Top Incomes, Heavy Tails, and Rank-Size Regressions - Aix-Marseille Université Access content directly
Journal Articles Econometrics Year : 2018

Top Incomes, Heavy Tails, and Rank-Size Regressions

Abstract

In economics, rank-size regressions provide popular estimators of tail exponents of heavy-tailed distributions. We discuss the properties of this approach when the tail of the distribution is regularly varying rather than strictly Pareto. The estimator then over-estimates the true value in the leading parametric income models (so the upper income tail is less heavy than estimated), which leads to test size distortions and undermines inference. For practical work, we propose a sensitivity analysis based on regression diagnostics in order to assess the likely impact of the distortion. The methods are illustrated using data on top incomes in the UK.
Fichier principal
Vignette du fichier
econometrics-06-00010-v3.pdf (1.49 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Licence : CC BY - Attribution

Dates and versions

hal-01978497 , version 1 (28-06-2023)

Licence

Attribution

Identifiers

Cite

Christian Schluter. Top Incomes, Heavy Tails, and Rank-Size Regressions. Econometrics, 2018, 6 (1), pp.10. ⟨10.3390/econometrics6010010⟩. ⟨hal-01978497⟩
52 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More