Non-parametric Variable Selection on Non-linear Manifolds
Résumé
In this paper, I investigate a new non-parametric variable selection framework. To extend the usual non-parametric model, I consider non-linear manifolds which are more flexible. Non-linear manifolds are represented by function compositions, allowing more complex dependences in the data. Based on two manifold approximation techniques , k-nearest neighbours and auto-encoder neural networks, I propose two different procedures to perform non-parametric variable selection. The two methods are complementary , the former being a local estimator, while the latter is a global estimator.
Domaines
Statistiques [stat]
Fichier principal
Variable Selection on Nonlinear Manifolds - Desboulets Loann.pdf (10.43 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...