Integration of quantitative proteomics data and interaction networks: Identification of dysregulated cellular functions during cancer progression - Aix-Marseille Université Access content directly
Journal Articles Methods Year : 2016

Integration of quantitative proteomics data and interaction networks: Identification of dysregulated cellular functions during cancer progression

Abstract

Quantitative proteomics allows the characterization of molecular changes between healthy and disease states. To interpret such datasets, their integration to the protein-protein interaction network provides a more comprehensive understanding of cellular function dysregulation in diseases than just considering lists of dysregulated proteins. Here, we propose a novel computational method, which combines protein interaction network and statistical analyses to establish expression profiles at the network module level rather than at the individual protein level, and to detect and characterize dysregulated network modules through different stages of cancer progression. We applied our approach to two publicly available datasets as case studies.
No file

Dates and versions

hal-01406344 , version 1 (01-12-2016)

Identifiers

Cite

Andreas Zanzoni, Christine Brun. Integration of quantitative proteomics data and interaction networks: Identification of dysregulated cellular functions during cancer progression. Methods, 2016, 93, pp.103 - 109. ⟨10.1016/j.ymeth.2015.09.014⟩. ⟨hal-01406344⟩

Collections

CNRS UNIV-AMU
48 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More