left) and m = 10 (right) for two different values of Z . The value of Z ≈ 2.8
corresponds to the case when r̄b ≈ 5.5 and the value Z ≈ 11 corresponds to r̄b ≈ 11. The
parameters used are r̄0 = 3.32, ω̄∗0 =−0.18 and ω̄E0 = 0.4.

6.4. Effect of ion-neutral collisions in the presence
of inertia

The dispersion relation given by Eq. 6.23 in the limit ϵ→ 0 accounts for the impact
due to both inertia and ion-neutral collisions in addition to the electromagnetic force
and pressure gradient effects. If one wants to observe the growth rate and frequency
of the modes only due to the impact of ion-neutral collisions (in addition to the
electromagnetic force and pressure gradient), then it can be done by setting C = 1 and
ω̄ph = ω̄ in Eq. 6.23. The growth rate and frequency evaluated using the dispersion
relation derived with this approximation do not account for the effects due to inertia
and is given as:

ω̄3 −
(

N

m
−2i ν̄i n

)
ω̄2 −

(
N

m
(mδω̄0 + i ν̄i n)+ ν̄2

i n

)
ω̄+ (m − i N ν̄i n)δω̄0 = 0 (6.24)
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Figs. 6.5 and 6.6 represent the growth rate and frequencies evaluated using different
dispersion relations for mode numbers m = 1 and m = 10. The main objective of
presenting these plots is to observe the relative dominance of collisions over inertial
effects or vice versa on the growth rate and frequency of the existing modes. It is
important to note that the expression for ω̄0 given by Eq. 4.45 is used in evaluating
δω̄0 = ω̄0− ω̄E0− ω̄∗0 irrespective of the effects considered to compute the growth rate
and frequency shown in Figs. 6.5 and Figs. 6.6. This is done to emphasize the role of
inertial effects and collisions on the modification of instability behavior keeping other
parameters unchanged.

The red curve in Figs. 6.5 and 6.6 corresponds to the growth rate and frequencies
evaluated using the dispersion relation given by Eq. 5.31. The blue curve represents
the results obtained using Eq. 6.21, and the green curve is based on Eq. 6.24. It should
be noted that for the case when collisions are not taken into account (red curve),
the change in the growth rate is due to the change in equilibrium flow frequency
(equilibrium flow frequency is decreasing due to an increase in collisionality (see Eq.
4.44)) in addition to inertial effects.

Figure 6.5.: Normalized growth rate γ/ωci (at left) and normalized perturbed frequency (ωr /ωci ) (at
right) as a function of normalized ion-neutral collision frequency νi n/ωci for mode m = 1.
The parameters used are r̄0 = 3.32, r̄b ≈ 5.5, Z ≈ 2.8, ω̄∗0 = −0.18 and ω̄E0 = 0.4. The
parameters considered are consistent with the ref. case B in Chapter 2 when P = 4.6×10−4

mbar.

Figure 6.6.: Normalized growth rate γ/ωci (at left) and normalized perturbed frequency (ωr /ωci ) (at
right) as a function of normalized ion-neutral collision frequency νi n/ωci for mode m = 10.
The parameters used are r̄0 = 3.32, r̄b ≈ 11, Z ≈ 2.8, ω̄∗0 =−0.18 and ω̄E0 = 0.4.

135
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The presented figures (Figs. 6.5 and 6.6) clearly illustrate the change in the behavior
of instability when collisions are taken into account. In the absence of collisions (red
curve), the growth rate is predominantly influenced by the factor δω̄0. The growth
rate in the presence of inertial effects increases with the increase in the absolute value
of δω̄0. However, when both collisions and inertial effects are considered (blue curve),
collisions have a more significant impact on the growth rate considering that |δω̄0|
is the same as considered in the case with inertia. This is further evident from the
green curve, where inertial effects are not considered, and the growth rate aligns more
closely with the blue curve.

In addition, the disparity in the growth rates obtained by three different dispersion
relations gets reduced with the increase in mode number at low values of collisionality.
The threshold on collisionality (or equilibrium flow frequency for the collisionless
case) at which the growth rate of the given modes converge closer to a similar value
decreases with the increase in mode number.

The behavior of the normalized perturbed frequency varies depending on the con-
sidered cases. In the case with collisions only (green curve) and when inertia is con-
sidered along with collisions, the normalized perturbed frequency first decreases and
then increases with increasing collisionality. However, when only inertial effects are
taken into account (red curve), the perturbed frequency first shows different behavior
for different mode numbers as collisionality increases.

6.5. Summary
The model given in Chapter 5 is extended to incorporate the frictional force term in the
ion-momentum equation in the limit ϵ<< 1 where ϵ= ν̄i nω̄0/C . The global dispersion
relation is obtained which takes the form of a third-order differential equation. The
analysis is then performed in the limit ϵ→ 0. The investigation reveals that the growth
rate of the modes exhibits a non-monotonic behavior with increasing collisionality.
Additionally, the effect of increasing the radial boundary on the growth rate varies
depending on the magnitude of collisionality. The growth rate and frequency of the
modes are found to be largely affected by collisions when both the inertial effect and
ion-neutral collisions are taken into account.
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7. Conclusions and future
prospects

The stability of rotating plasmas holds significance across various applications, includ-
ing magnetically confined fusion plasma, space propulsion, plasma mass separation,
and material processing. When magnetic fields are combined with transverse electric
fields or electric currents, rotating plasma configurations are formed. Plasma rotation,
transport perpendicular to the magnetic field, and stability are intricately linked. The
perpendicular transport of plasma is influenced by turbulent processes arising from
a wide range of instabilities. These instabilities are sensitive to the plasma rotation
and can result in the formation of coherent rotating structures which further result in
turbulent transport. The focus of this thesis was to study such instabilities leading to
the formation of coherent rotating structures in MISTRAL plasma.

The experimental part of the thesis aimed to pave the way for the theoretical model-
ing of the MISTRAL plasma. MISTRAL plasmas were characterized at various magnetic
field intensities and pressure values in a specific configuration. The profiles were pa-
rameterized to compute the inputs to be used in the theoretical model. For example,
the determination of E×B drift frequency (ωE0) and ion-diamagnetic drift frequency
(ω∗0) were used to compute the equilibrium flow frequency (ω0). In addition, the ex-
perimental measurements of the spoke frequency and fluctuations in electron density
and potential were obtained for comparison with the predictions generated by the
theoretical model. Modes m = 1, 2, and 3 can be seen existing experimentally, thanks
to the Langmuir probe and fast camera diagnostics.

The electron density was found to follow a Gaussian distribution and the plasma
potential to follow a parabolic profile with the radial electric field directed inward
or outward depending on the configuration, In addition, the plasma potential was
found to deviate from the parabolic shape at high pressure. This may be related to the
high ion-neutral collisionality at high pressure but would deserve a more extensive
investigation. An effect of pressure and magnetic field variation was observed on the
mode frequency. The frequency of the mode was found to decrease with the increase
in pressure whereas a decrease in mode frequency was found with the increase in
magnetic field strength. m = 1 mode structure was observed for P ≤ 5.5×10−4 mbar
and B≤ 240 G. There is no clear indication of mode parity at high pressure and high
magnetic field due to highly oscillating plasma fluctuations in time. In a previous
study conducted on MISTRAL [Bar+05], where the transition to the turbulent regime
has been studied, it has been found out these strongly oscillating fluctuations can give
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rise to intermittent transport at the edge of the plasma column. A deeper experimental
and theoretical investigation is needed in this regard.

The rest of the thesis was focused on the theoretical modeling of the weakly mag-
netized rotating plasma columns. Though the analysis has been done considering
the plasma parameters relevant to MISTRAL, the model is applicable to a variety of
plasma systems. Existing models for studying instabilities in plasmas in cross-field
configuration predominantly rely on a low-frequency approximation (LFA) for which
the instability frequency and equilibrium flow are assumed to be much smaller than
the ion cyclotron frequency. This approximation is challenged in weakly magnetized
plasma devices including MISTRAL where the equilibrium and fluctuation frequencies
are comparable to the ion-cyclotron frequency. Therefore, a significant advancement
of this work was the elimination of the LFA in the existing models and emphasizing
the impact of this approximation.

Firstly, a radially global dispersion relation was derived neglecting the gyro-viscosity
tensor and the collisionality in the ion momentum equation but valid at arbitrary fre-
quency values. This model predicts the stability of flute modes destabilized by a rigid
body azimuthal rotation. A significant difference in the growth rate and frequency
of the unstable modes was found when computed with dispersion relation with and
without the LFA. This difference escalates with the increase in mode number. The
radial mode number n that yields the most unstable mode is always n = 0 for the
dispersion relation with LFA. However, when the dispersion relation without LFA is
employed, the radial mode number that yields the most unstable mode correspond-
ing to a given m varies with the variation in radial boundary and equilibrium flow
frequency.

In addition, the parametric dependencies of normalized growth rate and normalized
Doppler shifted frequency were investigated. The growth rate and frequency of differ-
ent modes were found to be strongly influenced at small radial boundaries depending
on the direction of equilibrium flow frequency. In the limit where the conducting

wall is far from the plasma

(
r 2

b

r 2
0
>> 1

)
, the growth rate of the most unstable mode is

γ̄= |ω̄0|
p

m −1 with the corresponding Doppler shifted frequency as ω̄r −mω̄0 =−ω̄0

which is independent of the azimuthal mode number m. In this limit, the mode
m = 1 is stable. When the conducting cylinder radius is reduced, the mode growth
rate first increases, including that of m = 1 which becomes unstable before complete
stabilization of all the modes is obtained. The growth rate is found to increase with the
increase in azimuthal mode number. This is, at least, due to the neglect of FLR effects
which come into account by including the gyro-viscosity tensor in the ion momentum
equation. Including FLR effects would stabilize all modes with a wavelength smaller in
comparison to the ion Larmor radius. For the parameters considered for the analysis,
modes with azimuthal mode numbers m > 5 are expected to get stabilized due to FLR
effects.
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Regarding the mode structure, the modes with low azimuthal mode numbers were
radially spread out more than those with high azimuthal mode numbers. The mode
with the same azimuthal mode numbers gets more pushed toward the edge as the
radial boundary increases. At a fixed radial boundary, the phase difference between
normalized density fluctuations and potential fluctuations can take any value depend-
ing on the value of mode number, equilibrium flow frequency, E×B flow frequency,
the parameter r̄0 and the radial boundary r̄b . The phase difference was closer to 90◦ in
those regions where the normalized perturbed frequency (ω̄r ) is approaching mω̄E0.
In addition, the critical value of ω̄E0, at which the phase shift transitions from negative
to positive, increases as r̄0 decreases. The theoretical predictions of the amplitude of
normalized potential to density fluctuations and phase difference were also compared
with the experimental results. Some discrepancies were found in the comparison as
the model does not take into account ion-neutral collisionality which is relatively high
in MISTRAL plasma and can possibly affect these results. In addition, the experimental
measurements correspond to the non-linear state whereas the model is linear.

The comparison of the local and global solutions of the dispersion relation revealed
that global effects play a critical role across all parameter ranges. The local dispersion
relation, which simplifies the analysis by neglecting boundary effects and spatial
variations, predicts a maximum growth rate either near the plasma axis or the outer
boundary. These boundary effects and spatial variations introduce additional physics
that cannot be adequately captured by the local model.

To account for the presence of a large fraction of neutrals in the plasma system,
the model was extended to include the effects of ion-neutral collisions. This choice
was motivated by the relatively high collision frequency between ions and neutrals
compared to other species. The differential equation obtained under the assumption
ϵ << 1 with ϵ = ν̄i nω̄0

C was then solved in the limit ϵ→ 0. Although the solution ob-
tained using this limit may not be completely adequate in terms of the identification
of the observed phenomenon, it still offers a first-order estimate. In the limit ϵ→ 0,
the growth rate and frequency of the modes are found to be strongly influenced by
collisions. In the absence of collisions, the instability is primarily influenced by the
centrifugal force effect caused by inertia through the change in factor δω̄0. However,
when ion-neutral collisions are considered, the centrifugal modes undergo damping,
even at low collisionality levels. As collisionality further increases, the instability be-
comes predominantly influenced by collisions.

Based on the findings of this study, it is difficult to interpret if the rotating structures
observed in MISTRAL are attributed due to neutral drag instability or centrifugal
instability, or a combination of both. Solving the radially global dispersion relation
would be required to address this point. However, from the analysis done in the
limit ϵ→ 0, we can conclude that MISTRAL plasmas are in a regime where collisions
cannot be neglected. It should also be noted that the criteria given by [Jas72] for
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instability identification is not valid when the LFA is removed. The relative amplitude
of the fluctuations, the phase difference, the growth rate, and the instability frequency
strongly depend on various parameters (ω̄0, r̄b , r̄0 and m). The required quantities
can easily be computed from the dispersion relation derived in the thesis and the
theoretical predictions can then be compared with the experimental results. Detailed
explanations regarding the remaining open questions are provided in the subsequent
section.

7.1. Future prospects

As one delves deeper into understanding a subject, it becomes evident that the num-
ber of unresolved questions arising from the study increases. This thesis has found
certain unresolved issues within the context of this topic, albeit suggesting new and
important directions. Further focused efforts are required to adequately address these
outstanding issues along the research path.

The analysis including ion-neutral collisions in the limit ϵ→ 0, does not provide
adequate information. It is observed that ϵ << 1 for the frequency range found in
MISTRAL and therefore it might be possible that the solution of the third-order dif-
ferential equation might not be very different from what we obtain in the limit ϵ→ 0.
However, it’s not certain. Therefore, it is necessary to complete the analysis to unveil
the effects of collisions on the growth rate and frequency of the existing modes. Work
in this direction has been initiated to solve numerically the third-order differential
equation.

The effects of weak magnetization and high collisionality which is often present
in the laboratory plasmas are frequently neglected or simplified in existing models.
Even the models that exist and include these effects are based on strong assumptions
(low-frequency approximations, assuming cold ions, low or no collision frequencies).
Developing analytically tractable models that incorporate all the relevant terms be-
comes challenging due to certain complexities. For example, including the FLR effects
through the gyroviscosity tensor in the current model is very challenging unless the
LFA is implemented as it couples the radial and azimuthal components of the ion
momentum. Therefore, the development of a numerical fluid model keeping all the
effects relevant to weakly magnetized plasmas can be a great initiative to understand
the dynamics of plasma in such systems. In addition, there are some configurations
for which rigid body rotation is not valid. The profiles measured in RAID were also not
consistent with the rigid body rotation used in the model. Although the model devel-
opment was done for this scenario, it never reached the stage of full linear analysis.
This task can be accomplished by doing the complete linear analysis using the derived
model in Appendix F. The results can be compared with the outcomes of the model
based on the rigid body rotation, which has been thoroughly analyzed and presented
in the thesis.
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7. Conclusions and future prospects

In plasma systems, the perturbations can grow to a certain extent and then saturate,
reaching a nonlinear equilibrium. The linear models which focus on small pertur-
bations around the equilibrium state can give information about the onset of the
instabilities leading to the formation of large-scale structures and the threshold of
certain parameters at which these instabilities get triggered. The linear models cannot
capture the plasma behavior beyond the linear regime, thus giving no information
about the nonlinear interactions in the system. Comparing the experimental results
with the theoretical predictions of the model becomes challenging due to this dis-
crepancy within the scope of this thesis. In addition, the non-linear interactions result
in turbulent transport, one of the major problems regarding the confinement of the
plasma. Therefore, nonlinear analysis is required to get a complete understanding
of the plasma dynamics in the present system. An effort is going on through a col-
laboration with Laplace laboratory to study the MISTRAL plasma behavior using PIC
simulations. This approach has the potential to uncover crucial phenomena including
nonlinear effects.

Finally, the experimental study on MISTRAL would deserve further documenta-
tion. The study was conducted focusing on a specific configuration to align with
the theoretical work presented in this thesis. However, it is important to recognize
that different configurations can result in distinct plasma states, and therefore, it is
necessary to thoroughly document the effects of boundary conditions (biasing of
separating and collecting grids as well as of cylinder), pressure, and magnetic field
in various configurations. It is recommended to conduct detailed measurements of
density and potential fluctuations, as well as cross-phase measurements, for vari-
ous configurations to enable direct comparisons of theoretical model predictions
with the experimental data. By combining experimental, theoretical, and numerical
approaches in parallel, it can be possible to identify and elucidate specific mecha-
nisms that contribute to the existence of coherent rotating modes in MISTRAL and
MISTRAL-like plasma systems.
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A. Radial profiles of plasma
potential and electron
temperature

A.1. Magnetic field scans
With the identical configuration as that of ref. case A as described in Chapter 2, the
radial maps of the floating potential V f and electron temperature Te corresponding to
various magnetic field intensities are shown in Fig. A.1.

Figure A.1.: Radial variation of floating potential V f (left) and electron temperature Te for increasing
magnetic field. The dashed black line represents the location of the limiter.

It was found that the increase in the magnetic field resulted in a slight drop in the
floating potential whereas the variation in electron temperature is not following a
regular trend with the increase in magnetic field. The radial variation of electron
temperature exhibits a depletion zone between r = 2 and 3 cm at high magnetic fields
(B=280 G and 320 G). More investigation should be done in this regard.

144



A.2. Pressure scans

A.2. Pressure scans
The radial maps of the floating potential V f and electron temperature Te correspond-
ing to different pressure levels are depicted in Fig. A.2 for the ref. case B in Chapter 2.

Figure A.2.: Radial variation of floating potential V f (left) and electron temperature Te at (a). P =
2.6×10−4 mbar and (b). P = 3.5×10−4 mbar. The dashed black line represents the location
of the limiter.

Contrary to what was seen with the magnetic field change, the increase in pressure
has a significant impact on the floating potential and electron temperature. The float-
ing potential increases with the increase in pressure whereas the electron temperature
decreases.
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B. Extracting parameters from
density and potential profiles
parameterization

The linear stability analysis in the framework of this thesis is performed using the range
of parameters that are experimentally relevant as found in MISTRAL. The parameters
such as E×B drift frequency (ω̄E0) and diamagnetic drift frequency (ω̄∗0) are estimated
by performing the parameterization of the radial profiles of number density and
plasma potential given in Chapter 2. The Gaussian distribution for number density
and the parabolic profile for plasma potential provided by Eq. B.1 are used to fit the
data.

n0(r ) = n00 exp

(
−r 2

r 2
0

)
; φ0 = p1r 2 +p2 (B.1)

The expression for E×B drift frequency (ω̄E0) and diamagnetic drift frequency (ω̄∗0)
are given by Eq. 4.53 and the variation of the parameters with pressure and magnetic
field is also provided in the Chapter 2 and Chapter 4 respectively. Here the values are
provided in the tabular form for reference.

Table B.1 shows various parameters for a range of pressure values while keeping B
constant at 160 Gauss. The corresponding values of ωci and ρi are 6.1 kHz and 1.8 cm
respectively. The graphical representation is provided in Fig. 4.11 by Chapter 4.

P (mbar) r0 (cm) p1 p2 ω̄E0 ω̄∗0 ν̄i n ω̄0

7.15×10−5 5.36 725.26 -7.88 2.37 -0.22 0.42 1.03
1.5×10−4 5.41 569.14 -6.4 1.86 -0.22 0.89 0.8
2.6×10−4 6.1 319.05 -4.37 1.04 -0.18 1.54 0.35
3.5×10−4 6.07 202.7 -3.39 0.66 -0.18 2.07 0.11
4.6×10−4 6.05 127.16 -2.78 0.41 -0.18 2.73 0.03
5.5×10−4 6.08 95.54 -2.43 0.3 -0.18 3.26 0.01
6.7×10−4 6.22 85.79 -2.24 0.28 -0.17 3.97 0.006
7.8×10−4 6.47 108.87 -2.25 0.35 -0.16 4.63 0.009

Table B.1.: Varoius parameters in MISTRAL for Ar at B=160 Gauss
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From P= 3.5×10−4 mbar onwards, the parabolic fit for plasma potential as given
by Eq. B.1 does not work well as shear is present which modifies the electric field.
Therefore, values of ω̄E0 can have some factor of ambiguity and thus ω̄0. However, an
approximation can be made to observe the effect of an increase in pressure on various
frequency values.

Table B.2 displays various parameters at different magnetic field intensities keeping
P constant at 1.04×10−4 mbar. Due to the variation in B, ωci and ρi will also vary.
As the ion temperature Ti is assumed to be constant, νi n depends only on pressure
(since the number density of neutrals changes with the change in pressure) and will
also be constant, νi n = 3.76 kHz. However, the normalized value will change with the
change in ωci . The graphical representation is provided by Fig. 4.10 in Chapter 4.

B (Gauss) ωci (kHz) ρi (cm) r0 (cm) p1 p2 ω̄E ω̄∗0 ν̄i n ω̄0

160 6.1 1.8 5.89 371.94 -4.15 1.2 -0.19 0.61 0.59
180 6.86 1.6 5.99 412.95 -4.74 1.09 -0.14 0.54 0.55
200 7.6 1.4 5.95 394.61 -5.25 0.82 -0.12 0.49 0.45
220 8.39 1.3 5.99 437.30 -5.83 0.75 -0.1 0.44 0.43
240 9.15 1.2 5.97 430.87 -6.45 0.62 -0.08 0.41 0.37
260 9.91 1.11 6.14 512.16 -6.98 0.63 -0.06 0.38 0.39
280 10.67 1.03 6.46 554.88 -7.52 0.59 -0.05 0.35 0.37
300 11.44 0.96 6.62 589.12 -8.11 0.55 -0.04 0.32 0.35
320 12.2 0.9 6.78 641.97 -8.81 0.52 -0.04 0.30 0.34
340 12.96 0.85 6.78 641.97 -8.81 0.52 -0.03 0.29 0.34

Table B.2.: Varoius parameters in MISTRAL for Ar at P=1.04×10−4 mbar
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C. Zeros of Kummer’s function

Eq. 5.29 used to solve Eq. 5.24 is the modified form of the confluent hypergeometric
equation, known as the Whittaker equation and is helpful in solving eigenvalue prob-
lems with boundary conditions. Eq. 5.30 known as the Whittaker function gives the
non-singular solution of Eq. 5.29 and can be written in terms of Kummer’s function
F

(m−N
2 ,1+2m; z

)
,

WN ,m(z) = z
m+1

2 e− z
2 F

(
m −N

2
,1+2m; z

)
(C.1)

where F is the generalized hypergeometric series given by,

F (a,b; z) = 1+ a

1! b
z + a(a +1)

2! b(b +1)
z2 + ..... (C.2)

with a = m−N
2 and b = 1+2m.

The values of N obtained are used in determining the eigenfrequency from Eq. 5.25.
In the previous works [RKR62], [Che66], the values of N were determined by requiring
WN ,m(z) to decay at large values of Z . This means that the power series corresponding
to Kummer’s function must end after a finite number of terms specified by the radial
mode number n. This condition writes,

N = m +2n (C.3)

where n = 0,1,2... is the radial mode number. This conclusion, which is known
as the asymptotic solution (Z →∞), can only be reached when Z >> 1. However,
in experiments, the value of Z is finite which means it is useful to obtain N values
when the wave amplitude goes to zero at the finite radial position. This requires the
numerical solution to find the zeros of Kummer’s function at finite radial boundaries.
The precise values of N can be found as a function of finite outer radial boundary
measured by Z = r 2

b /r 2
0 . The asymptotic values of N and the one found numerically

are shown in Fig. 5.1. A more detailed explanation of Confluent hypergeometric
function and radial mode numbers can be found in [SP00].
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D. Finite Larmor radii effects and
collisions

One of the main difficulties encountered while doing the fluid modelization was to
include the gyro-viscosity tensor (∇·πi ) which accounts for the stabilization at high m
numbers due to finite Larmor radius effect as given in [RKR62],[Che66] and [Hoh63b].
All the studies that have been done until now including the gyro-viscosity tensor
were done under the LFA and for collisionless plasmas, making it easy to handle the
gyro-viscosity tensor term (∇·πi ) when used in the ion-momentum equation. A more
detailed expression for ∇ ·πi can be found in [Ram05]. In cylindrical coordinates,
the expression of gyroviscosity tensor for finite collisionality in the limit ν̄2

i n << 1 and
homogenous B = Bêz , neglecting the axial fluctuations, as given in [Che66] is,

−∇·πi =
(

Ār êr + Āθ êθ
)

(D.1)

Here,
Ār = Ār r v̄i r1 + Ārθ v̄iθ1 ; Āθ = Āθr v̄i r1 + Āθθ v̄iθ1 (D.2)

Ār r =− 1

3r̄ ν̄i n

[
1

r̄
− ∂

∂r̄

(
r̄
∂

∂r̄

)]
+ i m

r̄

(
− 1

2L̄n
+ 1

r̄

)
− m2ν̄i n

4r̄ 2
(D.3)

Āθθ =− ν̄i n

4r̄

[
1

r̄
− ∂

∂r̄

(
r̄
∂

∂r̄

)]
+ i m

r̄

(
− 1

2L̄n
+ 1

r̄

)
− m2

3ν̄i n r̄ 2
+ ν̄i n

2L̄n

[
1

r̄
− ∂

∂r̄

]
(D.4)

Ārθ =
1

2

(
∂2

∂r̄ 2
− m2

r̄ 2

)
+

[
1

2

(
− 1

L̄n
+ 1

r̄

)
+ i m

r̄

(
1

3ν̄i n
+ ν̄i n

4

)]
∂

∂r̄

− 1

r̄

[
1

2

(
− 1

L̄n
+ 1

r̄

)
+ i m

r̄

(
1

3ν̄i n
+ ν̄i n

4

)]
(D.5)

Āθr =
1

2

(
m2

r̄ 2
− ∂2

∂r̄ 2

)
−

[
1

2

(
− 1

L̄n
+ 1

r̄

)
− i m

r̄

(
1

3ν̄i n
+ ν̄i n

4

)]
∂

∂r̄

+ 1

r̄

[
1

2

(
− 1

L̄n
+ 1

r̄

)
+ i m

r̄

(
1

3ν̄i n
+ ν̄i n

4

)
− i mν̄i n

2r̄ L̄n

]
(D.6)

The part without collisionality in the above equation accounts for the FLR effects and
the one with collisionality accounts for collisional viscosity. These equations when
substituted in the linearized form of ion momentum equation with collisionality 3.12
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D. Finite Larmor radii effects and collisions

and then projected along the radial (êr ) and azimuthal (êθ) directions give:

êr : −i
(
ω̄ph + i ν̄i n

)
v̄i r 1 −C v̄iθ1 + v̄i r 0

(
v̄ ′

i r 1 +
v̄i r 1

r̄

)
=−Φ′

1 + Ār (D.7)

êθ : −i
(
ω̄ph + i ν̄i n

)
v̄iθ1 +C v̄i r 1 + v̄i r 0

(
v̄ ′

iθ1 +
v̄iθ1

r̄

)
=−i

m

r̄
Φ1 + Āθ (D.8)

Here ’ refers to ∂/∂r̄ . An effort was made to solve this system of equations, however,
to tackle the complexities arising from the derivatives of v̄i r 1, v̄iθ1, andΦ1, analytical
solutions for this system of equations become unwieldy. Therefore, a numerical
approach should be employed to solve the system of equations to have a complete
understanding of the plasma dynamics in MISTRAL-like plasmas.
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E. Evaluation of convective
derivative: (v ·∇)v

The convective derivative term appearing in the ion momentum equation (Eq. 3.12)
in the cylindrical co-ordinates can be evaluated using the given formula:

(A ·∇)B =
(

Ar
∂Br

∂r
+ Aθ

r

∂Br

∂θ
+ Az

∂Br

∂z
− AθBθ

r

)
êr+

(
Ar
∂Bθ

∂r
+ Aθ

r

∂Bθ

∂θ
+ Az

∂Bθ

∂z
+ AθBr

r

)
êθ

+
(

Ar
∂Bz

∂r
+ Aθ

r

∂Bz

∂θ
+ Az

∂Bz

∂z
êz

)
(E.1)

Now the terms (vi 0 ·∇)vi 0, (vi 0 ·∇)vi 1 and (vi 1 ·∇)vi 0 are required to evaluate the equi-
librium flow and dispersion relation for the work done in this thesis. Reminding that
vi 0 = vi r0 êr + viθ0 êθ where vi r0 =−rνi nω0/C and viθ0 = rω0. For the linearized part,
vi r1 =

(
vi r1 êr + viθ1 êθ

)
exp [i (mθ−ωt )]. The axial contribution has been neglected in

the present hypotheses. Based on the form of Fourier representation of the fluctuating
quantities as given by Eq. 4.34, ∂/∂θ can be replaced with i m for the terms which are
θ dependent.

Using the information given, following are the expressions for the required terms,

(vi 0 ·∇)vi 0 =
(
vi r0ω0 − rω2

0

)
êr +2ω0vi r0 êθ (E.2)

(vi 0 ·∇)vi 1 =
[(

vi r0 v ′
i r1

+ i mω0vi r1 −ω0viθ1

)
êr+(

vi r0 v ′
iθ1

+ i mω0viθ1 +ω0vi r1

)
êθ

]
exp [i (mθ−ωt )] (E.3)

which on further manipulation reduces to,

(vi 0 ·∇)vi 1 =
[(

vi r0 (v ′
i r1

êr + v ′
iθ1

êθ
)
+ i mω0vi 1 −ω0 (vi 1 ×b)

]
exp [i (mθ−ωt )] (E.4)

and,

(vi 1 ·∇)vi 0 =
[(

vi r1 v ′
i r0

−ω0viθ1

)
êr +

(
ω0vi r1 +

viθ1 vi r0

r

)
êθ

]
exp [i (mθ−ωt )] (E.5)
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E. Evaluation of convective derivative: (v ·∇)v

which is equivalent to,

(vi 1 ·∇)vi 0 =
[

vi r1 v ′
i r0

êr +
viθ1 vi r0

r
êθ−ω0 (vi 1 ×b)

]
exp [i (mθ−ωt )] (E.6)

It should be noted that the vi r0 and viθ0 are independent of θ. For the case without
collisions vi r0 = 0.
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F. Solution in case of non-uniform
rotation

F.1. Electron density and plasma potential profiles
of RAID plasma column

A few experiments were also performed at RAID (Resonant Antenna Ion Device) to
determine the characteristics and the shapes of the profiles of electron density (ne )
and plasma potential (Vp ). A description of the device is given in [Fur+17]. The profiles
of electron density and plasma potential of Ar plasma generated in the RAID plasma
column at B=200 G and P≈ 10−4 mbar are shown in Fig. F.1.

Figure F.1.: Radial variation of electron density ne (left) and plasma potential φp .

One of the main objectives of getting the profiles of the RAID plasma column is to
check the validation of the developed theory for different experiments. However, the
profiles obtained for electron density and plasma potential were not consistent with
the rigid body rotation assumption used for the model development. The electron
density profile was found to be following a Gaussian distribution with an offset. The
plasma potential can also be approximated using the Gaussian distribution with an
offset. The parameterization profiles that can be used are,

ne (r ) = no f f set +n00 exp

(
−r 2

r 2
0

)
; φp =φo f f set +φ00 exp

(
− r 2

r 2
φ

)
(F.1)

where no f f set and φo f f set give the offset in the profiles of density and plasma poten-
tial; r0 and rφ characterize the width of the density and potential profiles respectively.
As it is evident that the rigid body rotation is not applicable to RAID plasma column, a
theory was developed in the following section keeping the shear into account.
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F. Solution in case of non-uniform rotation

F.2. Dispersion relation for non-uniform rotation in
the absence of collisions and FLR effects

If the rigid body rotation is not considered, i.e. ω′
0 ̸= 0, ω′′

0 ̸= 0, the Eq. 5.15 for the
linearized velocity changes to,

v̄i1 = C

C 2 − ω̄2
ph

[
b×∇Φ1 + i

ω̄ph

C
∇Φ1 + r̄ v̄i r1ω̄

′
0

(
i ω̄ph

C
êθ− êr

)]
(F.2)

with ω̄ph = ω̄−mω̄0 and C = 1+2ω̄0 From Eq. F.2, one can write:

r̄ v̄i r 1ω̄
′
0 = A

(
− i m

r̄
Φ1 +

i ω̄ph

C
Φ′

1

)
(F.3)

where A is,

A = C r̄ ω̄′
0(

C 2 − ω̄2
ph

)
+C r̄ ω̄′

0

(F.4)

The linearized divergence of the ion particle flux is:

∇· (ni v̄i )|1 = n0∇· v̄i 1 + v̄i 1 ·∇n0 + v̄i 0 ·∇n1 (F.5)

Evaluating these terms one by one,

n0∇·v̄i 1 = n0

[
∇·

(
C

C 2 − ω̄2
ph

(b×∇Φ1)

)
+ i∇·

(
ω̄ph

C 2 − ω̄2
ph

∇Φ1

)
+ i∇·

(
ω̄ph

C 2 − ω̄2
ph

r̄ v̄i r 1ω̄
′
0êθ

)

−∇.

(
r̄C v̄i r 1ω̄

′
0

C 2 − ω̄2
ph

êr

)]
(F.6)

Manipulating further, Eq. F.6 becomes:

n0∇· v̄i 1 = i n0

[(
Ω̄ph − ω̄ph

C

ξ(r̄ )

r̄

)
Φ′′

1

+
(
Ω̄′

ph + Ω̄ph

r̄
+ i m Aω̄phΩ̄ph

r̄C
+ 1

r̄

(
mξ(r̄ )

r̄
−

(
ω̄phξ(r̄ )

C
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Φ′

1
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(
−mC ′

1
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− m2

r̄ 2
Ω̄ph (1+ i A)+ 1

r̄

(
mξ(r̄ )

r̄

)′)
Φ1

]
(F.7)

with

Ω̄ph = ω̄ph

C 2 − ω̄2
ph

, C1 = C

C 2 − ω̄2
ph

, and ξ(r̄ ) = A

(
r̄C

C 2 − ω̄2
ph

)
(F.8)
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F.2. Dispersion relation for non-uniform rotation in the absence of collisions and FLR
effects

The second term in Eq. F.5 is,

v̄i 1 ·∇n0 =
(
iΩ̄ph − i AC1ω̄ph

C

)
Φ′

1n′
0 −

i mC1

r̄
(1− A)Φ1n′

0 (F.9)

and the third term in Eq. F.5 is,

v̄i 0 ·∇n1 = i mω̄0n1 (F.10)

Combining quasi-neutrality, ne = ni , and the continuity equations yields:

∇· (ne v̄e )|1 = ∇· (ni v̄i )|1 (F.11)

The term ∇· (ne v̄e )|1 evaluates the same as given by Eq. 5.6 in Chapter 5. Now,
substituting the required terms in Eq. F.11, a second-order differential equation is
obtained:

Φ′′
1 +G1Φ

′
1 +G0Φ1 = 0 (F.12)

with coefficients G1 and G0 given as:

G1 =
(

1

r̄
− 1

L̄n

)
+ C1ω̄

′
0

L̄n
(1− r̄ )+ (

ln(Ω̄ph)
)′+ i mΩ̄phω̄

′
0 +

mC 2
1ω̄

′
0

Ω̄ph
− r̄C1ω̄

′
0(l n(A))′

(F.13)

G0 = r̄C1ω̄
′
0

A

(
−m2

r̄ 2
+ N

r̄ L̄n

)
− mC ′

1

r̄ Ω̄ph
+ r̄C ω̄′

0

ω̄ph

(
−i

m2

r̄ 2
Ω̄ph + mC1

r̄
(ln(A))′− mC1

r̄ L̄n

)
(F.14)

Eq. F.12 can be solved and the effect of shear on the instability behavior can be
analyzed.
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