A NOTE ON NEYMAN’S TEST OF GOODNESS OF FIT USING THE EXTENDED LISREL MODEL WITH MEAN STRUCTURES
Résumé
It is shown in this note that for testing discrepancy between a set of observed proportions in k mutually exclusive cells and corresponding expected probabilities, Neyman’s statistic is n / (n – 1) times the Jöreskog and Sörbom chi square goodness-of-fit of a factor model with no latent variables but with mean structures for (k – 1) binary indicators coding for the k-cell category. When the empirical data lead to a rejection of hypothesized model, the modification index gives useful information about post hoc tests for categorical data.
Fichier principal
A NOTE ON NEYMAN'S TEST OF GOODNESS OF FIT USING THE EXTENDED LISREL MODEL (2).pdf (632.42 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|