Eco‐evolutionary optimality as a means to improve vegetation and land‐surface models - Aix-Marseille Université
Article Dans Une Revue New Phytologist Année : 2021

Eco‐evolutionary optimality as a means to improve vegetation and land‐surface models

1 SAGES - School of Archaeology, Geography and Environmental Sciences
2 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University
3 IMBE - Institut méditerranéen de biodiversité et d'écologie marine et continentale
4 International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management, Schlossplatz 1, A-2361 Laxenburg, Austria
5 SLU - Swedish University of Agricultural Sciences = Sveriges lantbruksuniversitet
6 Imperial College London
7 Macquarie University [Sydney]
8 Umeå University = Umeå Universitet
9 Copernicus Institute of Sustainable Development, Environmental Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz building, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
10 SOKENDAI - Graduate University for Advanced Studies [Hayama]
11 Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory
12 UC Berkeley - University of California [Berkeley]
13 Stockholm University
14 CSIC - Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain]
15 CREAF - Centre for Ecological Research and Applied Forestries = Centre de Recerca Ecologica i Aplicacions Forestals
16 BOKU - Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche]
17 Dept. Landscape Architecture and Rural Systems Engineering
18 Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, TX 79409, USA
19 D-USYS - Department of Environmental Systems Science [ETH Zürich]
20 Swiss Federal Institute for Forest, Snow and Landscape Research WSL
Stefano Manzoni

Résumé

Global vegetation and land-surface models embody interdisciplinary scientific understanding of the behaviour of plants and ecosystems, and are indispensable to project the impacts of environmental change on vegetation and the interactions between vegetation and climate. However, systematic errors and persistently large differences among carbon and water cycle projections by different models highlight the limitations of current process formulations. In this review, focusing on core plant functions in the terrestrial carbon and water cycles, we show how unifying hypotheses derived from eco-evolutionary optimality (EEO) principles can provide novel, parameter-sparse representations of plant and vegetation processes. We present case studiesthat demonstrate how EEO generate parsimonious representations of core, leaf-level processes that are individually testable and supported by evidence. EEO approaches to photosynthesis and primary production, dark respiration, and stomatal behaviour are ripe for implementation in global models. EEO approaches to other important traits, including the leaf economics spectrum and applications of EEO at the community level are active research areas. Independently tested modules emerging from EEO studies could profitably be integrated into modelling frameworks that account for the multiple time scales on which plants and plant communities adjust to environmental change.
Fichier principal
Vignette du fichier
Harrison et al New Phytologist 2021.pdf (1.6 Mo) Télécharger le fichier

Dates et versions

hal-03265200 , version 1 (19-06-2021)

Identifiants

Citer

Sandy P. Harrison, Wolfgang Cramer, Oskar Franklin, Iain Colin Prentice, Han Wang, et al.. Eco‐evolutionary optimality as a means to improve vegetation and land‐surface models. New Phytologist, 2021, 231 (6), pp.2125-2141. ⟨10.1111/nph.17558⟩. ⟨hal-03265200⟩
86 Consultations
157 Téléchargements

Altmetric

Partager

More