Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging - Aix-Marseille Université Access content directly
Journal Articles Sensors Year : 2021

Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging

Abstract

In this paper, we investigate the performance of a vehicular visible light communications (VVLC) link with a non-collimated and incoherent light source (a light-emitting diode) as the transmitter (Tx), and two different optical receiver (Rx) types (a camera and photodiode (PD)) under atmospheric turbulence (AT) conditions with aperture averaging (AA). First, we present simulation results indicating performance improvements in the signal-to-noise ratio (SNR) under AT with AA with increasing size of the optical concentrator. Experimental investigations demonstrate the potency of AA in mitigating the induced signal fading due to the weak to moderate AT regimes in a VVLC system. The experimental results obtained with AA show that the link’s performance was stable in terms of the average SNR and the peak SNR for the PD and camera-based Rx links, respectively with <1 dB SNR penalty for both Rxs, as the strength of AT increases compared with the link with no AT.
Fichier principal
Vignette du fichier
2021 Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging - Sensors.pdf (2.76 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

hal-03341339 , version 1 (10-09-2021)

Licence

Attribution

Identifiers

Cite

Elizabeth Eso, Zabih Ghassemlooy, Stanislav Zvanovec, Juna Sathian, Mojtaba Mansour Abadi, et al.. Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging. Sensors, 2021, 21 (8), pp.2751. ⟨10.3390/s21082751⟩. ⟨hal-03341339⟩

Collections

UNIV-AMU
18 View
19 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More