Understanding the power of Max-SAT resolution through UP-resilience - Aix-Marseille Université Access content directly
Conference Poster Year :

Understanding the power of Max-SAT resolution through UP-resilience

Mohamed Sami Cherif
  • Function : Author
  • PersonId : 1090439
Djamal Habet
  • Function : Author
  • PersonId : 940715
André Abrame
  • Function : Author

Abstract

Input: a formula Φ in Conjunctive Normal Form (CNF) Output: the maximum (resp. minimum) number of satisfied (resp. falsified) clauses in Φ over all possible variable assignments Branch & Bound (BnB) for Max-SAT Binary search algorithm which maintains and constantly updates two values : Upper Bound (UB): value of the best known solution Lower Bound (LB): estimation of the best accessible solution Cut: if LB ≥ UB then backtrack
Fichier principal
Vignette du fichier
IJCAI_2020___JOURNAL_TRACK___POSTER (8).pdf (541 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03334479 , version 1 (03-09-2021)

Identifiers

  • HAL Id : hal-03334479 , version 1

Cite

Mohamed Sami Cherif, Djamal Habet, André Abrame. Understanding the power of Max-SAT resolution through UP-resilience. Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), Aug 2021, Montreal-themed Virtual Reality, Canada. ⟨hal-03334479⟩
175 View
44 Download

Share

Gmail Facebook Twitter LinkedIn More