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Résumé 

Les méthodes de dynamique nonadiabatique jouent un rôle crucial dans l'étude de la 

réaction des systèmes moléculaires lorsqu'ils sont excités par des photons et soumis à une 

nouvelle surface d'énergie potentielle électronique. La topographie de l'état excité peut être 

explorée pour proposer des réactions chimiques facilitées par la photoexcitation, étudier la 

stabilité moléculaire et les processus de récupération d'énergie, entre autres. À ce jour, de 

nombreuses nouvelles méthodes pour la dynamique nonadiabatique et les calculs de structure 

électronique qui y sont associés sont toujours en cours de développement afin d'améliorer la 

précision, de réduire les coûts de calcul et d'étendre le domaine d'application. Malgré leur 

succès, ces méthodes utilisent souvent des approximations qui peuvent conduire à des résultats 

erronés, parfois difficiles à détecter. Dans ce cas, on peut généralement se référer à des résultats 

expérimentaux pour valider le modèle utilisé pour représenter le système. Il est également 

possible d'effectuer plusieurs séries de dynamiques avec différentes méthodes pour détecter une 

tendance et des valeurs aberrantes, mais cela entraînerait des coûts de calcul élevés. Pour relever 

le défi de réaliser des simulations abordables et de haute qualité tout en gardant une trace de 

leurs imprécisions occasionnelles, nous avons développé un programme de recherche qui 

s'articule autour de deux thèmes principaux. Le premier a abouti à un programme informatique 

appelé Legion, une plateforme destinée à faciliter le développement de nouvelles méthodes 

pour la dynamique nonadiabatique et à modifier les méthodes existantes. Le programme est 

construit en Python afin que le code puisse être facilement étendu, et il est déjà interfacé avec 

plusieurs méthodes et logiciels de structure électronique couramment utilisés. Nous testons le 

programme avec des molécules réelles et l'utilisons pour compléter la discussion sur la 

dynamique du fulvène et sa dépendance vis-à-vis des conditions initiales. La deuxième branche 

de recherche a abouti à QDCT, une nouvelle stratégie de post-traitement des résultats des sauts 

de surface pour obtenir des résultats de la dynamique des paquets d'ondes, comme dans le cas 

du frayage multiple. Elle utilise des trajectoires classiques pour propager le paquet d'ondes 

nucléaires. La méthode est indifférente aux approximations ad hoc présentes dans le saut de 

surface et peut être utilisée pour évaluer les systèmes problématiques. La méthode est testée par 

rapport à des modèles analytiques et les approximations nécessaires pour travailler dans des 

systèmes multidimensionnels sont présentées. Legion et QDCT sont tous deux intégrés dans la 

plateforme Newton-X et sont disponibles gratuitement. 

Mots clés: nonadiabatic dynamics, ab initio multiple spawning, trajectory surface hopping, 

computational chemistry 
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Abstract 

Nonadiabatic dynamics methods play a crucial role in investigating the reaction of 

molecular systems to being excited by photons and submitted to a new electronic potential 

energy surface. The topography of the excited state can be explored to propose chemical 

reactions facilitated by photoexcitation, study the molecular stability, and energy harvesting 

processes, among other purposes. To this day, many new methods for nonadiabatic dynamics 

and the electronic structure calculations associated with them are still being developed to 

improve accuracy, reduce computational costs, and expand the application domain. Despite 

their success, those methods often use approximations that may lead to wrong results, which 

can be hard to detect. In those cases, one can usually refer to experimental results to validate 

the model used to represent the system. Alternatively, one can perform multiple sets of 

dynamics with different methods to detect a trend and outliers, but this would have extended 

computational costs. To address those challenges of performing affordable, high-quality 

simulations while still keeping track of their occasional inaccuracies, we developed a research 

program branched into two main topics. The first one resulted in a computer program named 

Legion, a platform to facilitate the development of new methods for nonadiabatic dynamics and 

modify existing ones. It is built in Python so that the code can be easily expanded, and it is 

already interfaced with multiple commonly used electronic structure methods and software. We 

test the program with real molecules and use it to complement the discussion of fulvene 

dynamics and its dependence on initial conditions. The second research branch resulted in 

QDCT, a novel strategy for post-processing surface hopping results to obtain wavepacket 

dynamics results, as in multiple spawning. It uses classical trajectories to propagate the nuclear 

wavepacket. The method is indifferent to ad hoc approximations present in surface hopping and 

can be used to assess problematic systems. The method is tested against analytical models, and 

approximations necessary to work in multi-dimensional systems are presented. Both Legion 

and QDCT are integrated into the Newton-X platform and are freely available. 

Keywords: nonadiabatic dynamics, ab initio multiple spawning, trajectory surface 

hopping, computational chemistry 
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Introduction 

The field of photochemistry studies the interaction of photons and molecules. Upon 

absorbing light, a molecule changes to an electronically excited state. The behavior of the 

system in this excited condition can be considerably different from that of the same system in 

the ground, which is the least energetic state. The potential energy experienced by the system 

varies significantly based on the level of excitation. This can facilitate reactions that, in the 

ground state, would be slowed down or prohibited by high energy barriers. For example, 

molecular photo-switches1 and photochemical dissociations2 are some of them to name. 

Alternatively, fast relaxation without any chemical reaction can also be an essential aspect to 

study, such as the stability of the DNA3,4 or applications like photovoltaics.5,6 

Computer simulations of these phenomena are essential to unravel the mechanisms of 

photoreaction and relaxation, and multiple methods with different levels of approximation are 

commonly used. Those methods can be classified into time-independent ones,7 usually focused 

on analyzing the topography of potential energy surfaces, and dynamical ones,8 which monitor 

the time evolution of the system. Depending on the system being studied and the phenomenon 

one intends to investigate, the theoretically rigorous methods can become computationally 

unfeasible, limiting the options to more approximated ones. But this comes at the cost of losing 

part of the effects that would happen in a real system, lessening the reliability of the results. To 

address this problem, in this thesis, I present QDCT, a method to assess the quality of surface 

hopping dynamics using Gaussian wavepacket propagation and possibly correct the results. 

During the development of QDCT, I noticed a lack of easily accessible and efficient multiple 

spawning software. To address this problem, I created Legion, a platform written to use and 

develop methods of Gaussian wavepacket propagation. The program already comes interfaced 

with a large variety of electronic structure methods. It contains multiple strategies to improve 

the efficiency of the code. This thesis explains the implementation of those two codes and shows 

how they can be applied to study molecular systems. 

Some of the earliest and most important systems of interest in photochemistry are the 

nucleobases, the building blocks that form the DNA.9 Those molecules present high 

photostability; after absorbing a photon, they decay quickly to the ground state and back to their 

original conformation.10–12 This stability is important in preserving the structure of DNA. It has 

been suggested that it is one of the selection factors in the evolutionary choice for the canonical 

nucleobases in DNA.13,14 When this structure is not preserved, it can lead to health problems, 

possibly cancer.15 A particular subfield of photochemistry, nonadiabatic dynamics, is very 

important in investigating the deactivation pathways of the nucleobases.16–21 Those deactivation 



12 
 

pathways tell us what geometries the system will assume as it moves from the initial 

conformation at the moment of excitation until it is relaxed and stable again. The 

comprehension of those natural systems can be used to develop modified nucleobases,22–26 

which can have medical applications,27,28 or even propose and study new lifeforms, as in 

xenobiology.29,30 

The contrary can also be found: systems that undergo a conformational change when 

exposed to light, and their function depends on that. A typical example is the retinal. In its 

relaxed state, it remains in a cis conformation, but when photoexcited, it rapidly switches to a 

trans geometry and initiates a chain of reactions between proteins and neurons that ultimately 

end up in the brain, the process of vision.31–33 This effect has recently been investigated more 

in the field of molecular photoswitches, where a system can be switched between two isomers 

controled by light.34 Light has been gaining traction since it is not naturally part of many 

systems, so it will not interfere with them and can be precisely controlled spatially, in time and 

wavelength.35 

The study of photochemistry and nonadiabatic dynamics requires coordination between 

experiment and theory. Theoretical calculations are cheaper than experiments, so they can be 

used to explore the chemical space and help guide experiments. They also allow us to inspect 

the system closely; we can follow the electronic character over time, the conformations the 

system can assume, the ratio between those conformations, and many other properties. The 

models used for computer simulations are easier to control, and different effects can be isolated 

to measure their impact on the phenomena of interest. Conversely, the experiments also serve 

as a guide for the theory, validating which models could be used for the simulations and 

verifying the calculations. An example of such a collaboration was the Boostcrop project, a 

consortium of multiple researchers from experimental and theoretical groups aiming to design 

molecular heaters to increase crop production under cold conditions.36 Their work investigated 

molecules from the barbituric group, known for being good light absorbers in the UV-A 

region,37 in their capability to release the absorbed energy as heat. A product of those molecules 

could then be applied to crops to increase their average temperature, mitigating the adverse 

effects caused by extreme cold conditions. This would allow harvesting at a prolonged time of 

the year and in geographic regions otherwise unsuitable for cultivation. The computational 

investigation, experimental synthesis, spectra, and toxicological analysis led to a candidate 

molecule to be used as such a product.36 

However, the theoretical work should not be seen simply as a stepping stone to filter out 

unuseful molecules to reduce the number of experiments. It can also be used to understand and 

question the experiments. In Ref38, De Camillit et al. measured the lifetime of the excited state 

of the four nucleobases and their respective nucleosides (nucleobase plus sugar). The 

experiments were performed using a pump-probe ionization scheme. They concluded that the 
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lifetime for adenosine (0.57 ps), the nucleoside, in the gas phase is about half the time for 

adenine (1.1 ps). Later simulations39 noticed that the dominant conformation responsible for 

the decay involves a ring puckering that should not be affected by the presence of the sugar. 

They also noticed that the ionization potential changes for adenosine as it goes towards the 

crossing between states, going beyond the experimental setup. The experimentally measured 

lifetime was shorter than expected, not because the molecule had decayed but because the 

molecule left the probe detection window. 

While computational methods are continuously being developed aiming to simulate larger 

systems to obtain more precise results, they are not failure-proof. A recent prediction challenge 

was released, in which a future experiment was announced, and theoretical groups were invited 

to predict the measurements (Section 5.2). The experiment would measure the deactivation of 

cyclobutanone excited to a Rydberg state, the second singlet excited state, to be precise. 

Multiple groups contributed,40–54 totaling 15 works using a vast combination of nonadiabatic 

dynamics methods and electronic structure methods. The experimental result has still not been 

released at the time of writing. Still, the wide range of results obtained by the different methods 

points to a lack of self-evaluation from the purely theoretical works. There is general knowledge 

that indicates which methods should be better for describing a given system, but even the golden 

standard for nonadiabatic dynamics, MCTDH, returns different lifetimes depending on the 

simulation.40,41,55 Without a ground on experimental results, we lack ways to assess the quality 

of the computer simulations. 

This series of examples proves the usefulness of theoretical work in helping to understand 

molecular systems and their interaction with light. It also shows the importance of flexibility in 

selecting the appropriate electronic structure approach when performing dynamics, which is the 

major factor in controlling the quality of the simulation.56 If one specific method is known to 

describe the system better, having it available for propagation would be desirable. The case of 

the cyclobutanone prediction challenge51 also reminds us that we are still dealing with models 

that may not describe real systems well. In this thesis, I present my work attempting to address 

those topics. 

After going through the theoretical background, I present quantum dynamics from classical 

trajectories (QDCT) in Chapter 3. , a novel strategy to obtain Gaussian nuclear dynamics by 

post-processing the output of a trajectory surface hopping (TSH) simulation. QDCT does not 

require any new electronic structure calculations. Because of that, it comes at almost no extra 

cost when compared to the dynamics. The method is implemented in a program that has been 

tested in analytical multidimensional systems (model Hamiltonians) and shows the potential to 

become a tool to assess the quality of dynamics from a theoretical basis. It contains interfaces 

to read the trajectories from the Newton-X NS format and Ulamdyn (Figure 1). 
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Figure 1 Schematic description of the programs contained within the Newton-X platform. 

QDCT and Legion, developed in this thesis, are shown on the right side. 

The Newton-X package is used for surface hopping dynamics. The code has a long 

history57,58 and is interfaced with multiple electronic structure software. The original program, 

Newton-X classical series (CS), contained the code for the initial condition generation, 

dynamics propagation, and analysis. In the last five years, the code was reimplemented from 

scratch in Fortran, with a focus on efficiency and data management, foreseeing applications in 

long timescale dynamics.59 Associated with the development of this new series (NS), functions 

were divided into different modules. The module responsible for initial conditions is still 

available in Newton-X CS and can be used to generate the initial conditions for Legion as well. 

Newton-X NS focuses on trajectory propagation and hopping, while the data curation is in 

charge of Ulamdyn, a new software developed in the group with automated analysis methods. 

The output of Legion is compatible with Newton-X NS, and Ulamdyn will be extended in the 

near future also to perform the analysis of Legion’s AIMS simulations. 

In Chapter 4.  I present Legion, a software I designed and created to allow for flexibility in 

developing nonadiabatic dynamics methods. This software is produced under the umbrella of 

the Newton-X package and, consequently, inherits all the electronic structure interfaces 

available in Newton-X. The first nonadiabatic dynamics method I implemented in Legion is ab 

initio multiple spawning (AIMS).60 To use all those electronic structure methods, Legion also 

makes use of known approximations and introduces new ones that allow for efficient 

propagation and circumvents the need to compute the nonadiabatic coupling vector, which is 

not available for all electronic structures. 

I finalize in Chapter 5.  with my contribution to papers that do not originate from this thesis 

but relate to it in some topics.  
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1.  Nonadiabatic dynamics 

After a photon excites a molecule, its electronic state is not an eigenvector of the 

Hamiltonian. This triggers the time evolution of the system until it is re-equilibrated, and energy 

is released in this process.61 There are multiple mechanisms for the equilibration, and they are 

usually summarised in the Jablonski diagram62 (Figure 2). The process can be classified into 

radiative, where a photon is absorbed or emitted during the transition, and non-radiative, where 

no photon emission occurs. 

 

Figure 2 Jablonski diagram. Radiative transitions in solid arrows. VE: Vertical excitation; 

IC: internal conversion; ISC: intersystem crossing; P: phosphorecence; F: fluorescence; VR: 

vibrational relaxation. 

A molecule in its most relaxed state should be found close to the minimum of the ground 

state (S0).
63 When the molecule absorbs a photon, it gains energy that allows it to jump to one 

of the excited states (S1 in the figure), a vertical excitation. The system moves on the new 

potential energy surface (PES), which has its own local minima and can be much different from 

the ground state PES. The new topography can allow new reactions, while an energy barrier in 

the ground state would otherwise prevent that. Beyond electronic excitation, the absorbed 

energy can also cause vibrational excitation. This extra energy is dissipated internally, among 

the vibrational levels, or to the surrounding molecules in the process of vibrational relaxation.64 

The system can undergo a transition to a lower-energy electronic state through internal 

conversion between states with the same spin multiplicity.65 When the energy surfaces do not 

favor internal conversion, the system might remain excited long enough to eliminate the extra 
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energy as a photon and fluoresce back to the ground state. A non-radiative process similar to 

internal conversion can happen between states of different multiplicities if the system goes from 

a single to a triplet (T1) state, an intersystem crossing.66,67 Those are mediated by the spin-orbit 

coupling between the spin and orbital angular momenta, but generally, it is a slower process. 

Once in the triplet state, the system can eventually decay back to the ground state while emitting 

a photon during phosphorescence.68,69 

The dynamics methods treated in this thesis focus mainly on ultrafast dynamics, those that 

happen from a couple hundred femtoseconds to a few picoseconds. This is primarily due to a 

restrain in computational power to propagate dynamics for dozens or hundreds of thousands of 

steps.70 An essential aspect of the ultrafast process is the presence of crossing seams and 

crossing points.71 Those unique geometries are characterized by the break of the Born-

Oppenheimer approximation, where the nonadiabatic coupling (NAC) is non-negligible and 

different electronic states are degenerated.72 

Nonadiabatic dynamics follows the system's behavior and help to understand which 

processes contribute most to the deactivation.73 Multiple families of methods with varying 

degrees of approximation are used to study those systems. They generally propagate the system 

in time following the time-dependent Schrödinger equation (TDSE) or some analogous.74–76 

They allow us to track how much of the system can be found in each electronic state and the 

associated nuclear behavior. 

1.1. Nonadiabatic quantum dynamics 

In molecular quantum dynamics, nuclei and electrons are treated at the same level of theory 

when solving the TDSE. Multiconfiguration time-dependent Hartree (MCTDH)77,78 is likely 

the most known method for performing molecular quantum dynamics. In this method, the 

potential energy surface is precomputed to build a model system that represents the molecule 

under study, containing both vibrational and electronic levels. The multiconfigurational 

wavefunction is expanded as a linear combination of Hartree products of single-particle 

functions.77 The equations of motion for the expansion coefficients and the single-particle 

functions are obtained from the time-dependent variational principle, ensuring that the method 

will return the optimal solution with the given basis. As is typical for multiconfigurational 

methods, the number of configurations scales exponentially with the number of elements in the 

basis, and so does the computational cost to propagate them.79 On the other hand, since the 

variational principle propagates the coefficients, the method is expected to converge to the 

numerically exact result as the number of configurations increases.80 

To alleviate the scaling problem, some variations of MCTDH have been developed.81 In 

particular, a later formulation was introduced in which the single-particle functions could also 

be expressed as time-dependent multiconfigurational expansions. This can be done recursively, 
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adding one layer to each level of the single-particle function represented as an expansion. This 

derived method is named multilayer MCTDH (ML-MCTDH).82,83 It effectively moves the 

scaling from a single combinatory problem of many degrees of freedom to multiple smaller 

spaces. While conventional MCTDH is viable up to dozens of degrees of freedom, ML-

MCTDH can treat a few hundred.83 

Still within the class of quantum dynamics, direct dynamics variational multi-configuration 

Gaussian (DD-vMCG)84–87 is a popular method for quantum direct dynamics.88 In direct 

dynamics methods, instead of fitting the potential energy surface prior to propagation, they are 

computed only when necessary. The system evolves following trajectories, with well-defined 

geometries that can be used to perform single-point calculations with any electronic structure 

method. In DD-vMCG, those trajectories are used to build the nuclear wavepacket as a linear 

combination of Gaussian functions.89 The force guiding the trajectories is obtained 

variationally, and they are all coupled with each other. The Gaussian functions of the basis are 

said to follow “quantum trajectories”.85 

1.2. Nonadiabatic mixed quantum-classical 

dynamics 

In an attempt to obtain more straightforward methods and software, nonadiabatic mixed 

quantum-classical methods90 (NA-MQC) were developed, such as trajectory surface 

hopping91,92 and Ehrenfest93–95 families of methods. In NA-MQC, the nuclear degrees of 

freedom and the electronic ones are treated at different levels of theory. They consider nuclei 

moving as classical trajectories propagated over the electronic surfaces. At the same time, the 

electrons are treated quantum mechanically by solving the time-independent Schrödinger 

equation (TISE). They are responsible for the forces used to propagate the nuclei. The classical 

trajectories usually move independently from one another, and the swarm of trajectories can 

recover the nuclear wavepacket in the classical limit.96,97 While those usually show good 

agreement with higher-level methods, they use multiple approximations and, eventually, some 

ad hoc ones.98–100 

 

Figure 3 Placement of some nonadiabatic dynamics methods in the balance accuracy vs 

computational efficiency. 
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Between the high accuracy of quantum dynamics and the computational efficiency of 

independent trajectories is the family of Gaussian wavepacket propagation methods (Figure 3). 

Those also use the classically propagated trajectories, which are then used to construct nuclear 

wavepackets that are evolved following the TDSE. Heller introduced the idea of propagating a 

quantum wavepacket built from a linear combination of frozen Gaussians89 that follows the 

classical trajectories. An advantage that the Gaussian wavepacket methods have in comparison 

to other NA-MQC methods is that, in principle, the quality of the result can be improved until 

convergence by increasing the number of classical trajectories. One family of such methods, 

which will be one of the foci of this thesis, is the multiple spawning.101 It optimizes the balance 

of quality and computational efficiency by automatically expanding the nuclear basis during 

the propagation in the regions where extra trajectories are needed the most. 

Another method that uses a Gaussian wavepacket is the multi-configurational Ehrenfest 

(MCE)94,102,103 dynamics. In it, the trajectories that guide the nuclear wavepacket are propagated 

over an effective potential energy surface, as in Ehrenfest dynamics. The propagation over the 

effective potential can lead to less separation between trajectories compared to when they are 

following different electronic states.102 A combination of the automatic control of the number 

of functions in the basis, as in multiple spawning, and propagation of the Gaussian functions 

over Ehrenfest trajectories gives rise to the ab initio multiple cloning (AIMC)104,105 method. 

This is not an exhaustive list of all methods used for nonadiabatic dynamics, but it does 

show the flexibility of the Gaussian wavepacket.106,107 The equations of motion for those 

methods can be simple, depending primarily on how one chooses to propagate the trajectories. 

Those trajectories can be propagated at different levels of theory, such as quantum trajectories, 

classical ones, or following an effective potential.60,86,102 The nuclear basis can have a constant 

number of functions or can be expanded along propagation.60,104,108 The different combinations 

of the choice to treat the wavepacket give rise to multiple dynamics methods. 
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2.  Background Theory 

2.1. Surface Hopping 

Surface hopping is among the most popular families of NA-MQC methods in the literature. 

In this approach, the nuclear wavefunction is represented by a swarm of classical particles 

following a single Born-Oppenheimer PES, propagated independently from one another. At 

each point, the trajectory can hop between electronic surfaces and transfer the population 

between them. We focus here on the Fewest Switches Surface Hopping (FSSH)91 variant, where 

this probability of switching between states is computed as a function of time to minimize the 

number of hopping while still describing the correct population transfer. A scheme illustrating 

the multiple trajectories and the hopping process is presented in Figure 4. 

 

Figure 4 Scheme of the FSSH method. Classical trajectories follow the Born-Oppenheimer 

PES with a chance to hop between states. 

The nuclei of those trajectories are propagated classically, following Newton’s equation of 

motion, and without interaction with the other trajectories in the swarm. The time-dependent 

electronic wave function is expanded on the time-independent adiabatic electronic states 

computed at the classical nuclear geometry. The expansion coefficients are propagated 

according to the TDSE: 
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where ˆ
eH  is the electronic Hamiltonian operator and   are the electronic eigenfunctions, v is 

the classical velocity of the molecule, and ||JJK K   = R rd  is the nonadiabatic coupling 

vector (NACV) between states J and K. The index r indicates integration over the electronic 

coordinates. 
JK  is the time derivative coupling (TDC) that can be computed directly from the 

nonadiabatic coupling or using other methods discussed in Section 2.3. 

The information required to propagate the coefficients is obtained by single-point 

calculations computed at the classical coordinates of the nuclei at each timestep, which also 

provides the gradient of the current electronic state used in Newton’s equation. To account for 

the transition between states, at each timestep, the hopping probability function is evaluated: 

( )12
max 0, Im( ) Re( ) .I J JI JI JI JI

II

P
t

H 


−

−




 
= − 

 
d v  (2) 

Within the adiabatic representation, t  is the size of the timestep. The electronic 

Hamiltonian HJI = EIδIJ depends on the adiabatic potential energy EI of state I since the 

electronic states are orthogonal. For a single trajectory, the reduced density matrix elements 

are: 

*

IJ JIc c = . (3) 

In a more general case, the off-diagonal terms of the reduced density matrix, the 

coherences, should also contain the overlap of the environment states,109 which decreases with 

time, causing natural decoherence. In the case of an isolated molecular system, the environment 

is the nuclear wavepacket. This overlap will always be one for a single trajectory, which makes 

the surface hopping trajectories suffer from an overcoherence problem.110 Multiple methods 

attempt to correct the decoherence effect lacking from FSSH while still in the context of 

independent trajectories,100,111,112 but they are all ad hoc corrections. 

A uniform random number is drawn together with the computation of the probability 

defined in Eq.(2), and compared to it, the relation between them will dictate whether or not a 

hop will occur. The stochastic process associated with the hopping probability describes the 

population transfer along the dynamics. The hop between surfaces is also associated with a 

correction in the momentum of the molecule to conserve the total energy.113 

The independent trajectories make the method practical from the technical point of view 

since each trajectory runs individually from a set of initial conditions. The number of processors 

required is kept constant throughout the simulation and is stipulated by the electronic structure 

method. Trajectories can also be submitted at different times and on multiple computers and 

then copied to the same place for analysis. Unfortunately, this convenience is associated with 

the limitations of the method. Surface hopping considers the linear combination of the 
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electronic states to treat the nonadiabatic effects. However, the nuclear part of the wavefunction 

is represented by a single element that does not interact with any other nuclear function. 

Despite the limitations, decoherence-corrected FSSH (DC-FSSH) has shown its reliability. 

Compared to other methods in benchmarks, it usually agrees with more expensive and less 

approximated methods.98,114,115 

2.2. Multiple Spawning 

2.2.1. Full Multiple Spawning 

Another prominent approach to simulating nonadiabatic dynamics are the multiple 

spawning methods: Full Multiple Spawning (FMS)116 and Ab Initio Multiple Spawning 

(AIMS).60,117 These methods present some significant differences compared to surface hopping, 

particularly in treating the nuclear degrees of freedom and the non-stochastic nature of the 

propagation. 

FMS also uses classical trajectories to propagate the dynamics. However, after the classical 

propagation, they are blended into a linear combination to approximate the nuclear wavepacket. 

This wavepacket is propagated quantum mechanically over the basis of classical trajectories. It 

is said to recover the exact nonrelativistic solution within the limit of an infinite nuclear basis.118 

The automatic update of the number of trajectory basis functions (TBFs), the classical 

trajectories, can control the balance between the method’s accuracy and computational 

cost.119,120 The population transfer between states is intermediated by a transfer between the 

coefficients of trajectories on different states and happens in regions with high nonadiabatic 

coupling. To allow for this interaction, the basis is expanded at the coupling region by spawning 

(adding) a new trajectory, which is at the core of the method (Figure 5).116 Each trajectory being 

propagated is monitored, and when they enter the coupling region, a new trajectory is created 

on the other electronic state with which the initial trajectory is coupled. This child trajectory is 

a copy of the parent when it reaches the maximum coupling value, and similar to FSSH, it has 

a momentum correction to keep the total energy of parent and child the same. The child is then 

added to the basis and is propagated on that new state. 
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Figure 5 Scheme of the multiple spawning method. Classical trajectories follow the Born-

Oppenheimer PES, and new trajectories are added in regions with high coupling between 

states. 

For the propagation of the amplitudes, one uses a set of frozen Gaussians built around the 

classical trajectories discussed in the following section. It is possible to notice how this leads 

to a different treatment of the decoherence phenomena, lacking in FSSH, which is naturally 

accounted for by the interaction between trajectories. 

One potential problem due to the automatic expansion of the TBF is that the number of 

trajectories being propagated increases exponentially. This can be a limiting factor, especially 

for longer time scales. This is accompanied by the increased computational effort to perform 

the simulation since each classical trajectory requires electronic structure calculations at each 

timestep of propagation. Different methods exist to mitigate the cost, either by removing the 

unpopulated TBFs, which have a negligible influence on the dynamics, from the entire set,121 

or by stochastically selecting a branch of trajectories to follow.119 

2.2.2. Ab Initio Multiple Spawning 

AIMS differentiates itself from FMS by employing two main approximations: the saddle-

point approximation (SPA)118 and the independent first-generation approximation (IFGA).60,122 

For the former, the matrix elements of the Hamiltonian associated with the potential energy and 

nonadiabatic coupling are integrals over the entire nuclear space, which is impractical for 

molecular applications. Instead, using the SPA, one relies on the localized nature of the 

Gaussian functions to compute the potential energies and couplings at the centroid position 

between each pair of trajectories. For the latter approximation, it is expected that for systems 

with higher dimensionality, the trajectories rapidly move away from each other, and the overlap 

between them decreases quickly, making the trajectories independent. In IFGA, instead of 

starting the simulation from a set of initial conditions, multiple simulations are performed 

starting from a single initial condition each.122 

In his seminal work on semiclassical approximation,89 Heller proposed using a collection 

of frozen Gaussians to represent the nuclear wavepacket. Each Gaussian is built as a distribution 
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centered at the position (
iR ) and momenta (

iP ) of a particle following a classical trajectory. 

The resulting wavepacket is a linear combination that can be written as 
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The index j counts the trajectories associated with an electronic state J. The index ρ runs 

over all nuclear coordinates, N is the number of atoms in the system, and NJ is the number of 

Gaussians associated with state J. During the propagation, the widths (ωρ) are specific for each 

atom type and are kept constant,123 characterizing them as frozen Gaussians. The phase factor 

γj is specific for each trajectory. This combines the advantage of approximating the quantum 

wavepacket with the simplicity of using classical equations to propagate the trajectories. 

To obtain the total wavefunction, one can use the Born-Huang expansion,124 where for each 

electronic state, there is a linear combination of Gaussian functions representing the nuclear 

wavepacket associated with that electronic state, as in 

.( , )( , , ) ( ; )J J

J

tt 


 = r R RR r  (5) 

The electronic functions ( ( ; )J r R ) are the eigenfunctions of the electronic TISE for each 

electronic state J. While the trajectories are propagated using a classical equation of motion, 

the coefficients associated with each of them can be optimally propagated using the TDSE. 

Where each electronic state J has its own set of trajectories j. Each trajectory is propagated 

classically, independent from the others, but the coefficients C connect them. When the Born-

Huang wavefunction124 in Eq. (5) is inserted into the TDSE: 

( , , )) ˆ ( , ) ( , , ),
t

i H t
t
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

r R
r R r R  (6) 

we obtain the equation of motion for the nuclear coefficients. The detailed development can be 

found in Annex A. The resulting equation for the time derivative of the coefficients in the matrix 

notation is 

1 )(TiS V iS− −= − + − C C , (7) 

where 
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The matrix S  contains information on the overlap between different Gaussians, S  contains 

the products of one Gaussian with the time derivative of another, T  contains the nuclear kinetic 

energy, V  is the potential energy and i j  has information on the nonadiabatic coupling, which 

connects trajectories in different electronic states using dIJ. The index r denotes integration over 

the electronic coordinates, while the index R denotes integration over the nuclear coordinates. 

Other than the trajectory coefficients, the phase factors also depend on time. The phase is 

independent of the coordinates and is associated with each trajectory, making it redundant with 

the coefficient.125,126 This grants freedom of choice for the equation of motion for the phase, 

which can be used to improve the stability of the coefficient integration. Here, we choose the 

phase propagation127 
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so that the nuclear coefficient remains constant unless it exchanges population with another 

trajectory. This means that the diagonal elements of the resulting matrix multiply the 

coefficients on the right side of Eq. (7) are zero, and the amplitude variation is only due to 

population transfer between trajectories. 

The automatic control of the TBFs employs a combination of trajectory spawning and 

elimination, following pre-defined criteria. To deal with nonadiabatic effects, the most critical 

region to describe is where there are strong nonadiabatic couplings. Multiple spawning 

algorithms follow each classical trajectory, checking the norm of the nonadiabatic coupling (dij) 

or the dot product of velocity with the coupling (v⸱dij), i.e., the scalar time-derivative coupling 

(TDC). Once the trajectory being monitored reaches a threshold that defines the beginning of 

the coupling region, this trajectory is propagated independently from the rest of the system until 

it reaches the maximum coupling value. At this point, a child trajectory is created in the 

corresponding electronic state, retaining positions, energies, gradients, and coupling of the 

parent but adjusting the velocity to conserve the total energy between parent and child. This 

adjustment can follow the same relation used in FSSH:128 
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The child trajectory is added to the nuclear basis and backpropagated to the origin of the 

coupling region. From that point, when the coefficients are propagated, the new trajectory 

allows population transfer between states. Along a single simulation, the system should enter 

multiple coupling regions. As the number of trajectories increases, more will pass through new 

coupling regions and cause new spawns. This exponential increase in the number of TBFs can 

become a computational problem due to the cost of running multiple electronic structure 

calculations for each timestep. 

An optional strategy to alleviate the increase of the nuclear basis is trajectory elimination, 

where various factors can be checked to decide whether a trajectory is still important for 

propagation. First, one checks whether the trajectories are coupled through the Hamiltonian in 

the same sense as in Energy Stochastic Selection AIMS (ESSAIMS).119 This considers both 

direct and indirect coupling and one trajectory can only be considered for elimination if it is 

entirely uncoupled from all others. The second checks whether the trajectory significantly 

overlaps with any other. If the absolute value of the overlap of the trajectory being checked 

with all others is smaller than a given threshold, then it can be considered for elimination. 

Lastly, the nuclear population of that trajectory can be computed as: 

* |I J

i j j

Ntraj

i i

j

Rp cc   =  . (11) 

If the nuclear population is below a given threshold, then it is another approval for 

elimination. A TBF should only be removed from the basis if it passes all those checks for 

elimination repeatedly for a given amount of time. When the TBF is removed from the basis, 

the nuclear wavepacket is projected into the new reduced basis to adjust the coefficients: 
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The new coefficients 
( )

i

nc  are obtained by solving the projection of the molecular 

wavefunction before elimination, 
( ) ( ), }{ o

k k

oc  , into the new basis 
( )n

j . 

During the propagation or afterward, the expectation value of any arbitrary operator (Ô) 

can be computed for each independent simulation by the relation:101 
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Under the IFGA, the total property computed with AIMS is obtained by performing a 

simple average of the expectation values for each simulation starting from independent initial 
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conditions. So the expectation value is computed as in Eq. (13) for all trajectories derived from 

a single initial condition, but the cross term in between different initial conditions are neglected. 

2.2.3. BAT approximation 

Another source of computational time is the extra electronic structure calculations that have 

to be performed at the centroid between pairs of trajectories. In principle, the integrals presented 

for the potential energy (Vij) and the nonadiabatic (τij) terms from Eq. (7) run over the whole 

position space. The SPA118 allows AIMS to be used in on-the-fly dynamics, approximating the 

integrals by the evaluation of the Gaussian, using the energies and nonadiabatic coupling at the 

centroid between trajectories, as in the relation: 

| ( ).| ( ) |J J

j

I I

i ji ff        RR  (14) 

From here on, we are omitting the integral indexes R and r; all integrals are assumed to be over 

the nuclear position unless otherwise specified. 

The first step to alleviate the computational effort is to perform the single-point calculation 

only when the centroid values are necessary. Since all matrix elements depend on the overlap, 

there is no need to perform electronic structure calculations when this overlap is small enough. 

Furthermore, one can opt to use the bra-ket averaged Taylor expansion104 (BAT) to 

approximate those integrals without calculating the values at the centroid points. For potential 

energy, where the energy gradients are also available, the first-order Taylor expansion 

expressed in Eq. (15) can be used, which already considers that the potential energy term is 

only nonzero when both trajectories evaluated are in the same electronic state. 
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Similarly, we can use the zeroth-order Taylor expansion to approximate the nonadiabatic 

matrix element: 
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The BAT approximation has shown promising results104 while significantly reducing the 

amount of necessary electronic structure computations. 

2.3. Time derivative coupling 

The requirement to use nonadiabatic coupling can be a limiting factor for nonadiabatic 

dynamics propagation. Various electronic structure methods can compute energy and gradients, 

but coupling vectors are not always available due to fundamental restrictions or implementation 

difficulties.129–131 Computing time-derivative coupling without nonadiabatic coupling is a 
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common practice in surface-hopping methods132,133 and has been proposed and used for 

multiple spawning.126,134,135 

In surface hopping, the propagation of the coefficients (Eq. (1)) depends directly on the 

TDC, and no modification is required. In multiple spawning, the working equations need to be 

altered, but this is straightforward. It arrives from a simple application of the chain rule in the 

formula for the nonadiabatic (τij) terms. In the context of the SPA approximation, they can be 

computed with Eq. (17) evaluated at the centroid: 
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Meanwhile, the BAT approximation can be written as Eq. (18), evaluated at both 

trajectories: 
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For the evaluation of the time derivative coupling (σIJ), a method commonly used in surface 

hopping is based on the work of Hammes-Schiffer and Tully,136 which uses the overlap of the 

electronic wavefunctions at sequenced time steps: 
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Alternatively, a newer proposition that uses a unitary formalism shows potentially 

improved stability134 but also depends on the overlap between electronic wavefunctions: 
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2.3.1. Time-dependent Baeck-An coupling 

An alternative that circumvents the computation of the electronic overlaps entirely and has 

been gaining traction in surface hopping is the Baeck-An coupling,137 proposed for dynamics 

separately by do Casal et al.138 and Shu et al.139. In this, the time derivative Baeck-An (TDBA) 

coupling is approximated by the relation: 

2 2

2 2

2

2

) 1 1
0

2

1
0                   

sgn(

0

IJ IJ IJ

IJ IJ

IJ

IJ

IJ

d

E E E

E E

d d
if

dt dt

if
tE d

E


   


 
 










 (21) 



28 
 

while the second-order central difference can approximate the energy derivative: 
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This method has shown good agreement with dynamics using the nonadiabatic coupling in 

surface hopping.51,128  
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3.  Quantum Dynamics from Classical 

Trajectories  

The content of this chapter gave origin to the following publication: 

R. S. Mattos, S. Mukherjee, M. Barbatti, Quantum Dynamics from Classical 

Trajectories, J. Chem. Theory Comput. (accepted, 2024). DOI: 10.1021/acs.jctc.4c00783. 

The main code can be downloaded from https://gitlab.com/rafaelcpii93/qdct.git  

 

 

In this chapter, we present Quantum Dynamics from Classical Trajectories (QDCT), a post-

processing strategy to assess or improve the quality of a surface hopping simulation compared 

to a multiple spawning simulation at virtually no additional costs. QDCT leans on the strengths 

of each method. From surface hopping, we import the trajectories, which are expected to map 

the most important regions of the phase space. Since they are run independently, the 

computational cost is predictable. From multiple spawning, we import the heuristics to manage 

the trajectories, which are dressed by frozen Gaussians89 and associated with a coefficient 

propagated using the TDSE that mediates the interaction between trajectories. In surface 

hopping, the properties are obtained as a simple average of all trajectories. With QDCT, the 

trajectories can be reweighted with the TDSE coefficients (Figure 6), and the properties can be 

computed similarly to conventional multiple spawning. 

 

Figure 6 Conceptualization of the QDCT treatment. It can be interpreted as reweighting the 

pre-computed classical trajectories with the coefficients propagated using the TDSE. 

Although in this first QDCT implementation, we have exclusively taken multiple spawning 

as the target level, this is not a restriction of the method's general idea. Any approach that uses 

Gaussian functions as a basis to propagate the TDSE can be replicated with QDCT. Thus, one 

could develop an alternative algorithm to the one presented here to propagate the widths as in 

DD-vMCG,85,88 following the same principle of using pre-computed trajectories as the basis. 

https://gitlab.com/rafaelcpii93/qdct.git
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Looking at the equations of motion of the trajectories in multiple spawning, it can be 

realized that each trajectory is not dependent on the rest of the nuclear basis. This implies that 

they do not need to be propagated simultaneously. Other than the fact that the spawned 

trajectories will only appear when the parents reach a specific point in time, the trajectories are 

independent. With the trajectories computed, the coefficients can be integrated. This opens the 

way for new approaches, like using pre-computed trajectories from surface hopping and only 

propagating the coefficients. 

The trajectories generated by surface hopping have some distinctions compared to those 

generated by conventional multiple spawning. The most obvious one is that the AIMS 

trajectories remain in the same state throughout their existence. In contrast, the FSSH 

trajectories will eventually change state due to the hoppings, occasionally multiple times in a 

single trajectory. This distinction creates a problem of discontinuities of trajectories that must 

be addressed if one intends to use them for coefficient propagation. The other and more subtle 

distinction is that the spawned trajectories are created at the ideal point in space and time to 

maximize the overlap between trajectories, favoring their communication and allowing the 

TDSE to control the population transition. The FSSH trajectories are not subjected to this 

constraint, creating an increasingly impeditive problem for computing the overlap as the 

dimension of the system increases. 

On the other hand, using pre-computed trajectories means that the electronic structure 

calculations do not need to be repeated, so one obtains an approximation of a multiple spawning 

calculation at the cost of computing an analytical model since obtaining the electronic energies 

and gradients has the price of a simple memory lookup. It is also easier to control the 

computational cost of running multiple independent trajectories since the cost of each trajectory 

is easy to predict. The proposition is not a method to replace AIMS calculations but a correction 

to existing surface hopping dynamics that can work as a guide to assess the quality of the 

original calculation. Other methods employ the exploration of classical trajectories.140 

However, in those cases, the trajectories exist in the function of the coefficient propagation and 

the simulation only makes sense in combination with the coefficients. In QDCT, the pre-

computed trajectories are a valid dynamic by themselves. The difference between the results 

before and after QDCT can point to potential shortcomings of surface hopping, while the 

similarity between them can increase confidence in the result at almost no extra cost. 

The classical trajectories are used similarly to a conventional AIMS simulation. They are 

dressed with frozen Gaussians to create the nuclear wavepacket, and use the same equations of 

motion for the coefficients presented in Section 2.2. The condition for the increase in the 

number of trajectories being considered is also the same spawning condition mentioned in the 

same Section 2.2. A threshold for the nonadiabatic coupling is established to define the coupling 
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region. At the maximum point for this coupling value, a new trajectory is added to the nuclear 

basis, forming this relation between parent and child trajectories. 

In our case, instead of creating a new trajectory during spawning, one of the available 

surface hopping trajectories is selected and added to the active nuclear basis (Section 3.2). This 

addition may be assisted by interpolated trajectories (Section 3.3), which use data from the pre-

computed trajectories to approximate the ideal child trajectory (Figure 7). 

 

Figure 7 Flowchart of the most critical steps in QDCT. It reads the pre-computed 

trajectories and starts a new simulation for each trajectory. The available pre-computed 

trajectories can be added or removed from the active nuclear basis during the simulation. 

Next, we discuss the strategies to circumvent the problems that arise when using surface 

hopping trajectories to propagate AIMS equations. To deal with the discontinuities caused by 

hoppings, we perform trajectory substitutions. When computing the overlap between parent and 

child trajectories, we create a pair of interpolated trajectories that approximate the spawning 

and lead to a smooth population transfer. We detail how the spawnings and trajectory 

elimination are treated and summarize how those ideas can be combined into a single workflow 

that allows QDCT to correct surface-hopping results. 
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3.1. Trajectory Basis Functions control 

Similar to the spawning procedure, QDCT can control the number of trajectories in the 

nuclear basis by adding extra pre-computed trajectories in regions of high coupling. The norm 

of the nonadiabatic coupling vector or its product with the velocity can be monitored for each 

TBF until it reaches a predefined threshold. At this point, the rest of the simulation is put on 

hold, and the algorithm follows the trajectory until the maximum coupling value. At this time, 

a child trajectory is created, keeping the same geometry of the system and, consequently, the 

same gradients, energies, and nonadiabatic coupling. The nuclear momentum is adjusted to 

conserve total energy, as in Section 2.2.2. 

In conventional AIMS, one would backpropagate the child trajectory to the current 

simulation time and return the rest of the simulation to its regular run. Here, we are not 

propagating the classical trajectories, so instead of this backpropagation, we perform a 

trajectory substitution to increase the number of trajectories in the basis. The details of how this 

substitution happens will be discussed in Section 3.2. Still, the idea is to find the one most 

similar to the trajectory being substituted in the list of surface hopping trajectories. In this case, 

the new trajectory would fill in the role of the child being added to the nuclear basis, already 

considering the corrected momenta when performing the substitution. Instead of 

backpropagating, we add the new trajectory to the nuclear basis at the beginning of the coupling 

region and continue coefficient propagation. The surface hopping trajectory may change state 

between the beginning of the coupling region and the maximum coupling time. This is 

considered when choosing a trajectory to perform the substitution. In this case, the trajectory 

will be added to the nuclear basis as soon as it enters the correct state. When the trajectory is 

added to the simulation, its phase and coefficients are zero. 

Trajectory elimination can occur for a couple of reasons, including intentionally reducing 

the basis size. The usual elimination performed in AIMS can remove trajectories that are not 

coupled with the rest of the TBFs and do not contribute to the population. In QDCT, this 

elimination can also happen in case of a failed substitution, when the TBF being followed needs 

to be replaced, but no other is found suitable to fill its role. 

In the first case, when the removal is performed on purpose, it follows the same criteria of 

Section 2.2.2, where the algorithm checks: if the trajectory evaluated for removal is coupled 

with any other through the Hamiltonian;119 it checks whether the trajectories significantly 

overlap with any other TBF; it checks if the nuclear population of that trajectory is below a 

given threshold. If the trajectory has been marked for elimination for a defined number of 

timesteps, it is removed from the nuclear basis. 

On the other hand, if a failed substitution causes the elimination, one can decide at the 

beginning of the algorithm whether to attempt to continue the simulation and perform the 
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removal or whether the run should be stopped altogether. A compromise between the two 

alternatives could be to evaluate the population of the trajectory being removed and how it 

would affect the norm of the wavefunction to decide on performing the elimination or stopping 

the simulation. 

When the trajectory is removed from the nuclear basis, the nuclear wavepacket is projected 

into the new reduced basis (Eq. (12)). After this, there is another normalization step to ensure 

that each electronic state conserves the population through the elimination process and a second 

normalization to ensure that the total norm before and after the elimination is the same. The 

norm after this step is not set to unity but is conserved from whatever the value it was before 

the trajectory removal. If the trajectory is being removed on purpose, this renormalization step 

is redundant, but when the removal is imposed due to failed substitution, the projection in 

Eq. (12) may not go so well, meaning that the nuclear wavefunction after elimination is 

different from the wavefunction before the elimination. In this case, the difference between the 

wavefunction norm before and after the removal can also be used as a criterion to decide 

whether to continue the simulation. 

3.2. Trajectory substitution 

As mentioned in Section 3.1, trajectory substitution can be applied at spawning to add the 

child trajectory to the simulation. Given the nature of the surface hopping trajectories, this 

procedure can also be necessary after the original trajectory has hopped and changed state. In 

the ideal case, we expect the trajectory to follow a specific state; when there is a hop, this is not 

the case, and it is necessary to replace this TBF with another one in the correct electronic state. 

Once the trajectory that needs to be substituted has been identified, one needs only their 

position and momentum. The algorithm can then go through all other surface hopping 

trajectories in the correct state and compare the overlap between them and the one being 

replaced. Initially, it can attempt to compare trajectories at the same simulation time, 

considering that the swarm of trajectories is expected to move with the nuclear wave packet. 

However, this can also be extended by looking at extra steps around the current time. This can 

be seen as inexpensively increasing the number of TBFs, in a slightly similar philosophy as in 

the “trains” of trajectories.127,141 Then, one finds the highest overlap among all trajectories 

within the time window chosen (Figure 8). When comparing the overlaps, one can define a 

minimum value worth considering and ignore trajectories that overlap below this threshold. 
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Figure 8 Schematic representation of the substitute search. The greyed-out trajectory has to 

be replaced. Within the same timestep, TRAJ B is the closest trajectory and will be used as a 

replacement; within a time window (grey region), TRAJ A is the closest, and the point at 2 

steps back will be used as a replacement. 

With the increase in the system’s dimensionality, the chance to find a pair of trajectories 

with a high nuclear overlap falls dramatically. In this case, the simple overlap between pairs of 

trajectories will always fall below the threshold, and no substitution can be performed. In this 

scenario, the root mean square displacement (RMSD) can be optionally used to select 

trajectories. It will also use the same time window to find the best match. This alternative will 

always find the substitute with the highest similarity, even if it is low. Suppose this is used when 

replacing the spawned trajectory. In that case, this will lead to a deficit in population transfer 

since a trajectory that does not overlap with the child will also not overlap with the parent. On 

the other hand, when used after a hop to replace a trajectory completely decoupled from the 

other TBFs, it does not extensively affect the final result of the simulation. 

Once the trajectory has been found, be it from the overlap of the RMSD, the substitution 

is performed, and the new coefficients are obtained from the same type of projection mentioned 

for trajectory elimination (Eq. (12)). 

The differences are that, in this case, the projection is a square matrix, and the diagonal 

element of the overlap between the trajectory being substituted and the new one is artificially 

set to one to ensure proper inheritance of the original population. After the projection, the same 

normalization procedures ensure that the electronic populations and the norm are the same as 

before the substitution. 

In the case of a failed substitution of a child trajectory, the spawn is denied, and the 

simulation can be concluded as failed or continued based on the input. If it fails at a hopping, 

the simulation can also be finished as failed, or the trajectory being removed will be eliminated 

normally, with projection and normalization. 

3.3. Interpolated trajectories 

The increase in dimensionality of the system can usually lead to difficulties. In this case, 

the problem is the lack of overlap between any pair of trajectories, which depends on their 
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positions and momenta. In traditional AIMS, this is circumvented by the spawns happening at 

specific points in the phase space to maximize the similarity between parent and child. This is 

never a criterion for a trajectory generated by usual surface hopping; consequently, the 

trajectories of a high-dimensional system never meet. As the interaction between coefficients 

depends on this overlap, either one would need an infinite number of trajectories so they can 

meet by chance, or the overlaps will be negligible in all cases, and the trajectories will never 

interact. This prohibitive condition invites the use of another approximation to make it feasible 

to treat large systems. 

Virtual trajectories can artificially increase the number of TBFs and allow them to be added 

in the most critical regions of the phase space. Multiple ways to create those virtual trajectories 

can be imagined: the new points can be interpolated from a single trajectory, or they could be 

interpolated from the closest trajectories in the phase space. Alternatively, instead of simply 

interpolating the points of the trajectories, the actual energy surface around the spawning region 

could be fitted from the geometries pre-computed around it,142 and the virtual trajectory could 

be propagated over this fitted potential surface. With the development of machine learning 

potentials,143 we could reach a point where they are automated enough that a simple model, 

valid only for a short region of the phase space where the virtual trajectories are required, could 

be trained from the other pre-computed trajectories. Both the fitting or training of machine 

learning potential would be restricted to a small part of the phase space, which could potentially 

make those approaches computationally viable. Alternatively, one could only compute new 

electronic structure calculations for a reduced number of points within the coupling region. 

However, in this work, we want to test the method without requiring new single-point 

calculations. Also, while machine learning potentials have been gaining traction, they are still 

not straightforward enough to be used as a black box method. We will then focus only on the 

most straightforward and inexpensive interpolation to show the potential of the idea. There will 

always be a pair of trajectories: the parent, the trajectory pre-computed by surface hopping, and 

the spawned/child trajectory, which in QDCT is the virtual trajectory. Here, we choose to obtain 

the data of those virtual trajectories (gradients, energies, and couplings) by interpolating the 

data already available in the parent. 

Those interpolated trajectories are the most important within the coupling region, where 

the interaction between parent and child trajectories controls the electronic population transfer. 

Starting at the maximum of the coupling region, the child trajectory (interpolated) has the same 

information as the parent, except for the current state of the trajectory and the momentum 

correction (Eq. (10)) to preserve total energy. At this point, the approximation expects that the 

forces for the two electronic states were evaluated. After interpolation, both trajectories have 

their forces and momenta available, and one can then compute the distance of each atom in each 

coordinate as 
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where k represents either interpolated (i) or original (o) trajectories, and α stands for each 

nuclear coordinate. Since both trajectories move with different momentum (p) and force (f), 

they will run different distances. It is possible to determine at which time the original trajectory 

will match in position with the interpolated one by equating the distances traveled, as in 
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In Eq. (24), all values are fixed except by the timestep size of the original trajectory (dto). 

This quadratic equation can be solved for the smallest real positive result to obtain the time at 

which the values of the parent should be interpolated to get the values of the interpolated 

trajectory, as exemplified in Figure 9. Let us clearly state that this does not mean that the 

interpolated and original trajectories are moving with different timesteps. All trajectories in the 

simulation run with the same step size. What we are doing is, by knowing the velocity of the 

original trajectory, we can determine what timestep would be required for it to be in the same 

coordinates as the interpolated. 

 

Figure 9 Scheme of creation of the interpolated trajectory using the original trajectory. In 

this case, the child is created in a lower state and moves faster due to momentum rescaling. 

The original timestep size (dto) is used to compute the time at which the parent and child are 

in the same position, and the information of the original trajectory is used to interpolate the 

data of the child. 

With this theoretical coordinate, we can use the data around already computed to 

interpolate the data of the interpolated trajectory using cubic Hermite spline interpolation. For 

the vectorial quantities (positions, gradients), each coordinate will have an interpolation time t, 

and the interpolated value can be computed coordinate-wise, as in 
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y(t) is the value to be interpolated, y0 is the value on the original trajectory at the beginning 

of the timestep, and y1 is the value at the end of the step. dy/dt are their derivatives at those 

same beginning and end of the timestep. The free variable t is normalized so that y0 = y(0) and 
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y1 = y(1). In some coordinates, Eq. (24) might not have a solution. In this case, we can use the 

average timesteps of the other coordinates and perform the interpolation normally. 

Eq. (24) usually returns slightly different timestep sizes for each coordinate. This can be 

explained by gradients in different states giving more energy to different coordinates. Using a 

time for each coordinate can be justified because cartesian coordinates are orthogonal, so the 

force applied in one coordinate will not affect the position in another. This is why the 

coordinate-wise interpolation was used only for positions and gradients, while momentum is 

computed from the gradients. At first, we experimented with an average time for all coordinates, 

but we noticed that the current scheme could better approximate the interpolated trajectory from 

the trajectory created by conventional spawning. 

Not all data will have a derivative available, so we opted to use numerical derivatives in 

all cases: 
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Suppose that there is a simulation with a timestep of 0.5 a.u. and the interpolation time is 

at 10.2 a.u. In this case, the interpolation would use: 
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For the interpolation of the energies and coupling vectors, the time used is an average 

between all nuclear coordinates. Despite the coupling vector also being a vectorial quantity, we 

chose to interpolate it for a single time, where the molecule has a defined geometry instead of 

coordinate-wise. Once the interpolated gradients are computed in the new time, the momentum 

is also updated by using the usual Verlet algorithm: 

( ) ( )
( ) ( ) 0 1

1 0
2

v v
v v f f

p p dt
+

= + . (28) 

It can be noticed by looking at the Verlet algorithm and equation to propagate the 

coefficients in the Annex A that for the interpolated trajectory to be possible, the parent 

trajectory must have the gradient in the state of the child trajectory pre-computed at the surface 

hopping stage. At this point, both the original and interpolated trajectories have all their 

information computed and ready to be used, the original since it was pre-computed and the new 

trajectory due to the interpolation. The following timesteps can be computed following the same 

procedure until the interpolated trajectory is no longer required. 



38 
 

To a reasonable degree, around the maximum coupling point, the path they are following 

is still similar. By the time the trajectories have drifted apart enough to decrease the quality of 

the interpolation, the overlap between them will have reduced and uncoupled them. All 

population transfer should have happened by that point, and the trajectories can be considered 

independent. The larger the system’s dimensionality, the faster the overlap should fall and the 

safer the interpolated trajectory should be. 

We are not interested in the interpolation for the whole trajectory, so we need some criteria 

to stop interpolating. First, we check if the norm of the nonadiabatic coupling of the interpolated 

trajectory is decreasing. The interpolation starts at the maximum coupling, so when we are 

propagating forward and backward in time, away from this point, the norm of the nonadiabatic 

coupling vector should decrease. If it reaches an inflection point and starts to rise, it will enter 

a new coupling region. A new interpolated trajectory should be created to describe this new 

region better so the current interpolated trajectory will not be propagated further in that direction 

and will be substituted. Second, it checks the overlap between the interpolated child and parent 

trajectories. While the overlap is high, the trajectories still interact, and the interpolation should 

continue. After the overlap falls below a given threshold, the norm of the nonadiabatic coupling 

is also checked, and the interpolation stops when this norm is smaller than the threshold that 

defines the beginning of the coupling region. 

The interpolated trajectories are necessary only to replace the child trajectories, but in the 

context of surface hopping, there is a chance of hops in the coupling region. The parent is also 

created as an interpolated trajectory to avoid dealing with trajectory hopping within the 

coupling region. In the case of a hop, the interpolated parent trajectory return will behave as if 

the trajectory remained in the same state for the whole coupling region. 

After the interpolated trajectories are created, they are added to the nuclear basis, and the 

coefficient propagation continues. The interpolated child is added as a new trajectory, and the 

interpolated parent is added as a replacement. After the coefficient propagation passes through 

the coupling region, the overlap between the interpolated trajectories and all other TBFs is 

evaluated until they are entirely independent of the others and can be replaced again by another 

trajectory generated by FSSH. At this point, the substitution will not significantly overlap in 

higher dimensions. However, since the trajectory is independent of the other TBFs, this can still 

recover a good population description. 

3.4. Method’s workflow 

We chose to start the coefficient propagation from a single trajectory. Then, multiple 

propagations can be performed starting from different initial conditions, similar to the IFGA. It 

is possible to attempt to start from various nuclear configurations, create a reference initial wave 

packet to determine the initial coefficients, and perform the propagation. However, this tends 
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to give good agreement with IFGA in higher dimensions,122 especially considering we are 

working with many, primarily independent, trajectories. 

Initially, we follow a single trajectory, but along the propagation, new trajectories will be 

added to the nuclear basis, reproducing a spawn. At each timestep, checks are performed to 

evaluate the need for spawning or substitution. This can be described by the following steps, 

which lead to the overall scheme represented in Figure 10: 

1. Coefficient propagation: the data of the current and previous timesteps are used to 

propagate the coefficients (Eq. (7)) and the phase (Eq. (9)) to the current step; 

2. Trajectory substitution: each trajectory is checked for a hop in the following step. In 

the case it hops, it would create a problem for the coefficient propagation, so the 

trajectory is substituted as described in Section 3.2, and the new coefficients are 

computed by Eq. (12). This is exemplified in time 1Ht  in Figure 10. 

3. Trajectory spawning: the nonadiabatic couplings are compared with the given 

threshold to determine whether the trajectory (TA) entered the spawning region. If so, it 

is followed until the maximum coupling point, independent from the rest of the 

simulation, and the pair of interpolated trajectories is created in the parent and child 

states (i-TAS0 and i-TAS1), as explained in Section 3.3. The values of the interpolated 

trajectories are interpolated from the parent trajectory (TA) as per Eq. (25). They are 

added to the nuclear basis at times 1Ct  (in Figure 10) and used normally for the 

coefficient propagation, as any other trajectory originated from surface hopping. The 

interpolated trajectories are not evaluated for new spawns; 

4. Interpolated substitution: the interpolated trajectories are interpolated only within the 

coupling region, so they must be replaced after this interval. The same check as in step 

2 is used to replace the interpolated trajectory with another pre-computed from surface 

hopping at the end of the interpolation region, marked with times 1St  in Figure 10. 

Notice that in 1St  and 4St , the interpolated is replaced by the same trajectory that 

originated it, so they should be a good match, while in 2St  and 3St  a new trajectory is 

replacing the interpolated, and there will be a difference in positions and other values 

between trajectories. The original trajectory might remain in the same state during the 

coupling region, as in 1St , or might have hopped and will be replaced accordingly, as in 

4St ; 

5. Trajectory elimination: in case of a failed substitution in step 2 or following the criteria 

of low population and coupling with the TBFs mentioned in Section 2.2.2, a trajectory 

can be removed, as in 1Et in Figure 10. At this point, the wavepacket before the removal 

is projected into the remaining trajectories to obtain the optimal coefficients (Eq. (12)); 
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6. Closing the step: update the timestep of the classical trajectories and return to step 1 to 

continue the propagation. 

 

Figure 10 Schematic representation of the management of classical trajectories computed 

with surface hopping (TA, TB, TC, and TD) or interpolated trajectories (i-TAS0, i-TAS1, i-TBS0, 

and i-TBS1) during a QDCT propagation and the critical events that can happen: tC spawning 

with the creation of interpolated trajectories; tS end of coupling region with the substitution of 

interpolated trajectories by an original one; tH hop of the surface hopping trajectory, triggering 

a substitution; tE trajectory elimination due to low population. 

This process can be started independently for all or part of the trajectories available from 

surface hopping. As is the case for AIMS simulations,115 QDCT needs fewer initial conditions 

to converge, so starting from all the trajectories may not be necessary. After propagation, the 

properties of interest, such as the population, can be computed using Eq. (13), as one would do 

for conventional multiple spawning. The expectation value can be computed for each 

simulation starting from independent initial conditions (IFGA). The final value is the simple 

average between multiple simulations. 

3.5. Computational details 

The FSSH calculations were performed in Newton-X v3.5.159 using the decoherence 

correction from Granucci and Persico.98 The multiple spawning references were computed 

using Legion, described in Chapter 4. . The QDCT post-processing was performed with a code 

developed for this project, available at https://gitlab.com/rafaelcpii93/qdct. 

For the unidimensional testing, the Tully models91 were used (Figure 11). The trajectories 

are sampled from a Wigner distribution of a Gaussian wavepacket59,144 around the position           

-8 0a  for models A and B in Figure 11 and position -15 0a  for model C. In all cases, different 

initial momenta were used. During the initial sampling, the width for the Gaussian followed 

Tully’s original recommendation of 020 /p p = . The mass was set as 2000 em , and the 

Gaussian width for both multiple spawning propagation and QDCT was chosen to be 4.7 
2

0a−
. 

https://gitlab.com/rafaelcpii93/qdct
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The trajectories start on the ground state and are propagated with a timestep of 0.1 fs. The 

common parameters between the multiple spawning and QDCT simulations shared the same 

values. The coupling threshold is achieved when the norm of the NAC vector passes the value 

0.08 a.u.-1, and the absolute value of the overlap between child and parent is 0.7 to accept a 

spawn. The BAT approximation was also used in the multiple spawning calculations to enable 

a clearer comparison with QDCT. The comparison between the BAT and SPA results can be 

found in Annex B. In QDCT, a time window of 60 timesteps around the simulation time was 

used when looking at trajectories for substitution, and the threshold of the absolute value of the 

overlap to accept a substitution is 0.9. 

 

Figure 11 Tully model potentials in adiabatic representation. Energies and nonadiabatic 

couplings from E1 to E0 in a.u. The presented d10 values are rescaled to fit with the energies: 

A) Simple avoided crossing d10/100, B) Dual avoided crossing d10/20, and C) Extended 

coupling with reflection d10 without rescaling. 

A total of 500 initial conditions were used for all calculations, starting at the lower 

electronic state. The same initial conditions were used for the surface hopping, multiple 
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spawning, and, consequently, the QDCT simulations. This number of initial conditions is low 

for treating analytical models, which usually is in the thousands for surface hopping.91,145,146 

Nevertheless, we chose to use fewer trajectories to show the potential of the method, 

considering that a routine ab initio simulation tends to have between 100 and 200 

trajectories.114,128,147 

 

Figure 12 Cuts of the SBH model potential in adiabatic representation. Energies of E0 and 

E1 and the nonadiabatic coupling norm in a.u from state 1 to state 0. The presented d10 values 

are rescaled to fit with the energies. The panels show profiles along A) coordinate 1 (
114cm −= ), d10/20; B) coordinate 6 ( 196cm −= ), d10/15; and C) coordinate 12 (

1400cm −= ), d10/3. 

For the multidimensional test, we used the spin-boson Hamiltonian148–151 model with 12 

dimensions. The functional form, parameters for this system (and also the Tully models), and 

adiabatic transformation are found in the Annex C. In Figure 12, we present cuts of the potential 

energies and the norm of the nonadiabatic coupling over three coordinates: A) the coordinate 

associated with the lowest vibrational frequency; B) a coordinate associated with a medium-



43 
 

valued frequency; C) the coordinate associated with the highest frequency in the model. Other 

than testing QDCT in a multidimensional case, the model was parametrized such that the 

nonadiabatic transitions occur in 0.5 ps simulation time (a typical timescale for ultrafast 

photodynamics) to test the data management capability of the software. 

Most parameters used in the 1D case are kept the same in the multidimensional tests. In 

this case, the population threshold to remove a trajectory is 0.01 in multiple spawning and 

QDCT. The same initial conditions were used for the multiple spawning and surface hopping 

dynamics for the sets with 100 and 500 trajectories. The particles used were hydrogen atoms 

with a mass of 1822 em . They were sampled from a Wigner distribution around the minimum 

position of the ground state with zero average initial momentum and then vertically lifted to the 

first excited state. 

All the populations presented show the average value in the lines and the confidence 

interval of 95% in the shaded area. The averages and standard deviation were computed using 

the bootstrap method using 100000 resamples. 

3.6. Application 

3.6.1. Unidimensional systems 

3.6.1.1. Tully 1: Simple avoided crossing 

The simple avoided model is characterized by the potential energy surfaces coming 

reasonably close ( 0.27  eV) once but never crossing each other (Figure 11-A). Depending on 

the initial velocity, this can cause a partial transfer to the upper state. 

 

Figure 13 Lower state population for the simple avoided crossing Tully model. The initial 

condition was sampled around the momenta of 10 a.u. and 25 a.u. The shaded area in all 

curves represents a confidence interval of 95%. 
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In general, surface hopping should be performed with decoherence correction. As can be 

seen in Figure 13, in the low initial momentum, the DC-FSSH population underestimates the 

transfer, and even as the trajectories have already left the coupling region beyond 80 fs, the 

population is still not stabilized. Compared to the trajectories without decoherence correction, 

the confidence interval is much wider for the corrected trajectories. The original FSSH 

algorithm is much closer to the behavior of the AIMS population and the results found in 

previous work for this model.145 When applied to both the trajectories generated by FSSH and 

DC-FSSH, QDCT recovers the AIMS population and, most importantly, does the same for both 

surface hopping outputs. The larger confidence interval in DC-FSSH is the effect of the 

decoherence correction tempering with the coefficients. In Annex D, there is a short discussion 

of this topic with an example. 

In the case of higher initial momentum, where the particle behaves more like a classical 

particle and surface hopping should work better,91,99 there is a good agreement between all 

methods. In this case, the DC-FSSH is closer to the reference than the original FSSH. Even 

with the improved result, the corrected decoherence still has a wider confidence interval than 

the other methods. Once again, QDCT can improve the population of the FSSH and not alter 

the result of DC-FSSH other than reducing the confidence interval. 

The take-home message here (and in the following sections) is not that QDCT corrects DC-

FSSH to return uncorrected FSSH, but that QDCT will return satisfactory results no matter the 

quality of the initial surface hopping basis we have. 

3.6.1.2. Tully 2: Dual avoided crossing 

The second of the Tully models is the dual avoided crossing, characterized by two 

sequential regions of high coupling where the potential energy surfaces approach each other 

(Figure 11-B). The small interval between the pair of couplings makes it possibly the hardest 

of the three models.146,152 
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Figure 14 Lower state population for the dual avoided crossing Tully. The initial condition 

was sampled around the momenta of 16 a.u. and 30 a.u. The shaded area in all curves 

represents a confidence interval of 95%. 

Once again, Figure 14 shows that using decoherence correction returns the asymptotic 

population 0.1 smaller than the reference for the lower momentum. On the other hand, despite 

having a slight difference in the transfer region, the original FSSH agrees with the AIMS 

asymptotic result. 

In the high initial momentum simulations, the DC-FSSH disagrees even more with the 

reference. In this case, even the original FSSH disagrees with the AIMS result. The difficulty 

of FSSH in dealing with the sequential coupling regions has already been observed for this 

model.146 When this system reaches the second coupling region, the fine control of the 

decoherence should influence the remaining transfer between states. It could be related to the 

large discrepancy between this system’s expected behavior and what is observed with DC-

FSSH. Also, in this case, the QDCT recovers the AIMS result for both initial momenta and for 

both sets of surface hopping trajectories. 

3.6.1.3. Tully 3: Extended coupling with reflection 

The last unidimensional model starts in a region where the upper and lower electronic 

surfaces are degenerated. They pass through a coupling region, and the energies separate 

(Figure 11-C). If the trajectories that go through the upper state do not have enough kinetic 

energy, they are reflected and cause a second wave of population transfer, as can be seen in 

Figure 15. 
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Figure 15 Lower state population for the simple avoided crossing Tully model. The initial 

condition was sampled around the momenta of 10 a.u. and 30 a.u. The shaded area in all 

curves represents a confidence interval of 95%. 

For the low momentum case, most of the methods recover the population being transferred 

back to the lower state when the trajectories in the upper state are reflected. DC-FSSH has a 

slightly different profile from the reference but agrees with it overall. Original FSSH almost 

has no population being transferred back and has a wider confidence interval than observed in 

the other models. In the high-momentum case, the trajectories have enough kinetic energy to 

overcome the barrier in the upper state. Once the initial transfer is completed, the populations 

remain constant. Curiously, in this case, both surface hopping results agree among themselves 

but deviate from the reference. Once again, QDCT approximates the reference well, with a 

slight deviation in the low momentum case. 

3.6.2. Multidimensional system 

Although testing new methods in the Tully models is standard practice in the development 

of nonadiabatic dynamics, they are all unidimensional. To be practical, QDCT should also be 

able to deal with larger systems. This creates a problem that uncorrelated trajectories in higher 

dimensions will rarely, if ever, have a significant overlap, which is essential for communication 

and population transfer between them. The Annex E exemplifies how the overlap falls with 

increasing system dimensionality. The interpolated trajectories are required for the method to 

keep working in this scenario. 

The Spin-Boson Hamiltonian is a family of models used to test nonadiabatic dynamic 

methods with the feature that its dimensionality can be arbitrarily increased. It linearly couples 

a two-state system (analogous to a spin-half system) to a bath of harmonic oscillator modes (the 

bosons). Due to its flexibility and rich dynamics, SBH has played a central role in the discussion 

of phenomena ranging from decoherence to nonadiabatic dynamics.153 SBH is defined in terms 

of diabatic potentials for the bosonic modes. However, for surface hopping and multiple 
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spawning, we move to the adiabatic representation (see Annex C). In this representation, the 

SBH model gives rise to two-state, multidimensional potential energy surfaces with significant 

anharmonicities and crossings analogous to a molecular system. 

 

Figure 16 Upper state population for the SBH model using 500 trajectories (left) and 100 

(right). The shaded area in all curves represents a confidence interval of 95%. 

In the SBH model, we can see from Figure 16-left that the decoherence correction makes 

a difference and allows surface hopping to recover the correct result. This contrasts with the 

original FSSH, which considerably underestimates the population transfer, with an asymptotic 

population for the upper state above 50% at the end of the simulation. This illustrates a more 

realistic situation where decoherence corrections are essential. Although most methods agree 

well, DC-FSSH is generally closer to the reference population than the QDCT-corrected 

dynamics. In this case, the agreement of the different methods can be used to increase 

confidence in the result. 

The result from Figure 16-left is from a converged simulation with 500 trajectories. Due to 

the cost of the single-point calculations, it is uncommon to see such many trajectories for an ab 

initio method. If, instead, we take only the first 100 trajectories of AIMS and (DC-)FSSH to 

average and to give as input to QDCT, Figure 16-right shows how one can take advantage of 

the faster convergence of the multiple spawning method to improve the statistics of the surface 

hopping results. In this case, AIMS and QDCT give essentially the same result with the smaller 

number of trajectories as they did with the larger one. At the same time, DC-FSSH 

overestimates the population transfer in the first half of the simulation. The original FSSH 

shows a good convergence to a wrong result, showing that just ensuring convergence does not 

guarantee the quality of the result. The example of Figure 16-right is likely the closest to an 

actual application of the method, considering the number of trajectories used and that it is a 

multidimensional system. It does not show a significant improvement over DC-FSSH results 

but still converges well with the number of trajectories. 
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3.7. Conclusion 

We have shown here the first steps of QDCT, a strategy to post-process surface hopping 

dynamics to obtain results at multiple spawning levels. QDCT helps to detect and correct 

potential problems in surface hopping. It can, for instance, be used as a method to recover 

decoherence effects in an over-coherent simulation. Even when QDCT leads to the same result 

as surface hopping, it comes at almost no extra cost since QDCT requires no new electronic 

structure calculation and increases confidence in the original simulation. If, on the other hand, 

the methods disagree in the behavior of the dynamics, QDCT can point to a problematic system 

that should be studied further, revealing possible problems with an analysis that would be 

otherwise considered correct. 

The collection of unidimensional cases shows how, in some cases, the surface hopping 

dynamics can converge to an incorrect result. For a new system, there is no way to determine 

that other than by comparing it with different dynamics methods. In a multidimensional 

scenario, especially with heavier atoms, the system is supposed to approach classical behavior 

more, which is reflected in the vast success of surface hopping methods. Yet, approximations 

or corrections are necessary. Some should fare better in one type of system and worse in others. 

QDCT approaches this problem from a different perspective and is not susceptible to those 

approximations. Given the non-stochastic nature of the method and the increase of the basis 

size during the propagation, QDCT inherits from multiple spawning its improved convergence 

with the number of initial conditions, which can also be leveraged to improve the confidence in 

the initial results from surface hopping. 

This post-process method inherits the problems of energy conservation of frozen Gaussian 

propagation used in AIMS,154–156 but we also have the fact that the classical trajectories will 

have, in general, different total energies, as chosen in the initial condition generation of the 

surface hopping trajectories. In that case, the total energy of each simulation will be within the 

range of total energies of the trajectories, with a particular case that the expected value of the 

energy will be a weighted average of the energies of each trajectory when the overlap between 

all trajectories is negligible. 

The quality of FSSH results depends significantly on how the electronic coefficients are 

propagated and corrected along the simulation. They will then only affect the classical 

trajectories by influencing the hopping points. QDCT is indifferent to those coefficients from 

surface hopping. As long as there are enough trajectories and the electronic structure used is 

reliable, the method should be able to approximate AIMS, as has been shown. 

Although our entire discussion has focused on post-processing FSSH trajectories, QDCT 

can work on any surface hopping basis, stochastic157 or deterministic,158 even when 

nonadiabatic coupling vectors are not available, such as in curvature-based approaches95,138,139 
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or global probability estimates.159–163 In this case, however, it becomes necessary to modify the 

coefficient equation of motion (Eq. (7)) to replace the nonadiabatic coupling with the time 

derivative coupling.126,134 

QDCT depends on a series of approximations. While some are more established, such as 

the BAT approximation, some can still be crude and invite extensive testing and refinement, 

particularly the interpolated trajectories. We plan to have our multiple spawning reference script 

interfaced with electronic structure codes to allow testing with real molecules. We will also 

investigate how the train of trajectories104,141 and linear dependence removal164 can improve the 

robustness of the QDCT method. 

Although we have exclusively used QDCT to deliver results at a multiple-spawning 

calculation level, it is not restricted to trajectory spawning. It should be possible to emulate any 

strategy that uses Gaussian functions as a basis to propagate the TDSE: trains of trajectories 

and widths propagation, for example. Thus, in principle, we could devise QDCT versions that 

would aim to assess and improve the surface hopping quality against other quantum dynamics 

levels. 



50 
 

4.  Legion 

The content of this chapter will give origin to the following publication: 

R. S. Mattos, S. Mukherjee, M. Barbatti, Legion: a Platform for Mixed Quantum-Classical 

Nonadiabatic Dynamics, (2024). In preparation. 

The main code can be downloaded from https://gitlab.com/rafaelcpii93/legion.git  

 

 

This chapter presents the newly developed Legion, a platform for mixed quantum-classical 

nonadiabatic dynamics propagation, specifically AIMS, created within the Newton-X 

platform59 and is one of the products of this thesis. During the development of QDCT 

(Chapter 3. ), we noticed a lack of options for easily accessible and efficient multiple spawning 

software with a large variety of electronic structure interfaces. Legion improves on those two 

aspects. It is intended to be a modular program that allows for the easy implementation and 

testing of new methods and approximations in the family of Gaussian wavepacket propagation. 

The software is written as a combination of Python for data management and Fortran for 

numerical operations. It is interfaced with multiple widely used electronic structure software, 

with some interfaced directly and others being intermediated by Newton-X. Among those 

interfaces, there are methods from semi-empirical and machine learning potentials up to 

CASPT2 and MRCI. We have decided to start development by implementing multiple 

spawning for nuclear propagation and trajectory management. Still, Legion should be 

understood as a playground for testing different methods. 

The program follows the same heuristics and equations as expected for AIMS that was 

presented in Section 2.2. The method is also extended to include alternative ways to compute 

the TDC without requiring the explicit computation of the nonadiabatic coupling, as discussed 

in Section 2.3. Using orbital overlap to compute the time derivative coupling is not widespread 

in the multiple spawning literature but has been proposed and used before. To the best of our 

knowledge, this is the first time that TDBA has been proposed in the context of multiple 

spawning, and it will extend the number of electronic structure methods available for AIMS. 

4.1. Legion in a Nutshell 

The program comprises independent building blocks that can be personalized depending 

on the method intended. In the initialization, the appropriate objects will be loaded according 

https://gitlab.com/rafaelcpii93/legion.git
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to the parameters defined in the input file, and they can perform their task independently of the 

other parts: 

• Ensemble: aggregates the classical trajectories and the simulation information, like the 

overlaps and Hamiltonians used for coefficient propagation. Not only does it store the 

information, but it is the interface that creates new trajectories and their centroids or 

removes them from the simulation; 

• Nuclear Interface: indicates how the Hamiltonian will be computed and the forces for 

the classical propagation. For AIMS, the Hamiltonian is the one presented in Eq. (7), 

and the force is merely the negative of the gradient of the current state of the trajectory; 

• Time Derivative Coupling: if the nonadiabatic coupling vector is not read from the 

electronic structure, this is going to be responsible for computing the time derivative 

coupling using the alternative methods based on overlap (Eq. (19)) of the Baeck-An 

coupling (Eq. (21)); 

• Integrator: responsible for performing the coefficient integration using one of the 

methods implemented. Various methods are available, including Runge-Kutta 

integration, Hamiltonian diagonalization, and Magnus expansion, which contain 

different orders and adaptive step sizes to ensure convergence. In the case of adaptive 

step size integration, the intermediary points are not computed with electronic structure 

calculations but interpolated with a cubic Hermite spline interpolation; 

• Coefficient Integration: is the interface between the trajectory information and the 

integrator. It computes the Hamiltonians required for the integrator and creates the 

interpolation that the integrator will use; 

• Spawning: is responsible for keeping track of which trajectories should be spawning, 

and in the positive case, creates the new trajectory to add to the nuclear basis. It performs 

the propagation of the parent trajectory up to the maximum coupling point, creation of 

the child with energy conservation and momentum correction in the nonadiabatic 

coupling vector or momentum direction, and backpropagation of the child; 

• Dynamics: this module combines all the previous ones, calling each one of them when 

necessary. It contains the initialization of the dynamics and the propagation up until the 

maximum time, as described in Figure 17. 
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Figure 17 Flowchart of Legion. δ is the number of steps in the classical trajectories are 

being propagated ahead of the coefficient, useful for the TDBA and interpolation 

approximations. Before starting the dynamics, the pre-propagation ensures that there will be 

enough points since time t = 0 to compute the centroid numerical derivatives and 

interpolation. 

In some situations, running the trajectory propagation with some extra time steps with 

respect to the coefficient integration might be interesting. For example, suppose one is 

computing the time derivative coupling using the TDBA approach. In that case, it is better to 

calculate the numerical second derivative of energy if one has information on the energy at a 

future time step, as seen in Eq. (22). In this case, Legion will automatically propagate the TBF 

one step ahead of the coefficients. This is possible because trajectory propagation is not 

dependent on the coefficients; they are only integrated synchronously so that the information 

on the population can be used when choosing to remove trajectories from the nuclear basis. 

To perform frozen Gaussian propagation, the Gaussian width has to be chosen for each 

atom. Legion can read the widths from the geometry file, and also has as default the values 

recommended in the literature.123 Those values are restricted to the first rows in the periodic 

table. In a recent work, Tomaz et al165 fitted a formula to obtain the Gaussian width for any 
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element in the periodic table, computed from their atomic radius, and it allows multiple 

spawning to be used with almost any element on the periodic table. The fitted formula is: 

1/2 4( 72 6255exp( / 0.139) 0.0 4) atR − = − + , (29) 

where ω is the Gaussian width, and Rat is the atomic radius.166 

The initial condition necessary to start the dynamics propagation consists of two pieces of 

information: the initial geometry and velocity of the molecule at time zero. Legion is a software 

for performing the propagation of the dynamics, and for now, it does not contain a method to 

generate the initial condition. The Newton-X CS within the Newton-X platform provides their 

generation to the user. This uses the nuclear ensemble approach (NEA)167,168 to generate initial 

conditions and spectrum, usually employing the Wigner probability distribution function to 

generate the geometries and velocities.169 

4.2. Legion in Depth 

4.2.1. Modified BAT approximation 

We present a newly developed modification to the bra-ket averaged Taylor approximation 

that has never been published before. A zeroth-order Taylor expansion approximates the 

centroid value for the NAC and, consequently, the TDC. Within this approximation, those 

curves are assumed to behave as straight lines, but the nonadiabatic coupling is known for its 

fast variation around a small region of the phase space. It behaves much more similar to an 

exponential function, where A and B are the fitted constants, and x is the free variable: 

( ) exp( )f x A xB= . (30) 

Under that assumption, one can use the same information used in the standard BAT to fit 

an exponential that passes through the values of the NAC curve at both trajectories, i at x = 0 

and j at x = 1, and ρ runs through the coordinates: 
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Then, knowing that the centroid is found in the middle of those two points, the centroid 

value can be computed at x = 0.5: 

( ) ( ( ) ( ))IJ IJc i IJ jd ABSR R d Rd  =  . (32) 

To compute the square root, we take the absolute value of the product of the elements of 

the coupling vector. The couplings at trajectories i and j are compared; the one with the smallest 
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norm will dictate the sign of the vector at the centroid. The justification is that for an exponential 

curve, the value at the middle is closer to the smaller value. 

The same relation can be used to compute the centroid TDC when the NACs are not used. 

In the results, this is shown as the bra-ket averaged Taylor/exponential (BATE) approximation. 

4.2.2. Adaptive timestep 

A feature that improves efficiency is the capability to propagate the classical trajectories 

with fewer single-point calculations far from the coupling region and reduce the classical step 

size within this region. The implementation is inspired by the idea of substeps used for surface 

hopping.57,59 In that case, the timestep used for integrating the coefficients has to be smaller 

than the timestep for the classical propagation, so intermediate values are interpolated and used 

for coefficient propagation. Far from the coupling region, the systems behave better, and the 

usual timestep of 0.5 fs should be enough for a smooth integration of the classical trajectories. 

Within the coupling region, the nonadiabatic coupling varies fast, and a smaller integration step 

will be able to capture it better. 

In Legion, the user defines the number of substeps to compute and the total timestep of the 

dynamic. During the propagation of the classical trajectories, if they are below the coupling 

threshold, the classical integration of the nuclei takes the full timestep, and the substep points 

are interpolated using the cubic Hermite spline interpolation: 

3 2 3 2 3 2 3 2

0 1

0 1

( ) (2 3 1) ( 2 ) ( 2 3 ) ( )
dy dy

y t t t y t t t t t y t t
dt dt
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   
. (33) 

In it, y(t) is the value to be interpolated, y0 is the value on the original trajectory at the 

beginning of the timestep, and y1 is the value at the end of the step. dy/dt are their derivatives 

at those same beginning and end of the timestep. The free variable t is normalized so that 

y0 = y(0) and y1 = y(1). The spline interpolation ensures that the points and first derivatives of 

the exact function and the interpolated one are the same at the extremes of the interpolation 

interval. Not all properties will have a derivative available, so they can be computed using the 

numerical derivatives in all cases: 

1 1

2i

i iy ydy

dt

+ −− 
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 
. (34) 

This again uses trajectories propagated ahead of the coefficient to evaluate derivatives 

using the central difference. If the classical trajectories have crossed the coupling threshold, 

using the same criteria checked for spawning, then instead of interpolation, the timestep is 

reduced to the size of the substep, and no interpolation is necessary. 

The coefficient integration is unaware of this process and computes the new coefficients 

for each substep. This way, part of the trajectories may be within the coupling region and are 
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propagated every substep, while the other part takes larger steps, and the data is complemented 

with interpolation. 

4.2.3. Electronic structure interfaces 

Legion requires an external electronic structure program to propagate the classical 

trajectories. This program is responsible for computing the energies, gradients, and, optionally, 

nonadiabatic couplings. Living under the umbrella of the Newton-X platform, Legion inherits 

all the methods interfaced with Newton-X through external calls. Those calls are responsible 

for adapting the input for the different electronic structure programs, calling them, reading their 

outputs, and returning them all in a structured, unified format. Newton-X will also be 

responsible for reading the orbital at different timesteps and calling the CIOverlap132 program 

to compute the overlap of subsequent timesteps used in Eq. (19). This interface is seamless for 

the user, who is not required to be familiar with Newton-X or surface hopping to use Legion. 

We do not imply that the program can only be used with Newton-X, but new direct interfaces 

have yet to be added as the need arises. This intermediary interface calls conventional electronic 

structure software, and the possible overhead of passing through the Newton-X call is 

negligible. 

In recent years, semi-empirical methods170–177 and machine learning potentials178–180 have 

been gaining popularity. In this case, the single-point calculation is so fast that small overheads 

can start to impact the performance of the simulation. For that case, we have created a direct 

interface to MLatom,143,163 an independent software that implements those faster methods. 

Since MLatom is provided as a Python API, we can call it from within the Legion interface. 

This can be significant for speeding up since calculating energies with machine learning 

potential is so fast that importing the Python libraries at each time step can take a noticeable 

chunk of the time. Being called from the interface, MLatom is initiated only once, getting rid 

of the overhead caused by reinitializing it multiple times. 

A third direct interface is present for PySCF,181 a general-purpose electronic structure 

software with multiple methods that have been amply developed. It follows the philosophy of 

being a modular software that gives flexibility for developing new methods. The program is 

also provided as a Python API, which means it is also called from within its interface, similar 

to MLatom. The complete list of programs and methods interfaced with Legion is available in 

Table 1. 

Table 1 Programs and Methods Interfaced with Legion. 

program methods couplings 
COLUMBUSa MCSCF, MRCI nacv, cioverlap, TDBA 
TURBOMOLEa RICC2, ADC2, TDDFT nacv, cioverlap, TDBA 
ORCAa TDDFT cioverlap, TDBA 
GAUSSIANa TDDFT nacv, cioverlap, TDBA 
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OpenMolcasa RASSCF, CASPT2 nacv, TDBA 
MOPAC (Pisa)a FOMO-CI nacv, third-party overlap, TDBA 
MNDOa OMx/MRCI nacv, TDBA 
OQPa MRSF/TDDFT TDBA 
MLatom AIQM1/ML potentials TDBA 
PySCF TDDFT, ADC2, MCSCF TDBA, nacv 
build-in codes Analytical models nacv, TDBA 

aProgram interface mediated by Newton-X NS. 

4.2.4. Input and output 

The input is composed of three parts:  

• a single input file with the options to be used by Legion, defining multiple parameters 

of the dynamics. Most of them contain default values, except information such as the 

number of electronic states to consider and maximum simulation time; 

• a pair of files containing the initial geometry and velocity of the first trajectory in xyz 

format; 

• a folder containing the input to run the electronic structure calculation. 

The output is composed of a folder for each trajectory containing its information: positions, 

momenta, gradients, energies, and coefficients. If the electronic structure methods compute the 

nonadiabatic coupling vectors, those will also be present. If the coupling is calculated with one 

of the auxiliary methods, then the time derivative coupling will be saved to a text file. The same 

information is stored in extra folders containing the centroid if the user decides to use the SPA 

approximation. Those trajectories are stored in a format compatible with Newton-X so that 

Ulamdyn59 can be used to analyze them. 

Outside the trajectory folders, the matrices used to propagate the coefficient are also stored: 

S, Sdot, V, T, and τ. The electronic population and the coherences of the wavepacket are also 

printed, together with the complete list of parameters and their respective values used in that 

simulation, including the default ones. 

4.3. Computational details 

To validate Legion, we performed dynamics of fulvene and DMABN (4-(N,N-

dimethylamino)benzonitrile) using multiple electronic structure methods implemented in 

various software. The simulations were performed interfaced with a development version of 

Newton-X NS 3.5.2,59 with electronic structure calculations computed with OpenMolcas 

24.06,182–184 for complete active space self-consistent field (CASSCF) and complete active 

space perturbation theory of second order (CASPT2), Columbus 7.2185–187 for CASSCF, and 

Orca v5.0.4188,189 and Gaussian 16190 for the time-dependent density functional theory (TDDFT) 

calculations. 
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For fulvene, we used two sets of initial conditions. One set contains the first 20 initial 

conditions from the set of dynamics in Ref128, generated from a harmonic oscillator Wigner 

distribution. The other set contains 18 trajectories, also generated from a harmonic Wigner 

sampling, but the momenta was set to zero.114 A set of dynamics was run using SA-2-

CASSCF(6,6) in Columbus and OpenMolcas, consisting of the 3 pairs of bonding π and anti-

bonding π* orbitals. Dynamics with extended multistate (XMS) CASPT2 used the same active 

space through the OpenMolcas interface. In all cases, the 6-31g* was the basis set. The 

propagation started from the first excited state (S1) and continued up until 45 fs with a full 

timestep of 0.5 fs and a sub-timestep in the coupling region of 0.1 fs. The population limit to 

allow spawning or trajectory elimination was 0.01, and the overlap threshold between 

trajectories to allow spawning was set to 0.6. The coupling criteria used was the time derivative 

coupling (v⸱dij), with a threshold of 0.01 a.u.-1. In most cases, the NAC was computed by the 

electronic structure calculation, and the momentum was corrected along the NAC direction at 

spawning time. Different sets of calculations were performed, varying the coupling threshold, 

type of coupling (NAC vs TDBA), the centroid method (SPA, BAT, BATE), and direction of 

momentum correction, either in the direction of the NAC or the momentum vector. 

For DMABN, we used the 21 initial conditions presented in Ref114, also generated from a 

harmonic Wigner distribution. The sets of dynamics used LC-ωHPBE191/6-31g in Gaussian and 

ωB97X-D3192/def2-SV(P) in Orca, using the Tamm-Dancoff Approximation (TDA) and 

RIJCOSX193 to approximate Coulomb integrals. In both cases, the lowest three excited states 

were asked. The dynamics started from the second excited state (S2) and propagated until 100 

fs, with a full timestep of 0.5 fs and a step of 0.1 fs in the coupling region. The population to 

kill and spawn is 0.1, the overlap threshold is 0.6. The coupling criteria is the TDC computed 

with TDBA with a threshold of 0.005 a.u.-1. In all sets of dynamics the coupling was computed 

using TDBA, varying the centroid method (BAT, BATE). 

4.4. Application 

When Tully proposed the FSSH dynamics, he validated the method using three one-

dimensional analytical models that could also be solved numerically.91 Those models were 

amply adopted for testing algorithms, but they are very simplified representations of avoided 

crossing and coupling with reflection. In a newer publication, Ibele and Curchod proposed three 

molecules to be used as analogous to the Tully models.114 Of those molecules, we chose Fulvene 

and DMABN (Figure 18) to validate Legion. 

Fulvene is widely used in nonadiabatic dynamics benchmarks120,128,138,147,154 due to its 

ultrafast relaxation time and rigidity, which allow for stable complete active space (CAS) 

calculation throughout the propagation. Previous CASSCF calculations with multiple 

spawning114,154 and surface hopping114,128 have been characterized mainly by two deactivation 
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channels: a stretch of the C=CH2 involving a sloped conical intersection and a twist of the same 

bond involving a peaked conical intersection. The intense population transfer previously 

observed for CASSCF starts at the first 10 fs of propagation, with a partial reflection back to 

the first excited state. 

DMABN has also been added as an example of a TDDFT/AIMS calculation. TDDFT has 

been previously used to compute multiple spawning dynamics,194,195 but this is the first time the 

nonadiabatic coupling calculation is completely circumvented. We show examples of interfaces 

with different electronic structure methods. 

 

Figure 18 Molecular structures of Fulvene and DMABN. 

4.4.1. Fulvene 

We used two combinations of initial conditions and computed the S1 population profile 

using both SA-2-CASSCF(6,6) and XMS-CASPT2 for each set, computing the ground and first 

excited states. The first collection of initial conditions, null_KE, is extracted from Ref114, and 

contains 18 trajectories; the second collection contains the first 20 trajectories of Ref128. For 

both electronic structure methods, we used different sets of parameters to test the convergence 

of the simulation. In the default set, we used the coupling threshold of 0.01 a.u.-1; the coupling 

used was the nonadiabatic coupling vector computed from the electronic structure calculation, 

and the momentum was corrected in the direction of the NAC at a spawn. The centroid was 

calculated using the BAT approximation. In the thresh 0.015, the coupling threshold was 

modified to 0.015 a.u.-1. In the tdba set, the coupling was computed with the TDBA 

approximation, and the momentum corrected in the direction of the momentum. In the momdir 

set, the nonadiabatic coupling was calculated, but the momentum was corrected in the direction 

of the momentum. Finally, in the thresh 0.005, only the coupling threshold was modified to 

0.005 a.u.-1. This last set was used only in the CASPT2 dynamic. The plot of the S1 population 

for all sets with both CASSCF and CASPT2 is shown in Figure 19. 
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Figure 19 Population of the first excited state (S1) for the fulvene dynamics with SA-2-

CASSCF(6,6)/6-31g* and XMS-CASPT2, computed with Legion/OpenMolcas from the 

initial conditions presented in Ref114, where the initial momentum is set to zero, null_KE and 

using different sets of parameters. 

For CASSCF, almost all sets return the same population profile except for the high 

coupling threshold. In particular, we call attention to the tdba set, which is practically 

indistinguishable from the remaining sets. The profile matches both Ref114 and Ref154, which 

computed AIMS/CASSCF dynamics for fulvene using FMS90/Molpro and 

PySpawn/OpenMolcas, respectively, and used the same initial conditions. 

For CASPT2, the population transferred to the ground state in the same time window is 

completely different. While in CASSCF, the S1 population at 45 fs is around 6% for most sets, 

for CASPT2, the same population is close to 85% (Table 2). We can notice that the lower 

threshold of 0.005 leads to slightly more population transfer, and a threshold of 0.015 (used in 

Ref154) leads to an almost unnoticeable loss of transfer. The TDBA approximation 

overestimates the amount of population transferred to the S0. The general trend of the 

populations also agrees with the dynamics in a recent pre-print interfacing the CASPT2 

PySpawn/OpenMolcas.154 

Table 2 Population of the first excited state (S1) at time 45 fs for the fulvene dynamics with 

SA-2-CASSCF(6,6)/6-31g* and XMS-CASPT2, computed with Legion/OpenMolcas from 

the initial conditions presented in Ref114, where the initial momentum is set to zero, null_KE 

and using different sets of parameters. 

 CASSCF CASPT2 

default set 0.062 0.863 

thresh 0.015 0.106 0.891 

tdba set 0.050 0.606 
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momdir set 0.073 0.873 

thresh 0.005 -- 0.815 

While the CASSCF results agree with previous publications using multiple spawning 

dynamics, they do not compare as well with surface hopping populations.128 Also, the intensity 

of the difference between CASSCF and CASPT2 dynamics is surprising. Ref154 explained this 

difference using static calculations and showed that the reaction path to the sloped conical 

intersection has a minimum in S1 for CASPT2 that is not present, or not as intensely, in the PES 

with CASSCF. Although this could explain the difference, we wanted to test whether other 

aspects of the dynamics could be partially responsible. To evaluate this, we performed the same 

sets of dynamics with both CASSCF and CASPT2 using the first 20 trajectories previously used 

in surface hopping.128 Both initial conditions were generated from a Wigner distribution, but 

the first collection of initial conditions had the initial velocity set to zero. This choice was made 

explicitly to favor the decay through the sloped conical intersection and probe the reflection 

mechanism in fulvene,114 analogous to Tully model 3.91 The second collection of initial 

conditions uses the velocity generated by the sampling without modification (Figure 20). 

 

Figure 20 Population of the first excited state (S1) for the fulvene dynamics with SA-2-

CASSCF(6,6)/6-31g* and XMS-CASPT2, computed with Legion/OpenMolcas and 

Legion/Columbus from the initial conditions presented in Ref128, where the initial momentum 

is not altered, full_KE and using different sets of parameters. 

The CASSCF dynamics already show a difference when compared to the null_KE initial 

conditions, both in the actual population profile and in the fact that the different sets of dynamics 

cause a more noticeable impact. In this case, the higher threshold does not affect the population 

as much, and the TDBA approximation once again agrees very much with the dynamics using 

NAC. In this case, the momentum direction at spawning time leads to more population being 

transferred to the ground state, although the difference is small, 4% (Table 3). We performed 

an extra set of dynamics using the default parameters but using CASSCF implemented in 
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Columbus. This program was used in previous publications in the FSSH dynamics of fulvene 

and agrees with the Legion/OpenMolcas interface simulations. 

For CASPT2, there is a noticeably less population in S1 for all sets of parameters. Both the 

lower coupling threshold of 0.005 a.u.-1 and the direction of momentum correction increase the 

amount of population being transferred to S0. Similar to the previous CASPT2, the TDBA also 

overestimates the amount of population transfer. 

Table 3 Population of the first excited state (S1) at time 45 fs for the fulvene dynamics with 

SA-2-CASSCF(6,6)/6-31g* and XMS-CASPT2, computed with Legion/OpenMolcas and 

Legion/Columbus from the initial conditions presented in Ref128, where the initial momentum 

is set to zero, full_KE and using different sets of parameters. 

 CASSCF CASPT2 

default set 0.137 0.657 

thresh 0.015 0.200 0.694 

tdba set 0.150 0.474 

momdir set 0.095 0.617 

thresh 0.005 -- 0.616 

Columbus 0.141  

A comparison of the default parameters for the different initial conditions with CASSCF 

and CASPT2 is presented in Figure 21. We can see how the initial kinetic energy can be used 

to favor one decay pathway over the other. In the null KE, which favors the sloped conical 

intersection, the reflection of the CASSCF dynamics is strongly noticeable. At the same time, 

the CASPT2 dynamics, which has an S1 minimum before the sloped intersection, has a 

significantly delayed decay time. In the full KE, on the other hand, the peaked conical 

intersection is expected to contribute to the relaxation mechanism. This is corroborated by the 

less pronounced reflection observed in the CASSCF calculation and the stronger population 

transfer in the CASPT2 dynamics, enabled by the peaked intersection that does not have an S1 

minimum.154 
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Figure 21 Population of the first excited state (S1) for the fulvene dynamics with SA-2-

CASSCF(6,6)/6-31g* and XMS-CASPT2, computed with Legion/OpenMolcas from the 

initial conditions presented in Ref114 and Ref128, the null_KE and full_KE initial conditions 

and for the default set of parameters. 

Beyond the discussion of the molecular systems, it is worth focusing on the BAT 

approximation, which has been used in all calculations presented up until now. In Section 4.2.1, 

we presented the modified BAT approximation, BATE. Still, we chose to use the original 

approximation for the calculations presented here since this is the one established in the 

literature. Despite that, we can compare the S1 population of fulvene when computed with the 

SPA approximation, BAT, and BATE, as shown in Figure 22. In all cases, the difference in 

population between SPA and the other methods is less than 1.5%. This is well within a tolerable 

error for the population, considering the speed-up provided by not needing to compute the 

centroid values. Particularly when noticing that this error is below 1% most of the time. 

 

Figure 22 Difference between the S1 population, computed as SPA - BAT(E) for the null KE 

and full KE collections of initial conditions, using default parameters, for dynamics using 

CASSCF and CASPT2 electronic structures. 
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When comparing the conventional BAT approximation and the newly suggested BATE, 

one can see that they can reproduce the SPA almost numerically. With both initial conditions, 

the difference between BAT and BATE is minimal for both CASSCF dynamics, but BAT is 

closer to the centroid dynamics. On the other hand, for the CASPT2 dynamics, BATE can 

approach the SPA population better. Particularly for the null KE, which has almost no 

population transfer, BATE reproduces almost exactly the SPA calculation. The improvements 

of BATE over BAT are marginal, but it shows that although the BAT approximation is already 

quite good, there is room for improvement if one considers the correct shape of the nonadiabatic 

coupling curve. 

Another method used to speed up the calculation, the adaptive step, can be evaluated by 

comparing the population at different timestep sizes. Figure 23 has the difference between the 

reference calculation, where all steps taken are 0.1 fs. There is no data interpolation between 

steps, and the adaptive scheme, where the classical trajectory moves with a timestep of 0.5 fs 

outside the coupling region and 0.1 fs within, with the missing data being interpolated every 

0.1 fs to propagate the coefficients. This scheme also has a difference below 1% with the 

reference, showing a good balance between error and efficiency, and can be modified with 

different step sizes and amounts of substeps. 

 

Figure 23 Population difference of S1 between timesteps of 0.5 fs with 5 substeps vs timesteps 

of 0.1 fs without substeps. Computed for the null KE initial conditions with CASSCF and 

CASPT2 electronic structures. 

Finally, we can look closer at the TDBA approximation to understand why it fails for 

CASPT2. Figure 24 contains the time derivative coupling for the same trajectory from the null 

KE initial conditions computed from the nonadiabatic coupling, with the formula 

ij ij vd =  , (35) 

and computed using TDBA. In CASSCF, where the coupling is high, TDBA can follow the 

general behavior of the time derivative coupling. It peaks at the same time, and the difference 

in sign does not seem to cause much of a problem with the coefficient integration. In CASPT2, 
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on the other hand, the coupling is considerably smaller. In this case, TDBA seems to 

overestimate the amount of coupling, consequently leading to more population transfer. This is 

taken as a representative case; the same is observed in the full KE sets of initial conditions. 

 

Figure 24 Time derivative coupling (TDC) between S0 and S1 computed with TDBA 

approximation and the dot product velocity (v) times nonadiabatic coupling (d10) for a single 

trajectory from the null KE initial conditions computed with CASSCF and CASPT2 electronic 

structures. 

4.4.2. DMABN 

The interest in DMABN is because the PES of the first and second excited states meet 

multiple times along the dynamics, which causes S1 and S2 to keep exchanging populations. 

This sequence of avoided crossings is a good representation of the Tully model 2.114 

 

Figure 25 S2 population for DMABN propagated with ωB97X-D3/def2-SV(P) in 

Legion/ORCA and LC-ωHPBE/6-31g in Legion/Gaussian. a) is Ref114 LC-PBE/6-31g 

computeing NAC. 
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Figure 25 shows the population of the second excited state computed for DMABN using 

different TDDFT functionals (ωB97X-D3 and LC-ωHPBE) implemented on different 

electronic structure software. All calculations use the same set of parameters, except for the 

BAT and BATE approximations. The reference for comparison is available in the Supporting 

Information of Ref114 and was propagated with LC-ωPBE implemented in TeraChem,196–199 

using the same coupling threshold as the calculations presented here, 0.005 a.u.-1. TDBA causes 

the population to transfer more intensely within the first 20 fs of propagation. Afterward, the 

population oscillates around 0.2 in the S2 state. Despite the variation, it agrees qualitatively with 

the reference. 

A closer inspection of the time derivative coupling (Figure 26) indicates the repetitive 

interactions between S1 and S2, denoted by the peaks. An inspection of the TDC of fulvene 

shows the correlation between the high coupling in the CASSCF dynamics and a good 

approximation with TDBA, while the dynamics with a small coupling, CASPT2, have the TDC 

being overestimated. DMABN also shows a higher population transfer of 20% around 20 fs, 

the same intensity of the TDC as seen for the fulvene/CASPT2 dynamics. This shows that while 

TDBA can still return quantitatively correct results in some cases, this is not always reliable, 

and nonadiabatic coupling calculation is still required.95 Still, even in those situations, TDBA 

seems to return at least a qualitatively good description of the dynamics. The trend observed 

here of higher TDC leading to better results could lead to tools to assess the quality of the TDBA 

in a given system without recurring comparison with a calculation that computes the 

nonadiabatic coupling. Future investigations are still necessary to establish general rules for 

this evaluation if this trend holds for other molecular systems, in which situation it holds, and 

if the values observed here are universal or system-specific. 

 

Figure 26 Time derivative coupling between states S1 and S2 for a single trajectory of 

DMABN computed with TDBA. Dynamics propagated with ωB97X-D3/def2-SV(P) in 

Legion/ORCA and LC-ωHPBE/6-31g in Legion/Gaussian. 
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4.5. Conclusion 

We presented Legion, a computer program intended to facilitate the development of 

nonadiabatic mixed classical-quantum dynamics. The program is part of the Newton-X 

platform and inherits the interfaces to electronic structure programs already available for 

Newton-X. Legion is mostly written in Python3, a flexible language that allows for modular 

code, where tasks run independently. This makes it easy to reuse code in different sections and 

switch between modules to use different dynamics methods and approximations. Although the 

computationally expensive part of the dynamics is usually the electronic structure calculation, 

Legion uses modules written in Fortran for the mathematical operations, such as building the 

Hamiltonian for the coefficient propagation. Beyond the Fortran module, Legion also employs 

strategies like adaptive timestep for classical propagation, parallel trajectory propagation, and 

avoiding computation of the centroid. 

We have detailed the code's structure and the implementation of a conventional AIMS 

method. We have also presented a modification for the BAT approximation, which, although 

only marginally improved over the original, shows that there is still room to improve in BAT. 

We also took a new approximation developed for surface hopping calculations, TDBA. We 

implemented it for the first time in the context of multiple spawning, allowing dynamics 

propagation with any electronic structure method. 

In the validation of the software, we showed the dynamics for DMABN, completely 

avoiding the computation of nonadiabatic coupling vectors. We also performed a series of 

dynamics with fulvene, varying some of the multiple spawning parameters and complementing 

the discussion presented in the literature. We saw how the choice of initial condition is related 

to the different population profiles observed from dynamics with CASSCF and CASPT2 since 

the initial condition can increase the relevance of specific relaxation paths. 

While we showed that, in some cases, the TDBA approximation works as well as NAC 

dynamics, we also saw examples where it overestimates the population transfer. However, we 

lack tools to evaluate whether TDBA will be a good approximation for a given system. Still, 

even in cases where the approximation does not agree numerically with the reference, the 

dynamics seem to be able to recover the qualitative behavior of the system. The computation 

of the time derivative coupling using overlap is becoming routine in both surface hopping and 

multiple spawning methods, and this is currently being implemented in Legion. 
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5.  Extra contributions 

During my PhD, I made contributions to different works produced in our group that were 

not directly connected to the thesis but were relevant to my formation and the topics discussed 

here. In this section, I will give a short description of them. 

5.1. Recommendations for velocity 

adjustment in surface hopping 

This section reports the results of the following publication: 

J. M. Toldo, R. S. Mattos, M. Pinheiro, Jr., S. Mukherjee, M. Barbatti, Recommendations 

for Velocity Adjustment in Surface Hopping, J. Chem. Theory Comput. 20, 614 (2024). 

DOI: 10.1021/acs.jctc.3c01159 

 

 

In this paper,128 we investigated some of the approximations necessary for surface hopping, 

as discussed in Section 2.1, namely the kinetic energy correction and the direction of rescaling 

at hopping to conserve total energy.  

As mentioned in Section 2.1, when there is a hop in the system, the momentum has to be 

scaled to ensure energy conservation. This correction should be an impulse in the direction of 

the nonadiabatic coupling, such that the difference in kinetic energy equilibrates the difference 

in potential energy due to hopping. When the hop is towards a more energetic state, there might 

not be enough kinetic energy, causing a frustrated hop. The procedure becomes more dubious 

in the case of unavailability of the nonadiabatic coupling vectors between the electronic states.  

In its absence, the usual direction for the correction is either the direction of the difference 

of gradients of the states involved in the hopping or the direction of momentum. The former is 

justified by a theoretical basis71 but involves the computation of an extra gradient; the latter is 

the least recommended but still used due to lower computational cost. The problem with using 

the momentum direction for the correction is that it overestimates the available kinetic energy 

when hopping up, which leads to an artificial population transfer to the higher excited state. In 

the paper, we discuss, for two systems using CASSCF dynamics, how the choice of direction 

can influence the dynamics and how this effect could be correlated to the potential energy 

surfaces around the conical intersection. We also propose a scaling method for rescaling the 

https://doi.org/10.1021/acs.jctc.3c01159
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kinetic energy during the hopping evaluation to account for the overestimation in the direction 

of the momentum. 

My contribution to this project was to evaluate the validity of two strategies to approximate 

the nonadiabatic coupling vector, taking fulvene as the system of interest. The first one is based 

on the work of Shu et al.,139 who proposed a method, the curvature-driven NAC, to approximate 

the nonadiabatic coupling vector (GIJ) only from information on the energies and their 

gradients, as in: 
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They justify calling GIJ the effective nonadiabatic coupling vector because, when 

multiplied with the velocity, it will return the time derivative coupling by construction: 

. IJ IJ=R G  (38) 

The other approximation for the nonadiabatic coupling is to use the actual vector computed 

by a semi-empirical method, FOMO-CI.200 Despite being an extra calculation, we wanted to 

see how this approximation would behave, given how little computation time the semi-

empirical methods cost. 

We discussed the final effect of the different approximations on the average population, 

but I also compared the exact coupling vector with those two approximations. For the curvature-

driven coupling (GIJ), I opened the components of the approximation to see how they compare 

with the exact coupling vector and the gradient difference, which is used to compute GIJ. 

We showed how the velocity and gradient difference compare with NAC for a single 

trajectory. Both, as well as G, remain almost perpendicular to the coupling for the entirety of 

the trajectory run. Comparing the angle of G with the gradient difference (g) shows that G 

oscillates following the direction of g. The curvature-driven coupling vector simply reproduces 

the direction of g, except in the regions with stronger coupling. A comparison between the angle 

of G and NAC shows that the two vectors are, for all purposes, pointing at random directions, 

G does not follow NAC. 

The same comparison of the angle between the NAC computed by the CASSCF calculation 

and the semi-empirical FOMO-CI method shows that they point in similar directions, but the 

FOMO-CI is much faster to perform. 
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We concluded that the kinetic energy rescaling proposed in the paper can improve the 

results in general and should be employed when correcting momentum in the direction of 

momentum. Curvature-driven coupling should fare no better than correcting in the direction of 

the gradient difference. Also, the use of a semi-empirical method to compute the coupling 

vector shows potential and could lead to further developments. 

5.2. Prediction challenge: Cyclobutanone 

dynamics with different electronic structure 

methods 

This section reports the discussion of the following publication: 

S. Mukherjee, R. S. Mattos, J. M. Toldo, H. Lischka, M. Barbatti, Prediction Challenge: 

Simulating Rydberg photoexcited cyclobutanone with surface hopping dynamics 

based on different electronic structure methods, J. Chem. Phys. 160, 154306 (2024). 

DOI: 10.1063/5.0203636 

 

 

This work51 was part of an open challenge to predict the nonadiabatic dynamics of 

cyclobutanone after excitation into the second excited state, which has a Rydberg character. 

The theoretical groups were given instructions for a future experiment on cyclobutanone. They 

were invited to attempt to predict the signal that would be measured in the experiment, which 

is related both to the lifetime of the excited state and to the possible reaction paths it can take. 

Multiple groups accepted this challenge, which is an example of the large variety of 

nonadiabatic dynamics methods found in the literature and the large number of electronic 

structure methods used in those dynamics. 

We performed four sets of dynamics, changing the electronic structure methods and the 

approximations. Set 1 used the multiconfigurational self-consistent field (MCSCF) electronic 

structure, using the exact NACV; set 2 used the same electronic structure method, but instead 

of computing NACV, we used the Baeck-An approximation to compute the time derivative 

coupling, TDBA (Section 2.3.1); set 3 used TDDFT/CAM-B3LYP,201 also using TDBA to 

approximate the coupling; and set 4 used the semi-empirical ODM3 method202 as a basis for a 

multireference configuration interaction (MRCI) calculation that also computes the NACV. The 

method chosen for sets 1 and 2 can become increasingly costly as one adds more orbitals to the 

active space. Given the uncertainty of the total time of the dynamics, we chose to build the 

active space as a product of smaller sub-spaces. It describes the relevant excitations for the 

states of interest and gives flexibility to the molecule, allowing bond braking and geometrical 

https://doi.org/10.1063/5.0203636
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modifications during the dynamics. Since most orbitals are not interacting with one another, 

they only interact within their subspaces. The combination of orbitals and occupations does not 

rise as usual for MCSCF, and the single-point calculation was fast enough to allow the dynamics 

to run for approximately 10 ps. 

In the end, we obtained widely different lifetimes for the different electronic structures. 

Sets 1 and 2 returned an estimated lifetime of 9.0 ps and 10.4 ps, respectively. Set 3 estimated 

a lifetime of 0.4 ps and set 4 a lifetime of 0.04 ps. Similarly, the different sets also point at 

different reaction paths as being the most relevant to the dynamics. An extended table at the 

end of Ref51 contains a summary of the lifetimes and dominant mechanisms for all publications 

present in the challenge, and the lifetimes are reproduced in Figure 27. It shows that there is no 

general agreement between methods, either in reaction paths or lifetimes. The experimental 

results have not been published yet, so we cannot tell which predictions were right and which 

were wrong, but it already tells us that we as a community are still unable to make predictions 

of experiments and detect the mistakes from within the theory without comparing them to the 

experiments. 

 

Figure 27 S2 lifetime of cyclobutanone for all nonadiabatic dynamics and electronic 

structure methods used in the prediction challenge. 

My contributions to this project were to monitor and analyze the dynamics of Set 2 and 

generate the plot of the probability distribution function for all sets, which will be compared 

with experiments. Despite the overall message, there is one silver lining regarding the TDBA 

approximation. We showed that even for a long timescale with significantly large energy gaps 

between states (up to around 2 eV), TDBA is still capable of reproducing the correct hops, 
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agreeing with the NACV dynamics in both lifetime and reaction paths. The combination of all 

the works shows not only how many variations of nonadiabatic dynamics methods are currently 

being developed but also how important it is to be able to use the largest possible number of 

methods for them, which is possible in Legion. It also reinforces the need for methods to verify 

the results, as in QDCT. 

5.3. Long time scale dynamics 

This section reports the discussion that will give rise to the following publication: 

S. Mukherjee, Y. Lassmann, R. S. Mattos, B. Demoulin, B. F. E. Curchod, M. Barbatti, 

Assessing Nonadiabatic Dynamics Methods in Long Timescales, (2024). In preparation. 

 

 

In this work, we evaluate how different methods fare when used to simulate phenomena 

happening in a long time scale. Due to computational limitations, the methods for nonadiabatic 

dynamics were used to simulate photo-relaxation happening in an ultrafast regime, up to a few 

picoseconds. Recent developments in semi-empirical methods172,174,200 and machine learning 

potentials143,163 are making the propagation of hundreds of thousands of timesteps a feasible 

process, but the current nonadiabatic dynamics methods have not been tested for such long 

propagation. 

We compared the convergency, efficiency, and practical aspects of using MCTDH, ML-

MCTDH, AIMS, and FSSH to propagate an analytical 10-dimensional SBH model up to 100 

fs. Due to the independent trajectories and the newly developed Newton-X NS, FSSH 

calculations could be performed very efficiently in a matter of hours and without modification 

to the code. For AIMS, the particularities of the weakly coupled PES required the development 

of local changes in the method, which continuously spawned new trajectories.203 This causes 

an uncontrollable increase in the size of the nuclear basis set and requires an aggressive 

trajectory elimination scheme, the cannibalistic stochastic selection approach of AIMS (CSS-

AIMS).120,147 Different from the other methods, in MCTDH and ML-MCTDH, the propagation 

of the dynamics is the computationally expensive part of the method, not the electronic structure 

calculation. Due to that, the comparison of the methods could also be performed only up until 

50 ps. The implementation of those methods was not intended to be used for such a long 

timescale, so the data analysis can be problematic due to software limitations. 

Despite the different levels of approximations on those families of methods, they generally 

agree on the decay lifetime and population profile. CCS-AIMS seems to be a particularly good 

match with converged MCTDH and ML-MCTDH. The convergency tests suggest that the 
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results are still reliable, and the biggest problem seems to be the software structure, which is 

not prepared to deal with such a large amount of data. 

When I arrived, the project was already in development, and my contributions were mostly 

in the discussions rather than actually running the simulations. 

5.4. Gravitationally-induced wave function 

collapse 

This section reports the discussion of the following publication: 

A. Tomaz, R. S. Mattos, M. Barbatti, Gravitationally-induced Wave Function 

Collapse Time for Molecules, Phys. Chem. Chem. Phys. 26, 20785 (2024). DOI: 

10.1039/D4CP02364A 

 

 

Here,165 we investigate the Diósi-Penrose proposition that the wave function collapse is 

caused by the instability of coexisting gravitational collapse systems in different geometric 

conformations.204–207 We study how this could be applied to molecular systems and develop the 

equations necessary to compute the collapse time. We then used the proposed equation to 

estimate the collapse time of systems of varying scales and suggested an experimental setup to 

test the original hypothesis. 

Superposition is a staple in the quantum realm, but when we transition to the classical scale, 

we are always restricted to the observation of definite results. In this transition from quantum 

to classical, some phenomena need to occur that are not entirely understood. A good part of this 

can be explained by decoherence effects.153 Decoherence is the delocalization of the coherence 

of a subsystem over the environment entangled with it.165 It is a general phenomenon, but its 

reflection in nonadiabatic dynamics can be seen in the decoherence-corrected surface hopping 

methods.109,110 After decoherence, the subsystem can still be left in an improper mixture, and it 

may still be observed in one of its possible states. The collapse is responsible for bringing the 

system to be well-defined in a single one of its states, but how it does that (or even if the collapse 

actually happens) is still an open question. 

The Diósi-Penrose model assumes that gravity causes the collapse of the quantum 

superposition. When a system is in a superposition of quantum states that present different 

geometrical conformations, they generate mismatching gravitational potential, which causes 

instabilities and leads to collapse. Within this model, the time constant of the collapse is 

inversely proportional to the gravitational self-energy of the difference between the two 

superposed states, based on the Heisenberg time-energy uncertainty principle.207 

http://doi.org/10.1039/D4CP02364A


73 
 

To test this assumption, we present a series of equations to compute the gravitational self-

energy under different levels of approximation, which allow us to make predictions for systems 

as small as the ammonia molecule and as big as a small dog. We start by supposing that the 

molecular nuclei will follow a Gaussian mass distribution and obtain an equation for the energy 

of small systems. This involves the pair-wise distance for all atoms of the system. To be able 

to apply the model to larger systems, we also develop an alternative equation for a homogeneous 

or identical nucleus. We conclude with an even simple equation for the case where the 

displacement distance between the different states superposed is considerably smaller than the 

scale of the system. We test the validity of those approximations for the fullerene C70 and use 

them to predict the collapse time for systems of different scales, from quantum to macro. 

This project's topic is on a much more fundamental level than usual, but the hypothesis of 

the Diósi-Penrose model has not been proved, and it is not the only model to explain the 

collapse.208 To address this, we also propose an experimental setup using a Talbot-Lau 

interferometer to measure a system's collapse time. This could then be compared to the 

predicted values to validate or disprove the current assumptions of the model. 

During my PhD, I developed an interest in phenomena involving decoherence and collapse. 

When I heard of the project, I was curious if it could help in understanding collapse and if it 

could eventually be applied to dynamics. My contribution to the project was restricted to 

discussions and minor modifications to the code used to compute the decoherence time of the 

molecular systems. In particular, my experience developing QDCT and Legion helped to clarify 

formal aspects of the derivation of the gravitational self-energy. 

5.5. Unsupervised Learning of Molecular 

Dynamics 

This section reports the discussion of the following publication: 

M. Pinheiro Jr, M. de O. Bispo, B. C. Garain, R. S. Mattos, M. T. do Casal, J. M. Toldo, 

S. Mukherjee, M. Barbatti, ULaMDyn: Enhancing Excited-State Dynamics Analysis 

Through Streamlined Unsupervised Learning, (2024). In preparation. 

 

 

In this work, we present ULaMDyn (Unsupervised Learning of Molecular Dynamics), an 

open-source Python package for automating the analysis of high-dimensional molecular 

dynamics data. In trajectory surface hopping, we propagate multiple trajectories, usually in the 

order of a hundred, to study the behavior of molecular systems when photoexcited. After 

propagation, it is necessary to make a statistical analysis of the generated data to extract 
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important insights into the dynamic features, and ULaMDyn helps to identify and extract those 

features. 

The properties obtained from the dynamics can be straightforward to analyze, such as the 

average population of each electronic state, that can be used to compute the excited-state 

lifetime. However, they can also increase in complexity with the system size and propagation 

time, such as characterizing geometries at hopping time and isolating the most important 

molecular motions of the possible reaction channels. In the latter, automatic methods of pattern 

recognition can speed up the analysis work and possibly even detect unexpected relations that 

would go unnoticed in the most complicated systems. 

In ULaMDyn, the data generated from the dynamics is aggregated in a single place and 

can be freely explored by the user, allowing one to identify patterns in the data. Beyond that, 

the package also contains a set of unsupervised machine learning methods that can be classified 

as dimensionality reduction and clustering. In the dimensionality reduction schemes, the 

machine will reduce the complexity of the high-dimensional datasets by mapping them to 

lower-dimensional spaces. It reduces the number of variables to be analyzed while preserving 

the essential information. The clustering techniques take the entirety of the data points and find 

shared attributes among the points. Those patterns can be, for instance, geometries with similar 

electronic properties or nuclear conformation, which is essential in identifying the reaction 

pathways. 

ULaMDyn was developed for surface hopping and is seamlessly interfaced with Newton-

X, both CS and NS. Future plans include extending the interface to Legion and QDCT, and 

modifying ULaMDyn to treat also multiple spawning dynamics. Most of the information 

generated by the dynamics is the same and originates from the classical trajectories. While 

surface hopping has the hopping geometries that are characteristic of the crossing regions, 

multiple spawning has the spawning points with similar information. The biggest difference is 

adding information on the coefficients of the classical trajectories, exclusive for AIMS, and its 

use to compute the expectation values. 

My contribution to this project mainly consisted of testing the interface of ULaMDyn to 

Newton-X and the user experience, with minor contributions to the code on the same aspects. I 

will also be responsible for extending its usability to include multiple spawning methods. 
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Conclusions 

This thesis presented developments based on frozen Gaussian wavepacket propagation to 

perform and correct nonadiabatic mixed quantum-classical dynamics. We showed how NA-

MQC methods, in collaboration with experiments, can help us study molecular systems with 

multiple applications. We also showed how those methods can fail without proper tools to 

assess their quality. 

In Chapter 3.  we used the Gaussian wavepacket methods to perform a post-processing 

analysis in surface hopping trajectories. We present a novel scheme to use the pre-computed 

classical trajectories to build the Gaussian wavepacket and propagate the coefficients, 

reproducing AIMS dynamics. This tool can be used to assess the quality of the surface hopping 

dynamics at the cost of running an analytical model. 

We validate the method using a series of one-dimensional analytical models and a 12-

dimensional SBH model. Treating multidimensional systems is only possible with the addition 

of interpolated trajectories, a method developed in this thesis, to artificially increase the nuclear 

basis set and simulate a spawning procedure. 

In Chapter 4. , we presented Legion, a software for running and developing Gaussian 

wavepacket propagation methods. This chapter, together with Chapter 2. , presented the 

working equation and method description of ab initio multiple spawning, which is implemented 

in Legion. Since the program is created under the umbrella of the Newton-X platform, it inherits 

a large collection of electronic structure interfaces. 

We also used Legion to investigate the dynamics of fulvene and showed how the initial 

condition could favor the relaxation mechanism of a sloped conical intersection. This discussion 

is centered around the variation of the kinetic energy in the initial condition and the difference 

in the potential energy surface for CASSCF and CASPT2 methods. Legion was also used to 

perform DMABN dynamics, completely avoiding the computation of the nonadiabatic coupling 

but still recovering the population profile available in the literature. 

We extended the AIMS equations of motion to support the computation of the time 

derivative coupling without requiring the nonadiabatic coupling from the electronic structure. 

We also, for the first time, applied the time derivative Baeck-An method to compute the TDC 

and showed this approximation can be as good as in surface hopping. Moreover, we proposed 

criteria to estimate the validity of the TDBA approximation for a given system by the maximum 

intensity of the TDC. This should be tested further to see if it holds, in general, beyond the two 

systems studied here. The multiple spawning equations using the time derivative coupling can 



76 
 

also be added to QDCT since many electronic structure methods conventionally used in surface 

hopping do not produce the nonadiabatic coupling. The derivative could be computed from 

scratch using TDBA or, preferably, read from the dynamics. 

Frequently, a particular molecular system is only adequately described by a few electronic 

structure methods,56 so it is crucial to have the largest diversity of methods available to perform 

dynamics. Legion addresses this point, as well as the lack of open-source, easily available, and 

efficient multiple spawning software. On the other hand, QDCT is a tool to assess the quality 

of surface hopping dynamics. It performs a propagation of the nuclear wavepacket and is 

independent of the ad hoc approximation intrinsic to surface hopping. 

Legion now contains the structure necessary to propagate dynamics, but we are planning 

the following steps to extend the tools available in the package. Our current focus, after 

implementing the overlap methods to compute the time derivative coupling, will be on the train 

of trajectories104,141 and a recently proposed variational propagator for a linearly dependent 

moving basis.164 The former is a computationally inexpensive way of increasing the nuclear 

basis by adding different points in time of the same classical trajectory to the basis. It allows 

trajectory communication in a larger range of the phase space. The latter is an alternative way 

of computing the trajectory coefficients that deals with a known problem of frozen Gaussian 

propagation methods: energy conservation.154–156 Those two will also be added to QDCT once 

they have been tested in Legion. 

Now that we can compute and control the multiple spawning dynamics with various 

electronic structure methods, we can create reference calculations and test QDCT extensively 

for real molecules. The post-processing in QDCT deals with the decoherence effect independent 

of the original treatment in surface hopping. Comparing the dynamics before and after this 

treatment can also help identify systems where the current decoherence correction methods fail, 

as in some of the unidimensional Tully models, and develop better corrections. 

Lastly, the tools of automatic data analysis of Ulamdyn can be extended to multiple 

spawning, allowing it to be used for treating Legion and QDCT output. 
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ANNEXES 

A. Equations-of-motion of the nuclear 

coefficients 

Using the Born-Huang expansion of the total wavefunction is 
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where the nuclear wavepacket of each electronic state can be represented as 
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and applying it in the usual time-dependent Schrödinger equation 
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one can start the process of finding the equation for the time derivative of the coefficients 

( )J

jC t . In these equations, r and R represent the electronic and nuclear coordinates, 

respectively. Initially, the substitution leads to 
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The chain rule can open the right side of the equation 
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and then projected over the basis of the wavefunction 
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The coefficients do not depend on the position coordinates, so they do not participate in 

the integration, which is performed over the variables indicated in the bracket indexes. The 

product of the basis function leads to the overlap matrix elements since the nuclear wave packets 

are not orthogonal in general, times the electronic overlap matrix elements, which are 

orthonormal by construction. It also leads to the time derivative of the overlap matrix elements 

ijS . 

The right side of Eq. (42) can go through the same projection over the basis functions, 

leading to one term of the kinetic operator and another term of the electronic operator 
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The kinetic operator can be opened, leading to the appearance of the nonadiabatic elements: 
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 (46) 

The first term of the expansion is simply the kinetic energy operator acting solely on the 

nuclear wave packet. The second term is a vector containing the first derivative of the electronic 

functions, referred to as the derivative coupling ||IJ I J   = R rd .209 The third term is the 

scalar kinetic coupling, which is usually neglected 
2| 0IJ I R J rD   =   .209 

The electronic Hamiltonian does not depend on the nuclear coordinates and will only affect 

the electronic functions. Those are their eigenfunctions, so it is clear that 

,

ˆ
J

J

j J

I

i I el J ij Ir R
H S    =  (47) 

where J  is the electronic eigenvalue. Applying those relations back into the TDSE, one 

can obtain the equation of motion for the coefficients in matrix notation 

1 )(TiS V iS− −= − + − C C  (48) 

where 
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The analytical formula for the matrix elements is not derived here, but their final form is 

presented under the approximation of constant amplitudes  . For the overlap matrix, we have 
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 (50) 

The atom width   is defined at the beginning of the propagation and is kept the same, the 

centroid position for each Gaussian R  and the centroid momenta P  are obtained from the 

classical trajectories. In the subsequent matrix elements, the overlap can be reused, and only a 

multiplicative factor for each matrix element must be computed. For the time derivative 

overlap, we have 
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As it involves the time derivative of the Gaussian j, it will also take as input the classical 

velocity v , force f  for this trajectory and the time derivative of the phase  , which is given 

in the main text. For the kinetic energy matrix, we have 
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In the following matrices, the value of the potential energy and nonadiabatic coupling at 

the centroid position for each pair of Gaussians is required to compute the matrix elements.118 

Instead of the centroid value, the equations presented here use the BAT approximation,104 

discussed in the main text. The potential energy is 
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taking only the real value of the element ijV . And finally, the nonadiabatic coupling terms, 

also using the BAT approximation 
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In this case, the overlap matrix element doesn’t contain the IJ  term since it uses the 

overlap of trajectories in different electronic states. 
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B. BAT vs. SPA approximations 

The bra-ket averaged Taylor expansion (BAT) approximation104 has been developed to 

reduce the computational cost of electronic structure calculation during a multiple spawning 

simulation. This strategy allows QDCT to propagate the nuclear coefficients without the need 

for extra single-point calculations at the centroid points between trajectories. The quality of 

QDCT will then depend on the quality of the BAT approximation. In the systems used in this 

work, the population was computed for the same set of initial 500 conditions using the usual 

saddle-point approximation (SPA) approach, and the BAT and the populations were compared. 

It can be seen that in most cases, they agree well, except for the second Tully model, where 

there is more variation of the nonadiabatic coupling, and the population converges to a different 

value, although the difference is small. 

In a higher-dimensional case, the population transfer will not be very influential far from 

the maximum coupling point. Due to the dimensionality, the overlap that controls the transfer 

falls very quickly away from the spawning point, and the BAT approximation is used mostly 

between similar trajectories. In Figure 31 we can see that the comparison between AIMS 

simulations in the 12-dimensional case is good in the limiting points, the beginning of the 

propagation, and after most of the transfer is completed. They return the same qualitative 

behavior and would agree on the estimated lifetime of the excited state, but there is a small 

deviation in the intermediary region. 

 

Figure 28 Lower state population for the simple avoided crossing Tully model. The initial 

condition was sampled around the momenta of 10 a.u. and 25 a.u. The shaded area in all 

curves represents a confidence interval of 95%. 
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Figure 29 Lower state population for the dual avoided crossing Tully. The initial condition 

was sampled around the momenta of 16 a.u. and 30 a.u. The shaded area in all curves 

represents a confidence interval of 95%. 

 

Figure 30 Lower state population for the simple avoided crossing Tully model. The initial 

condition was sampled around the momenta of 10 a.u. and 30 a.u. The shaded area in all 

curves represents a confidence interval of 95%. 
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Figure 31 Upper state population for the SBH model using 500 trajectories. The shaded 

area in all curves represents a confidence interval of 95%. 
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C. Analytical Models 

The Tully models used to test the QDCT method are the same as initially presented in 

Tully’s paper.91 

a. Tully 1: Simple avoided crossing 

In the simple avoided crossing, the electronic energies are symmetric, and the off-diagonal 

elements are the same, as given in 
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 (55) 

The parameters used are: 

0.01

1.6

0.005

1.0

A

B

C

D

=

=

=

=

(56) 

b. Tully 2: Dual avoided crossing 

In this model, the potential energies are two wells, one over the other, with the minimum 

at the x = 0. 
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For this model, the parameters are: 
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c. Tully 3: Extended coupling with reflection 

For the extended coupling model, the energies start degenerated and are split later. 
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With the parameters: 
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d. Spin-Boson Hamiltonian 

The Spin-Boson Hamiltonian148–151 is a two-level system ( SH ) with a harmonic bath (

BH ), and they are linearly coupled ( SBH ). The system’s dimensionality is defined by the 

number of oscillators in the bath ( N ), and each of them is defined by their masses ( M  ) and 

frequencies (  ). The diabatic Hamiltonian for this model can be computed with the following 

equations  
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 (61) 

where R  and P  are the system’s positions and momenta. The energy bias ( 0 ) and the 

electronic inter-state coupling ( 0 ) can be tuned for the system. z  and x  are the Pauli 

matrices and 2I  is the identity matrix of size 2. 

The coupling constants ( g ) between the system and bath are determined by the spectral 

density 
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Here, we have used the Debye spectral density with the reorganization energy RE  and 

characteristic frequency c  
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The coupling coefficient and vibrational frequency for each oscillator in the bath can be 

computed following 
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In the adiabatic representation, for both the FSSH and AIMS calculations, the energies can 

be computed as 
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The energy gradients are given by 
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And the nonadiabatic couplings are 
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For those systems, the characteristic frequency ( c ) is obtained from the max frequency (

max ): 

3
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c


 =  (68) 

The parameters used for all SBH in this paper are as follows, changing only N that gives 

the dimensionality of the system. 
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D. Confidence Interval Study 

In the main text, we saw that across all the models, the average population of surface 

hopping showed a broader confidence interval when the decoherence correction was applied. 

We chose to use the first Tully model with high momentum, where the average population of 

both FSSH simulations was similar (Figure 32), to compare the confidence intervals. 

 

Figure 32 Simple avoided crossing model from Tully, starting with 25 a.u. as initial 

momentum. Computed with decoherence corrected FSSH (left) and original FSSH (right). 

The decoherence correction applied in this work was presented by Granucci and Persico98 

and modifies the coefficient by assuming an exponential decay of the population of the states 

not filled following the equations 
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The coefficients C follow the current electronic state of the trajectory (I) or all others (J). 

t  is the size of the timestep used in the propagation. In this case, the decoherence time is 

computed based on the relation between the potential energy difference (ΔE) and the kinetic 

energy (K) of the system: 

1
| |E K




 
= + 

  
 (70) 

With only α as a free parameter, that is usually set to 0.1 Eh.
98,112 The application of the 

decoherence correction in the coefficients tempers with the propagation stipulated by the 

Schrödinger equation and forces the population to tend to the current electronic state of the 

trajectory, as can be seen by the individual populations of each trajectory in Figure 33. It comes 
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naturally then that computing an intermediate value for the population (say 0.4) from an average 

of zeros and ones will lead to a larger confidence interval. 

 

Figure 33 Single trajectory electronic population of the first 15 trajectories for Tully 1 with 

initial momentum 25 a.u. 

If we vary this free parameter so that the time τ increases, we can gradually approach the 

behavior of FSSH without correction, as shown in Figure 34. Here, we compare the maximum 

error along the simulation, meaning the largest width of the confidence interval found in the 

simulation, and the last error as we increase α. The error is defined as the difference between 

the highest point in the confidence interval and the smallest one. 

 

Figure 34 Largest confidence interval width and last width of a varying value of the 

parameter α in Hartree and the corresponding times τ in fs. The stars denote the similar values 

for the simulation without decoherence correction. 

The maximum error reaches a plateau at α = 2.5. This is also present in the FSSH without 

decoherence after the large population transfer, at about 17 fs (Figure 32). After this time, in 

the original FSSH, the confidence interval decreased, and the error was almost zero at the end 

of the simulation. We can see from Figure 34 that this is also the trend in DC-FSSH as α 
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increases. As the value of α is increased, the coefficient decays slower towards the binary 

values, and the split between populations is reduced (Figure 35), leading to a smaller confidence 

interval. 

 

Figure 35 Single trajectory electronic population of the first 15 trajectories for Tully 1 with 

initial momentum 25 a.u as the free parameter alpha is increased. 
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E. Overlap vs. Dimensionality 

It is common knowledge within multiple spawning that with increased dimensionality, the 

eventual overlap between pairs of trajectories becomes exceedingly rare. This expectation is 

the foundation for multiple approximations: independent first-generation, 60,122 stochastic 

selection,119 and bracket-Taylor approximation. 104 Here, we give an example of how this 

overlap decreases as the system’s dimension is systematically increased. 

In Figure 36, we show the maximum overlap for each pair of trajectories for the dimensions 

from 1 to 12. Each matrix element ijS  contains the maximum overlap between trajectories i  

and j  along all timesteps of the simulation. The diagonal terms contain the overlap with a 

trajectory with itself, so it is always unity. In the unidimensional case, there is a high amount 

of trajectories with a reasonable overlap that can be used for trajectory substitution in QDCT. 

As the dimensionality increases, the overlap falls quite fast. At N = 3, there are fewer overlaps, 

which would make it difficult to make a simple substitution at the trajectory spawning. For 

larger dimensions, it is evident that without the help of interpolated trajectories, the QDCT 

strategy would not be viable. In Figure 37, the maximum overlap at each different SBH 

dimension is shown. This exemplifies that in a real system, one can consider that the trajectories 

are non-interacting unless they are created explicitly with this purpose. 
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Figure 36 For each overlap matrix, the elements ijS  contain the maximum absolute overlap 

between trajectories i  and j  for all timesteps of the SBH model in different dimensions.  
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Figure 37 Maximum overlap between all the pairs of trajectories for all timesteps with 

increasing system dimensionality. This doesn’t consider the overlap of a trajectory with itself. 

 


