Bound on the counting function for the eigenvalues of an infinite multistratified acoustic strip - Aix-Marseille Université Access content directly
Preprints, Working Papers, ... Year :

Bound on the counting function for the eigenvalues of an infinite multistratified acoustic strip

Olivier Poisson

Abstract

Let N (µ) be the counting function of the eigenvalues associated with the self– adjoint operator −−(ρ(x, z)·) in the domain Ω = R×]0, h[, h > 0, with Neuman or Dirichlet conditions at z = 0, z = h. If ρ = 1 in the exterior of a bounded rectangular region O, that is, for |x| large, then N (µ) is known to be sublinear: the proof consists in the spectral analysis of a quadratic form obtained from a Green formula for −−(ρ(x, z)·) on O. In our case, the medium is multistratified: the function ρ(x, z) satisfies ρ(x, z) = ρ(z) for |x| large. Since the direct use of the previous proof fails, we modify the quadratic form and obtain the estimate N (µ) ≤ Cµ 3/2 .
Fichier principal
Vignette du fichier
art98bis.pdf (244.1 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01429917 , version 1 (09-01-2017)

Identifiers

  • HAL Id : hal-01429917 , version 1

Cite

Olivier Poisson. Bound on the counting function for the eigenvalues of an infinite multistratified acoustic strip. 1998. ⟨hal-01429917⟩
85 View
127 Download

Share

Gmail Facebook Twitter LinkedIn More