Shallow-water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition - Aix-Marseille Université
Communication Dans Un Congrès Année : 2018

Shallow-water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition

Yan Wang
Jean Sequeira
Sébastien Mavromatis

Résumé

Light absorption and scattering lead to underwater image showing low contrast, fuzzy, and color cast. To solve these problems presented in various shallow water images, we propose a simple but effective shallow-water image enhancement method-relative global histogram stretching (RGHS) based on adap-tive parameter acquisition. The proposed method consists of two parts: contrast correction and color correction. The contrast correction in RGB color space firstly equalizes G and B channels and then redistributes each R-G-B channel histogram with dynamic parameters that relate to the intensity distribution of original image and wavelength attenuation of different colors under the water. The bilateral filtering is used to eliminate the effect of noise while still preserving valuable details of the shallow-water image and even enhancing local information of the image. The color correction is performed by stretching the 'L' component and modifying 'a' and 'b' components in CIE-Lab color space. Experimental results demonstrate that the proposed method can achieve better perceptual quality, higher image information entropy, and less noise, compared to the state-of-the-art underwater image enhancement methods.
Fichier principal
Vignette du fichier
Shallow-water_cameraready.pdf (1.17 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01632263 , version 1 (07-03-2020)

Identifiants

  • HAL Id : hal-01632263 , version 1

Citer

Dongmei Huang, Yan Wang, Wei Song, Jean Sequeira, Sébastien Mavromatis. Shallow-water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. 24th International Conference on Multimedia Modeling - MMM2018, Feb 2018, Bangkok, Thailand. ⟨hal-01632263⟩
874 Consultations
1821 Téléchargements

Partager

More