Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992-2009 - Aix-Marseille Université Access content directly
Preprints, Working Papers, ... Year : 2014

Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992-2009

Abstract

We develop Bayesian inference for an unconditional quantile regression model. Our approach provides better estimates in the upper tail of the wage distribution as well as valid small sample confidence intervals for the Oaxaca–Blinder decomposition. We analyze the recent changes in the US wage structure using data from the CPS Outgoing Rotation Group from 1992 to 2009. We find that the largest part of the recent changes is explained mainly by differences in returns to education while the decline in the unionization rate has a small impact, and that earnings inequality is rising more at the top end of the wage distribution.

Keywords

Fichier principal
Vignette du fichier
wp_2012_-_nr_03.pdf (461.53 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-01463115 , version 1 (20-09-2023)

Identifiers

Cite

Michel Lubrano, Abdoul Aziz Junior Ndoye. Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992-2009. 2023. ⟨hal-01463115⟩
59 View
7 Download

Altmetric

Share

Gmail Facebook X LinkedIn More